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Grad-SLAM: Explaining Convolutional
Autoencoders’ Latent Space of Satellite Image

Time Series
Thomas Di Martino, Régis Guinvarc’h, Laetitia Thirion-Lefevre, and Élise Colin

Abstract—This paper introduces a tool for explaining
the latent space generated by applying convolutional au-
toencoders to satellite image time series, entitled Grad-
SLAM. We rely on backpropagated gradient interpretation
combined with network activation localization. We use
the proposed formula for multiple layers of the encoder,
then scale and merge the results to generate a single date
contribution metric for the generation of the latent space.
We illustrate the potential of this method with the study
of the unsupervised classification of agricultural Sentinel-1
time series. We show that critical characterizing dates for
unsupervised retrieval of a given class are conditioned by
the crop type’s radiometric signature and class count. We
also present how Grad-SLAM can be used to enhance the
understanding of unsupervised classification confusion.

Index Terms—Explainability, neural networks, satellite
image time series, unsupervised learning.

I. INTRODUCTION

THE applicability of machine learning algorithms
to remote sensing data has been demonstrated

by various results [1], [2]. A rising number of these
applications rely on autoencoder architectures [3],
[4], following the principles and applicative success
of representation learning [5]. However, they provide
hardly interpretable results [6]. In [7], the authors
expose the necessity of explainable machine learning
to tackle the black box behavior of such algorithms.
Consequently, a growing number of studies involve the
application of explainable machine learning, such as in
[8], where the authors present a non-black-box model,
which raises the curtain on its prediction decisions
regarding crop yield prediction from satellite data. Other
studies leverage explainable machine learning either for
classification [9] or for crop characterization [10].
However, a majority of the explainable machine learning
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literature is written under the scope of supervised
learning. An example of this is the Grad-CAM
algorithm [11], which enables the generation of an
attention heatmap to highlight regions of an input image
responsible for a given classification. Few existing
studies involving gradient techniques are used in the
context of explainable autoencoders [12], [13], [14].

Building on the aforementioned lines of work, we
thus present an adaptation of the Grad-CAM algorithm
to explain convolutional autoencoders (CAE) applied to
satellite image time series, which we call Grad-SLAM,
for Gradient Sequential Latent Activation Mapping. We
first introduce convolutional autoencoders, and the ex-
plainibility problems intrinsic to their functioning. Then,
we present the Grad-CAM approach, and we detail the
formula changes involved in this adaptation to CAEs.
Then, to illustrate the usage of Grad-SLAM, we set
the applicative context of unsupervised crop type clas-
sification of Sentinel-1 time series using a CAE. The
Grad-SLAM algorithm is thus used to diagnose the
results of this application, with a particular focus set on
classification errors.

II. METHODOLOGY

A. Introduction of the Convolutional Autoencoder

A CAE is a deep neural network of the family
of autoencoders. Its non-linear conception consists of
an encoder part, which projects a time series onto a
lower dimension space called the latent space, or the
embedding space, using 1D-convolutions and fully con-
nected (FC) layers. The second part of the CAE, the
decoder, is tasked with reconstructing the input using
this embedding representation through FC layers. The
network is trained using a reconstruction task, calculated
using a mean squared error between the original input
and the reconstruction. Intuitively, the generated latent
space is dense in information from the input and is
thus used in various downstream applications, including
unsupervised classification [4]. However, this latent space
is uninterpretable, and these interpretability issues often
block the analysis of the behavior of autoencoders in
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the said applications. In supervised learning, gradient-
based methods, including Grad-CAM, are used to tackle
the difficulties of interpretation of the network. However,
the original formulation of Grad-CAM [11] involves two
pain points making its direct application to our context
difficult:

• Firstly, its formulas are designed for image process-
ing.

• Secondly, it is often applied in a classification con-
text, on a vector of logits, at the network’s output.

Thus, to adapt the Grad-CAM methodology to our con-
text, we need to adjust its formulation to the processing
of time series and the analysis of the embeddings layer of
our autoencoder. To illustrate our contributions, we first
present the state-of-the-art functioning of the Grad-CAM
method and detail the changes made.

B. Introduction of Grad-CAM

As presented in [11], the goal of the Grad-CAM
methodology is to “obtain a class-discriminative
localization map”. For ease of reading, we will use
the same variables and function symbols as in [11].
The target localization map for a given class c is
written Lc

Grad−CAM and is h × w-dimensional, with
h,w ∈ Z+∗ the respective height and width of an
input image. This map corresponds to a real-valued
array, where the value of each pixel of coordinate
(i, j) is equivalent to their relative importance in the
decision to classify an input image as c. The map
calculation is usually performed given a convolutional
layer called A. Multiple convolutional layers can usually
be found in a network. Thus, it is required to choose the
layer onto which LGrad−CAM is calculated. Another
solution is calculating L for all convolutional layers and
aggregating the maps into one.

To estimate Lc
Grad−CAM , the original implementation

of Grad-CAM proposes the following equation:

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
(1)

The components of this equation are the following:
• ReLU(x) = max(x, 0).
• Ak is the feature map k of the convolutional layer

A: it corresponds to the activation value of k-th
filter of layer A applied to the input. Namely, the
activation values are the output of an operation layer
of a neural network, which serves, in turn as an
input for the next layer.

• αc
k is the gradient backpropagated from class pre-

diction c to feature map k of the convolutional layer
A.

αc
k is originally defined as:

αc
k =

1

i ∗ j
∑
i

∑
j

δyc

δAk
i,j

(2)

where δyc

δAk
i,j

is the partial derivative of the class c’s

logit yc as a function of Ak
i,j , acting as the measure

of the contribution of Ak
i,j to the generation of yc. A

global average pooling of the backpropagated gradients
is implemented to merge these contributions across the
whole convolution layers. This calculation thus provides
a measure of the contribution of the feature map k of the
layer A to a prediction of class c. With the combination
of αc

k, representing the importance of the feature map
k, and Ak representing the localization of the activations
of the feature map k, we can generate a localized map
of importance. Because of the use of activations, Grad-
CAM relies on multi-level down-sampled importance
information to build Lc

Grad−CAM .

C. Adaptation of Grad-CAM

As mentioned before, the formulation of Grad-CAM
does not allow for a direct translation to our use case,
which is the application of CAEs to satellite image time
series: we first need to take into account the sequential
nature of our input data, being time series rather than
images, but also the unsupervised and generative nature
of the analyzed neural network.
In particular, instead of a prediction of a given class
c, we now use the notation regarding the generation of
an embedding dimension d. Also, instead of speaking
of spatial coordinates of data points, we now mention
temporal coordinates.

Thus, this leads us to redefine Eq. 1 and Eq. 2 as Eq. 3
and Eq. 4.

Ld
Grad−SLAM =

∑
k

αd
kA

k (3)

Eq. 3 replaces Eq. 1 by removing the ReLU function,
previously applied to the product of the gradient and
activations. The original motivation behind the presence
of the ReLU function was to retrieve only positive
contributions to the gradient when focusing on a given
class. Negative contributions are believed to be related
to another class: indeed, in a classification context,
in essence, the predictions of different classes are
antagonistic, meaning that positive contributions for
one will be negative contributions for others. It is not
the case for the embedding dimensions. While we may
look for a total decorrelation between the values of
an embedding vector, we are still in a context where
a negative contribution of a given data point to the
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generation of a given embedding dimension may be as
informative as a positive contribution.

αd
k =

1

t

∑
t

δed

δAk
t

(4)

Eq. 4 replaces Eq. 2 by substituting the backpropaga-
tion of class-related gradient with the backpropagation of
embeddings-related gradient, represented by the partial
derivative of the embedding vector e. The choice to gen-
erate α values at the end of the encoder phase rather than
at the end of the decoder is connected with our desire to
enlighten the contributions of input dates to the generated
embedding space. In an application relying on the output
of the network and the associated reconstruction error
rather than on the embedding space, one may find more
utility in deriving contributions from the network’s last
layer. It may, for instance, show correlations between dif-
ferent dates within an input time series. We do not assess
this potential in our work. To illustrate a concrete usage
of the Grad-SLAM algorithm to diagnose the behavior
of a CAE, we use the applicative context of unsupervised
classification of SAR agricultural time series [4].

III. APPLICATION OF GRAD-SLAM TO
UNSUPERVISED CLASSIFICATION OF SAR TIME

SERIES

A. Unsupervised classification of SAR time series using
CAE

In [4], a CAE was applied to retrieve crop type infor-
mation, without supervision, from Sentinel-1 time series.
As shown in Fig. 1, this application transforms input time
series into 2D embedding vectors clustered using the k-
Means algorithm. The resulting clusters are then assigned
a class using a majority voting strategy to assess their
quality and measure performance. While we show that
unsupervised approaches are on par with conventional
supervised techniques, no further explanation is given
for the remaining classification errors.
Since the classification application relies on clustering
the embedding space, the analysis of classification errors
thus depends on interpreting the information content of
that same embedding space. For that, the Grad-SLAM
approach is an ideal tool. The study site consists of
61 Sentinel-1 acquisitions from 2017. The preprocessing
and the metadata of the acquisitions are presented in
detail in [4], [15].
The multitemporal Sentinel-1 images are labeled using
16 distinct agricultural classes, as shown in Fig. 2.
Experimental design details can be found in the original
study [4]. The detailed prediction results of our method
on the test set are displayed in Fig. 3.

While these results are interesting as they display
the potential to retrieve SAR time series class-level
information without labels during training time, they lack
the interpretation of the embedding space, which, once
clustered, induces unsupervised classification errors.

B. Grad-SLAM for unsupervised classification explain-
ability

The analysis of the results of Fig. 3 involves the usage
of Grad-SLAM to diagnose the separation of classes in
the embedding space by analyzing the date contribution
to that space generation, as shown in Fig. 4. Within
that space, three classes appear well separated: Cotton,
Tomato, and Sugar Beet.

In Fig. 4a, we plot these three crop types’ average
VV intensity profiles, color-coded using their respective
Grad-SLAM date importance profiles. Higher values of
Grad-SLAM (dates colored in red) correspond to the
most important dates for the generation of the embedding
values of the given class, oppositely to lower values of
Grad-SLAM (dates colored in blue). In the case of these
three crop types, dates corresponding to crop transition
periods (seeding, harvesting, tilling) are the most impor-
tant to the model. This results in an efficient differen-
tiation in the embedding space of classes where these
periods induce drastic radiometric differences. However,
these same periods do not allow for the distinction of
all classes. When shifting the analysis towards classes
that appear not well classified, such as Sweet Potato and
Pepper, we obtain the results of Fig. 4b.

The Grad-SLAM illustration of the Cotton, Sweet
Potato, and Pepper classes showcases that during the
dates of importance to the CAE, the three crop types all
undergo the same radiometric transitions, rendering them
hard to separate in the embedding space. In addition,
due to the class-majority voting strategy used to perform
cluster-to-class assignation, Cotton’s majority class out-
weighs the rest, resulting in Sweet Potato and Pepper
crops being mistaken for Cotton crops, inducing low
classification results for these crops. The modeling by
the autoencoder of other periods of a crop’s life, such as
its growth peak, would ensure the differentiation of these
classes. However, the highly restrictive 2-Dimensional
embedding size limits the capacity of the current autoen-
coders. Thus, building on the results illustrated by the
autoencoder, and the dates highlighted by Grad-SLAM,
re-running the training of CAEs, with higher embed-
ding dimensions could prevent class confusion between
Cotton, Sweet Potato, and Pepper, with the additional
dimensions focusing on the pre-senescence period of the
crops, where the three classes appear separable.
Another category of crop type separation error lies in the
classification results of the Fallow and Quinoa classes,
with their predictions spread across many classes.
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Fig. 1: Grad-SLAM application to unsupervised classification of time series.

Wheat
Maize
Fallow
Sunflower
Chickpea
Alfalfa
Cotton
Sugar beet
Potato
Sweet Potato
Pepper
Onion
Carrot
Pumpkin
Tomato
Quinoa

Fig. 2: Illustration of the BXII Sector and reference crop
types data over a Sentinel 1 σ0 VH polarization image
dated January 3rd, 2017.

When analyzing their Grad-SLAM profile in Fig. 4c,
it appears that the model focuses on dates irrelevant
to the growth pattern of Quinoa, or the definition of a
fallow crop parcel. Considering the lack of these two
classes’ radiometric transition periods, in opposition to
the vast majority of the other classes, we assume that
temporal features, characteristic of these two classes,
are not modeled by the CAE, which results in their
inaccurate and scattered latent representation and, in turn,
erroneous unsupervised classification.

IV. CONCLUSION

In this work, we present an adaptation of the existing
Grad-CAM methodology by introducing the Grad-SLAM
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Alfalfa
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Quinoa

Pumpkin
Fallow
Pepper
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93 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0
4 90 1 3 0 0 1 0 0 0 0 0 0 0 0 0
2 2 94 0 0 0 0 1 0 0 1 0 0 0 0 0
5 22 3 50 7 0 11 0 1 0 1 0 0 0 0 0
3 12 3 36 29 0 13 0 3 0 2 0 0 0 0 0
1 88 2 8 0 0 0 0 0 0 0 0 0 0 0 0
7 31 2 19 8 0 30 0 1 0 1 0 0 0 0 0
2 51 5 20 1 0 13 6 1 0 1 0 0 0 0 0
8 5 8 9 40 0 4 3 20 0 4 0 0 0 0 0
77 21 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 7 14 28 11 0 10 3 19 0 8 0 0 0 0 0
39 59 1 1 0 0 0 0 0 0 0 0 0 0 0 0
15 16 9 30 7 0 8 4 3 0 8 0 0 0 0 0
75 24 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9 3 57 21 0 0 3 0 1 0 7 0 0 0 0 0
3 49 0 31 12 0 3 1 0 0 1 0 0 0 0 0

Fig. 3: Visualization of the CAE’s classification perfor-
mance over the test set [4] (in %, normalized by rows).

method: it allows for the explainability of Convolutional
Autoencoders applied to time series of satellite data.
We detail the formulation changes between the original
work and ours, induced by the switch from a supervised
to an unsupervised paradigm and a switch from spatial
to temporal information interpretation. We show that its
application allows for a certain degree of explainability
in the construction of the embedding space. In particular,
it extracts the contribution of each input date to the
generation of each specific embedding dimension. In
turn, this embedding space was classified using a k-
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Fig. 4: Averaged VV intensity temporal profile, in dB
superimposed with Normalized averaged Grad-SLAM
date importance (higher is better). First row: per class
L1
Grad−SLAM ; Second row: per class L2

Grad−SLAM . (a)
Well classified: Cotton, Tomato, and Sugar Beet (b)
Class Confusion: Cotton, Sweet Potato, and Pepper (c)
Absence of modelling: Fallow, and Quinoa.

Means algorithm, and class confusion arose from the
classification. Using Grad-SLAM, these class confusions
were explainable by highlighting the importance to the
model of periods where the confused crop types are
indistinguishable. While the Grad-SLAM algorithm was
presented here in an unsupervised classification context,
it also has potential for other CAE applications, such
as anomaly detection, or inversion. Its extension to
applications of autoencoding of multimodal time series,
highlighting the contribution of various modalities, is
also envisioned.
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