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Abstract

The paper deals with the dynamics of conservative #-degree-of-freedom vibro-impact
systems involving one unilateral contact condition and a linear free flow. Among all possible
trajectories, grazing linear modes (GLM) exhibit a contact occurrence with a vanishing
incoming velocity which generates mathematical difficulties. We show that the First Return
Time (FRT) to the chosen Poincaré section of the orbits which are sufficiently close to a
GLM is always near a multiple of the fundamental period of the mode. This yields an infinite
partition of the neighborhood of the GLMs on the Poincaré section along with square root
singularities of the FRT depending on each set of the partition.
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1 Introduction
In the area of discrete unilateral contact dynamics, it is well known since the works byNordmark [7,
11, 10] that singular behaviors occur near grazing orbits. The stability analysis of nonsmooth
modes of vibration relies on a fine understand of the dynamics in the vicinity of grazing linear
modes (GLM) since the so-called backbone curves emerge from GLMs [9, 14]. In the present
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work, the dynamics of a conservative mechanical system with # degrees-of-freedom (dof), one
of which being unilaterally constrained, is of interest, see Figure 1. The governing equations read

S ¥u + Qu = r (1.1a)
u(0) = u0, ¤u(0) = ¤u0 (1.1b)
D# (C) ≤ 3, '(C) ≤ 0, (D# (C) − 3)'(C) = 0 (1.1c)
¤u+(C)>S ¤u+(C) + u>(C)Qu(C) = 2 K (u(C), ¤u+(C)) = 2 K (u(0), ¤u(0)) (1.1d)

with

S = diag(< 9 )#9=1; Q = (:8 9 )#8, 9=1; u(C) = (D 9 )#9=1; r (C) = (0, '(C))

where ¤D 9 and ¥D 9 represent the velocity and acceleration of mass 9 , 9 = 1, . . . , # , respectively.
Equation (1.1a) says that mass # is constrained on the right side by a rigid obstacle at a distance

:1 :2 :#−1 :#
3

<1 <2 <#−1 <#

D1 D2 D#−1 D#

Figure 1: A unilaterally constrained #-degree-of-freedom chain with 3 > 0.

3 > 0 from its equilibrium. The other masses are not assumed to be constrained in any way. The
scalar quantity '(C) is the reaction force induced by the obstacle on mass # at the time of gap
closure. Generally, '(C) is a measure [2]. However, it is a Lipschitz function which is as regular
as ¥D# for solutions with sticking phases [13].

Matrices S and Q are symmetric positive definite and define properly the non-negative
energy K. Hence, there exists a matrix V of S-orthogonal eigenmodes which diagonalizes both
S and Q, that is V>SV = O and V>QV = 
2 = diag(l2

9 ) | 9=1,...,# where O is the # × # identity
matrix; l2

9 are the eigenfrequencies and )9 , the linear periods with l 9)9 = 2c, 9 = 1, . . . , # .
We denote [ = (D1, . . . , D# ) and \ = ¤[, the vectors of displacements and velocities,

respectively, of the #-mass system.
The present paper is devoted to the investigation of the dynamics of such systems near GLM.

For this purpose, the First Return Time (FRT) to the Poincaré section is studied. Under generic
assumptions on the system, a stability result on the FRT and the instability of the GLMs is proved.

2 Main results on the First Return Time
The main results of the paper are now outlined. First, the considered assumptions and notations
are stated. The definitions of the chosen Poincaré section HP along with the corresponding
FRT are explained, from which the number of loops of orbits near GLM can be mathematically
defined. This is the first main result of the paper.

Then, any sufficiently small neighborhood VY ∈ HP of the contact point of the GLM is
partitioned into non-overlapping subsetsVY

= corresponding to the orbits with exactly = loops.
Such setsVY

= are carefully investigated. In particular,VY
0 is always empty forVY small enough.

In contrast,VY
1 is never empty and more generally infinitely manyVY

= are never empty. For a
specified GLM, the FRT on eachVY

= enjoys a common square root singularity near the multiple
of the fundamental linear period.

Assumptions Throughout the paper, the following framework is considered.
1. There is no internal resonance in the system.
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2. GLM always exist, that is %#: ≠ 0, ∀: .
Mathematically, the first assumption means that the frequencies l1, . . . , l# are Z independent.
The second assumption is very general and already discussed in [9]. It always holds for a classical
spring-mass chain.

Physical and modal coordinates The problem is stated in the physical coordinates ] =

([,\) = (D1, . . . , D# , E1, . . . , E# ) but most proofs in the paper use modal coordinates. For a
fixed time, says C = 0 mostly used in the paper, there is a linear change of variables between
physical coordinates and modal coordinates. The classical modal coordinates are denoted by
(", #) = (U1, . . . , U# , V1, . . . , V# ) with the relationship

[(C) =
#∑
:=1
(U: cosl: C + V: sinl: C)V.: , (2.1)

where V.: is column : of V, that is, the eigenvector corresponding to l: . The modal coordinates
restricted to the last mass are (a, b) = (01, . . . , 0# , 11, . . . , 1# ),

D# (C) =
#∑
:=1

0: cosl: C + 1: sinl: C, 0: = U:%#: , 1: = V:%#: . (2.2)

The relation with these two modal coordinates are one-to-one since the last component of the
eigenvectors is %#: ≠ 0. This is a linear diagonal change of variables between the classical
modal coordinates and the modal coordinates of the last mass. In the paper, due to the importance
of the last mass, the modal coordinates of the last mass are essentially used and simply called the
modal coordinates.

2.1 Non-transverse Poincaré sectionHP
In this paper, many proofs are based on a precise analysis of the linear dynamics. Let us define the
contact hyperplaneH = {([,\) ∈ R2# , D# = 3}, its “exit” subsetH− = {([,\) ∈ H , E# < 0}
and its “entrance” subset H+ = {([,\) ∈ H , E# > 0}. A natural choice for the Poincaré
section is at leastH− since we want to focus our attention on orbits instantaneously leavingH
and coming back to H . The set H+ corresponds to orbits reaching D# = 3 and going to H−
through the Newton impact law E−# = −E+# .1

The state corresponding to a grazing contact with vanishing in-coming velocity E−# = 0 is
challenging. A proposition in [12] states thatH0 = {(*,+) ∈ H , E# = 0} = H0

1 ∪H0∞ where
H0∞ is the set of states inH generating orbits which come back infinitely many times toH and
H0

1 generating orbits which reachH only once for all time in the future and in the past. In other
words,H0

1 is a set where the FRT cannot be defined. As a consequence,H0
1 must be excluded

from the Poincaré section, which is thus chosen to be

HP = H− ∪H0
∞. (2.3)

The present paper describes the set H0
1 more precisely than [12]. It is the convex hull of the

points inH0 associated to all GLMs of the system which is never empty. This is an important
feature not outlined in [12].

1Notice that the notations are slightly different than in [12]. Here, the notations chosen forH± are given by the
sign of the velocity of the last mass.
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Proposition 2.1 — Characterization of trajectories with only one grazing contact at all
time (set H0

1 ). Assume that at C = 0, D# (0) = 3. Then, the trajectory ] (C) has one grazing
contact for all time if and only if the displacement of mass # reads

D# (C) =
#∑
:=1

0: cosl: C, with 0: ≥ 0 and
#∑
:=1

0: = 3. (2.4)

Consequently, the set H0
1 is the convex hull of all the contact points in H0 corresponding to

the # GLMs, vertices excluded. In particularH0
1 is a convex bounded and non-empty set with

dimension # − 1.

This characterisation of solutions with only one contact for all time (one contact at C = 0 and no
contact in the future C > 0 and the past C < 0) is not indicated in [12]. It appears that there are
simply convex combinations of all the GLMs touching the wall at C = 0. Note thatH0

1 is expressed
in modal coordinates, where the modal coordinates are non-negative and 1: = 0, : = 1, . . . , # .
The proof is provided in Appendix A.

The setH0
1 plays an important role in the dynamics near GLMs as shown in the remainder.

In some sense, this set induces a quite complicated dynamics near GLMs. As shown later,
VY∞ ⊂ H0

1 .

2.2 First Return Time and loops
In order to study the FRT function in the vicinity of a GLM, it is convenient to use the Euclidean
distance associated to the total energy of the system

K (]) = K ([,\) = 1
2
(\>S\ +[>Q[) = K (] (0)). (2.5)

which is conserved during the free dynamics. The FRT is known to be a discontinuous
function [12]. However, the neutral stability of the free linear dynamics yields a kind of
continuous dependence of the FRT with respect to the state on HP . For a sufficiently small
perturbation Y of a GLM, we prove in the present paper, that

3 (FRT(]0), )9N) := min
=∈N
|FRT(]0) − =)9 | = O(

√
Y) (2.6)

where Y is defined in Theorem 2.2 and where]0 is the initial state on the Poincaré section. The
square root dependence of the FRT is directly related to the square root singularity [11, 10]. The
GLM 9 for 9 ∈ {1, . . . , #} is fixed and the result is given for that chosen GLM.

Theorem 2.2 — FRT near multiples of the fundamental period. Let]�
0 ∈ HP be the state

corresponding to the 9 th grazing linear mode and )9 , the corresponding fundamental period.
Then, there exists Y 9 > 0 and a positive constant �9 such that for all 0 < Y < Y 9 , there is a
neighborhood

VY = {]0 ∈ HP | K (]0 −]�
0 ) < Y2} (2.7)

such that for each]0 ∈ VY, there is a unique = ≥ 1, = ∈ N

|FRT(]0) − =)9 | ≤ �9 (K (]0 −]�
0 ))1/4 < �9

√
Y < )9/2 (2.8)

where FRT(]0) is the First Return Time to the Poincaré section of the orbit associated to]0 .
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The upper bound )9/2 ensures that =, the number of loops, is uniquely defined, see Definition 2.1.
The parameter Y represents the size of the perturbation of the GLM. The energy is quadratic
in Y. The inequality (2.8) used to define the number of loops is also related to the square root
singularity since the FRT depends on the square root of the perturbation.

The next step is to define the number of loops in the vicinity of the considered GLM inHP .

Definition 2.1 — Number of loops. For 0 < Y < Y1 and for all]0 ∈ VY, let ℓ : VY → N∗ be
a function defined by ℓ(]0) = = where = satisfies

|FRT(]0) − =)9 | ≤ �9
√
Y < )9/2. (2.9)

Geometrically, for Y small enough, ℓ(]0) = = is associated to the orbit projected in the plane
(D# , E# ) of mass # taking exactly = rounds around (0, 0) to come back toHP . In fact, we have

ℓ(]0) = round(FRT(]0)/)9 ) (2.10)

where round(G) = = is the closest integer to G, = − 1/2 ≤ G < = + 1/2. The quantity Y1 in
Equation (2.8) guarantees that the function ℓ is well defined as it assigns a unique = to each]0
inVY. Thus, the setVY can be partitioned in the set of states generating orbits with exactly =
loops:

VY
= = {]0 ∈ VY | ℓ(]0) = =}. (2.11)

A consequence of Theorem 2.2 is that

VY =
⋃
=≥0
VY
= . (2.12)

It is important to say that the previous study [12] on the FRT was restricted toVY
1 . One aim of

the present work is to extend the investigation to allVY
= , = > 1. A natural question is concerned

with the possible emptiness of the sets VY
= . The numerical computations in [9] of nonlinear

modes with one impact per period for the subharmonic of l 9 shows that there exists = > 1,
VY
= ≠ ∅. Below, mathematical proofs are given about the existence of orbits with large =.
It is proven in [12] that states inHP come back toH after a finite time, however without any

precise information about this return time. We prove now that near GLMs, solutions with large
number of loops exist, and more precisely, with a number of loops greater than any fixed number
and in any neighborhood of GLMs.

Theorem 2.3 — Infinitely many non-empty sets VY
= . There are infinitely many non-empty

setsVY
= .

The proof of this theorem uses the perturbation of states inH0
1 .

Theorem 2.4 — Empty setVY
0 . For Y > 0 small enough,VY

0 = ∅.

In other words, a micro-contact does not occur for a sufficiently small perturbation of the GLM.
A micro-contact is a contact occurrence before an entire loop is completed, that is FRT ≤ )9/2.

Proposition 2.5 — Non-emptyVY
1 . LetVY

1 be the set of orbits with First Return Times close
to )1, then its interior V̊Y

1 is non-empty.

Indeed VY
1 ≠ ∅ since there is at least the grazing linear mode with the fundamental period )9 .

However, we exhibit later a subset ofVY
1 with nonempty interior.
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Square root singularity The study of the FRT on each VY
= culminates in the square root

singularity of all GLMs. Asymptotic expansions of FRT with square root singularity is proven
on eachVY

= . For = = 1, such a singular expansion is provided in [12]. The expansion is made
more precise for = = 1, as well as simplified and generalized for = > 1, in a whole neighborhood
of the GLM.

3 First Return Time always almost a multiple of a fundamen-
tal period

Before stating the proof, Lemma 3.1 is needed.

Lemma 3.1. If |1 − cos \ | ≤ X with 0 < X < 1 and \ ≥ 0 then there exists = ∈ N such that
|\ − =2c | ≤ 2

√
X.

This is geometrically clear and moreover, the square root singularity of Nordmak [11, 7] emerges
in a simple way.

Proof. Consider the cosine function. It decreases on [0, c]. As a consequence, for cos \ ≥ 1− X,
it follows that \ ≤ g where cos g = 1 − X. Also

arccos(1 − X) =
∫ 1

1−X

dH√
1 − H2

<

∫ 1

1−X

dH√
1 − H

(3.1)

since 0 < H < 1 and hence arccos(1 − X) < 2
√
X or g < 2

√
X. This implies that \ < 2

√
X.

Since cos is an even function, this property also extends to [−c, 0] and |\ | ≤ 2
√

2X in [−c, c].
Expanding this result to the whole non-negative domain of the cosine function, we conclude that
\ ∈ [=2c − 2

√
X, =2c + 2

√
X] for some = ∈ N which concludes the proof of the lemma. Also,

note that a Taylor expansion of cosine shows that g ∼ √2X < 2
√
X when g → 0. �

Theorem 2.2 can now be proven.

Proof. Before starting the proof, one has to take a sufficiently small Y0 to avoid orbits with
sticking contact [13]. It is already known that there is no such orbit near a GLM [12]. However,
it is incidentally proven again in the sequel of the present paper in a different fashion. With such
a Y0 > 0, we are considering 0 < Y1 ≤ Y0.

The core ingredient of the proof is the neutral stability of the linear dynamics which guarantees
that any orbit starting near]�

0 stays close to the grazing linear mode during the free dynamics.
As a consequence, the corresponding FRT also lies near a multiple of )9 .

Let us denote the Euclidean norm related to the mechanical energy by ‖]‖2� = K (]). The
dynamics away from the unilateral interaction with the obstacle is linear and a grazing linear
mode]� (C) is a linear solution. Assume that] (C) is the solution associated with the state]0 on
HP and ) (]0) is the corresponding FRT. For all 0 ≤ C ≤ ) (]0, it is known that] (C) −]� (C)
is also a solution of the linear equation S ¥[ + Q[ = 0. Hence, for every]0 inVY,

‖Δ] (C)‖� := ‖] (C) −]� (C)‖� = ‖]0 −]�
0 ‖� ≤ Y. (3.2)

Let ‖]‖2 = ])] be the square of the classical Euclidean norm in R2# , which is different from
the norm ‖ · ‖� associated to the energy � . Consider the Rayleigh quotient ‖Δ] (C)‖2�/‖Δ] (C)‖2.
It is well known that

_min ≤
‖Δ] (C)‖2�
‖Δ] (C)‖2 ≤ _max, (3.3)
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which implies ‖Δ] (C)‖ ≤ 2‖Δ] (C)‖� where 2 = 1/√_min > 0. Denoting DGLM,# (C) the last
component of the displacement of the GLM and combining Equations (3.2) and (3.3) along with
the basic inequality |D# (C) − DGLM,# (C) | ≤ ‖Δ] (C)‖ yields

|D# (C) − DGLM,# (C) | ≤ 2Y. (3.4)

At ) = FRT(]0), the displacement of mass # for the orbit starting at]0 is D# ()) = 3 and it is
DGLM,# ()) = 3 cosl 9) for the corresponding grazing linear mode. Accordingly, Equation (3.4)
implies |3 − 3 cosl 9) | ≤ 2Y. Since Y < Y1 = 3/2, it follows that 2Y < 3. Hence, by Lemma 3.1,
there exists = ∈ Z such that |l 9) − =2c | ≤ 2

√
2Y/3 that is

|) − =)9 | ≤ 2
√

2Y

3l 9
(3.5)

where )9 = 2c/l 9 . Denoting �9 = 2
√
2/3l 9 , we have proven that, for all]0 ∈ VY, there exists

= ∈ N such that |FRT(]0) − =)9 | ≤ �9
√
Y.

We now show that = is unique for each initial state]0. Since Y < Y1 and with the chosen value
of Y1, we have �9

√
Y < )9/2 and it follows that |FRT(]0) − :)9 | < )9/2, for all 9 = 1, . . . , #

which implies that � :9 ∩ �<9 = ∅ for any : ≠ <, where �<9 = (<)9 − )9/2;<)9 + )9/2). In
other words, there is no overlapping between any intervals � :9 , for all : = 1, 2, . . . Therefore,
the neighborhood VY of ]�

0 is the disjoint union of the sets VY
= for = ≥ 0: VY =

⋃
=≥0VY

= .
Consequently, FRT(]0) belongs to the interval defining = loops, only. �

4 Return to Poincaré section after = loops
The setVY

= represents the subset ofVY where the emerging orbit takes exactly = loops to come
back toHP . Its topology and the fact that it is empty or not has to be clarified. Unless it is empty,
it is neither closed nor open. Nevertheless, it is proven in this section that

1. ∀= ≥ 0, ΩY= =
⋃
<≥=VY

< ≠ ∅ is an open set.
2. VY

0 = ∅ for Y small enough.
3. VY

1 ≠ ∅ with nonempty interior V̊Y
1 ≠ ∅.

4.1 Large number of loops
To prove the existence of orbits emanating fromHP and featuring a large number of loops before
they return to HP , the set H0

1 is used. Only two degrees-of-freedom, denoted 9 and : , of the
#-dof system are needed to prove this result. We consider an orbit with one and only one contact
for all time, which corresponds to a state onH0

1 , not included inHP . The idea is to use some
properties of the setH0

1 lying outsideHP in order to exhibit interesting features ofHP . From
Proposition 2.1, the function k(C) is the displacement of the last mass, that is

k(C) = 3 ((1 − U) cosl: C + U cosl 9 C) (4.1)

with l: < l 9 and 0 < U < 1 where U quantifies the perturbation of the GLM 9 . Such a function
reaches its maximum 3 once and only once at C = 0. However, in the future, for some specific
times, it will approach 3 closer and closer, that is [6]

∀C > 0, k(C) < 3 but ∀g > 0, lim
)→+∞

max
[g,)]

k(C) = 3. (4.2)

In order to be inHP , it is enough to slightly disturb k. Let W > 0 be small and let us define

kW (C) = k(C) − 3W sinl 9 C. (4.3)
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It should first be checked that k really corresponds to ¤D# (0+) < 0. This is true because W is
strictly positive. We have kW (C) < k(C) for all C ∈ (0, )9/2) since sinl 9 C > 0 and W is small.
Let us show the existence of a solution with = loops before it returns to H , where = ≥ 1. Let
� = [)9/2, =)9 + )9/2]. By the continuity of k on the compact set �, there exists ℎ > 0 such that
k(C) < 3 − ℎ for all C ∈ �. If 0 < W < ℎ/3, then kW (C) < k(C) + W3 < 3, for all C in �. However

supkW = 3
(
1 − U +

√
U2 + W2) > 3 (4.4)

and there must be a time C > =)9 + )9/2 for which k(C) > 3 [6]. In other words, there exists a
solution with a FRT greater than =)9 .

Remark 4.1. The number of loops ℓ depends on the parameter W and limW→0+ ℓ(W) = ∞. This
explains whyH0

1 in the neighbourhood of the considered GLM is equal toVn∞. When W = 0, k0
corresponds to a state in H0

1 . On one hand, when W > 0, kW corresponds to a state in VY
ℓ(W) .

Thus, passing to the limit, we have the equality betweenH0
1 andVY∞ in the neighborhood of the

GLM. On the other hand, Equation (4.2) can be interpreted as k0 reaching 3 at infinity, which
corresponds to an infinite number of loops.

The previous result can be written with the following formalism. Let ΩY= be the set of initial
states generating orbits for which mass # does not return toH after = loops, that is

max
[)9/2,=)9+)9/2]

D# (C) < 3 (4.5)

Note that ΩY= is defined only by a strict inequality on a continuous function and so is an open set.
In fact the inequality is also valid on ]0, )9/2[ and will be discussed below as a consequence of
VY

0 = ∅ for Y small enough. The sequence of such sets is non increasing, that is ΩY=+1 ⊂ ΩY= and
ΩY0 = VY. As a consequence, it can be expressed as a union of disjoint sets,VY

= = Ω
Y
=−1 − ΩY=,

explaining whyVY
= is neither an open set nor a closed one, if it is not empty. Then, Theorem 2.3

can be simply rewritten in the following manner:

∀= ≥ 0, ΩY= =
⋃
<≥=
VY
< ≠ ∅. (4.6)

In other words, for any =, there always exists a solution near the GLMs which comes back toH
in more than = loops.

Modal characterization of the Poincaré section near a GLM Consider the GLM number 9
with 9 = 1 and an attendant perturbation—other perturbations can be enforced by relabelling the
frequencies. We use a modal representation of D# = q on the time interval (0, FRT):

q(C) = (3 + X1) cosl1C +
#∑
8=2

08 cosl8C +
#∑
8=1

18 sinl8C. (4.7)

Why do we use two notations for D# , that is D# and q? The interest is that the function q can be
studied for all time without imposing the unilateral constraint. Indeed, when there is a contact,
the modal coordinates of D# change due to the impact laws. In contrast, q can be used for all
time using the classical tools of almost periodic functions [6]. In particular, it is possible that
supC>0 q(C) > 3. Accordingly, q does not corresponds to D# for all time. This technique was
also used in [9, 12] which allows classical smooth analysis tools on q.

Due to the special role of the first mode, the modal coefficient 01 is split in two parts: 3, the
modal coefficient of the first GLM and X1, a perturbation of the first GLM, with 01 = 3 + X1. The
modal coordinates are not all independent since q(0) = 3 which entails

0 = X1 +
#∑
8=2

08 . (4.8)
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Up to this constraint, these coordinates are in bijection with HP through a constant linear
transformation. Computing the relative size of VY

1 in the modal coordinates (08, 18) is of the
same order as in the physical coordinates. It means that

lim
Y→0+

|VY
1 |/|VY | (4.9)

where | · | stands for the volume of the set, is the same when it is computed in physical coordinates
or in modal coordinates.

The set of exiting states at time C = 0+ is

Hexit = {(D1(0+), . . . , D# (0+), E1(0+), . . . , E# (0+)) |q(0) = 3, ∃g > 0,∀C ∈ (0, g), q(C) < 3}.

It should be noted thatHexit = HP ∪H0
1 . The setHP can also be described with conditions on

the successive derivatives to ensure that the solution of the free dynamics with such initial state
onHP leaves the wall. Accordingly, the following conditions must be satisfied:
(0): 3 = q(0),
(1): 0 ≥ q′(0),
(2): if 0 = q′(0) then 0 ≥ q′′(0),
(3): if 0 = q′(0) = q′′(0) then 0 ≥ q(3) (0),

. . .
(2# − 1): if 0 = q′(0) = . . . = q(2#−2) (0) then 0 ≥ q(2#−1) (0).

There is no additional condition because the dimension of HP is 2# − 1. The case when all
the first 2# − 1 derivatives are zero corresponds to a unique special orbit not near GLM 1 (at a
fixed positive distance). This solution is the flattest grazing solution which exhibits the maximal
power-root singularity with the power 1/(2# − 1) under generic assumptions [12].

In the coordinates (a, b),HP is characterized as follows:
(0): 0 = X1 +

∑#
8=2 08,

(1): 0 ≥ ∑#
8=1 18l8,

(2): if 0 =
∑#
8=1 18l8 then 3l

2
1 ≥ −X1l

2
1 −

∑#
8=2 08l

2
8 ,

(3): if 0 =
∑#
8=1 18l8 and 3l

2
1 = −X1l

2
1 −

∑#
8=2 U8l

2
8 then 0 ≥ −∑#

8=1 18l
3
8 ,

. . .
(2# − 1): if 0 =

∑#
8=1 18l8, . . . , 3l

2#−2
1 = (−1)#−1(X1l

2#−2
1 +∑#

8=2 08l
2#−2
8 ) then

0 ≥ (−1)#−1 ∑#
8=1 18l

2#−1
8 .

It is clear here that condition (2#−1) is the last one. Otherwise, for the condition (2#), due to the
invertibility of the Vandermonde matrix, the modal coordinates (a, b) are uniquely determined
and correspond to the flattest grazing orbit associated to GLM 1. This aspect is detailed in [12].

Near GLM 1, consider that q, an Y-perturbation of C ↦→ q0(C) = 3 cosl1C corresponding to
the GLM. Again, Y2 represents the mechanical energy of the perturbation. Note that q0(0) = 3,
q′0(0) = 0, q′′0 (0) = −3l2

1 < 0. Thus, locally, for a sufficiently small positive Y

q(C) = 3 + (a · 1) + (b · 8)C − (3l2
1 + a · 82 + O(Y)C + O(3l4

1 + Y)C2)
C2

2
(4.10)

with a = (X1, 02 . . . , 0# ) = O(Y), b = (11, . . . , 1# ) = O(Y), 1 = (1, . . . , 1),8: = (l:1 , . . . , l:# ).
The term O(Y)C, i.e. O(Y)C3/2 in the developed expansion, corresponds to the remainder
(b · 83)C3/6 of the sine functions while the term O(3l4

1 + Y)C2, i.e. in C4, corresponds to the
remainder (3l4

1 + a · 84)C4/24 of the functions cosine functions.
To guarantee q(C) < 3 for a small positive C, it is collectively required that 0 = a · 1, 0 ≥ b ·8,

and 0 < 3l2
1 + a ·82. The last inequality is not so strict since a = O(Y). However, the last strict

inequality is mandatory to absorb the remainder of order O(Y)C3 + O(1)C4.
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4.2 No micro-contacts
This subsection shows that there is no micro-contact for Y small enough, or, in other words,
that VY

0 is an empty set. Clearly, for a larger Y, it is possible to have a return to HP with a
FRT < )1/2, see Figure 2. FirstVY

0 = ∅ is proven, because it is a step in the proof forVY
1 ≠ ∅.

0 1 2 3 4 5

−1

0

1

time C (s)

D
2(C
)

0 0.06

Figure 2: A solution with a micro-contact [solid red] for # = 2 with <1 = <2 = 1; :1 = 1,
:2 = 3000, Y = 0.05. The contact appears just at the beginning for a time FRT ≈ 0.04 s. The
black dashed line corresponds to the first GLM.

Proof of Theorem 2.4. To prove that VY
0 = ∅, it suffices to check that FRT > )1/2 for Y > 0

small enough, that is to say q(C) < 3, ∀C ∈ (0, )1/2). The proof has two steps. The first step is to
reduce the interval (0, )1/2) where q < 3 to a small interval (0, g(Y)) where g(Y) → 0 when
Y → 0. The second step uses a Taylor expansion to show that q < 3 on (0, g). This step needs
careful derivations because q(0) = 3 so the smaller C is, the closer q is to 3.
Step 1: Reduce the proof on (0, g) with g = O(√Y) Note that q is an O(Y) perturbation of the

mode given by D# (C) = 3 cosl1C. Let �1 be the positive constant such that |O(Y) | < �1Y,
that is q(C) < 3 cosl1C + �1Y. The function C ↦→ 3 cosl1C is decreasing on (0, )1/2),
so that, for Y small enough, �1Y < 23 and there exists a unique g ∈ (0, )1/2) such
that cosl1g = 1 − (�1/3)Y > −1. Such g is an implicit function of Y and since
cos′(0) = 0 and cos′′(0) < 0, then g = g(Y) = O(√Y) ≤ �2

√
Y. Thus, on [g, )1/2],

q(C) < 3 cosl1C + �1Y ≤ 3 which concludes the first step.
Step 2: Taylor expansions on (0, g) It should be shown that q(C) < 3 on (0, g). This is clear

since in the last outer parenthesis of Equation (4.10), only the term 3l2
1 is a real positive

constant whereas the other terms have an order of at least Y.
Accordingly, the inequality is true on (0, g) and the proof is complete. �

4.3 Single loop
This section deals with the non-emptiness ofVY

1 , the set with returns in exactly one loop, see
Proposition 2.5. We provide two proofs: first, a simple one only using two dof and then, a
more general one trying to identify a large subset ofVY

1 using # dof. The simple proof gives a
continuum of solutions as in the proof of the existence of solutions with a large number of loops,
see Theorem 2.3.

Proof. Let us assume that 3 = 1. Recall that +1 = {]0 ∈ HP : |) (]0) − )1 | < �
√
Y} where

Y > 0 is small enough. Consider the solution where the displacement of mass # coincides with
the function i(C) = (1 + Y) cosl1C − Y cosl2C. At C = )1, i()1) = 1 + Y − Y cosl2)1 > 1 since

10



cosl2)1 < 1 (by the Z− independence of l1 and l2, i.e. the non internal resonance assumption).
Also, i′()1) = Yl2 sinl2)1 ≠ 0. Thus, there exists C < )1 such that i(C) = 1, which means the
mass # reaches the obstacle at time C. �

A subset ofVY
1 written in the modal coordinates as in Equation (4.7) can be clearly identified,

for Y small enough. It proves Proposition 2.5.

Lemma 4.1 — An explicit subset ofVY
1 . LetVY

1
++ be the set of (X1, 02, . . . , 1# ) such that

X2
1 +

#∑
8=2

02
8 +

#∑
8=1

12
8 ≤ O(Y2), (4.11a)

X1 +
#∑
8=2

08 = 0,
#∑
8=1

18l8 < 0, (4.11b)

X1 +
#∑
8≥2

08 cosl8)1 + 18 sinl8)1 > 0. (4.11c)

then, for Y small enough, ∅ ≠ V̊1
++ = VY

1
++ ⊂ VY

1 ⊂ HP .
Equation (4.11a) means that the mechanical energy is smaller than Y2. Equation (4.11b) insures
that the mass # leaves H with a negative velocity at time C = 0. Equation (4.11c) yields
FRT < )1.

Proof. Let Y > 0 be small enough such thatVY
0 = ∅. Such a function q with the chosen modal

coordinates corresponds to a mass # leaving the wall with a number of loops ℓ ≥ 1. However,
Equation (4.11c) forces q(C) = 3 for 0 < C < )1. Accordingly, ℓ = 1 which concludes the proof.

The setVY
1
++ clearly has a nonempty interior. The three inequalities define a convex bounded

subdomain ofHP . This set is delimited by two hyperplanes given by the normal vectors

\1 = (0, . . . , 0, l1, . . . , l=), (4.12a)
\2 = (1, cosl2)1, . . . , cosl=)1, 0, sinl2)1, . . . , sinl=)1). (4.12b)

These two normals of R2# define two different hyperplanes in R2# and also two different
hyperplanes inH due to the assumption of non internal resonance, hence V̊1

++ ≠ ∅. �

5 Square root singularity near the grazing linear modes

5.1 Square root expansion of the First Return Time
In this section, an asymptotic expansion of the FRT is provided in a whole neighborhood of,�

� ,
the state on HP corresponding to the first GLM, 9 = 1 to fix the notation. Except onVY∞, the
asymptotic expansion of the FRT is considered on ∪1≤=<∞VY

= . The result is expressed in terms
of the modal coordinates (X1, 02, . . . , 0# , 11, . . . , 1# ) as in Equation (4.7) which is repeated for
convenience:

D# (C) = (3 + X1) cosl1C +
#∑
:=2

0: cosl: C +
#∑
:=1

1: sinl: C where 01 = 3 + X1. (5.1)

These modal coordinates satisfy the following conditions for a small perturbation of,�
� :

X1 +
#∑
:=2

0: = 0,
∑
:

1:l: ≤ 0, ‖(X1, 02, . . . , 1# )‖� ≤ Y. (5.2)
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Recall that the acceleration is negative for Y small enough, so the previous conditions are
necessary and sufficient to leaveH at C = 0+.

To take into account Equation (5.2), X1 is replaced by (02, . . . , 0# ) and Equation (5.1) reads

D# (C) = 3 cosl1C +
#∑
:=2

0: (cosl: C − cosl1C) +
#∑
:=1

1: sinl: C. (5.3)

Theorem 5.1 — FRT: asymptotic expansion for = loops. There exists a positive sufficiently
small Y such that for all =, 1 ≤ = < +∞, there exists 6= ∈ �∞(VY

= , ])1/2, +∞[) such that the
FRT toH onVY

= reads

FRT(02, . . . , 1# ) = )∗= (02, . . . , 1#−1) + 6= (−
√
|1# − 1∗# |, 02, . . . , 1#−1),

= =)1 − W
√
|1# − 1∗# | + O(‖(02, . . . , 1# )‖)

≤ )∗= (02, . . . , 1#−1) (5.4)
)∗= (02, . . . , 1#−1) = =)1 + C∗= (02, . . . , 1#−1) (5.5)

|1#−1∗# | = sign(sin(l#=)1)) (1#−1∗# (02, . . . , 1#−1)) =: B= (02, . . . , 1# ) (5.6)

where W > 0 is independent of =, 6= is a smooth analytic function, C∗= is a key function to localize
the square root singularity. The function C∗= is defined near 0 by the implicit equation

¤D# (=)1 + C∗=) = 0, (5.7)

depending on (02, . . . , 1#−1) and 1∗# is a function depending on C∗= and is the modal component
1# such that D# (=)1 + C∗=) = 3.
This result needs the following comments:

1. FRT(0, . . . , 0) = =)1 means that the FRT is discontinuous on HP . In fact, when
(02, . . . , 1# ) = (0, . . . , 0), the orbit corresponds to the GLM for which FRT = )1.
However, onVY

= , the corresponding orbits are near the trajectory of the GLM with exactly
= loops and the FRT is in the vicinity of =)1:

lim
V Y

= 3(02,...,1# )→(0,...,0)
FRT(02, . . . , 1# ) = =)1. (5.8)

This discontinuity of the FRT at (02, . . . , 1# ) = (0, . . . , 0) is due to the considered choice
of the Poincaré section, tangent to the grazing orbit and the existence of orbits with many
loops before they come back toHP .

2. The implicit theorem is only needed once to obtain this expansion, precisely to define the
critical time )∗= = =)1 + C∗= when the return time occurs with a grazing contact. In fact,
the linearity with respect to the modal coordinates allows us to essentially use the inverse
function theorem with only one variable. The other variables become parameters.

3. The important inequality

FRT(02, . . . , 1# ) ≤ )∗= (02, . . . , 1#−1) = FRT(02, . . . , 1#−1, 1
∗
# ) (5.9)

means that the FRT for the orbit with the initial modal coordinates (02, . . . , 1# ) is always
smaller than or equal to the FRT with a grazing contact and the initial modal coordinates
(02, . . . , 1#−1, 1

∗
# ). In fact, the acceleration of D# is negative, so the velocity decreases

before contact. However, the velocity has to be non-negative before contact. Thus, contact
onHP occurs before the velocity vanishes, or exactly at the same time for a grazing return.

4. FRT ≤ =)1 if the square root term dominates the remainder or if C∗= ≤ 0 from the previous
discussion. The reduction of the FRT with respect to to the linear time was already
emphasized in [9].

Proof. The proof involves many steps, all collected in this section. The proof of the last theorem
of Section 2.2 in [12] for = = 1 is extended to all = and simplified with a new formula.

12



FRT not a closed-form expression of (X1, . . . , 1# ) The FRT is a positive time ) = =)1 + C,
|C | < )1/2, solution of the equation D# = 3. Since X1 is functionally related to the other modal
coordinates through X1 +

∑#
:=2 0: = 0, we choose to remove this parameter in order to work with

a set of free parameters:

3 = � (), 02, . . . , 1# ) = D# (), 02, . . . , 1# )

= 3 cosl1) +
#∑
:=2

0: (cosl:) − cosl1)) +
#∑
:=1

1: sinl:). (5.10)

Note that there are usually many ) solutions to this equation. In particular, there are solutions )
such that the condition D# < 3 is violated on (0, )). These ) correspond to ghost non-admissible
solutions [9]. Nevertheless, to perform the asymptotic expansion of the FRT, it is simple first
to perform the asymptotic expansion of ) with respect to the other parameters using smooth
analysis and then obtain the asymptotic expansion of FRT by only considering parameters inVY

=

and ) near =)1. At this point, it is useful to ignore the admissibility conditions for the function D#
and to study all the roots of the function �. We already know that ) is near =)1 by Theorem 2.2.
The number of loops = is now fixed and we focus on the FRT = ) near =)1, or in other words

) = =)1 + C (5.11)

with small time C. As already noticed in [11, 10, 12], grazing contact implies that the
implicit function theorem cannot be used in Equation (5.10). This is due to the condition
m)� (=)1, 0, . . . , 0) = ¤D# (=)1) = 0. at ) = =)1. The strategy is to choose another variable,
for instance 1# since m1# � (=)1, 0, . . . , 0) = cosl2=)1 ≠ 0 due to the non internal resonance
assumption. Note that 11 is the only forbidden choice. Accordingly, 1# can be seen as a function
of C and the 2# − 2 other variables 02, . . . , 0# , 11, . . . , 1#−1. The grazing and the non-zero
acceleration m2

C � (=)1, 0, . . . , 0) = ¥D# (=)1, 0, . . . , 0) = −3l2
1 < 0 induce a parabolic flatness.

Then, expressing C, which corresponds to the FRT including the non-admissible orbits, as a
function of 1# leads the square root singularity in the function 6=.

Flatness near (=)1; 0, . . . , 0) When themodal coordinates vanish, except 01 = 3, � () ; 0, . . . , 0)
in Equation (5.10) corresponds to D# ()) for the GLM, i.e. 0 = ¤D# (=)1) = m)� (=)1; 0, . . . , 0).
Thus, we cannot express the FRT as a function of the modal coordinates with the inverse
function theorem or the implicit function theorem. The flatness is only quadratic since
0 > −3l2

1 = ¥D# (=)1) = m2
)� (=)1; 0, . . . , 0). The strategy consists in choosing a modal

coordinate as a function of ) , to then exhibit the parabolic flatness of this function and to finally
invert this function to obtain a square-root singularity for ) as a function of this modal coordinate.
The chosen modal coordinate is 1# .

1# as a function �# (), 02, . . . , 1#−1) Equation (5.10) yields

1# = �# (C = ) − =)1; 02, . . . , 1#−1) (5.12)

=
3 cosl1) −

∑#
:=2 0: (cosl:) − cosl1)) −

∑#−1
:=1 1: sinl:)

sinl#)
.

The function �# is well defined if sinl#) ≠ 0. This is true for ) near =)1 since sinl#=)1 ≠ 0.
The flatness of the grazing linear mode ¤D# (=)1; 0, . . . , 0) yields a flatness of � and then of �#
with respect to ) .
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Location of the flatness of �# : critical time )∗= = =)1 + C∗= and critical 1# , 1∗# An important
point is that the flatness of �# is not only located at C = 0, i.e. ) = =)1 when the parameter
(02, . . . , 1#−1) ≠ (0, . . . , 0). The flatness location moves at a time )∗= near =)1. Consequently,
1# = �# (C; 02, . . . , 1#−1) has to be explored near C∗= = )∗= − =)1. The time C∗= or equivalently
)∗= = =)1 + C∗= has to satisfy

0 = ¤�# (=)1 + C∗=), 1∗# = �# (C∗=; 02, . . . , 1#−1). (5.13)

Consequently, 1∗# which is �# evaluated at time C∗=, is a function of C∗= and the other free
parameters.

Note that Equation (5.13) is related to the grazing contact condition 0 = ¤D# (=)1 +
C∗=; 02, . . . , 1#−1, 1

∗
# ). The quantities C∗= and 1∗# are defined with respect to the free modal

coordinates (02, . . . , 1#−1). From the differentiation of Equation (5.10) with respect to C, the
first and second time derivatives of �# satisfy

0 = −3l1 sinl1) −
#∑
:=2
0: (l: sinl:) − l1 sinl1))

+
#∑
:=1

1:l: cosl:) + ¤�# sinl#) (5.14)

0 = 3l2
1 cosl1) +

#∑
:=2

0: (l2
: cosl:) − l2

1 cosl1))

+
#∑
:=1

1:l
2
: sinl:) − 2l# ¤�# cosl#) − ¥�# sinl#). (5.15)

Equation (5.14) defines )∗= by saying that ¤�# = 0. Equation (5.15) is then used to check that
¥�# ≠ 0 near )∗= to get the parabolic flatness of �# . Accordingly, )∗= is defined by the implicit
equation

0 = − 3l1 sinl1)
∗
= −

#∑
:=2

0: (l: sinl:)∗= − l1 sinl1)
∗
= ) +

#∑
:=1

1:l: cosl:)∗= , (5.16)

where the last modal coordinates 1# has to be replaced by the function �# ()∗= ; 02, . . . , 1#−1).
As a consequence, )∗= = )∗= (02, . . . , 1#−1) is solution to the longer equation

3l1 sinl1)
∗
= − �# ()∗= ; 02, . . . , 1#−1) cosl#)∗=

= −
#∑
:=2

0: (l: sinl:)∗= − l1 sinl1)
∗
= ) +

#−1∑
:=1

1:l: cosl:)∗= . (5.17)

Notice that the dependence on = only arrives when we look for a )∗ near =)1. In order to see that
Equation (5.16) admits a unique solution )∗= near =)1, we evaluate Equations (5.14) and (5.15)
when ) = =)1 and ¤�# = 0:

0 = −
#∑
:=2

0:l: sinl:=)1 +
#∑
:=1

1:l: cosl:=)1, (5.18)

0 = 3l2
1 +

#∑
:=2

0: (l2
: cosl:) − l2

1) +
#∑
:=1

1:l
2
: sinl:=)1 − ¥�# sinl#=)1. (5.19)
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The functions 1∗# and ¥�# are explicit at ) = =)1 via Equations (5.18) and (5.19):

(l# cosl#=)1)1∗# =
#∑
:=2

0:l: sinl:=)1 −
#−1∑
:=1

1:l: cosl:=)1 (5.20)

(sinl#=)1) ¥�# = 3l2
1 +

#∑
:=2

0: (l2
: cosl:=)1 − l2

1) +
#∑
:=1

1:l
2
: sinl:=)1 = 3l

2
1 + O(Y).

(5.21)

The critical value 1∗# of 1# is a linear function of (02, . . . , 1#−1) but a nonlinear function of )∗= .
The sign of the second time derivative of �# is the same as the sign of f= = sinl#=)1. The
expansion has to be achieved near )∗ = =)1 + C∗, i.e.,

) = =)1 + C = =)1 + C∗= + ΔC = )∗= + ΔC, ΔC = C − C∗ = ) − )∗= . (5.22)

Hence, the Taylor expansion of �# with respect to C near C∗= = )∗= − =)1 yields a quadratic
remainder expressed in the integral form with non-negative quantities:

0 ≤ f# (�# ()∗ + ΔC; 02, . . . , 1#−1) − 1∗# (02, . . . , 1#−1)
= |1# − 1∗# (02, . . . , 1#−1) | = (ΔC)2'= (ΔC; 02, . . . , 1#−1) (5.23)

with

'= (ΔC; 02, . . . , 1#−1) =
∫ 1

0
(1 − B) | ¥�# | ()∗ + BΔC; 02, . . . , 1#−1) dB > 0. (5.24)

where '= (0; 0, . . . , 0) = 3l2
1/2 > 0, since )∗(0, . . . , 0) = =)1. The positive sign of '= is

preserved for C and Y small enough.

FRT as a function ofmodal coordinates The quantity FRT−=)1 = C is expressed as a function
of (02, . . . , 1# ). As in [12], the time C is now expressed as a function of the modal coordinates
with a special role for 1# − 1∗# which displays a parabolic flatness, see Equation (5.23). To this
end, the function

k= (ΔC; 02, . . . , 1#−1) = ΔC
√
'= (ΔC; 02, . . . , 1#−1) (5.25)

is used where (02, . . . , 1#−1) only plays the role of a vector parameter. The information from
Equation (5.23) is only in terms of the square of the time in the form |1# − 1∗# | = (ΔC)2'=. The
sign of ΔC is given by the admissibility condition that the velocity of the last mass is non-negative
at the first return time:

0 ≤ ¤D# ()∗ +ΔC − 0) = ¤D# ()∗ − 0) + ¥D# ()∗ − 0)ΔC +O(ΔC)2 = 0− 3l2
1ΔC +O(ΔC)2. (5.26)

That means that, locally, ΔC ≤ 0. This information is important and rewritten as

ΔC ≤ 0 ⇒ FRT ≤ )∗ = =)1 + C∗. (5.27)

The function k= is a diffeomorphism in ΔC, eventually reducing the time interval, as shown later.
From Equation (5.23), |1# − 1∗# | = (k= (ΔC))2, thus,

ΔC = FRT(02, . . . , 1# ) − )∗ = 6=
(
−
√
|1# − 1∗# (02, . . . , 1#−1) |; 02, . . . , 1#−1

)
, (5.28)

where 6= (�1; 02, . . . , 1#−1) = k (−1)
= (�1; 02, . . . , 1#−1) on VY

= , the inverse of k= being taken
with respect to the first argument �1 only.

Let us show that k= is a diffeomorphism with respect to its first argument and uniformly with
respect to the other arguments (02, . . . , 1#−1). With Lemma 5.2, the proof is complete. �
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Lemma 5.2—Diffeomorphism k= with respect to the time. Let = be fixed. There exist Y3 > 0
and g > 0 such that for all Y < Y3 and for |C | ≤ g, k= is a time diffeomorphism with the property

0 < inf
V Y

=

| ¤k= |. (5.29)

Proof. The function k= is smooth as soon as '= > 0 since '= is smooth. The positive sign of '=
comes from (1) '= (0; 0, . . . , 0) = 3l2

1/2 > 0 and (2) the estimate on ¥i, eventually reducing Y
and the size of the time intervals. Also, k= is a diffeomorphism with respect to C as soon as

¤k= > 0 with ¤k= =
√
'= + C

¤'=
2
√
'=
. (5.30)

First, with Y small enough well chosen, we have inf '= (C; 02, . . . , 1=) > l2
13/4 > 0. For g > 0

small enough can be chosen such that the positive sign of ¤k= still holds and for instance for all
|C | < g, inf ¤k= (C; 02, . . . , 1=)) > l1

√
3/8 > 0 which concludes the proof. �

5.2 Square root singularity for the First Return Map
The singularity of the FRM near GLMs is now discussed. This singularity plays a role in the
expected instability of GLMs [10]. The investigation of solution stability for smooth dynamical
systems is well known [3, 8]. However, in the present work it involves a square root singularity
in the Poincaré map [2]. A square root singularity for nonsmooth systems is intuitively worse
than a positive Lyapunov exponent for smooth systems. The instability near grazing orbits was
already conjectured in the literature [2, 10, 11] but never mathematically completely proven.
The present paper extends toVY, a whole neighborhood of the GLMs in the contact hyperplane
H , the square root expansion restricted inVY

1 in [12]. The expansions are exactly the same as
in [12], only the remainder depends on the number of loops, that is onVY

= . Let us briefly recall
the main points from [12, Section 6.2]:

• The singularity in the FRM only comes from the singularity in FRT. The flow of the free
dynamics is denoted by Y(C,]0) which is simply a matrix with almost periodic coefficients.
Furthermore, all time derivatives of its coefficients are bounded for all time. In other words,
Y(C,]0) is the solution of the free linear dynamics at time C with initial data]0. The FRM
can be expressed as suggested in [12] although withHP on the side ofH where E# ≤ 0

FRM(]0) = Sym · Y(FRT(]0),]0) (5.31)

where]0 ∈ HP and Sym is the constant matrix of the symmetry representing the action
of the impact law which changes only one physical components E# (C + 0) = −E# (C − 0).

• The FRT has a different expansion in eachVY
= for all 0 < = < ∞. Note that, unlike FRT,

FRM is a continuous function and can be expressed in modal coordinates as

FRM(02, . . . , 1# ) = ]�
0 − W

√
|1# − 1∗# | Sym · I + O(‖(02, . . . , 1# )‖) (5.32)

where ]�
0 stands for the GLM in modal coordinates; the vector I is constituted of the

so-called square root instability coefficients [12, Section 6.2]. It should be noted that the
size of the remainder depends onVY

= . Our study does not control the remainder uniformly
with respect to =.

• The vector I is never the zero vector for a GLM, see [12, last Remark of Section 6], and
the square root singularity of the FRM thus really occurs.

In order to thoroughly explore the expected instability of a GLM, a strategy is to understand
what occurs on HP because during the free flight, the dynamics known to be neutrally stable.
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The main term of the asymptotic expansion of the FRM is the same in allVY
= but the remainder

depends onVY
= and is not uniformly bounded. In [12], the instability of an orbit always staying

inVY
1 (as defined in the present article) is established. However, it is not clear whether such an

orbit always stays inVY
1 . This means that we cannot directly use the framework of the square

root instability mathematically justified in [12]. A complete mathematical proof of the instability
of the GLMs is still an open problem but the present study brings more arguments towards the
instability of GLMs after [2, 10, 11, 12].

6 Conclusion
This paper expands on the general study of the First Return Time (FRT) to the Poincaré section [12]
for the local study in the vicinity of a Grazing Linear Mode (GLM). The proofs exposed in [12]
are simplified and new results listed below are obtained.

1. This study describes the local behavior of the FRT in the whole neighborhood VY of a
grazing linear mode. In [12], the study was conducted only for a perturbation of the GLM
with a perturbed linear period which corresponds, in the present work, toVY

1 only.
2. The FRT lies in the vicinity of a multiple of the fundamental period of a GLM, which

impliesVY =
⋃

0<=<+∞VY
= .

3. Explicit and simple characterization in modal coordinates of the setVY∞ ≠ ∅ corresponding
to orbits with only one contact for all time is given. In particular, this set is never empty
which is not proven in [12]. This is a useful tool to prove that infinitely manyVY

= are not
empty.

4. The fact thatVY
0 = ∅ that means there is nomicro-contact for sufficiently small perturbations.

This is an unusual result for a dissipative contact law with chattering. It emerges here as a
property of the conservative impact law [1].

5. The asymptotic expansion of the FRT in allVY
= is provided in a simplified way compared

to [12] (which covers only = = 1) and the same for the First Return Map.

A Solutions with only one contact for all time
The solutions with one and only one contact for all time play an important role in this study. We
recall that there is no solution with : contacts for all time with 1 < : < +∞ [12]. It is quite a
strange feature that the First Return Time and the First Return Map are not defined only for : = 1
since for all other orbits that touch the contact hyperplane once, they touch it infinitely many
times [12].

We provide additional information onH0
1 complementing [12]. In particular, in [12], it is not

clear that H0
1 is not empty. As shown below, it is actually never empty. The set is the convex

combination of the states onH corresponding to GLMs without the GLMs themselves.

Proof. The proof of Proposition 2.1 is derived using the results in [12] and the well-known
properties of almost periodic functions [6]. Fixing the sole contact time at C = 0, the 0: modal
coordinates of such a D# are necessarily non-negative. All 1: = 0, : = 1, . . . , # and D# reads

D# (C) =
#∑
:=1

0: cosl: C, 0: ≥ 0, : = 1, . . . , #,
#∑
:=1

0: = 3. (A.1)

Moreover, at least two 0: are strictly positive. If only one 0: is positive and then equal to 3, we
recognize a GLM that periodically features a contact. This is the reason why the intricate nature
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of the dynamics starts with # = 2. This is also a consequence of the Z-independence of the
frequencies l: , : = 1, . . . , # [6] and

sup
R
D# =

∑
:

0: . (A.2)

Moreover, at C = 0, D# (0) =
∑
: 0: = 3. From the Z-independence of the frequencies, the

functions cosl: C reach their maximum together at time C = 0 and never come back at the same
time to their maximum 1 so D# (C) < 3 for all C ≠ 0. We have then shown that such D# in
Equation (A.1) corresponds to solutions having their maximum 3 only once at C = 0.

Let us recall why 0: ≥ 0 and 1: = 0 for all : . A general solution of the linear differential
system has its last component of the form

D# (C) =
#∑
8=1

0: cosl: C + 1: sinl: C (A.3)

which induces

D# (0) =
#∑
8=1

0: = 3. (A.4)

Moreover, the supremum on R has to be 3 [6], that is

sup
R
D# =

∑
:

√
02
: + 12

: = 3. (A.5)

The only solution is thus 1: = 0 and 0: = |0: | ≥ 0, : = 1, . . . , # and the proof of Proposition 2.1
is complete. �

B Comparisons with Nordmark’s seminal works
In his seminal works on the square root instability, Nordmark considered a general smooth
flow with a periodic grazing orbit [11, 10, 7] (see also [5, 4, 2]). He suggested the use of a
Poincaré section, hereafter denoted NPS, transverse to a fixed periodic orbit. The NPS is located
anywhere on this periodic orbit except at the contact hyperplane. On one “half” of the NPS, the
corresponding First Return Map (denoted NFRM below) features a square-root singularity, while
it does not on the second half.

In the present work, the Poincaré section is exactly the contact hyperplane. It seems to be the
worst possible choice from the classical smooth analysis point-of-view. However, it is a natural
choice to observe the effects of the nonsmooth contact conditions on the dynamics. It is also the
simplest Poincaré section to compute the FRT. Moreover, we consider a linear free flow while
Nordmak considered a general smooth nonlinear free flow. In [12] the square root singularity is
exhibited on the contact hyperplane which corresponds exactly to the first “half” part of NPS
with the singularity. In the present paper, we describe what happens in the other “half” part
of NPS, near GLMs. It is partitioned in infinitely many subsets VY

= , where, on each of them,
the corresponding orbits do exactly = loops (for the last mass) before returning to the contact
hyperplane and the square-root singularity emerges exactly after = loops. This means that the =
iterated NFRM function is singular on this subset. An important feature in the present paper
is the simple geometric description and proof of existence of the orbits that touch the contact
hyperplane only once in the past and in the future, see Appendix A. This is obviously made
possible because the free dynamics is linear.
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The set V∞ is key to prove the existence of orbits featuring very large numbers of loops.
During the free dynamics, the orbits with large numbers of loops introduced in the present paper
stay close to the solutions starting fromV∞. A natural question is the following: for any = > 1,
are there orbits exactly featuring = loops? It is an open problem. On the other side, the existence
of solutions with = as large as desired shows that the instability problem is challenging. The
free dynamics is neutrally stable, and no instability can be generated before the orbit touches the
contact hyperplane. Since the duration of the free dynamics can be as big as we want, no clear
instability with a precise rate can be exhibited.
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