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The application of a time exponential integrator to the wave equations,
oriented to seismic imaging

Fernando Valdés*, Pedro Peixoto & Martin SchreiberInstitute of Mathematics and Statistic of the University of São Paulo
fernanvr@ime.usp.br

The production of images from the subsurface us-ing elastic waves is an important and challengingproblem in geophysics [1]. A key stage is thecomputation of the solution of the wave propaga-tion equations with absorbing boundary conditions(ABC). Encouraging a continously development ofinnovative numerical methods to approximate itssolution, trying to increase the accuracy and effi-ciency.
A particular class of methods, known as time exponential integrators, have been shown tooutperform classical schemes in several physics-related differential equations [2]. However,their application in hyperbolic systems with ABC, like the ones arising in seismic imaging,still lacks theoretical and experimental investigations. For these equations, we study one ofthe most promising exponential integrators schemes, which is based on Faber polynomials.

Introduction

Exponential integrators are a class of time integrating methods used to solve ordinarydifferential equations of first order in time,
du(t)

dt = Hu(t) + f (t, u(t)), u(t0) = u0.

where u(t), u0 ∈ Cn, H ∈ Cn×n, f : R × Cn → Cn; through the approximation of thesemi-analytic solution of the constants variation formula,
u(t) = e(t−t0)Hu0 + t∫

t0
e(t−τ)Hf (τ, u(τ))dτ. (1)

Eq. (1) can be further transformed to the expression
u(t) = [

In×n 0
]

e(t−t0)H̃ [
u0
ep

]
,

where ep ∈ Rp is a canonic vector with one in its last element.
Faber polynomials: given a degree j , and a square matrix H , Faber’s polynomials aredefined as F j(H), with

F0(H) = In×n, F1(H) = H/γ − c0In×n,
F2(H) = F1(H)F1(H) − 2c1In×n,
F j(H) = F1(H)F j−1(H) − c1F j−2(H), j ≥ 3,

with
γ = (a + b)/2, c0 = d/γ, c1 = c2

f /(4γ2),where the parameters a, b, cf , and d, are set according to the spectrum of the operator
H .
Acoustic wave equations with ABC in two dimensions ((x, y) ∈ Ω = [a1, a2] × [b1, b2],
t > t0)
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,where f (t) = (1 − f20π2(t − t0)2)e−f20π2(t−t0)2 is a Ricker wavelet in time.

Background

Stability and dispersion analysis for the acoustic 2D equations with PML in a homogeneousmedium using different spatial discretization orders and equations formulations.
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(a) CFL number, cCFL = c∆tmax/∆x . (b) Maximum αmax = c∆tmax/∆x , withphase change less than 10−5.High polynomial degrees render larger cCFL and αmax.

Von Newmann stability and dispersion
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(a) Velocity field. (b) Time t = 0.3. (c) Time t = 0.6.
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(d) Time t = 0.9. (e) Time t = 1.2. (f ) Approximation error at
t = 1.2s.When the degree of the Faber polynomial (FA) increases, the error calculated over theblack line in Subfigure (e) diminishes by orders of magnitude (Subfigure (f)).

Corner model
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(a) Maximum time step ∆tmax, with. (b) Number of matrix-vector oper-error less than 10−6 ations (N∆top).
Higher polynomial degrees allows larger time steps, and they are more efficient than usinglow degrees with small time-steps.

Convergence and efficiency

• The exponential integrator method based on Faber polynomials can be used to obtainaccurate solutions of the wave equations with PML.
• When higher polynomials degrees are used there is an improvement in the stability anddispersion of the scheme.
• Higher degrees permit selecting larger time steps, without loosing accuracy, and thisstrategy is computationally more efficient.

In the future...
• We will compare this method with other time exponential integrators, high-order Runge-Kuttas with strong stablity preserving properties, and lower order schemes.
• We will use realistic velocity fields to asses the performance of the methods in real-lifescenarios.

Conclusions and future research
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The problem istransformed in calcu-lating the exponentialof a matrix.
The problem istransformed in calcu-lating the exponentialof a matrix.


