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Abstract: We consider a Laplace type problem with a generalized impedance boundary condition
of the form ∂νu = −∂x(g∂xu) on a flat part Γ of the boundary. Here ν is the outward unit normal
vector to ∂Ω, g is the impedance function and x is the coordinate along Γ. Such problems appear
for example in the modelling of small perturbations of the boundary. In the literature, the cases
g = 1 or g = −1 have been investigated. In this work, we address situations where Γ contains the
origin and g(x) = 1x>0(x)xα or g(x) = −sign(x)|x|α with α ≥ 0. In other words, we study cases
where g vanishes at the origin and changes its sign. The main message is that the well-posedness
in the Fredholm sense of the corresponding problems depends on the value of α. For α ∈ [0, 1), we
show that the associated operators are Fredholm of index zero while it is not the case when α = 1.
The proof of the first results is based on the reformulation as 1D problems combined with the
derivation of compact embedding results for the functional spaces involved in the analysis. The
proof of the second results relies on the computation of singularities and the construction of Weyl’s
sequences. We also discuss the equivalence between the strong and weak formulations, which is
not straightforward. Finally, we provide simple numerical experiments which seem to corroborate
the theorems.

Key words: Generalized impedance boundary conditions, Ventcel boundary conditions, vanishing
impedance, sign-changing impedance

1 Introduction

Generalized Impedance Boundary Conditions (GIBCs) are often used in the context of asymptotic
analysis for partial differential equations to obtain simplified models. Imagine for example that one
is interesting in the scattering of an electromagnetic wave by an inclusion of perfectly conducting
material coated with a thin dielectric layer of variable thickness. One can show that the solution
of the corresponding problem is well approximated by the solution of a scattering problem for the
inclusion alone supplemented with an ad hoc second-order GIBC. In this model, the complexity of
the initial geometry is incorporated in the boundary condition. This can be useful in particular to
reduce computational costs because it allows one to avoid meshing the thin layer, see e.g. [2]. Note
that this approach can also be exploited to solve the inverse problem consisting in finding infor-
mation on the obstacle from the measurement of scattered fields [8, 9]. For modelling aspects and
derivation of GIBCs in electromagnetism, we refer the reader to [23]. Similarly, in aeroacoustics,
the so-called Ingard-Myers boundary conditions are used to model the presence of a liner located
on the surface of a duct [30]. They also consist of a second-order GIBC.

In order to describe the content of this article, let us present in more details another situation where
GIBCs arise. Let Ω ⊂ R2 be an open, connected, bounded set with a Lipschitz continuous boundary
∂Ω. Additionally, assume that there holds Γ ⊂ ∂Ω with Γ := (−1, 1) × {0} and set Γ0 := ∂Ω \ Γ
(see Figure 1 left). Now let us perturb slightly, in a smooth way, the boundary of Ω. To proceed,
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Figure 1: Left: domain Ω. Center and right: examples of perturbed domains Ωε.

introduce some smooth profile function g supported in [−1, 1] satisfying g(−1) = g(1) = 0 and for
ε > 0 small, define the domain Ωε such that

∂Ωε = Γ0 ∪ Γε with Γε := {(x, εg(x)) |x ∈ (−1, 1)}.

Examples of such geometries are given in Figure 1 center and right. In Ωε, we study the model
problem

−∆uε + uε = f in Ωε

∂νεuε = 0 on ∂Ωε,
(1)

where f is a given source term which vanishes in a neighbourhood of Γ and νε stands for the
outward unit normal vector to ∂Ωε. Let us recall how to obtain formally an asymptotic expansion
of uε with respect to ε small. Consider the ansatz

uε = u0 + εu1 + . . . (2)

where u0, u1 are functions to determine and where the dots correspond to higher order terms. On
Γε, we have the expansions

νε =
1√

1 + ε2(g′(x))2

(
εg′(x)

−1

)
=
(

0
−1

)
+ ε

(
g′(x)

0

)
+ . . . (3)

∇uε(x, εg(x)) = ∇uε(x, 0) + εg(x)
(
∂2

xyuε(x, 0)
∂2

yyuε(x, 0)

)
+ . . .

= ∇uε(x, 0) + εg(x)
(

∂2
xyuε(x, 0)

−∂2
xxuε(x, 0) + uε(x, 0)

)
+ . . . .

(4)

Now we insert (2) in (1) and exploit (3), (4). Collecting the terms of orders ε0, ε1, we find that
u0, u1 satisfy respectively the problems

−∆u0 + u0 = f in Ω
∂νu0 = 0 on ∂Ω

−∆u1 + u1 = 0 in Ω
∂νu1 = 0 on Γ0

∂νu1 = −∂x(g(x)∂xu0) + g(x)u0 on Γ.
(5)

Then by rectifying the boundary of Ωε using “almost identical” diffeomorphisms to transform the
perturbed domain into the original geometry Ω (see e.g. [27, Chap. 7, §6.5]), under additional
assumptions of regularity for f , one can prove the estimate, for ε small enough,

∥uε − (u0 + εu1)∥H1(Ω\ω) ≤ Cε2,

where C is a constant independent of ε and ω is a neighbourhood of Γ. In practice, as mentioned
above, instead of computing successively u0, u1, . . . , very often one prefers to work with a model
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problem, whose dependence with respect to ε is rather explicit, which provides via a simple calcu-
lation an approximation of uε up to a given order. In our case, to approach u0 + εu1 in one shot,
one can consider the problem

−∆u+ u = f in Ω
∂νu = 0 on Γ0

∂νu = −ε∂x(g(x)∂xu) + εg(x)u on Γ.
(6)

The condition on Γ appearing in (6), which makes the analysis of this problem not straightforward,
is a particular instance of the so-called Ventcel boundary conditions, which are themselves a
subclass of GIBCs. Ventcel boundary conditions are second order differential conditions which
have been named after the pioneering works of Feller and Ventcel [20, 37, 21, 38]. Since then,
they have been many studies concerning the Laplace operator with Ventcel boundary conditions
[19, 1, 17, 11, 18, 16, 3, 13]. For investigations in non smooth domains, one can consult [28, 35, 33].
The value of ε > 0 as well as the term εgu plays no major role in the well-posedness in the Fredholm
sense of (6) and to simplify, we shall work with the condition

∂νu = −∂x(g(x)∂xu) on Γ, (7)

where ν is the outward unit normal vector to ∂Ω. Up to now, in most of the articles mentioned
above only the cases g = −1 or g = 1 on the whole boundary have been considered. However,
for certain problems, as the one which led us to (6), it may be relevant to consider some g which
vanish or whose sign is not constant on Γ. For instance, such situation arises in a water wave prob-
lem where the bottom shape small variation of the ocean with respect to a reference flat depth
is approached by the boundary condition (7), like in [10]. In this case the function g coincides
with this shape variation and is likely to vanish or change sign. Then it is natural to wonder
what can be said concerning the well-posedness of the corresponding problem in that situations.
This is precisely the goal of the present article to address this question. Note that a variable g is
allowed in [22] but it does not vanish. Besides, let us mention that degenerate elliptic problems
are studied in [34] in the context of modelling of resonant waves in 2D plasma. These problems
share similarities with ours but are nonetheless different.

Below, we will focus our attention on two model problems. Let us divide Γ into the two seg-
ments

Γ− := (−1, 0) × {0} and Γ+ := (0, 1) × {0}.

To study the case of a g which vanishes at a point (the origin), we will work on the variational
problem whose strong formulation is

−∆u+ u = f in Ω
∂νu = 0 on ∂Ω \ Γ+

∂νu = s ∂x(xα ∂xu) on Γ+,

(8)

where s = 1 or s = −1 and α ≥ 0 is a real number. Moreover here and in the rest of the article, f
is a given element of L2(Ω).
To address the situation where g changes sign in (7), we will study the variational problem whose
strong formulation is

−∆u+ u = f in Ω
∂νu = 0 on Γ0
∂νu = −∂x(|x|α ∂xu) on Γ−
∂νu = ∂x(xα ∂xu) on Γ+,

(9)

with again α ≥ 0. In (8) and (9), the coefficient α can be viewed as a simple polynomial rate which
characterizes how fast the impedance vanishes at the origin. The most relevant case is probably
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α = 1, which in (9) corresponds to a smooth change of sign. The situation α = 0, i.e. a jump of the
impedance function which may seem less realistic because one needs smoothness in the asymptotic
expansion leading to (6), is also considered in our paper. We will see that the value of α plays a
crucial role in the results of well-posedness.

The outline is as follows. We start by presenting the problems and the main results in Sec-
tion 2. In Section 3, we prove a series of results concerning weighted Sobolev spaces in 1D which
will be used in the analysis. In Section 4, we establish the well-posedness in the Fredholm sense
of the operator, denoted by A, see (11), associated with the variational formulation leading to (8)
in the case α ∈ [0, 1). Then we prove that for α = 1, A is not of Fredholm type (see Section 5).
In Section 6, we study the operator associated with the variational formulation leading to (9). In
Section 7, we analyse the equivalence between strong and weak formulations. Finally, we present
the results of simple numerical experiments which seem to corroborate our theorems before giving
a few concluding remarks in Section 9.

2 Main results

2.1 Definition of the problems

To consider the case of an impedance vanishing at the origin, we introduce the space

Vα(Ω) := {v ∈ H1(Ω) |xα/2∂xv ∈ L2(Γ+)}

and study the weak formulation:

Find u ∈ Vα(Ω) such that for all v ∈ Vα(Ω)�
Ω

∇u · ∇v + uv dxdy + s

�
Γ+

xα ∂xu ∂xv dx =
�

Ω
fv dxdy.

(10)

Here the term xα is our impedance function. We denote by a(·, ·) the sesquilinear form appearing
in the left hand side of (10) and by ℓ(·) the antilinear form of the right hand side. For the space
Vα(Ω), we have the following result.

Proposition 2.1. For all α ≥ 0, Vα(Ω) is a Hilbert space when equipped with the inner product

(u, v)Vα(Ω) =
�

Ω
∇u · ∇v + uv dxdy +

�
Γ+

xα ∂xu ∂xv dx.

Proof. Let us consider a Cauchy sequence (un)n∈N in Vα(Ω). Clearly, since H1(Ω) and L2(Γ+)
are Hilbert spaces, there exist u ∈ H1(Ω) such that un → u in H1(Ω) and w ∈ L2(Γ+) such that
xα/2∂xun|Γ+ → w in L2(Γ+). Since the trace mapping is continuous from H1(Ω) to H1/2(Γ+),
there holds un|Γ+ → u|Γ+ in H1/2(Γ+), which implies that un|Γ+ → u|Γ+ in D′(Γ+), the space of
distributions on Γ+. From this, we infer that ∂xun|Γ+ → ∂xu|Γ+ in D′(Γ+). Using that xα/2 ∈
C ∞(Γ+), we deduce xα/2∂xun|Γ+ → xα/2∂xu|Γ+ in D′(Γ+). We conclude that w = xα/2∂xu|Γ+ ,
which completes the proof.

Remark 2.2. This result is also true for α < 0 but we will not consider this case in the following.

It is readily seen that the forms a(·, ·) and ℓ(·) are respectively continuous on Vα(Ω) × Vα(Ω)
and Vα(Ω). With the help of the Riesz representation theorem, hence we can define the bounded
operator A : Vα(Ω) → Vα(Ω) and the element L ∈ Vα(Ω) such that

(Au, v)Vα(Ω) = a(u, v) and (L, v)Vα(Ω) = ℓ(v), ∀u, v ∈ Vα(Ω). (11)

With this notation, the weak formulation (10) is equivalent to find u ∈ Vα(Ω) such that Au = L.
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To investigate the case of an impedance which is both vanishing at the origin and whose sign
is non constant, we introduce the space, for α ≥ 0,

Wα(Ω) := {v ∈ H1(Ω) | |x|α/2∂xv ∈ L2(Γ−), xα/2∂xv ∈ L2(Γ+)},

and consider the weak formulation

Find u ∈ Wα(Ω) such that for all v ∈ Wα(Ω)�
Ω

∇u · ∇v + uv dxdy −
�

Γ−

|x|α ∂xu ∂xv dx+
�

Γ+

xα ∂xu ∂xv dx =
�

Ω
fv dxdy.

(12)

We denote by b(·, ·) the sesquilinear form appearing in the left hand side of (12). By adapting the
proof of Proposition 2.1, one shows that Wα(Ω) is a Hilbert space for all α ≥ 0 when equipped
with the inner product

(u, v)Wα(Ω) =
�

Ω
∇u · ∇v + uv dxdy +

�
Γ−

|x|α ∂xu ∂xv dx+
�

Γ+

xα ∂xu ∂xv dx.

With the Riesz representation theorem, we define the bounded operator B : Wα(Ω) → Wα(Ω) and
the element L̃ ∈ Wα(Ω) such that

(Bu, v)Wα(Ω) = b(u, v) and (L̃, v)Wα(Ω) = ℓ(v), ∀u, v ∈ Wα(Ω). (13)

With this notation, the weak formulation (12) is equivalent to find u ∈ Wα(Ω) such that Bu = L̃.

2.2 Statement of the results

We start with the variational formulation (10). Concerning the relation with the strong problem
(8), we have the following result:

Theorem 2.3. For s = ±1, for any α ≥ 0, if u satisfies (10), then it solves (8) where the GIBC
on Γ+ holds in D′(Γ+) (distributional sense).

Next we consider the well-posedness of (10). In the good sign case s = 1, we have the following
theorem, which is a direct application of the Lax-Milgram lemma since the bilinear form a(·, ·) is
coercive (the proof is omitted because it is straightforward).

Theorem 2.4. For s = 1, the weak formulation (10) has a unique solution for all α ≥ 0.

The bad sign case s = −1 is more delicate to address because then the coercivity of a(·, ·) in
Vα(Ω) × Vα(Ω) is not clear. The main achievement of the present paper is to emphasize that the
well-posedness (in the Fredolm sense) of (10) depends on the parameter α. We prove a positive
result for α ∈ [0, 1) and a negative result for α = 1.

Theorem 2.5. For s = −1 and α ∈ [0, 1), the operator A : Vα(Ω) → Vα(Ω) is Fredholm of index
zero. As a consequence, Problem (10) admits a solution when A is injective.

Theorem 2.6. For s = −1 and α = 1, the operator A : Vα(Ω) → Vα(Ω) is not of Fredholm type.

Now we present the results for the variational formulation (12) with an impedance which is both
vanishing and sign-changing. They are very similar to the ones of Theorems 2.3, 2.5 and 2.6.

Theorem 2.7. For any α ≥ 0, if u satisfies (12), then it solves (9) where the GIBC on Γ± holds
in D′(Γ±).

Theorem 2.8. For α ∈ [0, 1), the operator B : Wα(Ω) → Wα(Ω) is Fredholm of index zero. As a
consequence, Problem (12) admits a solution when B is injective.

Theorem 2.9. For α = 1, the operator B : Wα(Ω) → Wα(Ω) is not of Fredholm type.
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Remark 2.10. Comparing all these results, we can say that the well-posedness of Problem (12)
is more affected by the fact that the impedance is vanishing than by the fact that its sign is non
constant.

Among the important results of this paper, let us also mention Theorem 7.4, in which we establish
the equivalence between the weak and the strong formulation of a slightly more realistic problem
than those presented in this section.
In order to prove some of the theorems above, we need to establish results for weighted Sobolev
spaces in 1D. This is the subject of the next section.

3 Weighted Sobolev spaces in dimension 1

Denote by I the interval (0, 1). For α ≥ 0, define the space

Xα(I) := {φ ∈ L2(I) |xα/2dxφ ∈ L2(I)}. (14)

Equipped with its natural inner product

(φ,ψ)Xα(I) =
�

I
φψ dx+

�
I
xα dxφdxψ dx,

it is clear that Xα(I) is a Hilbert space. We remark that X0(I) = H1(I), where H1(I) stands for
the classical Sobolev space, and Xα(I) ⊂ Xβ(I) for α ≤ β. Additionally, the functions of Xα(I)
belong to H1(ε, 1) for any ε > 0, and so are continuous on (0, 1].

Proposition 3.1. The space X1(I) is continuously embedded in H1/2(I).

Remark 3.2. A consequence of this result is that all the spaces Xα(I), α ≤ 1, are continuously
embedded in H1/2(I).

Proof. Let φ be an element of X1(I). Consider the quarter of disk Ω+ := {(x, y) ∈ R2, x > 0, y >
0, x2 + y2 < 1} and define the function u such that u(x, y) = φ((x2 + y2)1/2) in Ω+. We observe
that u ∈ H1(Ω+) with

∥u∥2
H1(Ω+) = π

2

� 1

0

(
|φ|2 + |drφ|2

)
rdr ≤ π

2

� 1

0

(
|φ|2 + r|drφ|2

)
dr = π

2 ∥φ∥2
X1(I).

By using the continuity of the trace mapping from H1(Ω+) to H1/2(Γ+), we obtain that there exists
a constant C > 0 such that

∥φ∥2
H1/2(I) = ∥u|Γ+∥2

H1/2(Γ+) ≤ C ∥u∥2
H1(Ω+) = C

π

2 ∥φ∥2
X1(I).

This ends the proof.

In our analysis below, we will need more refined results of regularity for the functions of Xα(I).

Proposition 3.3. For α < 1, Xα(I) is continuously embedded in the Hölder space C 0, 1−α
2 (I).

Remark 3.4. This implies that for α < 1, Xα(I) is compactly embedded in C 0(I) endowed with
the norm ∥ · ∥L∞(I) := sup

I
| · |.

Proof. Consider some φ ∈ Xα(I). For 0 < x ≤ y < 1, we can write

φ(y) − φ(x) =
� y

x
dtφdt =

� y

x
t−α/2 tα/2dtφdt.
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Using the Cauchy-Schwarz inequality in L2(x, y), this implies

|φ(y) − φ(x)| ≤
(� y

x
t−α dt

)1/2
∥φ∥Xα(I) =

(
y1−α − x1−α

1 − α

)1/2

∥φ∥Xα(I). (15)

Now a simple analysis guarantees that for 0 < x ≤ y < 1, there holds

y1−α − x1−α ≤ (y − x)1−α. (16)

Indeed, (16) is equivalent to have g(t) ≥ 0 with g(t) = (t−1)ε − tε +1, ε := 1−α and t = y/x ≥ 1.
Since g′(t) = ε((t − 1)ε−1 − tε−1) = εtε−1((t/(t − 1))1−ε − 1), we deduce that g′ is positive on
(1,+∞). As a consequence, g is increasing on (1,+∞). Since g(1) = 0, we infer that g is non
negative on [1,+∞). Thus (16) is valid and inserting this estimate into (15) gives the result of the
proposition.

We are now in a position to establish the main result of this section.
Proposition 3.5. For α < 1, the space Xα(I) is compactly embedded in H1/2(I).
Proof. Let us consider a bounded sequence (φn) of elements of Xα(I). We wish to prove that there
exists a subsequence of (φn) which converges in H1/2(I). According to Proposition 3.3, Xα(I)
is continuously embedded in C 0, 1−α

2 (I). This implies in particular that there holds ∥φn∥L∞(I) ≤
C ∥φn∥Xα(I) and so |φn(0)| ≤ C. Here and below, C > 0 is a constant which may change from one
line to another but which remains independent of n. For n ∈ N, let us decompose φn as

φn = φ̃n + φn(0),

so with φ̃n := φn −φn(0). According to the Bolzano-Weierstrass theorem, we can extract a subse-
quence of (φn), still denoted (φn), such that (φn(0)) converges in C. Therefore it suffices to prove
that we can extract from (φ̃n) a subsequence which converges in H1/2(I).

Since (φ̃n) is bounded in Xα(I), up to a subsequence, it converges weakly in Xα(I) to some
φ̃. Additionally, since there holds φ̃n(0) = 0 for all n ∈ N and since Xα(I) is compactly embedded
in C 0(I) (Remark 3.4), we have φ̃(0) = 0. Introduce some function ζ ∈ C ∞(R) such that ζ(t) = 1
for t ≤ 1, ζ(t) = 0 for t ≥ 2 and 0 ≤ ζ(t) ≤ 1 in R. Then for k ∈ N \ {0}, define ζk such that
ζk(t) = ζ(t/k). The triangle inequality gives

∥φ̃n − φ̃∥H1/2(I) ≤ ∥ζk(φ̃n − φ̃)∥H1/2(I) + ∥(1 − ζk)(φ̃n − φ̃)∥H1/2(I). (17)

Let us study each of the two terms of the right hand side of (17) separately. We start with the
first one. Consider again the quarter of disk Ω+ = {(x, y) ∈ R2, x > 0, y > 0, x2 + y2 < 1} and
define the function u ∈ H1(Ω+) such that

u(x, y) = ζk(r)(φ̃n(r) − φ̃(r)) in Ω+ with r = (x2 + y2)1/2. (18)

Using the continuity of the trace mapping from H1(Ω+) to H1/2(Γ+) and the fact that u vanishes
on the curved part of ∂Ω+, which allows us to exploit a Poincaré inequality, we can write

∥ζk(φ̃n − φ̃)∥H1/2(I) ≤ C ∥u∥H1(Ω+) ≤ C ∥∇u∥L2(Ω+). (19)

But there holds

∥∇u∥2
L2(Ω+) = π

2

� 1

0
|dr(ζk(φ̃n − φ̃))|2 rdr

≤ π

� 1

0
ζ2

k |dr(φ̃n − φ̃)|2 rdr + π

� 1

0
|φ̃n − φ̃|2(drζk)2 rdr

≤ π

� 2/k

0
r1−αrα|dr(φ̃n − φ̃)|2 dr + C k−2π

� 2/k

1/k
|φ̃n − φ̃|2 rdr

≤ C

(
kα−1 + k−2

� 2/k

1/k
r2−α dr

)
∥φ̃n − φ̃∥2

Xα(I) ≤ C kα−1.

(20)

7



Note that to obtain the first inequality of the last line, we used estimate (15). We emphasize that
in (20), the constant C > 0 is independent of n. Gathering (19) and (20), we deduce that for any
ε > 0, we can take k ∈ N \ {0} large enough such that there holds

∥ζk(φ̃n − φ̃)∥H1/2(I) ≤ ε/2 (21)

for all n ∈ N. Let us fix one such k. The fact that (φ̃n) is bounded in Xα(I) implies that (φ̃n)
is bounded in H1(1/k, 1). Since this space is compactly embedded in H1/2(1/k, 1), see e.g. [29,
Chap. 1, Theorem 16.3], we can extract a subsequence of (φn) such that (φ̃n) converges strongly
to φ̃ in H1/2(1/k, 1). The sequence ((1 − ζk)(φ̃n − φ̃)) is also bounded in H1(1/k, 1) and so we
can extract a subsequence which converges in H1/2(1/k, 1) to some φ̂. Then, starting with the
triangular inequality, we can write

∥φ̂∥L2(1/k,1) ≤ ∥φ̂− (1 − ζk)(φ̃n − φ̃)∥L2(1/k,1) + ∥(1 − ζk)(φ̃n − φ̃)∥L2(1/k,1)

≤ ∥φ̂− (1 − ζk)(φ̃n − φ̃)∥H1/2(1/k,1) + ∥φ̃n − φ̃∥L2(1/k,1)

≤ ∥φ̂− (1 − ζk)(φ̃n − φ̃)∥H1/2(1/k,1) + ∥φ̃n − φ̃∥H1/2(1/k,1).

Since the right hand side above can be made as small as we wish, we deduce that φ̂ ≡ 0. This
ensures that for n large enough, there holds

∥(1 − ζk)(φ̃n − φ̃)∥H1/2(I) ≤ ε/2. (22)

Using (21) and (22) in (17), we deduce that (φ̃n) converges, up to a subsequence, to φ̃ in H1/2(I),
which was the searched result.

In our study, we will also need a density result, which requires the following lemma.

Lemma 3.6. Assume that α ∈ [0, 1]. There is a constant C > 0 (depending on α) such that
� 1

0
|φ|2 dx ≤ C

� 1

0
xα|dxφ|2 dx, ∀φ ∈ Xα(I) satisfying φ(1) = 0.

Proof. Assume on the contrary that there exists a sequence (φn) in Xα(I) such that for all n ̸= 1,
� 1

0
|φn|2 dx = 1, 1 ≥ n

� 1

0
xα|dxφ|2 dx, φn(1) = 0. (23)

Then (φn) is bounded in Xα(I). But Xα(I) is continuously embedded in X1(I), which is itself con-
tinuously embedded in H1/2(I) according to Proposition 3.1. Since H1/2(I) is compactly embedded
in L2(I) (see e.g. [29, Chap. 1, Theorem 16.3]), we deduce that Xα(I) is compactly embedded in
L2(I). This ensures that there exists a subsequence of (φn), still denoted (φn), which converges
to some φ in L2(I). From the second relation of (23), we infer that (φn) is a Cauchy sequence in
Xα(I) and thus converges to some function in Xα(I). But uniqueness of the limit in L2(I) ensures
that this function is φ. Moreover, from (23), we find dxφ = 0 in I and φ(1) = 0, which implies
φ ≡ 0. This contradicts that ∥φ∥L2(I) = 1 and completes the proof.

Proposition 3.7. For α ∈ [0, 1], the space C ∞(I) is dense in Xα(I).

Proof. For φ ∈ Xα(I), we define the sequence of functions (φn) in I such that for all n ≥ 1,

φn(x) =
φ(1/n) for x ∈ [0, 1/n]
φ(x) for x ∈ [1/n, 1].

(24)

We observe that φn ∈ X0(I). According to Lemma 3.6, there is a constant C > 0 such that

∥φn − φ∥2
Xα(I) ≤ C

� 1

0
xα|dxφn − dxφ|2 dx.
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But we have
� 1

0
xα|dxφn − dxφ|2 dx =

� 1/n

0
xα|dxφ|2 dx → 0 when n → +∞.

This proves the density of X0(I) in Xα(I). Since in addition C ∞(I) is dense in X0(I) = H1(I) and
X0(I) is continuously embedded in Xα(I), we obtain that C ∞(I) is dense in Xα(I).

4 The vanishing case: a positive result for s = −1 and α ∈ [0, 1)
This section is devoted to the proof of Theorem 2.5. As already mentioned, for s = −1 the Lax-
Milgram theorem is not directly applicable to study Problem (10). To circumvent this issue, we
adapt the approach proposed in [3, 13] to deal with the case α = 0. The main idea, roughly
speaking, consists in showing that in (10), the volumic terms are only a compact perturbation
of the operator on the boundary. To proceed, we rewrite the 2D weak formulation (10) as a 1D
problem and use the compactness result of Proposition 3.5.

To state the next proposition, we need to introduce some material. In what follows, for γ ⊂ ∂Ω an
open subpart of the boundary of Ω, on the one hand H−1/2(γ) denotes the dual space of H1/2(γ).
It coincides with the distributions in H−1/2(∂Ω) which are supported in γ. On the other hand,
H̃1/2(γ) denotes the subspace of functions in H1/2(∂Ω) which are supported in γ. The dual space
of H̃1/2(γ) is denoted H̃−1/2(γ). It coincides with the restrictions to γ of the distributions in
H−1/2(∂Ω). Let us warn the reader that different notations exist in the literature for the spaces
above. For example in [29], H̃1/2(γ) and its dual space H̃−1/2(γ) are respectively denoted H1/2

00 (γ)
and H−1/2(γ).
Denote by T the Dirichlet-to-Neumann operator such that

T : H1/2(Γ+) → H−1/2(Γ+)
φ 7→ Tφ = ∂νuφ,

(25)

where uφ is the unique element of H1(Ω) satisfying

−∆uφ + uφ = 0 in Ω
∂νuφ = 0 on ∂Ω \ Γ+

uφ = φ on Γ+.

(26)

Classically one shows that T is continuous from H1/2(Γ+) to H−1/2(Γ+). Additionally, set g :=
−∂νU ∈ H−1/2(Γ+) where U is the unique function of H1(Ω) satisfying

−∆U + U = f in Ω
∂νU = 0 on ∂Ω \ Γ+

U = 0 on Γ+.

(27)

Proposition 4.1. Assume that s = ±1 and α ∈ [0, 1]. If the function u ∈ Vα(Ω) satisfies (10)
then φ := u|Γ+ solves the problem

Find φ ∈ Xα(I) such that for all ψ ∈ Xα(I)

s

�
Γ+

xαdxφdxψ dx+ ⟨Tφ, ψ⟩H−1/2(Γ+),H1/2(Γ+) = ⟨g, ψ⟩H−1/2(Γ+),H1/2(Γ+).
(28)

Conversely, if φ ∈ Xα(I) satisfies (28), then u := uφ + U ∈ Vα(Ω) solves (10).
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Proof. Assume that u ∈ Vα(Ω) solves (10). Then φ := u|Γ+ belongs to Xα(I) and for all v ∈ Vα(Ω),
we have �

Ω
∇u · ∇v + uv dxdy + s

�
Γ+

xα ∂xu ∂xv dx =
�

Ω
f v dxdy. (29)

The function U ∈ H1(Ω) defined as the solution of (27) satisfies, for all v ∈ Vα(Ω) ⊂ H1(Ω),�
Ω

∇U · ∇v + Uv dxdy − ⟨∂νU, v⟩H−1/2(Γ+),H1/2(Γ+) =
�

Ω
f v dxdy.

By taking the difference of these two identities, we obtain, for all v ∈ Vα(Ω),�
Ω

∇(u− U) · ∇v + (u− U)v dxdy + s

�
Γ+

xα ∂xu ∂xv dx = ⟨g, v⟩H−1/2(Γ+),H1/2(Γ+). (30)

On the other hand, by choosing v ∈ C ∞
0 (Ω) in (29), we get

−∆u+ u = f in Ω. (31)

Now consider some ϕ ∈ H̃1/2(∂Ω\Γ+), extend it by zero to Γ+ and introduce a function v ∈ H1(Ω)
such that v|∂Ω = ϕ. Then clearly v belongs to Vα(Ω). Multiplying (31) by this v, integrating by
parts and taking the difference with (29), we find ⟨∂νu, ϕ⟩H−1/2(∂Ω),H1/2(∂Ω) = 0. Since this is valid
for all ϕ ∈ H̃1/2(∂Ω \ Γ+), we obtain ∂νu = 0 on ∂Ω \ Γ+. As a result, we get that the function
u− U ∈ H1(Ω) solves (26) with φ = u|Γ+ . This implies that for all v ∈ Vα(Ω), there holds

�
Ω

∇(u− U) · ∇v + (u− U)v dxdy = ⟨Tu, v⟩H−1/2(Γ+),H1/2(Γ+). (32)

Gathering (30) and (32), we deduce that for all v ∈ Vα(Ω), we have

s

�
Γ+

xα dxφ∂xv dx+ ⟨Tφ, v⟩H−1/2(Γ+),H1/2(Γ+) = ⟨g, v⟩H−1/2(Γ+),H1/2(Γ+). (33)

Next, pick some ϕ ∈ C ∞(Γ+), extend it to ∂Ω\Γ+ to create an element ϕ̃ ∈ H1/2(∂Ω) and consider
some function v ∈ H1(Ω) such that v|∂Ω = ϕ̃. Obviously such a v belongs to Vα(Ω). Inserting it
in (33), we obtain

s

�
Γ+

xα dxφdxϕdx+ ⟨Tφ, ϕ⟩H−1/2(Γ+),H1/2(Γ+) = ⟨g, ϕ⟩H−1/2(Γ+),H1/2(Γ+).

Since this is true for all ϕ ∈ C ∞(Γ+), using the density of C ∞(Γ+) in Xα(I) which is established
in Proposition 3.7, we conclude that φ = u|Γ+ solves (28).

Now let us show the second part of the statement. Assume that φ ∈ Xα(I) satisfies (28). Denote
respectively by uφ, U the solutions of (26), (27). For all v ∈ Vα(Ω), v|Γ+ is an element of Xα(I).
As a consequence, for all v ∈ Vα(Ω), we have

s

�
Γ+

xα ∂xuφ ∂xv dx+ ⟨∂νuφ, v⟩H−1/2(Γ+),H1/2(Γ+) = −⟨∂νU, v⟩H−1/2(Γ+),H1/2(Γ+).

Using additionally that U = 0 on Γ+ implies ∂xU = 0 on Γ+, we get for all v ∈ Vα(Ω),

s

�
Γ+

xα ∂x(uφ + U) ∂xv dx+ ⟨∂ν(uφ + U), v⟩H−1/2(∂Ω),H1/2(∂Ω) = 0.

Finally, since

⟨∂ν(uφ + U), v⟩H−1/2(∂Ω),H1/2(∂Ω) =
�

Ω
∇(uφ + U) · ∇v + (uφ + U)v dxdy −

�
Ω
f v dxdy,

we deduce that u = uφ + U ∈ Vα(Ω) satisfies Problem (10).
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We are now in a position to show Theorem 2.5.

Proof of Theorem 2.5. With the Riesz representation theorem, define the continuous operators
S, K : Xα(I) → Xα(I) such that for all φ,ψ ∈ Xα(I)

(Sφ,ψ)Xα(I) =
�

Γ+

xαdxφdxψ + φψ dx

(Kφ,ψ)Xα(I) = ⟨Tφ, ψ⟩H−1/2(Γ+),H1/2(Γ+) −
�

Γ+

φψ.

Clearly S is an isomorphism. On the other hand, in Proposition 3.5 we showed that the embedding
of Xα(I) in H1/2(Γ+) is compact when α ∈ [0, 1). Using this result and the fact that the operator
T : H1/2(Γ+) → H−1/2(Γ+) defined in (25) is continuous, one proves that K : Xα(I) → Xα(I) is
compact. This guarantees that S+K : Xα(I) → Xα(I) is Fredholm of index zero. In particular, if
only the null function solves (28) with g ≡ 0, then it admits a solution. The equivalence between
problems (10) and (28) given by Proposition 4.1 completes the proof.

5 The vanishing case: a negative result for s = −1 and α = 1

In the previous section, we proved that the problem (10) in the bad sign case s = −1 is well-posed
in the Fredholm sense for all α ∈ [0, 1). Here we still consider (10) with s = −1 but now with
α = 1. In that situation, we show Theorem 2.6, namely that the operator A : V1(Ω) → V1(Ω)
associated with (10) and defined via (11) is not of Fredholm type.

For s = −1 and α = 1, the variational formulation of our problem writes: find u ∈ V1(Ω)
such that for all v ∈ V1(Ω),

�
Ω

∇u · ∇v + uv dxdy −
�

Γ+

x ∂xu ∂xv dx =
�

Ω
fv dxdy. (34)

If u solves (34), then u satisfies the strong problem:

−∆u+ u = f in Ω
∂νu = 0 on ∂Ω \ Γ+

∂νu = −∂x(x ∂xu) on Γ+.

(35)

We will see that the Fredholm property for A is lost due to the existence of strongly oscillating
singularities at the origin. We start by computing these singularities. The latter are defined as the
functions which solve the problem corresponding to the principal part of (35) in a neighbourhood
of point O := (0, 0) with f ≡ 0 and which are of the form s(x, y) = rλφ(θ), where λ ∈ C and φ are
to be determined. Here (r, θ) are the polar coordinates centered at O. From the equation ∆s = 0,
we find first d2

θθφ(θ) + λ2φ(θ) = 0 in (0, π). Then the boundary conditions of (35) on Γ− and Γ+
lead to the relations

dθφ(π) = 0 and dθφ(0) = λ2φ(0),

respectively. Thus, we get

d2
θθφ(θ) + λ2φ(θ) = 0 in (0, π)

dθφ(π) = 0
dθφ(0) = λ2φ(0).

(36)

Exploiting lines 1 and 2 of (36), we find that φ must be of the form φ(θ) = C cos(λ(θ− π)) where
C is a constant. From the third line of (36), we deduce that this system admits a non zero solution
if and only if λ solves

sin(λπ) = λ cos(λπ). (37)
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Of particular importance are the singular exponents λ ̸= 0 which are non zero and purely imaginary,
i.e. of the form λ = iτ with τ ∈ R \ {0}. Indeed, in this case, we have

s(x, y) = riτφ(θ) = eiτ ln rφ(θ), (38)

which corresponds to a function which oscillates an infinite number of times without decay when r
tends to zero (see a rough approximation, because the mesh is fixed, in Figure 5). Such singularities
are just outside of V1(Ω) (and of H1(Ω)) in the sense that they are not in V1(Ω) while rεs belongs
to V1(Ω) for all ε > 0. In general such singularities are absent and appear only for particular
problems. Among them, let us mention certain problems with sign-changing dielectric constants
in presence of inclusions of metals or metamaterials with non smooth shapes in electromagnetism
(see [5, 4, 6]). In this context, the strongly oscillating singularities are sometimes called black hole
waves. They are met also in the study of the Laplace operator with singular Robin boundary
conditions [31] or in singular geometries with cusps [32].

For our problem, one finds that λ = iτ , τ ∈ R \ {0}, solves (37) if and only if

tanh(τπ) = τ. (39)

This equation has exactly two solutions which are opposite sign. The idea is to construct a Weyl
sequence from these particular singularities in order to prove that the problem (34) is not of
Fredhom type.

Remark 5.1. If the condition on Γ+ was ∂νu = +∂x(x∂xu) (with the good sign) and not ∂νu =
−∂x(x∂xu) as in (35), we would find that the equation characterizing the singular exponents is

sin(λπ) = −λ cos(λπ).

Observe that there is no solution of this equation in Ri \ {0}. This is coherent with the fact that
the corresponding problem (10) is well-posed for s = 1 and α = 1 (Theorem 2.4).

In our analysis below, we need the two following density results.

Lemma 5.2. For α ∈ [0, 1], the space C ∞(Ω) is dense in Vα(Ω).

Proof. We work in three steps. First, we show the result for α = 0. Then we prove that V0(Ω) is
dense in Vα(Ω). Finally, we conclude.

Let us establish the density of C ∞(Ω) in V0(Ω) = {v ∈ H1(Ω), v|Γ+ ∈ H1(Γ+)}. We take
u ∈ V0(Ω) and denote φ := u|Γ+ ∈ H1(Γ+). Introduce φ̃ ∈ H1(∂Ω) an extension of φ. There
exists U ∈ H3/2(Ω) such that U |∂Ω = φ̃. Now observe that the function û := u − U ∈ H1(Ω) is
such that û|Γ+ = 0. As a consequence, it can be approximated in H1(Ω) by a sequence (ûn) of
elements of C ∞

0 (Ω \ Γ+). Introduce also (Un) a sequence of functions of C ∞(Ω) which converges
to U in H3/2(Ω). Then (ûn +Un) is a sequence in C ∞(Ω) which converges to u in H1(Ω) and such
that (ûn + Un)|Γ+ converges to φ in H1(Γ+). This proves that (ûn + Un) converges to u in V0(Ω)
and completes the first step.

Let us now prove the density of V0(Ω) in Vα(Ω) for α ∈ [0, 1], taking inspiration from [30].
Consider u ∈ Vα(Ω) and denote φ := u|Γ+ ∈ Xα(I). We introduce the function φn given by (24),
which satisfies φn → φ in Xα(I). From Proposition 3.1, since α ∈ [0, 1], we have that φn → φ in
H1/2(Γ+). Introduce un ∈ H1(Ω) the function satisfying un|Γ+ = φn and

(un, v)H1(Ω) = (u, v)H1(Ω), ∀v ∈ H1(Ω), v|Γ+ = 0.

We have un ∈ V0(Ω). Additionally, en := u− un is such that en ∈ H1(Ω), en|Γ+ = φ− φn and

(en, v)H1(Ω) = 0, ∀v ∈ H1(Ω), v|Γ+ = 0.
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Hence there exists a constant C > 0 independent of n such that

∥en∥H1(Ω) ≤ C ∥φ− φn∥H1/2(Γ+).

This guarantees that (un) converges to u in V0(Ω), which completes the second step.
To conclude, it suffices to use the two previous steps and to remark that the convergence in V0(Ω)
implies the convergence in Vα(Ω).

Lemma 5.3. The space C ∞
0 (Ω \ {O}) is dense in V1(Ω).

Proof. We first show that any w of C ∞(Ω) can be approximated by a sequence of functions of
V⋆

1(Ω) := {w ∈ V1(Ω), w = 0 in a neighbourhood of O}. To proceed, we work as in the proof of
Lemma 1.2.2 of [15]. For ε > 0, define the function τε such that

τε(r) =

0 for r ≤ ε

1 − log(2r)
log(2ε) for ε < r < 1/2

1 for r ≥ 1/2.

We have τεw ∈ V⋆
1(Ω) and

∥w − τεw∥V1(Ω) ≤ ∥1 − τε∥L2(Ω)∥∇w∥L∞(Ω)2 + ∥∇τε∥L2(Ω)2∥w∥L∞(Ω)

+ ∥
√
x(1 − τε)∥L2(Γ+)∥∂xw∥L∞(Γ+) + ∥

√
x∂xτε∥L2(Γ+)∥w∥L∞(Γ+).

For ε small enough, there holds

∥1 − τε∥2
L2(Ω) = π

� 1/2

0
(1 − τε)2r dr = π

(� ε

0
r dr +

� 1/2

ε

(log(2r))2

(log(2ε))2 r dr

)
≤ C

| log ε|2 ,

where C is independent of ε. Similar explicit computations show that for ε small enough, we have

∥1 − τε∥L2(Ω) + ∥
√
x (1 − τε)∥L2(Γ+) ≤ C

| log ε| , ∥∇τε∥L2(Ω)2 + ∥
√
x ∂xτε∥L2(Γ+) ≤ C√

| log ε|
,

where C is independent of ε. This ensures that (τεw) converges to w in V1(Ω) as ε goes to zero.

To conclude, take some v ∈ V1(Ω) and pick ε > 0. From Lemma 5.2, there is φ ∈ C ∞(Ω) such
that ∥v − φ∥V1(Ω) ≤ ε/3. According to the first part of the proof, there exists some v⋆ ∈ V⋆

1(Ω)
such that ∥φ − v⋆∥V1(Ω) ≤ ε/3. On the other hand, it is clear that any function of V⋆

1(Ω) can be
approximated in V1(Ω) by a sequence of functions of C ∞

0 (Ω \ {O}) (adapt the first step of the
proof of Lemma 5.2). Hence there exists ψ ∈ C ∞

0 (Ω\{O}) such that ∥v⋆ −ψ∥V1(Ω) ≤ ε/3. Finally,
we can write

∥v − ψ∥V1(Ω) ≤ ∥v − φ∥V1(Ω) + ∥φ− v⋆∥V1(Ω) + ∥v⋆ − ψ∥V1(Ω) ≤ ε,

which completes the proof

We are now in a position to establish Theorem 2.6.

Proof of Theorem 2.6. Let us work by contradiction. Assume that A : V1(Ω) → V1(Ω) is of
Fredholm type. In this case, since it is selfadjoint, because it is symmetric and bounded, it is
Fredholm of index zero. Then, define the operator Ã : V1(Ω) → V1(Ω) such that

(Ãu, v)V1(Ω) = a(u, v) + i

�
Ω
u v dxdy, ∀u, v ∈ V1(Ω),
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Using that H1(Ω) is compactly embedded in L2(Ω), one can shows that Ã − A is compact. This
guarantees that Ã is Fredholm of index zero. Since Ã is injective, we deduce that Ã is an isomor-
phism. Therefore, there is a constant C > 0 such that we have

∥u∥V1(Ω) ≤ C ∥Ãu∥V1(Ω), ∀u ∈ V1(Ω). (40)

Let us show that this is not true. For n ∈ N \ {0}, define the function sn such that

sn(x, y) = riτ+1/n cos(iτ(θ − π)) (41)

where τ stands for the positive root of Equation (39). Due to the regularizing term r1/n in the
definition of sn, one can check that sn belongs to V1(Ω) for all n ∈ N \ {0}. However we have

∥sn∥2
V1(Ω) ≥

�
Γ+

x|∂xsn|2 dx

= | cos(iτπ)|2 |iτ + 1/n|2
� 1

0
x2/n−1 dx ≥ |τ cos(iτπ)|2 n2 −→

n→+∞
+∞.

(42)

On the other hand, using Lemma 5.3, we can write

∥Ãsn∥V1(Ω) = sup
v∈C ∞

0 (Ω\{O})\{0}

|(Ãsn, v)V1(Ω)|
∥v∥V1(Ω)

. (43)

Let us work on the right hand side of (43). For v ∈ C ∞
0 (Ω \ {O}), we have

(Ãsn, v)V1(Ω) =
�

Ω
∇sn · ∇v dxdy −

�
Γ+

x ∂xsn ∂xv dx+ (1 + i)
�

Ω
snv dxdy

= −
�

Ω
∆snv dxdy +

�
∂Ω
∂νsnv dx+

�
Γ+

∂x(x ∂xsn)v dx

−∂xsn(P ) v(P ) + (1 + i)
�

Ω
snv dxdy

(44)

where P := (1, 0). Let δ ∈ (0, 1) be sufficiently small so that Ω contains the half disk D+(O, δ) :=
{(x, y) | 0 < (x2 + y2)1/2 < δ, y > 0}. Introduce some cut-off function ζ ∈ C ∞(Ω) which depends
only on the radial coordinate such that ζ = 1 for r ≤ δ/2 and ζ = 0 for r ≥ δ. Let us rewrite (44)
as (Ãsn, v)V1(Ω) = In

1 + In
2 + In

3 with

In
1 := −

�
Ω

(1 − ζ)∆snv dxdy +
�

∂Ω
(1 − ζ)∂νsnv dx+

�
Γ+

(1 − ζ)∂x(x ∂xsn)v dx

−∂xsn|Γ+(P ) v(P ) + (1 + i)
�

Ω
snv dxdy

In
2 :=

�
Γ+

(∂νsn + ∂x(x ∂xsn)) ζ v dx

In
3 := −

�
Ω

∆sn(ζv) dxdy.

(45)

Above we used that ∂νsn = 0 on Γ− according to the definition (41) of sn. Let us study each of
the terms of (45) separately.

We start with In
1 . Since (sn) is bounded in L∞(Ω), and so in L2(Ω), and that its derivatives

are also bounded in L∞(Ω \D+(O, δ/2)), we have

|In
1 | ≤ c ∥v∥V1(Ω) (46)
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where c > 0 is a constant which may change from one line to another below but which remains
independent of n. Now we deal with the term In

2 in (45). On Γ+, we have

∂νsn + ∂x(x∂xsn) =
(
−iτ sin(iτπ) + (iτ + 1/n)2 cos(iτπ)

)
xiτ+1/n−1,

which, using the fact that λ = iτ satisfies the relation (37), yields

∂νsn + ∂x(x∂xsn) =
(2iτ
n

+ 1
n2

)
cos(iτπ)xiτ+1/n−1.

Integrating by parts, we find
�

Γ+

(∂νsn + ∂x(x ∂xsn)) ζv dx = −
� 1

0

� x

0
(∂νsn + ∂t(t ∂tsn)) dt ∂x(ζv) dx.

Writing
� x

0
(∂νsn + ∂t(x ∂tsn)) dt ∂x(ζv) = 1

iτ + 1
n

(2iτ
n

+ 1
n2

)
cos(iτπ)xiτ+1/n−1/2 x1/2∂x(ζv)

and using the Cauchy-Schwarz inequality, we obtain∣∣∣∣∣
�

Γ+

(∂νsn + ∂x(x ∂xsn)) ζv dx
∣∣∣∣∣ ≤

∣∣∣∣∣ 1
iτ + 1

n

∣∣∣∣∣
∣∣∣∣2iτn + 1

n2

∣∣∣∣ | cos(iτπ)|
√� 1

0
x2/n−1 dx

√� 1

0
x|∂x(ζ v)|2 dx,

which is enough to conclude that

|In
2 | =

∣∣∣∣∣
�

Γ+

(∂νsn + ∂x(x ∂xsn)) ζv dx
∣∣∣∣∣ ≤ c ∥v∥V1(Ω). (47)

Finally we work on the term In
3 in (45). Using that

sn(x, y) = r1/ns(x, y), s(x, y) = riτ cos(iτ(θ − π))

and the fact that ∆s = 0, we find

∆sn =
(2iτ
n

+ 1
n2

)
cos(iτ(θ − π))riτ+1/n−2.

This allows us to write
�

Ω
∆sn (ζv) dxdy =

� π

0

� 1

0

(2iτ
n

+ 1
n2

)
cos(iτ(θ − π))riτ+1/n−2 (ζv) rdrdθ

= −
(2iτ
n

+ 1
n2

)� π

0
cos(iτ(θ − π))

(� 1

0

1
iτ + 1/nr

iτ+1/n ∂r(ζv) dr
)
dθ

= − 1
iτ + 1/n

(2iτ
n

+ 1
n2

) � π

0

� 1

0
riτ+1/n−1 cos(iτ(θ − π)) ∂r(ζv) rdrdθ.

Using again the Cauchy-Schwarz inequality in L2(D+(O, 1)), we deduce

|In
3 | =

∣∣∣∣�
Ω

∆sn (ζv) dxdy
∣∣∣∣ ≤ c ∥v∥V1(Ω). (48)

Finally, gathering estimates (46), (47), (48) into (44), from (43), we obtain

∥Ãsn∥V1(Ω) ≤ c. (49)

Properties (42) and (49) are in contradiction with (40). This ends the proof.
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6 Problem with a vanishing and sign-changing impedance

The goal of the present section is to study the problem (12) which involves an impedance which is
both vanishing at zero and whose sign is not constant. In Section 4, we showed that the boundary
term in the problem (10), with an impedance which vanishes at zero but whose sign is constant,
plays the role of the principal part and the volumic component is only a compact perturbation of it
when α ∈ [0, 1). Therefore, by considering here a sign-changing impedance, we strongly affect the
principal part of the operator. For this reason, the question of the Fredholmness of B compared
to the one of A is a priori not clear. We will see however that we have similar results for A and B
when α ∈ [0, 1].

6.1 Proof of Theorem 2.8 – case α ∈ [0, 1)
In order to prove Theorem 2.8, we will use, like in Proposition 4.1, an equivalence between the
formulation (12) in 2D and a variational problem in 1D. Set I+ := (0, 1), I− := (−1, 0), I := (−1, 1)
and define the two spaces

Xα(I±) := {ϕ± ∈ L2(I±), |x|α/2dxϕ± ∈ L2(I±)}.

We equip them with their natural inner products

(ϕ±, ψ±)Xα(I±) =
�

I±

ϕ± ψ± dx+
�

I±

|x|α dxϕ± dxψ± dx.

For α ∈ [0, 1), we also define the space

Xα(I) := {Φ = (ϕ−, ϕ+) ∈ Xα(I−) × Xα(I+), ϕ−(0) = ϕ+(0)}.

It is a Hilbert space when endowed with the inner product, for Φ = (ϕ−, ϕ+), Ψ = (ψ−, ψ+),

(Φ,Ψ)Xα(I) = (ϕ−, ψ−)Xα(I−) + (ϕ+, ψ+)Xα(I+).

Note that the definition of Xα(I) relies on the result of Proposition 3.3 which guarantees that
Xα(I±) ⊂ C 0(I±) as soon as α ∈ [0, 1). Minor adaptations of the proof of Proposition 3.7 allow
one to show that C ∞(I) is dense in Xα(I) for all α ∈ [0, 1].
To state the result of equivalence, we need to define a few objects. Recall that Γ = (−1, 1) × {0}.
Denote by Θ the Dirichlet-to-Neumann operator such that

Θ : H1/2(Γ) → H−1/2(Γ)
Φ 7→ ΘΦ = ∂νuΦ,

(50)

where uΦ is the unique element of H1(Ω) satisfying

−∆uΦ + uΦ = 0 in Ω
∂νuΦ = 0 on ∂Ω \ Γ
uΦ = Φ on Γ.

(51)

Classically, one shows that Θ is continuous from H1/2(Γ) to H−1/2(Γ). Additionally, set G :=
−∂νU ∈ H−1/2(Γ) where U is the unique function of H1(Ω) satisfying

−∆U + U = f in Ω
∂νU = 0 on ∂Ω \ Γ

U = 0 on Γ.
(52)
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Proposition 6.1. Assume that α ∈ [0, 1). If the function u ∈ Wα(Ω) satisfies (12) then Φ =
(ϕ−, ϕ+) := (u|Γ− , u|Γ+) solves the problem

Find Φ ∈ Xα(I) such that for all Ψ = (ψ−, ψ+) ∈ Xα(I)

−
�

Γ−

|x|αdxϕ− dxψ− dx+
�

Γ+

xαdxϕ+ dxψ+ dx+ ⟨ΘΦ,Ψ⟩H−1/2(Γ),H1/2(Γ) = ⟨G,Ψ⟩H−1/2(Γ),H1/2(Γ).
(53)

Conversely, if Φ ∈ Xα(I) satisfies (53), then u = uΦ + U ∈ Wα(Ω) solves (12).

Proof. The proof is very similar to the one of Proposition 4.1. However we detail it for the sake
of completeness. Assume first that u ∈ Wα(Ω) solves (12). Then Φ = (ϕ−, ϕ+) := (u|Γ− , u|Γ+)
belongs to Xα(I). Indeed, then clearly there holds (ϕ−, ϕ+) ∈ Xα(I−)×Xα(I+). Additionally, from
Proposition 3.3, we know that ϕ± ∈ C (I±). Since u|∂Ω ∈ H1/2(∂Ω), we must have ϕ−(0) = ϕ+(0)
(as mentioned in [36, Chap. 33]). This can be shown by using the characterization of the space
H1/2(∂Ω) with the help of the double integral on ∂Ω (see for example [29]). On the other hand,
for all v ∈ Wα(Ω), there holds

�
Ω

∇u · ∇v + uv dxdy −
�

Γ−

|x|α ∂xu ∂xv dx+
�

Γ+

xα ∂xu ∂xv dx =
�

Ω
fv dxdy.

The function U ∈ H1(Ω) defined as the solution of (52), satisfies, for all v ∈ Wα(Ω) ⊂ H1(Ω),
�

Ω
∇U · ∇v + Uv dxdy − ⟨∂νU, v⟩H−1/2(Γ),H1/2(Γ) =

�
Ω
f v dxdy, ∀v ∈ Wα(Ω).

By taking the difference of the two above identities, we obtain, for all v ∈ Wα(Ω),
�

Ω
∇(u−U) · ∇v+ (u−U)v dxdy−

�
Γ−

|x|α ∂xu ∂xv dx+
�

Γ+

xα ∂xu ∂xv dx = ⟨G, v⟩H−1/2(Γ),H1/2(Γ).

(54)
Besides, by working as in (31), one finds that u satisfies −∆u+u = f in Ω and ∂νu = 0 on ∂Ω \ Γ.
As a result, we get that the function u−U ∈ H1(Ω) solves (51) with Φ = (ϕ−, ϕ+) = (u|Γ− , u|Γ+).
We infer that for all v ∈ Wα(Ω), we have

�
Ω

∇(u− U) · ∇v + (u− U)v dxdy = ⟨ΘΦ, v⟩H−1/2(Γ),H1/2(Γ). (55)

Gathering (54) and (55), we get, for all v ∈ Wα(Ω),

−
�

Γ−

|x|α dxϕ− dxv dx+
�

Γ+

xα dxϕ+ dxv dx+⟨ΘΦ, v⟩H−1/2(Γ),H1/2(Γ) = ⟨G, v⟩H−1/2(Γ),H1/2(Γ). (56)

Next, pick some Ψ ∈ C ∞(Γ), extend it to ∂Ω \ Γ to create an element Ψ̃ ∈ H1/2(∂Ω) and consider
some function v ∈ H1(Ω) such that v|∂Ω = Ψ̃. Obviously such a v belongs to Wα(Ω). Inserting it
in (56) gives

−
�

Γ−

|x|α dxϕ− dxψ− dx+
�

Γ+

xα dxϕ+ dxψ+ dx+ ⟨ΘΦ,Ψ⟩H−1/2(Γ),H1/2(Γ) = ⟨G,Ψ⟩H−1/2(Γ),H1/2(Γ).

Since this is true for all Ψ ∈ C ∞(Γ), using the density of C ∞(Γ) in Xα(I), we conclude that
Φ = (u|Γ− , u|Γ+) solves (53). This ends the first part of the proof.

Now, assume that Φ ∈ Xα(I) satisfies (53). Denote respectively by uΦ, U the solutions of (51),
(52). For all v ∈ Wα(Ω), (v|Γ− , v|Γ+) belongs to Xα(I). Therefore, for all v ∈ Wα(Ω), we have

−
�

Γ−

|x|α ∂xuΦ ∂xv dx+
�

Γ+

xα ∂xuΦ ∂xv dx+ ⟨∂νuΦ, v⟩H−1/2(Γ),H1/2(Γ) = −⟨∂νU, v⟩H−1/2(Γ),H1/2(Γ).
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Using that U = 0 on Γ implies ∂xU = 0 on Γ, we get, for all v ∈ Wα(Ω),

−
�

Γ−

|x|α ∂x(uΦ + U) ∂xv dx+
�

Γ+

xα ∂x(uΦ + U) ∂xv dx+ ⟨∂ν(uΦ + U), v⟩H−1/2(∂Ω),H1/2(∂Ω) = 0.

Finally, since there holds,

⟨∂ν(uΦ + U), v⟩H−1/2(∂Ω),H1/2(∂Ω) =
�

Ω
∇(uΦ + U) · ∇v + (uΦ + U)v dxdy −

�
Ω
f v dxdy,

we deduce that u = uΦ + U ∈ Wα(Ω) satisfies Problem (12).

We are now able to prove Theorem 2.8.

Proof of Theorem 2.8. Due to the change of sign of the impedance x 7→ sign(x)|x|α, we can not
directly apply the Lax-Milgram theorem to prove that the 1D variational problem (53) is well-
posed. Instead we will adapt the T-coercivity approach presented in [7, 14]. Let us define the
operator

T : Xα(I) → Xα(I)
Φ = (ϕ−, ϕ+) 7→ (−ϕ− + 2ϕ+(0), ϕ+).

Let us comment a bit on this choice. The “−ϕ−” in the definition of TΦ on I− will allow us to
recover some positivity. However, to ensure that TΦ belongs to Xα(I), we have to compensate
for the jump of trace at zero. This explains the presence of the “+2ϕ+(0)”. Using in particular
Proposition 3.3, we can show that T is continuous. Additionally, we have T ◦ T = Id, where
Id : Xα(I) → Xα(I) stands for the identity of Xα(I). This guarantees that T is an isomorphism.
Now, with the Riesz representation theorem, define the continuous operators S,K : Xα(I) → Xα(I)
such that for all Φ,Ψ ∈ Xα(I),

(SΦ,Ψ)Xα(I) = −
�

I−

|x|αdxϕ− dxψ− dx+
�

I+

xαdxϕ+ dxψ+ dx+
�
I
TΦ Ψ dx

(KΦ,Ψ)Xα(I) = −
�
I
TΦ Ψ dx+ ⟨ΘΦ,Ψ⟩H−1/2(Γ),H1/2(Γ).

We have
((S ◦ T)Φ,Ψ)Xα(I) = (Φ,Ψ)Xα(I), ∀Φ,Ψ ∈ Xα(I).

This proves that S : Xα(I) → Xα(I) is an isomorphism whose inverse is T. On the other hand,
exploiting that T : Xα(I) → Xα(I) is continuous, that Θ : H1/2(Γ) → H−1/2(Γ) is continuous and
that Xα(I) is compactly embedded in H1/2(Γ) (consequence of Proposition 3.5), we can show that
K : Xα(I) → Xα(I) is a compact operator. We deduce that S + K is of Fredholm type. Since it is
symmetric, it is of index zero. In particular, if only the null function solves (53) with G ≡ 0, then
it admits a solution. The equivalence between problems (12) and (53) given by Proposition 6.1
completes the proof.

6.2 Proof of Theorem 2.9 – case α = 1
In the previous paragraph, we considered the problem (12) for α ∈ [0, 1). Here we address the case
α = 1. In that situation, (12) simply writes

Find u ∈ W1(Ω) such that for all v ∈ W1(Ω)�
Ω

∇u · ∇v + uv dxdy +
�

Γ
x ∂xu ∂xv dx =

�
Ω
fv dxdy.

(57)

If u solves (57), then u satisfies the strong problem:

−∆u+ u = f in Ω
∂νu = ∂x(x ∂xu) on Γ
∂νu = 0 on Γ0.

(58)
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Similarly to what has been done in Section 5, let us compute the singularities associated to the
principal part of (58) at the origin and which are of the form s(x, y) = rλφ(θ). This times, we find
that (λ, φ) must satisfy the spectral problem

d2
θθφ(θ) + λ2φ(θ) = 0 in (0, π)

−dθφ(0) = λ2φ(0)
−dθφ(π) = λ2φ(π).

(59)

For λ ̸= 0, let us look for φ in the form φ(θ) = A cos(λθ) + B sin(λθ) where A, B are some
constants. The second relation of (59) gives −B = λA and so φ(θ) = A (cos(λθ) − λ sin(λθ)).
From the third equation of (59), we find that there is a non zero solution if and only if λ ̸= 0
satisfies

sin(λπ) + λ cos(λπ) = λ (cos(λπ) − λ sin(λπ)) ⇐⇒ (1 + λ2) sin(λπ) = 0.

Thus, among the singular exponents, we find the values λ = ±i. Then mimicking the proof of
Theorem 2.6 with τ replaced by 1, we can then establish Theorem 2.9 by working by contradiction.
In the process, we need the density of C ∞(Ω) in Wα(Ω) for α ∈ [0, 1] and more precisely the density
of C ∞

0 (Ω \ {O}) in W1(Ω). The proofs of these results follow the same steps as the ones of Lemma
5.2 and Lemma 5.3 respectively.

7 Relationship between the strong and weak formulations

In this section, we discuss the equivalence between strong and weak formulations. As we will see,
this is not an obvious point, the reason being that it is not clear in which sense the boundary
conditions in the strong problems should be imposed. We start by showing the simple result of
Theorem 2.3.

Proof of Theorem 2.3. Assume that u ∈ Vα(Ω) satisfies (10). Choosing first v ∈ C ∞
0 (Ω) in

the variational formulation, we get −∆u+ u = f in D′(Ω). Then working as after (31), we obtain
∂νu = 0 on ∂Ω \ Γ+. Finally, let us choose v ∈ Vα(Ω) in (10). Using the Green formula

�
Ω

∇u · ∇v dxdy = −
�

Ω
∆u v dxdy + ⟨∂νu, v⟩H−1/2(∂Ω),H1/2(∂Ω), (60)

we find
⟨∂νu, v⟩H−1/2(Γ+),H1/2(Γ+) + s

�
Γ+

xα ∂xu ∂xv dx = 0. (61)

Now, consider some φ ∈ C ∞
0 (Γ+), extend it by zero to ∂Ω and introduce some function v ∈ H1(Ω)

such that v|∂Ω = φ. Then clearly v belongs to Vα(Ω). Inserting it into (61) gives

⟨∂νu, φ⟩H−1/2(Γ+),H1/2(Γ+) + s

�
Γ+

xα ∂xu ∂xφdx = 0.

Since this is true for all φ ∈ C ∞
0 (Γ+), we obtain ∂νu = s∂x(xα∂xu) in the distributional sense on

Γ+. This shows that u solves (8).

We establish similarly the result of Theorem 2.7 and for this reason, we omit the proof.

At this stage, it is natural to wonder if the converses of Theorems 2.3, 2.7 are true. Namely,
do solutions of (8), (9) satisfy (10), (12) respectively? It turns out that the answer to this question
is no in general because additional conditions are needed at ∂Γ+. In other words, it is necessary to
enrich the strong problems. To set ideas, let us consider (8). We will assume that ∂Ω also contains
the flat segment Γ̃+ := (−η, 1+η)×{0} for a certain η > 0, and assume that the GIBC is imposed
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not only in D′(Γ+) but also in D′(Γ̃+). Nevertheless, this is still not satisfactory because at the
point P = (1, 0), the function x 7→ xα1Γ+(x) has a jump which prevents from defining 1Γ+∂xu as
an element of D′(Γ̃+). This drawback comes from the fact that to simplify the presentation, we
have decided to work on problems (10) and (12) which are rather academic. A more natural one
is

Find u ∈ Ṽα(Ω) such that for all v ∈ Ṽα(Ω)�
Ω

∇u · ∇v + uv dxdy + s

�
Γ+

xα(1 − x)α ∂xu ∂xv dx =
�

Ω
fv dxdy

(62)

with
Ṽα(Ω) := {v ∈ H1(Ω) |xα/2(1 − x)α/2∂xv ∈ L2(Γ+)}.

It is linked to the strong formulation

−∆u+ u = f in Ω
∂νu = 0 on ∂Ω \ Γ̃+

∂νu = s ∂x(1Γ+(x)xα(1 − x)α ∂xu) on Γ̃+,

(63)

where the GIBC in (63) is written in D′(Γ̃+). Before proceeding, let us justify that this GIBC is
well-defined in D′(Γ̃+). This will be a consequence of the two following lemmas.

For α ≥ 0, define gα such that gα(x) = 1Γ+(x)xα(1 − x)α.

Lemma 7.1. The function gα belongs to H1/2(Γ̃+) if and only if α > 0.

Proof. Assume that α > 0. Define the rectangle R := (−η, 1 + η) × (0, 1) and introduce u such
that u(x, y) = rα cos(θ/2). We observe that u ∈ H1(R). Indeed, we have

∥u∥2
H1(R) ≤

� π

0

� 1+η

0

(
|u|2 + |∂ru|2 + r−2|∂θu|2

)
r drdθ < +∞.

Define also v such that v(x, y) = u(1 − x, y). Clearly there also holds v ∈ H1(R). Additionally, we
remark that u ∈ C ∞(Ω \ {O}) and v ∈ C ∞(Ω \ {P}). From this, we deduce that uv belongs to
H1(R). By continuity of the trace mapping from H1(R) to H1/2(Γ̃+), since (uv)|Γ̃+

= gα, we infer
that gα belongs to H1/2(Γ̃+).
When α = 0, it is clear that the discontinuous function g0 does not belong to H1/2(Γ̃+) (see again
[36, Chap. 33]).

Lemma 7.2. For α > 0 and v ∈ H̃−1/2(Γ̃+), gαv belongs to D′(Γ̃+).

Proof. We can define gαv as the distribution such that for ϕ ∈ C ∞
0 (Γ̃+),

⟨gα v, ϕ⟩ := ⟨v, gα ϕ⟩

provided that gαϕ belongs to H̃1/2(Γ̃+). But this can be shown exactly as in the proof of Lemma
7.1. More precisely, by setting w(x, y) = u(x, y)v(x, y)ϕ(x), we find

∥w∥H1(R) ≤ C (∥ϕ∥L∞(Γ̃+) + ∥dxϕ∥L∞(Γ̃+))

where here and below C > 0 is a constant which is independent of ϕ. By continuity of the trace
mapping from H1(R) to H1/2(Γ̃+), since w|Γ̃+

= gαϕ, we infer that

∥gαϕ∥H1/2(Γ̃+) ≤ C (∥ϕ∥L∞(Γ̃+) + ∥dxϕ∥L∞(Γ̃+)).
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Introduce the points P1 := (−η, 0), P2 := (1 + η, 0) corresponding to the ends of Γ̃+, and
d(x) := d((x, 0), {P1, P2}) (d is the distance function to the boundary of Γ̃+). Classically, the
space H̃1/2(Γ̃+) can be endowed with the norm ∥ · ∥H̃1/2(Γ̃+) such that for ψ ∈ H̃1/2(Γ̃+)

∥ψ∥H̃1/2(Γ̃+) =
(

∥ψ∥2
H1/2(Γ̃+) +

∥∥∥d−1/2ψ
∥∥∥2

L2(Γ̃+)

)1/2
.

Hence for all ϕ ∈ C ∞
0 (Γ̃+) which is compactly supported in K ⊂ Γ̃+, there exists a constant CK

depending on K such that

∥gαϕ∥H̃1/2(Γ̃+) ≤ CK∥gαϕ∥H1/2(Γ̃+) ≤ CK (∥ϕ∥L∞(Γ̃+) + ∥dxϕ∥L∞(Γ̃+)).

This yields
|⟨gα v, ϕ⟩| ≤ CK (∥ϕ∥L∞(Γ̃+) + ∥dxϕ∥L∞(Γ̃+)),

which proves that gαv is an element of D′(Γ̃+).

Proposition 7.3. For α > 0, if u ∈ Ṽα(Ω), then ∂x(1Γ+(x)xα(1 − x)α∂xu) belongs to D′(Γ̃+).

Proof. If u ∈ Ṽα(Ω) then we have u ∈ H1(Ω) and so u|Γ̃+
∈ H1/2(Γ̃+). This implies that ∂xu|Γ̃+

∈
H̃−1/2(Γ̃+). Then Lemma 7.2 guarantees that gα∂xu|Γ̃+

is well defined in D′(Γ̃+). As a consequence,
∂x(gα∂xu) belongs to D′(Γ̃+).

Now we can state the main result concerning the relationship between problems (62) and (63).

Theorem 7.4.
For any α ≥ 0, if u satisfies (62), then it solves (63).
For α ∈ (0, 1], if u ∈ Ṽα(Ω) satisfies (63), then it solves (62).

Proof. The first item can be established by working as in the proof of Theorem 2.3 with the help
of Proposition 7.3. Let us focus our attention on the second point.
Assume that u ∈ Ṽα(Ω) satisfies (63). Introducing again the points P1 = (−η, 0), P2 = (1 + η, 0)
corresponding to the ends of Γ̃+, multiplying the first equation of (63) by v ∈ C ∞

0 (Ω \ {P1, P2})
and using the Green formula (60), we get�

Ω
∇u · ∇v + uv dxdy − ⟨∂νu, v⟩H−1/2(Γ̃+),H1/2(Γ̃+) =

�
Ω
f v dxdy. (64)

Since u ∈ Ṽα(Ω), Proposition 7.3 guarantees that ∂x(gα∂xu) belongs to D′(Γ̃+). Exploiting that
v|Γ̃+

∈ C ∞
0 (Γ̃+), we can write

⟨∂x(gα∂xu), v⟩D′(Γ̃+),C ∞
0 (Γ̃+) = −⟨gα∂xu, ∂xv⟩D′(Γ̃+),C ∞

0 (Γ̃+) = −
�

Γ+

xα∂xu ∂xv dx.

On the other hand, using that

s⟨∂x(gα∂xu), v⟩D′(Γ̃+),C ∞
0 (Γ̃+) = ⟨∂νu, v⟩D′(Γ̃+),C ∞

0 (Γ̃+) = ⟨∂νu, v⟩H−1/2(Γ̃+),H1/2(Γ̃+),

we obtain
⟨∂νu, v⟩H−1/2(Γ̃+),H1/2(Γ̃+) = −s

�
Γ+

xα∂xu ∂xv dx.

With (64), this gives�
Ω

∇u · ∇v + uv dxdy + s

�
Γ+

xα(1 − x)α∂xu ∂xv dx =
�

Ω
f v dxdy, ∀v ∈ C ∞

0 (Ω \ {P1, P2}).

Finally, we can conclude by using the density of C ∞
0 (Ω\{P1, P2}) in Ṽα(Ω). This latter result can be

shown by exploiting Lemma 5.2 and using the fact that H1 functions vanishing in a neighbourhood
of {P1, P2} are dense in H1(Ω) (see e.g. Lemma 1.2.2 in [15]).
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It is natural to wonder if the second point of Theorem 7.4 also holds for α = 0. Note that for
α = 0, there holds Ṽ0(Ω) = V0(Ω) and that (10), (62) are the same. Let us define the space

V2
0(Ω) := {v ∈ H1(Ω), v|Γ+ ∈ H2(Γ+)}.

We emphasize that V2
0(Ω) is smaller than V0(Ω) because in the latter space, we only impose

v|Γ+ ∈ H1(Γ+). We have the following result.

Proposition 7.5. A function u ∈ V2
0(Ω) solves (62) with α = 0 if and only if it satisfies

−∆u+ u = f in Ω
∂νu = 0 on ∂Ω \ Γ+

∂νu = s ∂xxu on Γ+

∂xu|Γ+ = 0 at {O,P} with P = (1, 0).

(65)

Proof. Assume that u solves (62) with α = 0 and belongs to V2
0(Ω). From Theorem 2.3, it is clear

that u satisfies all the equations of (8) with α = 0. On the other hand, for all v ∈ V0(Ω), we have

⟨∂νu, v⟩H−1/2(Γ+),H1/2(Γ+) + s

�
Γ+

∂xu ∂xv dx = 0.

Choosing v such that v|Γ+ = ϕ where ϕ is a given element of C ∞(Γ+), we get

⟨∂νu, ϕ⟩H−1/2(Γ+),H1/2(Γ+) + s

�
Γ+

∂xu ∂xϕdx = 0.

Using an integration by parts and the fact that u|Γ+ ∈ H2(Γ+), for all ϕ ∈ C ∞(Γ+), we obtain

⟨∂νu, ϕ⟩H−1/2(Γ+),H1/2(Γ+) − s

�
Γ+

∂2
xxuϕ dx− s∂xu|Γ+(O)ϕ|Γ+(O) + s∂xu|Γ+(P )ϕ|Γ+(P ) = 0.

This yields ∂xu|Γ+(O) = ∂xu|Γ+(P ) = 0.
The converse statement follows the same lines.

Remark 7.6. We do not know if Theorem 7.4 holds for α = 0 but we conjecture that additional
conditions at O, P are required for a solution to (8) to always satisfy (62). Unfortunately, the
additional conditions ∂xu|Γ+(O) = ∂xu|Γ+(P ) = 0 have no meaning in general for u ∈ V0(Ω).

8 Numerical illustrations

In this section, we provide numerical results concerning the discretization of the problems (10) and
(12). More precisely, we solve (10) and (12) using a standard P2 finite element method and display
the numerical solutions for different meshes of the geometry. Admittedly, we have no guarantee
that when the problem at the continuous level is well-posed, the numerical solution converges to
the exact solution when the mesh is refined. The question of the numerical approximations of (10)
and (12), when they are well-posed, remains to be studied. Here we simply wish to present what
is observed. For the numerical analysis of problems similar to (10) with s = −1 and α = 0, we
refer the reader to [26, 25, 12].

Practically, we work in the rectangle Ω = (−1, 1) × (0, 1), use the library Freefem++ [24] to
compute the numerical solutions and display the results with Paraview1. For the source term, we
choose f(x, y) = cos(x).

1Paraview, http://www.paraview.org/.
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In Figures 2–7, we present the numerical solutions associated with the problem (10) for s = −1
and different values of α. In Figures 2, 4, we take respectively α = 0.5 and α = 0.95. The meshes
used in the experiments appear in Figure 3. In Figures 2, 4, when the mesh is refined, we observe
that the numerical solution seems to converge. This is quite in agreement with Theorem 2.5 with
guarantees that (10) is well-posed in the Fredholm sense when α ∈ [0, 1).

Figure 2: Numerical resolution of (10) for ten different meshes with s = −1 and α = 0.5.

Figure 3: Meshes used in the experiments.

Figure 4: Numerical resolution of (10) for ten different meshes with s = −1 and α = 0.95.

In Figure 5, we display similar results but this time with α = 1. We note the that the numerical
solution does not converge when the mesh is refined. According to Theorem 2.6, which ensures that
the operator A : V1(Ω) → V1(Ω) is not of Fredholm type in that case, this was somehow expected.
In Figure 6, we show another view of the numerical solution for one particular mesh. This allows
us to illustrate the singular behaviour at the origin which is responsible for the ill-posedness of the
problem (see (38)).
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Figure 5: Numerical resolution of (10) for ten different meshes with s = −1 and α = 1.

Figure 6: Illustration of the singular behaviour of the numerical solution of (10) with s = −1 and
α = 1. Here the mesh is the same as in the 7th image of Figure 5.

In Figure 7, we work with α = 1.5. Again, the numerical solution does not converge when we
refine the mesh. This suggests that the problem at the continuous level is not well-posed in the
Fredholm sense, a result that we have not been able to prove.

Figure 7: Numerical resolution of (10) for ten different meshes with s = −1 and α = 1.5.

In Figure 8, we display results in the good sign case s = 1 with α = 1.5. In agreement with Theorem
2.4, which guarantees that (10) is well-posed, we observe that the numerical solution converges
when the mesh is refined. In that situation, the corresponding sesquilinear form is coercive and
we can apply the Céa’s lemma. The question of the approximability of Vα(Ω) by usual Lagrange
finite elements spaces however remains to be studied.

Figure 8: Numerical resolution of (10) for ten different meshes with s = 1 and α = 1.5.

Finally, in Figures 9–11, we display results concerning Problem (12) which involves an impedance
which is both vanishing and sign-changing. For α = 0.5, the numerical solution converges when
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the mesh is refined (Figure 9). This is not the case for α = 1 (Figure 10). These observations
are in line with the statements of Theorems 2.8 and 2.9. For α = 1.5 (Figure 11), the numerical
solution does not converge either. Proving that the operator B defined in (13) is not of Fredholm
type in that situation remains to be done.

Figure 9: Numerical resolution of (12) for ten different meshes with α = 0.5.

Figure 10: Numerical resolution of (12) for ten different meshes with α = 1.

Figure 11: Numerical resolution of (12) for ten different meshes with α = 1.5.
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9 Concluding remarks

Let us discuss here a few possible extensions and present some open questions following our study.
In the bad sign case s = −1, we proved that the operators A, B defined respectively in (11), (13)
are Fredholm for α ∈ [0, 1) and are not Fredholm for α = 1. For s = −1 and α > 1 (see Figure
7), we expect that A and B are not Fredholm but unfortunately, we are unable to establish this
result. This is due to the fact that then there are no singularities with separate variables in polar
coordinates at the origin.
We worked with the equation −∆u + u = f in Ω. For α ∈ [0, 1], we could similarly consider the
cases −∆u = f or −∆u − ω2u = f with ω ∈ C. This only induces compact perturbations and
does not affect Fredholm properties for A and B. Besides, we imposed generalized impedance
boundary conditions on parts of the boundary which coincide with flat segments. This feature is
used in particular to establish the compactness result of Proposition 3.5 (see (18)) or to compute
the singularities in (36). When Γ± are smooth curves, we do not expect significant differences in
the results compared to what we have obtained. However the proofs need to be written rigorously.
In this study, for s = −1, we did not consider the question of injectivity of A and B. For α ∈ [0, 1),
due do the Fredholm property, we know that these operators have a kernel of finite dimension.
However showing that this kernel reduces to the null function is an open question. We do not
expect that this occurs in all geometries but even finding a simple Ω where we can prove that this
is true reveals complications because we can not use separation of variables due to the form of the
operators. We focused our attention on the 2D case. In 3D, the singularities are different and the
analysis must be adapted. Additionally, in 3D one could consider situations where the impedance,
which is then a function of two variables, vanishes on a line and not only at a point. The study of
the problem in such a circumstance is completely open. Finally, in Section 8 we presented simple
numerical experiments whose results seem in accordance with our theorems. However there is no
justification here. It would be interesting to establish results of convergence for our numerical
methods when the mesh is refined and when A, B are isomorphisms.
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[3] V. Bonnaillie-Noël, M. Dambrine, F. Hérau, and G. Vial. On generalized Ventcel’s type bound-
ary conditions for Laplace operator in a bounded domain. SIAM J. Math. Anal., 42(2):931–
945, 2010.

[4] A.-S. Bonnet-Ben Dhia, C. Carvalho, L. Chesnel, and P. Ciarlet Jr. On the use of Perfectly
Matched Layers at corners for scattering problems with sign-changing coefficients. J. Comput.
Phys., 322:224–247, 2016.

[5] A.-S. Bonnet-Ben Dhia, L. Chesnel, and X. Claeys. Radiation condition for a non-smooth
interface between a dielectric and a metamaterial. Math. Models Meth. App. Sci., 23(09):1629–
1662, 2013.

[6] A.-S. Bonnet-Ben Dhia, L. Chesnel, and M. Rihani. Maxwell’s equations with hypersingular-
ities at a negative index material conical tip. arXiv preprint arXiv:2305.01982, 2023.

[7] A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr., and C.M. Zwölf. Time harmonic wave diffraction
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