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INTRODUCTION

Doubly fed induction generator (DFIG) wind turbines are one of the standards in the case of medium to large turbines [START_REF] Muller | Doubly fed induction generator systems for wind turbines[END_REF]). With the continuous increase of wind generation, new grid codes in many countries require wind turbines to remain connected during grid faults, for example severe voltage drops (Low Voltage Ride Through), and to contribute to system stability after fault clearance. Such faults represents a major challenge for wind turbine control, and are capital for the future connection of large DFIG wind turbines to the main Alternative Current (AC) grid. In fact, there is great concern about grid stability since the large penetration of renewable energy sources and power electronic devices (ENTSO-E [2022]), in particular since the 2019 UK black-out, largely caused by wind turbines disconnection (OFGEN [2019]).

Several research groups have been addressing this issue from different points of view. Classic results have suggested improving generator's terminal voltage during a grid fault using shunt reactive power compensation (Anaya-Lara and Jenkins [2005]), or the use of a crowbar [START_REF] Pannell | Dfig control performance under fault conditions for offshore wind applications[END_REF]). More recent results have rather addressed the improvement using better control strategy [START_REF] Ramon | Doubly fed induction generator low voltage ride through improvement through modular multilevel converter[END_REF], [START_REF] Din | Low voltage and high voltage ridethrough technologies for doubly fed induction generator system: Comprehensive review and future trends[END_REF]), which is also the goal of the present work.

There exist numerous control strategies for DFIG wind farms. Most of them are composed of PID, and are based on a time-scale separation, considering that currents have much faster dynamics than the DC Voltage [START_REF] Chen | Control induced time-scale separation for multi-terminal high voltage direct current systems using droop control[END_REF]). Therefore a control structure with an inner current control loop and an outer DC voltage control loop is commonly proposed, and is frequently called vector control, but indeed is composed of PID controllers in either loops [START_REF] Muller | Doubly fed induction generator systems for wind turbines[END_REF], [START_REF] Miller | Dynamic modeling of ge 1.5 and 3.6 wind turbine-generators[END_REF], [START_REF] Pena | Doubly fed induction generator using back-to-back pwm converters and its application to variable-speed wind-energy generation[END_REF] and [START_REF] Anca | Fault ride-through capability of dfig wind turbines[END_REF]). However, tuning coupled PID controllers can be quite challenging; it is only possible to ensure stability in a very small operation region; in general it can not analytically be established an operation region; it is not provided rules on how to tune these controllers.

In our work, the modified Conditional Servo-compensator (mCS) strategy is proposed for DFIG wind farm. The present controller is developed in [START_REF] Damm | Mimo conditional servo-compensator control for a class of nonlinear systems[END_REF], Nguyen [2013]) for Multi-Input Multi-Output uncertain nonlinear systems based on [START_REF] Hassan | On the design of robust servomechanisms for minimum phase nonlinear systems[END_REF], [START_REF] Hassan | Nonlinear Systems[END_REF]). The Conditional Servo-Compensator (CS) theory says that if a MIMO uncertain nonlinear system satisfies some basic conditions, then the application of this control strategy gives a globally exponential stability of the closed-loop system. The controller is designed such as to behave as a dynamic linear controller inside an arbitrary region, and as a robust nonlinear one in the remaining domain. For DFIG wind turbines which are uncertain and perturbed by external signals, the modified Conditional Servo-Compensator can guarantee the global exponential stability with a rigorous mathematical analysis.

The structure of the paper is as follows: Section 2 describes a DFIG wind turbine and its mathematical model. In Section 3 the mCS Control is developed and applied to control the grid side and the rotor side of the back to back power converter. The performance of the proposed controller for the wind farm in the case of low voltage ridethrough is illustrated by simulation results in Section 4. These simulations are performed using SimPowerSystems toolbox. The paper ends by conclusions in Section 5.

DYNAMIC MODEL OF DFIG

Grid side converter

The schematic diagram of a double fed induction machine (DFIM) based wind turbine is shown in Fig. 1. It is composed of an induction machine with its stator directly connected to the grid, and its rotor windings connected to a back to back Voltage Source Converter (VSC) which is then connected to the main grid. The objective of the grid side converter (right side DC/AC stage of the full converter) is to keep the DC voltage constant regardless of the rotor power, and to control the reactive power delivered to the main AC grid. We introduce an averaged state space model of the grid side converter established in a dq reference frame [START_REF] Padiyar | Modelling, control design and analysis of vsc based hvdc transmission systems[END_REF]), where ω b is the base constant for the per unit transformation for the grid frequency (50Hz or 60Hz), ω the per unit value for grid frequency, v l,dq are the voltages of the grid, R pu and L pu represent series connected phase reactors, v c,dq are the voltages at the grid side of the converter, i l,dq are the currents through the phase reactors, u c is the DC voltage, C is the DC capacitor and i c is the DC bus current. All variables are calculated in per unit system [START_REF] Abad | Doubly fed induction machine: modeling and control for wind energy generation[END_REF]).

Fig. 1. DFIM wind turbine schematic

The average model in pu for the AC side of the converter is written as:

di ld dt =-ω b R pu L pu i ld + ωω b i lq - ω b L pu (v cd -v ld ) di lq dt =-ω b R pu L pu i lq -ωω b i ld - ω b L pu (v cq -v lq )
(1)

The instantaneous active power P and the reactive power Q on the AC side can be written as:

P = v ld i ld + v lq i lq ; Q = v lq i ld -v ld i lq
(2) where we have taken the standard consideration that the d axis of the dq reference frame is chosen such that it is fixed to the AC grid voltage. For this reason, in normal operation, v ld = 1 and v lq = 0, and it can be used the control strategy of steering i ld to drive the DC voltage and i lq to drive the reactive power, as it will be seen in the following.

Losses on the converter are usually small compared to the active power, and in most cases we can neglect these converter's losses. Taking into account the power balance on the AC and DC sides, the DC voltage (considered always positive) can be written as:

C du 2 c dt = (v ld i ld + v lq i lq ) -i c u c (3)

Rotor side converter

Since the stator is connected to the grid, and the influence of the stator resistance is small, the stator flux can be considered as constant. Under stator flux orientation, the relationship between the voltages, currents and fluxes may be written as [START_REF] Abad | Doubly fed induction machine: modeling and control for wind energy generation[END_REF]):

T e = - L m L s ψ s i rq (4)
representing the rotor torque, such that the currents are:

di rd dt =-ω b R ru ςL ru i ld + ωs ω b i lq - ω b ςL ru v rd di rq dt =-ω b R ru ςL ru i rq -ωs ω b i ld -ωs ψ s + ω b ςL ru v rq ( 5 
)
where ς is the leakage factor. The stator flux angle is calculated from:

     ψ αs = (v αs -R pu i αs )dt ψ βs = (v βs -R pu i βs )dt ⇒ θ s = tan -1 (ψ βs /ψ αs )
(6) where i r,dq is the rotor current, v r,dq the rotor voltage, ψ s the stator flux and ωs the slip frequency in the stator flux orientation. R ru and L pu are the resistance and inductance of the rotor.

CONDITIONAL SERVO-COMPENSATOR CONTROL

The MIMO Conditional Servo-compensator controller design for the output regulation of a class of minimum-phase nonlinear systems in case of asymptotically constant references is studied in [START_REF] Mahmoud | Robust control for a nonlinear servomechanism problem[END_REF]), [START_REF] Hassan | On the design of robust servomechanisms for minimum phase nonlinear systems[END_REF]) and in [START_REF] Damm | Mimo conditional integrator control for a class of nonlinear systems[END_REF]). These papers concern a servo-compensator performing as a nonlinear robust controller outside a boundary layer, and performing as a dynamic linear controller inside it. First results have studied the SISO case and were extended in [START_REF] Seshagiri | Robust output feedback regulation of minimum-phase nonlinear systems using conditional integrators[END_REF]) and in [START_REF] Attaullah | Output regulation of nonlinear systems using conditional servocompensators[END_REF]) for linear MIMO systems under some additional assumptions. Finally these results were extended for a class of MIMO nonlinear systems in [START_REF] Damm | Mimo conditional servo-compensator control for a class of nonlinear systems[END_REF]). The present case however needs some new developments on those previous results in order to address the present case.

Conditional Servo-Compensator control

Consider the system: ė = f (e) + g(e)u

where e(t) ∈ R n is an error vector, u ∈ R n is the control input and f (e) ∈ R n , g(e) ∈ R n×n are continuous functions. Let us define an error-measurement surface as:

φ = K 0 σ + e (8)
where σ ∈ R n is the output of the conditional servocompensator: σ = -K 0 σ + µsat(φ/µ) (9) in which µ is the boundary layer, K 0 is a positive definite matrix. Assumption 3.1. f (e) is bounded by a function γ f (e) (where γ f is a class K function) and a positive constant

δ 0 : ∥f (e)∥ ≤ γ f (e) + δ 0 (10) 
for e ∈ R n , and as a consequence:

∥f (e = 0)∥ = ∥f (0)∥ ≤ δ 0 .
And in the neighborhood region of the equilibrium point e = 0, f and γ f are Lipschitz:

∥f (e)∥ ≤ c f ∥e∥; ∥γ f (e)∥ ≤ c γ f ∥e∥ (11) 
Assumption 3.2. g(e) is continuous and invertible for all e ∈ R n .

Theorem 3.1. Consider the nonlinear system in (7) where the function f (e) satisfies Assumption 3.1, and the function g(e) satisfies Assumption 3.2, with the error surface defined in (8). Then control law:

u = -Π(e)sat(φ/µ) Π(e) = [g(e)] -1 (Π 0 + µK 0 + (γ(e) + δ 0 )I n ) ( 12 
)
where Π 0 is a positive definite matrix, I n ∈ R nxn the identity matrix and γ is a function yet to be defined, rends the closed-loop system exponentially stabilized to its origin.

Proof: Without loss of generality we will first consider the case where the error's initial conditions, represented by the integral error measurement surface φ, are large.

Considering the region ∥φ∥ ≥ µ, sat(φ/µ) = φ/∥φ∥ .

The derivative of the integral error measurement surface may be expressed as φ = K 0 σ + ė (13) which, in view of ( 9) and ( 7), is equivalent to φ = -K 0 φ + µK 0 sat(φ/µ) + K 0 e + f (e) + g(e)u (14) where the function γ aforementioned in ( 12) is,

γ(e) = ∥K 0 e∥ + γ f (e) (17) 
Equation ( 14) becomes φ=-K 0 φ + µK 0 sat(φ/µ) + δ(e) + g(e)u (18)

The product φ T φ may be computed using Assumption 3.1, the control law ( 12) and the saturation function to obtain:

φ T φ ≤ -λ min (Π 0 )∥φ∥ ⇒ d(∥φ∥) dt ≤ -λ min (Π 0 ) ⇒ ∥φ(t)∥ ≤ ∥φ(0)∥ -λ min (Π 0 )t.
Then, the trajectories on the integral error measurement surface φ reach the set:

O φ = {φ ∈ R n | ∥φ∥ ≤ µ} (19)
in finite time.

Considering the region ∥φ∥ ≤ µ, sat(φ/µ) = φ/µ Consider again ( 8), ( 9), ( 18) and the control law ( 12), which inside the boundary layer may be rewritten as:

σ = -K 0 σ + φ φ = δ(e) -g(e)Π(e)φ/µ e = φ -K 0 σ (20) 
It can be shown that this system has the equilibrium point:

φ = φ, σ = σ φ = K 0 σ = [Π 0 + µK 0 + δ 0 I n ] -1 f (0) (21) 
The system (20) may then be rewritten with respect to φ and σ:

   σ = -K 0 σ + φ φ = δ(e) -Π(e)g(e) φ/µ -Π(e)g(e) φ/µ e = φ -K 0 σ (22)
where σ = σ -σ, φ = φ -φ.

We would like to demonstrate that every trajectory of ( 22) starting inside the boundary layer, approaches the equilibrium point (σ, φ) = (0, 0) as time tends to infinity. Towards that end, we take:

W = 1 2 σT K 0 σ + 1 2 φT φ (23)
as a Lyapunov candidate.

Since δ(e) in ( 15) can be rewritten as:

δ(e) = K 0 φ -K 2 0 σ + f (e). ( 24 
)
So the derivative of the Lyapunov candidate yields:

Ẇ =-σ T K 2 0 σ -σT K 0 (K 0 -In) φ + φT K 0 φ -φT g(e)Π(e) φ/µ) + φT (f (e) -g(e)Π(e) φ/µ) (25)
After some intermediate steps, omitted here for the sake of brevity, the derivative of W can be developed as (where m 1 , l σ and l s are positive constants):

Ẇ ≤-( 1 2 - 1 2m 1 -l σ )σ T K 2 0 σ -φT (g(e)Π(e)/µ -(K 0 + m 1 2 (K 0 -I n ) 2 + l s I n )) φ
In order to obtain a negative derivative of the Lyapunov candidate Ẇ for all φ and σ, it is necessary to impose design conditions, that are simplified if one considers the fact that l s and l σ are significantly small when the attractive region is small, leading to:

m 1 > 1 (Π 0 + δ 0 I n )/µ > m 1 2 (K 0 -I n ) 2 (26)
These conditions are satisfied by taking m 1 and ∥Π 0 ∥ large enough with respect to control dynamics, or conversely by taking µ small enough. In this way, W (t) satisfies W (t) > 0 and Ẇ < -w 0 W (where w 0 is a positive constant) for all σ ̸ = σ and φ ̸ = φ. Then W (t) exponentially converges to zero when time tends to infinite. As a consequence, the output error e(t) = φ -K 0 σ, exponentially converges to 0. We assure the exponential stability of the equilibrium point (σ, φ, 0) of system ( 22) in the region of ∥φ∥ ≤ µ. As a consequence, system ( 7) is exponentially stable.

Remark 1. This result improves those in [START_REF] Damm | Mimo conditional servo-compensator control for a class of nonlinear systems[END_REF]) in the fact that in those results function g(e) was required to be known (even if uncertain), while in the present result, it is only required to be continuous and non-singular.

Control of grid side converter

Current loop control Taking the per-unit error dynamics of currents of the VSC terminal in (1) according to their constant reference signals i ld,r and i lq,r :

d ĩldq dt = A ĩldq + Ai ldq,r + Bṽ cdq (27) 
where i ldq = [i ld , i lq ], i ldq,r = [i ld,r , i lq,r ], ĩldq = i ldq -i ldq,r , ṽcdq = v cdq -v ldq and:

A =     -ω b R pu L pu ωω b -ωω b -ω b R pu L pu     ; B =    - ω b L pu 0 0 - ω b L pu    .
Equation ( 1) can be rewritten as:

d ĩldq dt = ζ f ( ĩldq ) + ζ g ( ĩldq )ṽ cdq (28) Function ζ f is bounded by a scalar function γ f and a positive constant δ 0 ∥ζ f ( ĩldq )∥ ≤ γ f ( ĩldq ) + δ 0 ; (29) ζ f then satisfies Assumption 3.1.
Matrix ζ g is invertible, then it satisfies Assumption 3.2.

Since system (28) has ζ f and ζ g satisfying Assumptions 3.1 and 3.2, application of the Conditional Servo-compensator control to (28) can be expressed as:

ṽcdq =-Π( ĩldq )sat(φ/µ) Π =- Lpu ω b (Π 0 + µK 0 + (γ( ĩldq ) + δ 0 )I 2 ) (30)
where

[ζ g ] -1 = - Lpu ω b I 2 and δ 0 = (ωω b ) 2 + (ω b Rpu Lpu ) 2 .
Let us consider conditions for the controller's parameters Π 0 , K 0 and µ stated in (26). We take m 1 = 3/2, and then (26) becomes:

(Π 0 + (ωω b ) 2 + (ω b R pu L pu ) 2 I 2 )/µ > 3 4 (K 0 -I n ) 2 (31)
Taking into account the neglected effect of l s on the inequality (26), Π 0 must be large enough and µ small enough. We then take µ = 0.5 for the boundary layer and

Π 0 = 2δ 0 I 2 . Value K 0 is tuned small satisfying            µK 0 <<µω b I 2 < 0.5 (ωω b ) 2 + (ω b R pu L pu ) 2 = 0.5δ 0 ∥K 0 ∥<<ω b < (ωω b ) 2 + (ω b R pu L pu ) 2 (32) 
Terms µK 0 and ∥K 0 ∥ can be neglected, and

Π( ĩldq ) = -(L pu ) 2 + (R pu ) 2 (∥ ĩldq ∥ + 3)I 2 (33) 
DC voltage loop Considering again the per-unit dynamics of the DC voltage side in (3) according to its constant reference signal u c,r ,

C pu de u dt = -i c (u c -u c,r ) -i c u c,r + v ld (i ld + v lq v ld i lq ) (34)
where e u = u 2 c -u 2 c,r .

Let us define i u = (i ld + v lq v ld i lq ) as the control input, previous equation can be stated as,

de u dt = f u (e u ) + g u (e u )i u (35) 
where

f u (e u ) = -(i c (u c -u c,r ) + i c u c,r )/C pu (36) g u (e u ) = v ld /C pu . (37) 
One can show that f u satisfies Assumption 3.1, and function g u is invertible and satisfies Assumption 3.2, so, application of mCS control to (35) yields:

   i u =-Π(e u )sat(φ/µ) Π(e u )=( 1 u c,r |e u | + 9/8|u c,r |)/v ld (38)

Control of rotor side

Now considering the per-unit dynamics of currents of the rotor side in (5) according to their constant reference signals i rd,r and i rq,r :

d ĩrdq dt = A ĩrdq + Ai rdq,r + Bv rdq ( 39 
)
where i rdq = [i rd , i rq ], i rdq,r = [i rd,r , i rq,r ], ĩrdq = i rdqi rdq,r and :

A =   -ω b Rru ςLru ωsωb -ωsω b -ω b Rru ςLru   ; B = - ω b ςLru 0 0 - ω b ςLru .
After a similar computation as in section 3.2.1, the mCS controller for the rotor side can be stated as:

Π( ĩldq )=- Lpu ω b (µK 0 + 3δ 0 I 2 +∥ ĩldq ∥(∥K 0 ∥ + (ωω b ) 2 + (ω b Rpu Lpu ) 2 )I 2 ) (40)

SIMULATION RESULTS

In this Section, the proposed control strategy designed in previous sections is applied to a 1.5 MW wind farm connected to a 25KV/60Hz distribution system that exports power to a 120kV grid through a 30km, 25kV feeder (see Fig. 2). The simulation is illustrated using the detailed Matlab/Simulink SimScape Electrical Toolbox. In this simulation, the wind speed is maintained constant at 15m/s. A PID controls the rotor torque in order to maintain the turbine speed as 1.2pu. The reactive power produced by the wind turbine is regulated at 0Mvar for the grid side. The simulation illustrates the performance of the proposed controllers through voltage drop at the grid from 1.0pu to 0.5pu programmed at t=0.23s and voltage step up to 1.0pu after 0.1s. Fig. 3 shows that the grid voltage from the steady state drops to 0.4pu during the interval 0.23s to 0.33s. controller is robust and performs well for the severe test of low voltage ride through scenario. An important advantage of the mCS controller is the easiness for its application and for tuning its parameters. In future works it will be investigated its application for other topologies of wind turbines and other electrical systems.

Furthermore, define an

  intermediate function δ : R n → R n δ(e) = K 0 e + f (e)(15)then using Assumption (3.1), δ satisfies ∥δ(e)∥ ≤ ∥K 0 e∥ + γ f (e) + δ 0 = γ(e) + δ 0 (16)

Fig. 2 .

 2 Fig. 2. DFIG wind turbine connected to a distribution system

Fig. 5 .

 5 Fig. 5. DC voltage of the capacitorThe rotor current loop control aims to keep active and reactive power at the same value during the grid voltage drop. Figs.6 and 7shows the currents and the active power. Fig.6illustrates how the mCS controller allows the rotor currents to follow their references, and the active power to converge to 1.0pu after the grid voltage drop.5. CONCLUSIONThis paper has presented the development of a mCS Controller for a DFIG wind turbine. The work has demonstrated that the DFIG wind turbine satisfies the sufficient conditions of this theory, and as a consequence can be controlled by mCS controllers for current and DC voltage loops in the grid side and for the rotor currents in the rotor side. The simulation results have shown that the