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One vector to rule them all: Key recovery from one vector in UOV schemes

Unbalanced Oil and Vinegar is a multivariate signature scheme that was introduced in 1999. Most multivariate candidates for signature schemes at NIST's PQC standardization process are either based on UOV or closely related to it. The UOV trapdoor is a secret subspace, the "oil subspace". We show how to recover an equivalent secret key from the knowledge of a single vector in the oil subspace in any characteristic. The reconciliation attack was sped-up by adding some bilinear equations in the subsequent computations, and able to conclude after two vectors were found. We show here that these bilinear equations contain enough information to dismiss the quadratic equations and retrieve the secret subspace with linear algebra for practical parametrizations of UOV, in at most 15 seconds for modern instanciations of UOV.

This proves that the security of the UOV scheme lies in the complexity of finding exactly one vector in the oil space. In addition, we deduce a key recovery attack from any forgery attack by applying a corollary of our main result.

With these results, we significantly improve tools used in the side-channel analysis of UOV, and introduce new targets for such methods.

We show how to extend this result to schemes related to UOV, such as MAYO and VOX.

Introduction

In order to replace number-theoretic problems used in cryptography that are threatened by quantum computing, such as the discrete logarithm or factorization, several families of problems have been intensively studied. One of them is related to multivariate polynomial system solving, and is refered to as "multivariate cryptography". There are multiple arguments to support this direction. First of all, familiar (to the cryptographer) notions of algebraic geometry, studied in the case of elliptic curves for instance, can be reused in this context. Further, the underlying problem, Polynomial System Solving "PoSSo", is NP-hard, and this gives confidence in the hardness of this problem for quantum computers. Experimental data suggest that random instances are also hard. The history of this field shows that one must be very subtle in order to construct secure schemes with these tools, as in the past many cryptosystems that seemed secure turned out to be broken by a wide variety of methods. Lately, the attacks on the Rainbow signature scheme have motivated a return to the roots, in particular to the parent scheme "Unbalanced Oil and Vinegar" of Kipnis, Patarin and Goubin [START_REF] Kipnis | Unbalanced oil and vinegar signature schemes[END_REF]. Recently, NIST has issued a call for alternate post-quantum signatures not relying on standard lattice assumptions. Among the submitted schemes, 10 out of 40 are based on multivariate polynomial systems, and 7 of them are closely related to UOV ( [START_REF] Beullens | Mayo: Practical post-quantum signatures from oil-and-vinegar maps[END_REF], [START_REF] Cogliati | [END_REF], [START_REF] Hiroki Furue | A new variant of unbalanced oil and vinegar using quotient ring: Qr-uov[END_REF], [START_REF] Wang | [END_REF], [START_REF] Ding | [END_REF], [START_REF] Beullens | [END_REF], [START_REF] Cogliati | Vox-sign[END_REF]).

The results are stated in a form as general as possible, to allow more flexibility in their use. The idea behind this is that we believe such results could be applied to other collections of quadratic forms sharing a common totally isotropic subspace. An example of such a collection is the set of quadratic forms arising in the intersection attack of Beullens [START_REF] Beullens | Improved cryptanalysis of uov and rainbow[END_REF]. They naturally apply to variants of UOV, where the dimension of the secret subspace may be different from m.

Related work

Many contributions to the cryptanalysis of UOV stem from the study of Rainbow [START_REF] Ding | Rainbow, a new multivariable polynomial signature scheme[END_REF], a more structured scheme built upon the foundations of UOV. In particular, the reconciliation attack [START_REF] Ding | New differential-algebraic attacks and reparametrization of rainbow[END_REF] targeted Rainbow but is easily applied to UOV. This attack finds vectors in the secret subspace of the UOV trapdoor by exploiting their relationship with one another. More recently, Beullens introduced the intersection attack [START_REF] Beullens | Improved cryptanalysis of uov and rainbow[END_REF] which improves the first step of the reconciliation attack (finding the first (two) vector(s)). Beullens describes this reconciliation process in more detail in [START_REF] Beullens | Mayo: Practical post-quantum signatures from oil-and-vinegar maps[END_REF]. In that paper, he mentions that once enough vectors of O are found, one can dismiss the quadratic equations and solve a linear system. Using his bound, this process requires finding α vectors in O before being able to conclude, where α = 2 for modern UOV instanciations, and more generally α is the ceiling of the ratio between the number of variables and the number of equations.

Another key recovery attack against UOV is the Kipnis-Shamir attack, which targets invariant subspaces of some linear functions related to the publick key. This attack is the one that motivated the "unbalanced" property of UOV. The state of the art for forgery attacks against UOV (direct attacks) consist of exploiting the underdeterminedness of the system to eliminate equations with the Thomae-Wolf algorithm [START_REF] Thomae | Solving underdetermined systems of multivariate quadratic equations revisited[END_REF]. The attacker then has to solve a system in m-1 variables and equations for modern UOV parameters.

Previous work

In the context of side-channel attacks, more precisely fault-injection attacks, Aulbach, Campos, Krämer, Samardjiska and Stöttinger recently released a paper with a similar result [START_REF] Aulbach | Separating oil and vinegar with a single trace[END_REF], which they attribute to a comment of Beullens. Their result can be stated in the same manner, namely that one vector yields a polynomial time key recovery. There is a fundamental difference in the reasoning and in the complexity achieved however, as they follow the intuition of Beullens' reconciliation attack as described in [START_REF] Beullens | Mayo: Practical post-quantum signatures from oil-and-vinegar maps[END_REF]: he observes that one needs only two vectors of the secret subspace to conclude because they induce an overdetermined linear system whose solution space is exactly O. They use an adapted Kipnis-Shamir attack to obtain a second vector from the first one to conclude with this observation. In our case, we focus on the geometric point of view instead of the algebraic one. We show that a single vector is enough to characterize O, without using the reconciliation modelling. Therefore we skip directly from one vector to the full key, without using a second vector as a stepping stone. We obtain very efficient algorithms in practice for practical parameters of UOV, while their attack suffers from the cost of the reconciliation attack. The largest instance they attack using their tools (targeting NIST security level 5) takes a total of 12 hours including the Kipnis-Shamir and the reconciliation step, while our attack takes only 13 seconds on the same instance. We also introduce a method to decide whether a vector belongs to the secret subspace or not, which is not possible with the tools introduced by [START_REF] Aulbach | Separating oil and vinegar with a single trace[END_REF] without going through the entire attack. This test was the original target of our work, and yielded the key recovery attack as an unforseen consequence.

Contribution

In this paper, we prove that the difficulty of retrieving the UOV secret key is not only dominated by the complexity of finding the first vector in O, but that in fact the problem becomes polynomial given a single vector in the secret subspace. Therefore, retrieving the UOV secret key is not harder than finding a single vector in the secret subspace. In addition, we show how this yields a polynomial-time answer to the question "x ∈ O?" without the secret key, which may be of independant interest. In particular, this yields a key recovery attack from any forgery attack.

Preliminaries Notations

Let q be a power of a prime and let F q denote the finite field with q elements. If q = p m for p prime, we call p the characteristic of F q . Vectors are assumed to be column vectors and are denoted by bold letters: x, y, o, . . .. Matrices are denoted by capital letters, and transposition is written A T . The kernel of a matrix A is denoted ker(A) and is a right kernel: x ∈ ker(A) ⇐⇒ Ax = 0. Given a field F and an integer n, we denote F[x 1 , . . . , x n ] or F[x] the polynomial ring of F in n indeterminates. The restriction of a function f to a set E is denoted f |E .

Quadratic forms

Let f be a quadratic form over a vector space F n q . A function F : x → (f 1 (x), . . . , f m (x)) such that each f i is a quadratic form is called a quadratic map. In fields of odd characteristic, a quadratic form f is characterized by its polar form f * := (x, y) → f (x + y) -f (x) -f (y) which is a symmetric bilinear form. As such, it admits a symmetric matrix representation in F n×n q that we identify with it, and with the original quadratic form. In other words, given f a quadratic form, there exists M ∈ F n×n q such that for all x ∈ F n q , f (x) = f * (x, x) = x T M x. In fields of even characteristic, there is no longer an equivalence with symmetric bilinear forms, as symmetric forms are also antisymmetric. Instead, we can represent quadratic forms using triangular matrices. Note that this is also true in fields of odd characteristic, but the set of triangular matrices is not stable by congruence, therefore changes of variables are more delicate in this setting. If q is odd, we say that f has rank r if the matrix associated to f has rank r. In particular, the rank is preserved by changes of variables in odd characteristic, which is not the case in even characteristic. A subspace V ⊂ F n is isotropic for f if there exists x ∈ V such that f (x) = 0, totally isotropic if for all x ∈ V, f (x) = 0, and anisotropic if for all x ∈ V \ {0}, f (x) ̸ = 0. For an introduction to quadratic forms, we refer the reader to Serre [START_REF] Serre | A course in arithmetic[END_REF].

We recall here a characterisation of totally isotropic subspaces that describes the secret key of UOV:

Lemma 1. The subspace O is a totally isotropic subspace of a quadratic form f if and only if for all (x, y) ∈ O 2 , f * (x, y) = f * (y, x) = 0.
Observe that the dimension of a totally isotropic subspace of a quadratic form of a certain rank is bounded:

Lemma 2. Let f a quadratic form of rank n defined over a field K. Let O a totally isotropic subspace of f . Then O has dimension no greater than ⌊ n 2 ⌋. Proof. By contradiction, assume that dim(O) = r > ⌊ n 2 ⌋. Let B be a basis of O, let B
be a completion of B into a basis of K n . Then the matrix representing f * in basis B has a block of zeros of size r × r in the top left corner. Therefore its rank is less than n, which is a contradiction.

Cryptanalysis

Given a signature scheme instance Σ = (S, P) where S is the secret key and P is the public key, we define two goals of cryptanalysis:

• Forgery, which is achieved if an attacker can find a signature for one message in the message space of Σ.

• Key recovery, which is achieved if the attacker obtains an equivalent secret key S ′ enabling them to sign any message.

These notions can be refined to specify the tools and goals of the attacker, but this high-level description is enough for us.

Unbalanced Oil and Vinegar signatures

One of the oldest multivariate signature schemes was introduced by Patarin [START_REF] Patarin | The oil and vinegar signature scheme[END_REF], and later generalised by Kipnis, Patarin and Goubin [START_REF] Kipnis | Unbalanced oil and vinegar signature schemes[END_REF], and remains standing after more than two decades. We formulate it in a more abstract manner than in the seminal paper, following the formalism of Beullens [START_REF] Beullens | Improved cryptanalysis of uov and rainbow[END_REF].

Definition 3 (Patarin, Goubin, Kipnis [START_REF] Kipnis | Unbalanced oil and vinegar signature schemes[END_REF]). A UOV instance is parametrized by the following parameters:

• m, the number of equations

• n, the number of variables

• q, the size of the finite field F q .

The UOV public key is a set of m quadratic forms G = (G 1 , ..., G m ) of rank n over F q . The secret key is a totally isotropic subspace O of dimension m of the homogeneous component of degree two of each G i .

This property is not generic for a family of quadratic forms, and the key generation will use a trick to introduce this structure. This trick was the original formulation of UOV in [START_REF] Kipnis | Unbalanced oil and vinegar signature schemes[END_REF], and corresponds to a block of zeros of size m in the top left corner of the symmetric matrices representing the key in a secret basis. In particular, the secret key is a pair (A, F ) where A is a linear change of variables (that characterizes O) and F is a quadratic map where the variables x i , 1 ≤ i ≤ m appear linearly. We deduce the public key as G = F • A by composing the secret quadratic map with the secret change of variables. Write

A -1 = [o 1 , ..., o m , v 1 , ..., v n-m ] and observe that O = span(o 1 , ..., o m ).
For 1 ≤ i ≤ m, we call x i an "oil" variable, and the remaining ones "vinegar" variables. We note v = n -m, the number of vinegar variables.

To sign a message µ ∈ {0, 1} * the signer solves the system:

F (x) = H(µ) ∈ F m q
where H is a cryptographic hash function. This is a linear system in the oil variables, with m unknowns and equations after choosing random values for the vinegar variables. The verifier, given y = A -1 x and µ, checks that G(y) = H(µ). We introduce the forgery variety which is the set of signatures accepted for a given vector z ∈ F m q . In practice, we always sign z = H(µ), but nothing stops a forgery attack from targeting a specific vector instead of a specific message. What is forbidden by the definition of H is given z, finding µ such that H(µ) = z. Definition 4 (Forgery variety). Let G be a UOV public key. Let z ∈ F m q . We define the forgery variety associated to z as the set of signatures of the vector z:

V (z) = {x ∈ F n q , 1 ≤ i ≤ m, G i (x) = m i } This variety has dimension n -m. Notice that O ⊂ V (0).
It is interesting to note that the distribution of UOV signatures is not uniform in this forgery variety (which is exactly the set of accepted signatures for a given message).

We include as a reference the parameters chosen for UOV in recent submissions to the NIST competition.

Figure 1: UOV parameters in [START_REF] Beullens | Oil and vinegar: Modern parameters and implementations[END_REF] 3 Retrieving the UOV private key from one secret vector

In this section, we assume that n ≤ 3m. This is the case for all recent instanciations of UOV, in particular the ones referred to in Figure 1. At the end of the section, we explain how we proceed for very unbalanced cases (n > 3m), and some reasons why very unbalanced instances of UOV are unlikely to be used in practice.

We assume that we have acquired a single vector x in the secret subspace O, and leverage this information to complete an equivalent key recovery attack in polynomial time. To summarize, the secret subspace is included in the kernel of each dual linear form x T G i by definition. The intersection of the m hyperplanes defined by these kernels is of dimension n -m, and still contains O. Therefore, this intersection is a smaller subspace than the ambiant space F n q that still contains the secret subspace, and even small enough to entirely retrieve the secret subspace by considering the restriction of the public key quadratic forms to this subspace.

Before we start, we introduce the Kipnis-Shamir attack that justifies why the cases n ≤ 2m are called "easy instances of UOV".

Lemma 5 (Kipnis-Shamir cryptanalysis of Oil and Vinegar [START_REF] Kipnis | Cryptanalysis of the oil and vinegar signature scheme[END_REF], [START_REF] Kipnis | Unbalanced oil and vinegar signature schemes[END_REF]). Let G a UOV public key with parameters n, m, q. Then the following holds: i. If n = 2m, there exists a probabilistic algorithm performing a key recovery attack against G in time O(n ω ).

ii. If n > 2m, there exists a probabilistic algorithm performing a key recovery attack against G in time O(q n-2m n ω ).

iii. If n < 2m, there exists a deterministic algorithm performing a key recovery attack against G in time O(n ω ).

Proof. The first two cases are exactly the Kipnis-Shamir attack against OV [START_REF] Kipnis | Cryptanalysis of the oil and vinegar signature scheme[END_REF] and the extension to the unbalanced case found in [START_REF] Kipnis | Unbalanced oil and vinegar signature schemes[END_REF]. The last case comes from the observation that if n < 2m, then the existence of a m-dimensional totally isotropic subspace for a quadratic form constrains its rank by Lemma 2. Therefore we retrieve the subspace O by computing the kernels of the quadratic forms of the public key. Each kernel is a subspace included in O of positive dimension. Since generically a collection of m subspaces of positive dimension in O span a subspace of dimension at least m, we obtain a basis of O from the bases of these kernels. In the unlikely event where this process fails, we can repeat the procedure with the first vectors obtained.

We note here that the Kipnis-Shamir attack described in the original paper [START_REF] Kipnis | Cryptanalysis of the oil and vinegar signature scheme[END_REF] can be greatly improved from a practical point of view. The essence of the attack resides in the fact that invariant subspaces of the public key are eigenspaces of some closely related matrices in an algebra T . Therefore, the strategy of the attack is to find such eigenspaces by computing and factoring the characteristic polynomials of random elements of T . The attack looks for irreducible factors of degree m which yield eigenspaces of dimension m, one of which is guaranteed to be the secret subspace O. If the polynomial factors further than degree m, they consider that the attack has failed and move on to the next random element of T . This decision to dismiss such factors is coherent with the results they proved, but experiments show that even smaller factors of the characteristic polynomial still yield part of the private key. The following facts hold: let t ∈ T , let χ the characteristic polynomial of t. Then χ is always a square, and if χ = r 2 , then O = ker(r(M )). We insist on the fact that χ is always a square, because this is the main difference with the work presented in [START_REF] Kipnis | Cryptanalysis of the oil and vinegar signature scheme[END_REF]: In section 4.2, the authors remark that once a factorisation of χ(x) = P 1 (x)P 2 (x), with P 1 , P 2 irreducible has been obtained, then O is either ker(P 1 (M )) or ker(P 2 (M )). But P 1 = P 2 by the previous observation and the irreducibility of P 1 , P 2 , which suggests this fact was not known to the authors. This is a significant improvement from a practical point of view, as one only needs to consider one element of T obtained easily from the public key and never has to draw again (the original attack had a chance of failure, these observations show that the attack actually succeeds on every attempt). Technically, this observation also improves the complexity result because this turns the attack into a deterministic algorithm instead of a probabilistic one.

These facts are more easily obtained by considering the pencils of quadrics induced by the public key instead of the linear maps. The formal proof of these results, and this connection to pencils of quadrics will be explored in more detail in future work. Observe that 2J(x) is the Jacobian of G, if the characteristic is not 2. This justifies the notation J.

Proof. Let g(z) = z T G i z for some i. By Lemma 1, for all z ∈ O, we have: g(x) = g(z) = 0 and g * (z, x) = 0. In particular, this implies that the kernel of the linear form g x = g * (x, .) contains O. By hypothesis, all the quadratic forms are of rank n, therefore this linear form is non-zero. Since it is a non-zero linear form, its kernel is a hyperplane.

We have shown that for all 1

≤ i ≤ m, O ⊂ ker(x T G i ). Therefore, O ⊂ 1≤i≤m ker(x T G i ) = ker(J(x))
We assume that these hyperplanes are in general position: this is a natural since they are chosen uniformly at random among the hyperplanes that contain O when defining the G i . The intersection of m hyperplanes in general position has dimension n -m, which yields the conclusion. The probability that the hyperplanes are not in general position is negligible, therefore if it is not the case, we try again with a new vector and must retry at most a constant number of times.

This lemma is the key to our attack. We apply it to the formalism of UOV in the following theorem: Theorem 7 (Key recovery from one vector). Let G = (G 1 , . . . , G m ) be a UOV public key, let O be the secret subspace of G, and let x ∈ O \ {0}.

There exists an algorithm taking as input (G, x) that outputs a basis of O in polynomial time . More precisely, Algorithm 2a performs this task and has complexity O(kn ω ), where 2 ≤ ω ≤ 3 is the exponent of matrix multiplication.

Proof. By Lemma 6, O ⊂ K(x) = ker(J(G)(x)). We compute the kernel K(x) in time O(n ω ). Let B ∈ F n×(n-m) q a basis of K(x). Then, we restrict the public key to K(x):

∀1 ≤ i ≤ m, G i|K(x) = B T G i B (1) 
Computing these restrictions takes time O(kn ω ). Define G |K(x) = (G 1|K(x) , . . . , G m|K(x) ). By definition, G |K(x) is a UOV instance for parameters (n -m, m). By hypothesis, n ≤ 3m therefore n -m ≤ 2m. By Lemma 5, such an instance is broken in time O(n ω ), yielding a basis of the subspace Ô, the secret subspace of G |K(x) . More precisely, in practice n < 3m therefore we use the kernel approach (Lemma 5, iii.) instead of the Kipnis-Shamir attack. Once we obtain Ô, we take it back to the initial space F n q using B:

Let C ∈ F

(n-m)×m q be a basis of Ô. Then, for all g ∈ G:

(B • C) T g(B • C) = C T (B T gB)C = C T g |K(x) C = 0 ∈ F m×m q
This proves that B • C is a basis of O since it is a free family of maximal cardinality included in O. This matrix product costs O(n ω ), which yields a total complexity O(kn ω ).

Note that this result does not exploit the full structure of the problem in characteristic two since the bilinear forms associated to a matrix representing the quadratic forms are no longer symmetric. We obtain two linear forms per quadratic form with a single vector instead, which improves this result in even characteristic. We state it in the more general way because it is enough to be relevant for practical instances of UOV in even characteristic.

Notice that in the algorithm, we include a break statement because with overwhelming probability, if the kernels of the restrictions have dimension greater than one, a subset of them suffices to retrieve the public key. We also obtain the following result as a corollary of this theorem, which was the initial motivation for this work. therefore x ′ ∈ ker(B T G i B) (this is a left kernel!), which yields the upper bound on the rank of the G i .

Proof of Corollary 8. Let J(x) = (x T G 1 , . . . , x T G m ). Let B a basis of ker(J(x)). For all i, the rank of B T G i B is upper bounded by Lemma 9 since O ⊂ V (0). We show that if x is not in a larger linear subspace of V (0) than span(x), then the kernel of the restrictions do not intersect on a larger subspace than span(x). Assume by contradiction that ∩ m i=1 ker(B T G i B) has dimension at least 2. Let x ′ , y ′ a basis of this subspace. Then define x := Bx ′ and y := By ′ . Observe that for all i, x T G i y = x ′T B T G i By ′ = 0 = y T G i x. But x, y must be linearly independant since x ′ , y ′ were and B is a free family by definition. Therefore there is a dimension two totally isotropic subspace span(x, y) shared by the G i by Lemma 1, which is a contradiction.

Next, we claim that if x ∈ O, then the kernel of the G i must be of a larger dimension and included in O. To prove this, assume that B = B 1 ⊕ B 2 where B 1 is a basis of O which is possible since O ⊂ span(B). In this case, for all i,

B T G i B = 0 C (i) 1 C (i)T 1 C (i) 2
where

C (i) 1 ∈ F m×(n-2m) q , C (i) 2 ∈ F 
(n-2m)×(n-2m) q
and C 2 is symmetric. Due to the size of the block of zeros, such a matrix has rank at most n -2m + n -2m = 2(n -2m).

In general, we distinguish a vector of O from a generic vector of

V (0) if 2(n -2m) < n -m -1 ⇐⇒ n < 3m -1.
If the parameters are such that n = 3m or 3m -1, we can apply the general algorithm which will be a little slower but still polynomial. In practical instances of UOV, where n = 5 2 m, this rank is at most 2(n -2m) = m. This yields algorithm 2b.

Very unbalanced instances of UOV

The key recovery attack described in the previous section only works if n ≤ 3m or if n ≤ 4m and q is even. We show here what happens in the n > 3m case. The algorithm of Theorem 7 does not yield an easy UOV instance, but instead a smaller UOV instance that has a small rank deficiency.

Keeping with formalism of Theorem 7, let Ĝ = G |K(x) using the basis B of K(x). This restriction can be defined regardless of the ratio n m , and always corresponds to a UOV instance in dimension n -m. Next, recall that x ∈ span(B) and therefore we can

define x = (λ 1 , . . . , λ n-m ) where v = n-m i=1 λ i B i . By construction, this vector x is in the secret subspace of Ĝ.
Notice both instances are equivalent since a solution of either can be translated to the other with the restriction basis B, and the restricted one is in dimension n -m instead of n.

(G, x, O)

B ← → ( Ĝ, x, Ô)
Further, by Lemma 9, this new UOV instance is composed of quadratic forms that are not full rank, and in particular which share a kernel included in O. This information is redundant with the secret vector we had for the original instance, as this kernel corresponds to span(x). We are tempted to use this new vector x that belongs to Ô to repeat the attack inductively, but this fails because this vector is in the kernel of each matrix of the public key, which means that the matrix J(x) is the zero matrix. Therefore, we need to solve a new UOV instance (which has some more structure in the form of the kernel we observed in this paragraph) that is strictly weaker against key recovery attacks. For very unbalanced instances of UOV, we will need a constant number of vectors in the secret key to conclude, in a similar fashion as observed by Beullens in [START_REF] Beullens | Mayo: Practical post-quantum signatures from oil-and-vinegar maps[END_REF]. More precisely, each independant vector in O allows to reduce the search space by m dimensions. We can conclude with β vectors if n -βm ≤ 2m ⇐⇒ β ≥ ⌈α -2⌉ since β is an integer. Naturally this yields β = 1 for practical instances of UOV, which is the result presented in Section 3.

There are two reasons why very unbalanced instances of UOV are unlikely to be used in practice:

1. It seems to be a bad idea to use very unbalanced UOV, because random polynomial systems are easier to solve when they are heavily unbalanced. An argument that justifies this statement is the generic algorithm of Thomae and Wolf (especially in characteristic two), and more generally the observation that any new variable is a degree of liberty that can be exploited for free.

2. UOV already has large keys. Linear increases in n yield quadratic increases in the key sizes.

This highlights an interesting tradeoff in the security of UOV: the larger the parameter α = n m , the stronger UOV is against key recovery attacks, and the weaker it is against forgery attacks. Reciprocally, the smaller α is, the weaker UOV is against key recovery attacks, and the stronger it is against forgery attacks.

Key recovery attack from any forgery attack

We have introduced an efficient algorithm testing whether a vector belongs to the secret subspace of a public key or not. This can be combined with any forgery attack to obtain a key recovery attack with the following observation: all the vectors of the secret subspace are valid signatures for the vector 0 for the homogeneized public key. Therefore, the attacker repeatedly tries to obtain forgeries of the message 0 until he finds one that belongs to O.

Note that it must be a forgery attack, and not a chosen message attack, as in practice the signer never signs a message, and instead signs a hash of the message. Therefore, querying a signature of the vector 0 implies finding pre-images of the vector 0 for the given hash function, which is assumed to be a hard task. This suggests that a signer should refuse to sign the vector 0 even in the hash and sign paradigm.

Experimental results

The algorithms we obtain have polynomial complexities. We show that they are also fast in practice by providing an implementation in sagemath [START_REF] Krawczyk | SageMath, the Sage Mathematics Software System[END_REF], using native linear algebra functions. We test them against the parameter sets of [START_REF] Beullens | Oil and vinegar: Modern parameters and implementations[END_REF], in even and odd characteristic (we use q = 257 in the odd case to have comparable field size.) The strategy is as follows: the oracle providing a vector in O is obtained by a function that chooses a random element in span(o 1 , . . . , o m ), which are the first m columns of A -1 . The code can be found at : https://github.com/pi-r2/OneVector

We test the attack against the parameters of [START_REF] Beullens | Oil and vinegar: Modern parameters and implementations[END_REF], which are representative of the state-of-the-art instanciations of UOV. The hardware used is a laptop with an Intel CPU i7-1165G7 running at 2.80GHz with 8GB of RAM. All experiments were ran on a single thread. n 112 160 184 244 Time 1.7s 4.4s 5.7s 13.3s Figure 3: Key recovery from one vector with our attack in F 256

To obtain a complete key recovery, one must first find a vector of the secret subspace O. Then, the attacker uses the attack described in this paper to complete his basis of the secret subspace, in a matter of seconds on a laptop. n 112 160 184 244 Time 0.2s 0.5s 0.7s 1.5s Figure 4: "x ∈ O?" with our algorithm in F 256 4 Application to UOV variants MAYO The MAYO signature scheme [START_REF] Beullens | Mayo: Practical post-quantum signatures from oil-and-vinegar maps[END_REF] was introduced by Beullens as a generalization of UOV in which we allow the subspace O to have a smaller dimension than m. We switch to the notations of Beullens for clarity. o is the size of the secret subspace of a MAYO key, m is the number of quadratic forms in the public key, n remains the dimension of the vector space F n q , and q is a small power of two. In the UOV formalism used so far, m = o. In MAYO, o is significantly smaller than m. This transformation makes the scheme much more compact, but increases signature size. Beullens introduces some additional structure in the form of a "Whipping" transformation that maps F n q → F ko q , instead of UOV which maps F n q → F m q . This is required to allow the signer to sign. We obtain the UOV scheme for m = 1. We include below a set of parameters for MAYO as found in [START_REF] Beullens | Mayo: Practical post-quantum signatures from oil-and-vinegar maps[END_REF].

If we try to attack the UOV map of MAYO, then we consider a collection of m quadratic maps P i , the public key maps, that share an o dimensional totally isotropic subspace. The attack proceeds as follows: Given x ∈ O, we obtain m linear forms P ′ i (x, .), therefore the intersection of their kernels generically defines J(x) an n -m dimensional subspace that still contains O. In the context of MAYO, n -m ≤ o. Therefore we recover O entirely from the kernels of the restriction of the public key to J(x). Notice that this does not improve the reconciliation attack on MAYO, as this was already achieved by Beullens in [START_REF] Beullens | Mayo: Practical post-quantum signatures from oil-and-vinegar maps[END_REF] with an algebraic method. This shows that the work done in Section 3 is consistent with the state of the art when transferred to MAYO.

VOX

To simplify the description, we will apply our attack to the more general formulation of VOX known as FOX. It is introduced in the same specification as VOX [START_REF] Cogliati | Vox-sign[END_REF]. Notably, it relies on less assumptions than VOX and still has competitive signature sizes with UOV, with a priori improved security. This signature scheme is a UOV-like signature scheme where t quadratic forms of the secret key are random. This is known as the + perturbation. They are called 'vinegar forms' and the usual UOV quadratic forms are called 'oil forms' by analogy. The private key is then composed with two changes of variables (S, T ) where S ∈ GL o (F q ), T ∈ GL n (F q ) In traditional UOV, S = I n and T = A -1 . F = S • P • T

The transformation S adds "noise" to the equations: the oil quadratic forms are mixed with the vinegar quadratic forms. This implies that the public system does not have a high dimensional totally isotropic subspace like the UOV one. More precisely, we have the following shape of S chosen in [START_REF] Cogliati | Vox-sign[END_REF]. Here S • P ′ is a left product: S • P ′ = P ′ • S. S = I t S ′ 0 I o-t , S ′ ∈ F (o-t)×t q (2)

We have for 1 ≤ i ≤ o, f i = o j=1 s i,j p ′ j , and more precisely using (2):

1 ≤ i ≤ t : f i = p ′ i t + 1 ≤ i ≤ o : f i = p ′ i + t j=1 s ′ i,j p ′ j (3)
The main takeaway is that S has t(o -t) unknown coefficients. For vectors in O, the contribution of the oil forms to these mixed equations is zero, therefore we can retrieve this linear change of variables with linear algebra from the evaluation of the public key on oil vectors. Each evaluation yields o -t equations by expressing the last o -t coefficients of P(x) as linear combinations of the first t coefficients. Therefore we need t vectors in the oil subspace to retrieve the change of variables S.

Once this is done, we can apply the tools introduced earlier to recover T from P ′ = S -1 • P which is a UOV system with t random equations. If we are given x ∈ O, we will observe that it only vanishes m -t of the quadratic forms of P ′ . Each of the remaining t vinegar forms have probability ≈ 1 q to vanish coincidentally on this vector but the knowledge of S allows us to distinguish the oil forms. In any case, the algorithm x ∈ O? would enable one to distinguish oil forms from vinegar forms even if the equations were permuted.

Then, we are able to reduce the P ′ instance to a smaller subspace of dimension n -(m -t), as we only consider (m -t) linear forms instead of m. FOX with S = I n , which is exactly what P ′ is, shares the weakness of UOV to the Kipnis-Shamir attacks (Lemma 5), therefore we complete the attack if n -m + t ≤ 2m ⇐⇒ n + t ≤ 3m. The parameters of FOX from [START_REF] Cogliati | Vox-sign[END_REF] are in figure 5. We have n = o + v, where o = m in our formalism. In all cases n ≤ 2.55o, and in particular we respectively have n+t = 122, 182, 239 versus 3o = 144, 204, 273 for security levels 1,3,5. Therefore our attacks apply to these parameter sets of FOX, but only with knowledge of S, which we obtain from t vectors of O.

It is interesting to note that the signer has to solve a random system involving t quadratic equations, therefore the scheme does not allow much flexibility in the choice of t, as this task can only be done quickly for small values of t.
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 6 Let G = (G 1 , . . . , G m ) a homogeneous quadratic map of rank n represented by m matrices. Let O a common totally isotropic subspace of G 1 , . . . , G m . Let x ∈ O \ {0} and let J(x) = (x T G 1 , . . . , x T G m ). Then O ⊂ ker(J(x)) which is generically an (n-m)dimensional subspace.
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 5 Figure 5: FOX parameters in [8].

one vector to key(G, x)

for z ∈ ker( Ĝi ) : in secret subspace(G, x) Given G a UOV public key and x ∈ F n q , there exists a polynomial-time algorithm deciding whether x ∈ O.

Note that this question is interesting only if x is in the forgery variety of the vector 0 ∈ F m q , as any vector that does not vanish the public key has no chance of being part of the secret subspace.

Intuitively, to prove the corollary, it suffices to apply the algorithm of Theorem 7 and conclude from a success or a failure. We do not need to apply the entirety of the algorithm, as we distinguish the case x ∈ O using the rank of the restrictions of the public key to J(x). More precisely, any vector in the forgery variety induces a restriction of the public key by Lemma 6 where all the matrices have kernel of dimension at least 1, that coincide on a dimension 1 subspace corresponding to the span of the original vector written in the new basis. But if the vector belongs to a common totally isotropic subspace of dimension at least two, these kernels are larger and their intersection has a dimension that matches that of the totally isotropic subspace. This is the distinguisher we use.

We use the following lemma to specialize the algorithm of Theorem 7 for this task.

Let B a basis of ker(J(x)). Then for all g ∈ G, B T gB has rank at most n -m -1.

Proof. Note that x ∈ ker(J(x)): J(x)x = (x T G 1 x, . . . , x T G m x) = 0 Therefore there exists λ 1 , ..., λ n-m not all zero such that x = n-m i=1 λ i B i . Let x ′ = (λ 1 , . . . , λ n-m ) T . Then x ′T B T G i B = x T (G i B) = (x T G i )B and by definition B is a basis of ker(x T G i )