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Abstract: This paper presents the control of a wind turbine composed by a doubly fed induction
generator (DFIG), which provides power to the main grid through a feeder. The control
algorithm is designed following the modified Conditional Servo-Compensator (mCS) theory.
This control technique was recently developed to a broad class of nonlinear systems, and this
paper brings the first result applied to wind turbines. The mCS theory has several advantages
compared to others, as it is a robust nonlinear control scheme. First, it provides rigorous stability
analysis, that allows explicit definition of performance and operating conditions. Secondly, it
is a robust controller, and only needs lump values and bounds for parameters and dynamics.
Finally it is very simple and easy to implement, and does not need heavy computer burden,
it is only based on standard local measurements, and represents a promising solution for real
applications. The theoretical results are verified by simulations using detailed Simpower models.
These simulations show very good results facing a Low Voltage Ride Through scenario, which
is one of the most severe tests used for practical applications. The proposed scheme could easily
be adapted to the control of other applications based on power converters, as the control of the
interconnection of a full wind farm to the main grid, or the control of a terminal in a DC grid.

Keywords: Control of renewable energy resources; Control of power systems; Nonlinear
control; Application of power electronics; Control system design

1. INTRODUCTION

Doubly fed induction generator (DFIG) wind turbines are
one of the standards in the case of medium to large tur-
bines (Muller et al. [2002]). With the continuous increase
of wind generation, new grid codes in many countries
require wind turbines to remain connected during grid
faults, for example severe voltage drops (Low Voltage Ride
Through), and to contribute to system stability after fault
clearance. Such faults represents a major challenge for
wind turbine control, and are capital for the future connec-
tion of large DFIG wind turbines to the main Alternative
Current (AC) grid. In fact, there is great concern about
grid stability since the large penetration of renewable
energy sources and power electronic devices (ENTSO-E
[2022]), in particular since the 2019 UK black-out, largely
caused by wind turbines disconnection (OFGEN [2019]).

Several research groups have been addressing this issue
from different points of view. Classic results have suggested
improving generator’s terminal voltage during a grid fault
using shunt reactive power compensation (Anaya-Lara and
Jenkins [2005]), or the use of a crowbar (Pannell et al.
[2005]). More recent results have rather addressed the
improvement using better control strategy (De Souza et al.

[2022], Din et al. [2021]), which is also the goal of the
present work.

There exist numerous control strategies for DFIG wind
farms. Most of them are composed of PID, and are
based on a time-scale separation, considering that currents
have much faster dynamics than the DC Voltage (Chen
et al. [2020]). Therefore a control structure with an inner
current control loop and an outer DC voltage control loop
is commonly proposed, and is frequently called vector
control, but indeed is composed of PID controllers in either
loops (Muller et al. [2002], Miller et al. [2003], Pena et al.
[1996] and Hansen and Michalke [2007]). However, tuning
coupled PID controllers can be quite challenging; it is
only possible to ensure stability in a very small operation
region; in general it can not analytically be established an
operation region; it is not provided rules on how to tune
these controllers.

In our work, the modified Conditional Servo-compensator
(mCS) strategy is proposed for DFIG wind farm. The
present controller is developed in (Damm and Nguyen
[2012], Nguyen [2013]) for Multi-Input Multi-Output un-
certain nonlinear systems based on (Khalil [2000], Khalil
[2001]). The Conditional Servo-Compensator (CS) theory
says that if a MIMO uncertain nonlinear system satisfies



some basic conditions, then the application of this con-
trol strategy gives a globally exponential stability of the
closed-loop system. The controller is designed such as to
behave as a dynamic linear controller inside an arbitrary
region, and as a robust nonlinear one in the remaining
domain. For DFIG wind turbines which are uncertain and
perturbed by external signals, the modified Conditional
Servo-Compensator can guarantee the global exponential
stability with a rigorous mathematical analysis.

The structure of the paper is as follows: Section 2 describes
a DFIG wind turbine and its mathematical model. In
Section 3 the mCS Control is developed and applied to
control the grid side and the rotor side of the back to
back power converter. The performance of the proposed
controller for the wind farm in the case of low voltage ride-
through is illustrated by simulation results in Section 4.
These simulations are performed using SimPowerSystems
toolbox. The paper ends by conclusions in Section 5.

2. DYNAMIC MODEL OF DFIG

2.1 Grid side converter

The schematic diagram of a double fed induction machine
(DFIM) based wind turbine is shown in Fig. 1. It is
composed of an induction machine with its stator directly
connected to the grid, and its rotor windings connected
to a back to back Voltage Source Converter (VSC) which
is then connected to the main grid. The objective of the
grid side converter (right side DC/AC stage of the full
converter) is to keep the DC voltage constant regardless
of the rotor power, and to control the reactive power
delivered to the main AC grid. We introduce an averaged
state space model of the grid side converter established in
a dq reference frame (Padiyar and Prabhu [2004]), where
ωb is the base constant for the per unit transformation for
the grid frequency (50Hz or 60Hz), ω̄ the per unit value
for grid frequency, vl,dq are the voltages of the grid, Rpu

and Lpu represent series connected phase reactors, vc,dq are
the voltages at the grid side of the converter, il,dq are the
currents through the phase reactors, uc is the DC voltage,
C is the DC capacitor and ic is the DC bus current. All
variables are calculated in per unit system (Abad et al.
[2011]).

Fig. 1. DFIM wind turbine schematic

The average model in pu for the AC side of the converter
is written as:

dild
dt

=−ωb
Rpu

Lpu
ild + ω̄ωbilq −

ωb

Lpu
(vcd − vld)

dilq
dt

=−ωb
Rpu

Lpu
ilq − ω̄ωbild −

ωb

Lpu
(vcq − vlq)

(1)

The instantaneous active power P and the reactive power
Q on the AC side can be written as:

P = vldild + vlqilq; Q = vlqild − vldilq (2)

where we have taken the standard consideration that the
d axis of the dq reference frame is chosen such that it is
fixed to the AC grid voltage. For this reason, in normal
operation, vld = 1 and vlq = 0, and it can be used the
control strategy of steering ild to drive the DC voltage
and ilq to drive the reactive power, as it will be seen in the
following.

Losses on the converter are usually small compared to
the active power, and in most cases we can neglect these
converter’s losses. Taking into account the power balance
on the AC and DC sides, the DC voltage (considered
always positive) can be written as:

C
du2c
dt

= (vldild + vlqilq)− icuc (3)

2.2 Rotor side converter

Since the stator is connected to the grid, and the influence
of the stator resistance is small, the stator flux can be
considered as constant. Under stator flux orientation, the
relationship between the voltages, currents and fluxes may
be written as (Abad et al. [2011]):

Te = −Lm

Ls
ψsirq (4)

representing the rotor torque, such that the currents are:

dird
dt

=−ωb
Rru

ςLru
ild + ω̄sωbilq −

ωb

ςLru
vrd

dirq
dt

=−ωb
Rru

ςLru
irq − ω̄sωbild − ω̄sψs +

ωb

ςLru
vrq

(5)

where ς is the leakage factor. The stator flux angle is
calculated from:

ψαs =

∫
(vαs −Rpuiαs)dt

ψβs =

∫
(vβs −Rpuiβs)dt

⇒ θs = tan−1(ψβs/ψαs)

(6)
where ir,dq is the rotor current, vr,dq the rotor voltage, ψs

the stator flux and ω̄s the slip frequency in the stator flux
orientation. Rru and Lpu are the resistance and inductance
of the rotor.

3. CONDITIONAL SERVO-COMPENSATOR
CONTROL

The MIMO Conditional Servo-compensator controller de-
sign for the output regulation of a class of minimum-phase
nonlinear systems in case of asymptotically constant refer-
ences is studied in (Mahmoud and Khalil [1997]), (Khalil
[2000]) and in (Damm and Nguyen [2011]). These papers
concern a servo-compensator performing as a nonlinear
robust controller outside a boundary layer, and performing
as a dynamic linear controller inside it. First results have
studied the SISO case and were extended in (Seshagiri



and Khalil [2005]) and in (Memona and Khalil [2010]) for
linear MIMO systems under some additional assumptions.
Finally these results were extended for a class of MIMO
nonlinear systems in (Damm and Nguyen [2012]). The
present case however needs some new developments on
those previous results in order to address the present case.

3.1 Conditional Servo-Compensator control

Consider the system:

ė = f(e) + g(e)u (7)

where e(t) ∈ Rn
is an error vector, u ∈ Rn

is the

control input and f(e) ∈ Rn
, g(e) ∈ Rn×n

are continuous
functions. Let us define an error-measurement surface as:

φ = K0σ + e (8)

where σ ∈ Rn
is the output of the conditional servo-

compensator:

σ̇ = −K0σ + µsat(φ/µ) (9)

in which µ is the boundary layer, K0 is a positive definite
matrix.

Assumption 3.1. f(e) is bounded by a function γf (e)
(where γf is a class K function) and a positive constant
δ0:

∥f(e)∥ ≤ γf (e) + δ0 (10)

for e ∈ Rn
, and as a consequence:

∥f(e = 0)∥ = ∥f(0)∥ ≤ δ0.

And in the neighborhood region of the equilibrium point
e = 0, f and γf are Lipschitz:

∥f(e)∥ ≤ cf∥e∥; ∥γf (e)∥ ≤ cγf
∥e∥ (11)

Assumption 3.2. g(e) is continuous and invertible for all
e ∈ Rn

.

Theorem 3.1. Consider the nonlinear system in (7)
where the function f(e) satisfies Assumption 3.1, and
the function g(e) satisfies Assumption 3.2, with the error
surface defined in (8). Then control law:

{
u = −Π(e)sat(φ/µ)
Π(e) = [g(e)]−1(Π0 + µK0 + (γ(e) + δ0)In)

(12)

where Π0 is a positive definite matrix, In ∈ Rnxn
the

identity matrix and γ is a function yet to be defined,
rends the closed-loop system exponentially stabilized to
its origin.

Proof: Without loss of generality we will first consider
the case where the error’s initial conditions, represented
by the integral error measurement surface φ, are large.

Considering the region ∥φ∥ ≥ µ, sat(φ/µ) = φ/∥φ∥ .

The derivative of the integral error measurement surface
may be expressed as

φ̇ = K0σ̇ + ė (13)

which, in view of (9) and (7), is equivalent to

φ̇ = −K0φ+ µK0sat(φ/µ) +K0e+ f(e) + g(e)u (14)

Furthermore, define an intermediate function δ : Rn →
Rn

δ(e) = K0e+ f(e) (15)

then using Assumption (3.1), δ satisfies

∥δ(e)∥ ≤ ∥K0e∥+ γf (e) + δ0 = γ(e) + δ0 (16)

where the function γ aforementioned in (12) is,

γ(e) = ∥K0e∥+ γf (e) (17)

Equation (14) becomes

φ̇=−K0φ+ µK0sat(φ/µ) + δ(e) + g(e)u (18)

The product φT φ̇may be computed using Assumption 3.1,
the control law (12) and the saturation function to obtain:

φT φ̇ ≤ −λmin(Π0)∥φ∥ ⇒ d(∥φ∥)
dt

≤ −λmin(Π0)

⇒ ∥φ(t)∥ ≤ ∥φ(0)∥ − λmin(Π0)t.

Then, the trajectories on the integral error measurement
surface φ reach the set:

Oφ = {φ ∈ Rn | ∥φ∥ ≤ µ} (19)

in finite time.

Considering the region ∥φ∥ ≤ µ, sat(φ/µ) = φ/µ
Consider again (8), (9), (18) and the control law (12),
which inside the boundary layer may be rewritten as:{

σ̇ = −K0σ + φ
φ̇ = δ(e)− g(e)Π(e)φ/µ
e = φ−K0σ

(20)

It can be shown that this system has the equilibrium point:{
φ = φ̄, σ = σ̄

φ̄ = K0σ̄ = [Π0 + µK0 + δ0In]
−1
f(0)

(21)

The system (20) may then be rewritten with respect to φ̄
and σ̄:

˙̃σ = −K0σ̃ + φ̃
˙̃φ = δ(e)−Π(e)g(e)φ̃/µ−Π(e)g(e)φ̄/µ
e = φ̃−K0σ̃

(22)

where σ̃ = σ − σ̄, φ̃ = φ− φ̄.

We would like to demonstrate that every trajectory of
(22) starting inside the boundary layer, approaches the
equilibrium point (σ̃, φ̃) = (0, 0) as time tends to infinity.
Towards that end, we take:

W =
1

2
σ̃TK0σ̃ +

1

2
φ̃T φ̃ (23)

as a Lyapunov candidate.

Since δ(e) in (15) can be rewritten as:

δ(e) = K0φ̃−K2
0 σ̃ + f(e). (24)

So the derivative of the Lyapunov candidate yields:

Ẇ=−σ̃TK2
0 σ̃ − σ̃TK0(K0 − In)φ̃+ φ̃TK0φ̃

−φ̃T g(e)Π(e)φ̃/µ) + φ̃T (f(e)− g(e)Π(e)φ̄/µ)
(25)

After some intermediate steps, omitted here for the sake
of brevity, the derivative of W can be developed as (where
m1, lσ and ls are positive constants):



Ẇ≤−(
1

2
− 1

2m1
− lσ)σ̃

TK2
0 σ̃

−φ̃T (g(e)Π(e)/µ− (K0 +
m1

2
(K0 − In)

2 + lsIn))φ̃

In order to obtain a negative derivative of the Lyapunov
candidate Ẇ for all φ̃ and σ̃, it is necessary to impose
design conditions, that are simplified if one considers
the fact that ls and lσ are significantly small when the
attractive region is small, leading to:{

m1 > 1

(Π0 + δ0In)/µ >
m1

2
(K0 − In)

2 (26)

These conditions are satisfied by takingm1 and ∥Π0∥ large
enough with respect to control dynamics, or conversely by
taking µ small enough. In this way,W (t) satisfiesW (t) > 0

and Ẇ < −w0W (where w0 is a positive constant) for all
σ ̸= σ̄ and φ ̸= φ̄. Then W (t) exponentially converges to
zero when time tends to infinite. As a consequence, the
output error e(t) = φ̃ − K0σ̃, exponentially converges to
0. We assure the exponential stability of the equilibrium
point (σ̄, φ̄, 0) of system (22) in the region of ∥φ∥ ≤ µ. As
a consequence, system (7) is exponentially stable.

�
Remark 1. This result improves those in (Damm and
Nguyen [2012]) in the fact that in those results function
g(e) was required to be known (even if uncertain), while
in the present result, it is only required to be continuous
and non-singular.

3.2 Control of grid side converter

Current loop control Taking the per-unit error dynamics
of currents of the VSC terminal in (1) according to their
constant reference signals ild,r and ilq,r:

dĩldq
dt

= Aĩldq +Aildq,r +Bṽcdq (27)

where ildq = [ild, ilq], ildq,r = [ild,r, ilq,r], ĩldq = ildq−ildq,r,
ṽcdq = vcdq − vldq and:

A =

−ωb
Rpu

Lpu
ω̄ωb

−ω̄ωb −ωb
Rpu

Lpu

 ; B =

− ωb

Lpu
0

0 − ωb

Lpu

 .
Equation (1) can be rewritten as:

dĩldq
dt

= ζf (̃ildq) + ζg (̃ildq)ṽcdq (28)

Function ζf is bounded by a scalar function γf and a
positive constant δ0

∥ζf (̃ildq)∥ ≤ γf (̃ildq) + δ0; (29)

ζf then satisfies Assumption 3.1.

Matrix ζg is invertible, then it satisfies Assumption 3.2.

Since system (28) has ζf and ζg satisfying Assumptions 3.1
and 3.2, application of the Conditional Servo-compensator
control to (28) can be expressed as:{

ṽcdq=−Π(̃ildq)sat(φ/µ)

Π =−
Lpu

ωb
(Π0 + µK0 + (γ(̃ildq) + δ0)I2)

(30)

where [ζg]
−1 = −Lpu

ωb
I2 and δ0 =

√
(ω̄ωb)2 + (ωb

Rpu

Lpu
)2.

Let us consider conditions for the controller’s parameters
Π0, K0 and µ stated in (26). We take m1 = 3/2, and then
(26) becomes:

(Π0 +

√
(ω̄ωb)2 + (ωb

Rpu

Lpu
)2I2)/µ >

3

4
(K0 − In)

2 (31)

Taking into account the neglected effect of ls on the
inequality (26), Π0 must be large enough and µ small
enough. We then take µ = 0.5 for the boundary layer and
Π0 = 2δ0I2.

Value K0 is tuned small satisfying
µK0 <<µωbI2 < 0.5

√
(ω̄ωb)2 + (ωb

Rpu

Lpu
)2 = 0.5δ0

∥K0∥<<ωb <

√
(ω̄ωb)2 + (ωb

Rpu

Lpu
)2

(32)

Terms µK0 and ∥K0∥ can be neglected, and

Π(̃ildq) = −
√
(Lpu)2 + (Rpu)2(∥̃ildq∥+ 3)I2 (33)

DC voltage loop Considering again the per-unit dynam-
ics of the DC voltage side in (3) according to its constant
reference signal uc,r,

Cpu
deu
dt

= −ic(uc − uc,r)− icuc,r + vld(ild +
vlq
vld

ilq) (34)

where eu = u2c − u2c,r.

Let us define iu = (ild +
vlq
vld
ilq) as the control input,

previous equation can be stated as,

deu
dt

= fu(eu) + gu(eu)iu (35)

where

fu(eu) =−(ic(uc − uc,r) + icuc,r)/Cpu (36)

gu(eu) = vld/Cpu. (37)

One can show that fu satisfies Assumption 3.1, and
function gu is invertible and satisfies Assumption 3.2, so,
application of mCS control to (35) yields:

iu =−Π(eu)sat(φ/µ)

Π(eu)=(
1

uc,r
|eu|+ 9/8|uc,r|)/vld (38)

3.3 Control of rotor side

Now considering the per-unit dynamics of currents of the
rotor side in (5) according to their constant reference
signals ird,r and irq,r:

dĩrdq
dt

= Aĩrdq +Airdq,r +Bvrdq (39)



where irdq = [ird, irq], irdq,r = [ird,r, irq,r], ĩrdq = irdq −
irdq,r and :

A =

 −ωb
Rru

ςLru
ω̄sωb

−ω̄sωb −ωb
Rru

ςLru

 ;B =

[
−

ωb

ςLru
0

0 −
ωb

ςLru

]
.

After a similar computation as in section 3.2.1, the mCS
controller for the rotor side can be stated as:

Π(̃ildq)=−
Lpu

ωb
(µK0 + 3δ0I2

+∥̃ildq∥(∥K0∥+

√
(ω̄ωb)2 + (ωb

Rpu

Lpu
)2)I2)

(40)

4. SIMULATION RESULTS

In this Section, the proposed control strategy designed
in previous sections is applied to a 1.5 MW wind farm
connected to a 25KV/60Hz distribution system that ex-
ports power to a 120kV grid through a 30km, 25kV feeder
(see Fig. 2). The simulation is illustrated using the de-
tailed Matlab/Simulink SimScape Electrical Toolbox. In
this simulation, the wind speed is maintained constant
at 15m/s. A PID controls the rotor torque in order to
maintain the turbine speed as 1.2pu. The reactive power
produced by the wind turbine is regulated at 0Mvar for the
grid side. The simulation illustrates the performance of the
proposed controllers through voltage drop at the grid from
1.0pu to 0.5pu programmed at t=0.23s and voltage step
up to 1.0pu after 0.1s. Fig. 3 shows that the grid voltage
from the steady state drops to 0.4pu during the interval
0.23s to 0.33s.

Fig. 2. DFIG wind turbine connected to a distribution
system

Fig. 3. Grid voltage drop from 1.0pu to 0.4pu

Fig. 4. il,dq current in dq frame

Fig. 4 illustrates the simulation results of the grid side’s
current when applied the proposed controllers for the
current loop. ilq current is set to zero to give a zero reactive
power. The ild current reference from the DC voltage loop
is followed by its actual value. The zero current error shows
the regulation performance of the current loop control by
mCS.

Fig. 5 shows the DC voltage at the capacitor during grid
voltage drop. The DC voltage satisfies the grid code which
requires the DC voltage to stay in 0.9pu to 1.1pu during
the voltage drop. A small oscillation on the DC voltage is
explained from the change of rotor speed which results in
oscillation of rotor current.

Fig. 5. DC voltage of the capacitor

The rotor current loop control aims to keep active and
reactive power at the same value during the grid voltage
drop. Figs. 6 and 7 shows the currents and the active
power. Fig. 6 illustrates how the mCS controller allows
the rotor currents to follow their references, and the active
power to converge to 1.0pu after the grid voltage drop.

5. CONCLUSION

This paper has presented the development of a mCS Con-
troller for a DFIG wind turbine. The work has demon-
strated that the DFIG wind turbine satisfies the sufficient
conditions of this theory, and as a consequence can be
controlled by mCS controllers for current and DC voltage
loops in the grid side and for the rotor currents in the
rotor side. The simulation results have shown that the



Fig. 6. ir,dq current in dq frame

Fig. 7. Active power of the grid side

controller is robust and performs well for the severe test of
low voltage ride through scenario. An important advantage
of the mCS controller is the easiness for its application
and for tuning its parameters. In future works it will be
investigated its application for other topologies of wind
turbines and other electrical systems.
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royo, and Grzegorz Iwanski. Doubly fed induction ma-
chine: modeling and control for wind energy generation,
volume 85. John Wiley & Sons, 2011.

O Anaya-Lara and N Jenkins. Fault current contribution
of dfig wind turbines. IEE Conf. Reliability of Trans-
mission and Distribution Networks, London, 2005.
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