Shengjie Zuo
email: shengjie.zuo.19@alumni.ucl.ac.uk

Aymeric Blot
email: a.blot@cs.ucl.ac.uk

Justyna Petke
email: j.petke@ucl.ac.uk

Evaluation of Genetic Improvement Tools for Improvement of Non-functional Properties of Software

Keywords: Software and its engineering → Search-based software engineering, Software evolution, Extra-functional properties, • General and reference → Surveys and overviews genetic improvement, survey, tooling, non-functional properties

Genetic improvement (GI) improves both functional properties of software, such as bug repair, and non-functional properties, such as execution time, energy consumption, or source code size. There are studies summarising and comparing GI tools for improving functional properties of software; however there is no such study for improvement of its non-functional properties using GI. Therefore, this research aims to survey and report on the existing GI tools for improvement of non-functional properties of software. We conducted a literature review of available GI tools, and ran multiple experiments on the found open-source tools to examine their usability. We applied a cross-testing strategy to check whether the available tools can work on different programs.

Overall, we found 63 GI papers that use a GI tool to improve nonfunctional properties of software, within which 31 are accompanied with open-source code. We were able to successfully run eight GI tools, and found that ultimately only two -Gin and PyGGI-can be readily applied to new general software.

execution time [START_REF] White | Evolutionary Improvement of Programs[END_REF], energy consumption [START_REF] Bruce | Approximate Oracles and Synergy in Software Energy Search Spaces[END_REF], memory usage [START_REF] Wu | Deep Parameter Optimisation[END_REF], or code size [START_REF] Bruce | JShrink: In-depth investigation into debloating modern Java applications[END_REF].

A significant amount of research was conducted on automated software repair specifically, thus several studies summarising and comparing tools for software repair exist [START_REF] Nakajima | Toward Developer-like Automated Program Repair -Modification Comparisons between GenProg and Developers[END_REF][START_REF] Steven Timperley | An Investigation into the Use of Mutation Analysis for Automated Program Repair[END_REF]. Furthermore, there are many repair tools available, that are frequently compared with each other [START_REF] Benton | On the Effectiveness of Unified Debugging: An Extensive Study on 16 Program Repair Systems[END_REF][START_REF] Ye | Automated patch assessment for program repair at scale[END_REF]. On the other hand, non-functional properties (NFP) refer to the constraints on how software implements and delivers their functionalities [START_REF] Taylor | Designing for Non-Functional Properties[END_REF]. NFP are considered to be as important as functional properties [START_REF] Umar | Analyzing Non-Functional Requirements (NFRs) for software development[END_REF]; for example, many software failures were shown to be caused by unsatisfied non-functional properties [START_REF] Domah | The NERV methodology: A lightweight process for addressing non-functional requirements in agile software development[END_REF], and slow response times may lead to customers rejecting software [START_REF] Ho | On agile performance requirements specification and testing[END_REF]. While there are many GI tools tackling NFP improvement -such as for example GISMO [START_REF] Langdon | Optimizing Existing Software With Genetic Programming[END_REF][START_REF] Petke | Specialising Software for Different Downstream Applications Using Genetic Improvement and Code Transplantation[END_REF][START_REF] Petke | Applying Genetic Improvement to MiniSAT[END_REF], locoGP [START_REF] Cody-Kenny | locoGP: Improving Performance by Genetic Programming Java Source Code[END_REF], Gin [START_REF] Alexander | Gin: Genetic improvement research made easy[END_REF], and PyGGI [START_REF] Gabin An | PyGGI 2.0: Language Independent Genetic Improvement Framework[END_REF][START_REF] Gabin An | PyGGI: Python General framework for Genetic Improvement[END_REF]-they are seldom reused and compared, and there is no existing work overviewing all the available GI tools for NFP improvement.

In this paper, we therefore conduct a literature review on NFPimproving GI tooling and we discuss and compare their availability, usability, and generalisability. We hope that this work may contribute to improvement, development, dissemination, and adoption of GI tools in the community, as well as ultimately their increased use in real-world industrial context.

Our contributions thus include:

(1) a literature review resulting in 63 papers using GI tooling for NFP improvement, 31 of which having associated available open-source code;

(2) a usability study of the found open-source GI tools; and

(3) a generalisability study of 8 distinct GI tools.

The overarching conclusion of our study is that much of GI research work does not come with reusable implementations. Furthermore, of the available GI tools only two, Gin [START_REF] Alexander | Gin: Genetic improvement research made easy[END_REF] and PyGGI [START_REF] Gabin An | PyGGI 2.0: Language Independent Genetic Improvement Framework[END_REF], can be easily be applied to new software.

BACKGROUND

Genetic improvement (GI) is a relatively new research field [START_REF] Petke | Genetic Improvement of Software: A Comprehensive Survey[END_REF]. Although its foundation can be traced back to the early days of computer science, this field arose as an active one only in the last ten years. GI takes an existing software system and using searchbased methods, generates variants that improve it with respect to a given fitness function. Depending on the fitness considered, GI can improve a given software system's functional properties, correcting bugs [START_REF] Le Goues | A systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each[END_REF] or transplanting new functionalities [START_REF] Barr | Automated software transplantation[END_REF], as well as improve non-functional properties, such as for example execution time, energy consumption, memory usage, or code size.

The software under consideration is most often modified by GI at the level of source code, although some work successfully operated at binary or assembly level [START_REF] Schulte | Repairing COTS Router Firmware without Access to Source Code or Test Suites: A Case Study in Evolutionary Software Repair[END_REF]. One reason is the production of readable patches that can then be more easily understood and accepted by the software's developers [START_REF] Weimer | Patches as better bug reports[END_REF]. GI tools operating at the source code level can use lines of code directly, but often use other types of representation, such as an abstract syntax tree (AST) [START_REF] Le Goues | A systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each[END_REF] or notation similar to BNF grammar [START_REF] Langdon | Optimizing Existing Software With Genetic Programming[END_REF].

In addition to the different representations of source code, there are various search strategies to generate patches based on the processed code. The most widely used algorithms include random search, local search, and genetic programming. Random simply applies, uniformly at random, a mutation operator, usually deletion, insertion, and replacement [START_REF] Petke | A Survey of Genetic Improvement Search Spaces[END_REF]. Because of its simplicity, it is often used as a baseline. Local search [START_REF] Holger | Stochastic Local Search: Foundations & Applications[END_REF] also only relies on mutations, but is used to iteratively search for better and better software variants by considering sequences of mutations. Starting from the original software (therefore an empty sequence), local search in GI either appends a new mutation to the current sequence, accepting it if the corresponding software variant is considered better. Existing mutations can also be removed, as a way to decrease bloat, keep the overall sequence length reasonable, and avoid overfitting. The different types of edits are usually considered with fixed probabilities, proportions of which can significantly impact search performance [START_REF] Smigielska | Uniform Edit Selection for Genetic Improvement: Empirical Analysis of Mutation Operator Efficacy[END_REF]. Genetic programming (GP) [START_REF] Koza | Genetic programming[END_REF][START_REF] Langdon | Foundations of genetic programming[END_REF], on the other hand, combines both mutations and crossover to evolve populations of software variants. GP has been used for GI since the field inception, and strategies of some successful tools in program repair are based on GP [START_REF] Forrest | A genetic programming approach to automated software repair[END_REF][START_REF] Le Goues | GenProg: A Generic Method for Automatic Software Repair[END_REF][START_REF] Weimer | Automatically finding patches using genetic programming[END_REF]. The most common types of crossover used in GI are the concatenation crossover [START_REF] Langdon | Optimizing Existing Software With Genetic Programming[END_REF], that simply combines two sequences of mutations, and 1-point crossover [START_REF] Le Goues | GenProg: A Generic Method for Automatic Software Repair[END_REF], that combines the start of the sequence from one individual with the end of the sequence of a different one. Overall, whilst GP has been for a very long time the privileged GI search process, local search has recently been used more often, as it's simpler and can be equally effective [START_REF] Blot | Empirical Comparison of Search Heuristics for Genetic Improvement of Software[END_REF].

RESEARCH QUESTIONS

In order to figure out which GI tools are available and how they work, we set out the following research questions:

RQ1: Which state-to-the-art GI tools target non-functional properties (NFP) of software? The first question is meant to fill in the blank in current research in terms of summarising existing GI tooling for NFP improvement. We are interested in how many papers used GI tools for NFP improvement thus far and how many of those tools are available for use.

RQ2: How many GI tools found in previous work can actually run? Then, we would like to check availability, hardware and software requirements, and determine which GI tool can actually be used.

RQ3: How do existing GI tools work, and can they be applied to different programs? Finally, we want to check how easy it is to apply existing tools to software to which the tools have not yet been run on. This is a critical consideration separating research artefact from actual stand-alone tools that could be widely used by researchers and developers.

LITERATURE REVIEW

A literature review was conducted to answer RQ1. In order to review publications on GI tools efficiently, relevant papers published before 2016 were retrieved from an existing comprehensive survey [START_REF] Petke | Genetic Improvement of Software: A Comprehensive Survey[END_REF].

For the papers published after 2016, we continue the literature review based on the collections of IEEE Xplore, the ACM Digital Library and the Living Survey on Genetic Improvement1 . Details on the filters used during the literature review are presented in Table 1. Moreover, to further filter the relevant papers consistently, we apply the following rules:

(1) The paper should focus on non-functional properties of software.

(2) The paper should propose, implement, or reuse a tool that is shown to improve the performance of software in terms of non-functional properties.

(3) The paper should include evaluation on example programs or real-world projects.

The result of the literature review is summarised in Table 2. The comprehensive survey on GI [START_REF] Petke | Genetic Improvement of Software: A Comprehensive Survey[END_REF] details 66 core GI publications published up to 2016, including 27 on NFP improvement and 19 with GI tools. For the papers published after 2016, the ACM Digital Library yielded 35 publications on GI, with 15 on NFPs and 4 with GI tools. IEEE Xplore yielded 57 entries, with only 10 on NFPs and 9 using GI tools. Finally, the living survey on GI yielded 246 GI publications published since 2016, with 63 relating to NFPs and 45 using GI tools. Overall, we found a total of 63 publications and 7 PhD theses [START_REF] Arcuri | Automatic software generation and improvement through search based techniques[END_REF][START_REF] Basios | Darwinian Code Optimisation[END_REF][START_REF] Bruce | The Blind Software Engineer -Improving the Non-Functional Properties of Software by Means of Genetic Improvement[END_REF][START_REF] Saemundur | Genetic Improvement of Software -From Program Landscapes to the Automatic Improvement of a Live System[END_REF][START_REF] Robert | Genetic Programming for Low-Resource Systems[END_REF][START_REF] Wu | Mutation-Based Genetic Improvement of Software[END_REF] that use GI tools to improve software's NFPs. Because for each of them we found corresponding publications, we won't include these PhD theses in the remainder of our study. We then surveyed in more detail the NFP considered in each of the 63 papers. Time is the concern addressed in the vast majority of papers, with 34 papers considering execution time [1, 2, 7, 8, 10, 14, 15, 17, 24, 32, 35, 39, 41-44, 47-50, 55, 58-63, 68, 70-72, 75, 77, 87, 88], number of CPU or bytecode instructions [START_REF] Arcuri | Multiobjective Improvement of Software Using Co-evolution and Smart Seeding[END_REF][START_REF] Blot | Comparing Genetic Programming Approaches for Non-Functional Genetic Improvement -Case Study: Improvement of MiniSAT's Running Time[END_REF][START_REF] Blot | Empirical Comparison of Search Heuristics for Genetic Improvement of Software[END_REF][START_REF] Cody | The Emergence of Useful Bias in Self-focusing Genetic Programming for Software Optimisation[END_REF][START_REF] Cody-Kenny | locoGP: Improving Performance by Genetic Programming Java Source Code[END_REF][START_REF] White | Evolutionary Improvement of Programs[END_REF], or also loading time [START_REF] Cody-Kenny | Investigating the Evolvability of Web Page Load Time[END_REF]. Other NFPs include code size [START_REF] De | Evolving JavaScript Code to Reduce Load Time[END_REF][START_REF] Landsborough | Removing the Kitchen Sink from Software[END_REF][START_REF] Yeboah | Embedding Adaptivity in Software Systems using the ECSELR framework[END_REF][START_REF] Yeboah | Online Genetic Improvement on the java virtual machine with ECSELR[END_REF], energy consumption [START_REF] Alexander | Search-Based Energy Optimization of Some Ubiquitous Algorithms[END_REF][START_REF] Bruce | Reducing Energy Consumption Using Genetic Improvement[END_REF][START_REF] Bruce | Approximate Oracles and Synergy in Software Energy Search Spaces[END_REF][START_REF] Dorn | Automatically Exploring Tradeoffs Between Software Output Fidelity and Energy Costs[END_REF], memory usage [START_REF] Basios | Optimising Darwinian Data Structures on Google Guava[END_REF][START_REF] Basios | Darwinian data structure selection[END_REF][START_REF] Wu | Deep Parameter Optimisation[END_REF], accuracy of the underlying algorithm [START_REF] Saemundur | Predicting changes in quality of life for patients in vocational rehabilitation[END_REF][START_REF] Saemundur | The use of predictive models in dynamic treatment planning[END_REF][START_REF] Liou | GEVO-ML: a proposal for optimizing ML code with evolutionary computation[END_REF][START_REF] Liou | Genetic Improvement of GPU Code[END_REF][START_REF] Víctor | Applying genetic improvement to a genetic programming library in C++[END_REF][START_REF] Vasícek | Trading between quality and nonfunctional properties of median filter in embedded systems[END_REF], readability [START_REF] Schulte | Evolving Exact Decompilation[END_REF], or other application-specific NFPs [37, 40, 45, 46, 51-53, 64, 65]. A summary is presented in Figure 1. Furthermore, a few pieces of work considered multiple NFPs [START_REF] Basios | Optimising Darwinian Data Structures on Google Guava[END_REF][START_REF] Basios | Darwinian data structure selection[END_REF][START_REF] Dorn | Automatically Exploring Tradeoffs Between Software Output Fidelity and Energy Costs[END_REF][START_REF] Liou | GEVO-ML: a proposal for optimizing ML code with evolutionary computation[END_REF][START_REF] Liou | Genetic Improvement of GPU Code[END_REF][START_REF] Víctor | Applying genetic improvement to a genetic programming library in C++[END_REF][START_REF] Wu | Deep Parameter Optimisation[END_REF].

As for tool availability, we looked for URLs in papers as well as searched GitHub for the papers' titles or DOIs. Overall, we found open-source code associated with 31 papers, either on GitHub, SourceForge, or the authors' research website pages. In particular, we found many variations of the GISMO tool 2 that targets C/C++ code. Furthermore, despite having sometimes no direct mention in the publication itself and no available code, by communicating with authors we were able to confirm that GISMO and its underlying representation format were used in many more research publications [17, 18, 41-44, 48-50, 55, 62, 70-72]. We note that in some GI papers (e.g., [START_REF] Arcuri | Multiobjective Improvement of Software Using Co-evolution and Smart Seeding[END_REF][START_REF] Marino | A General-Purpose Framework for Genetic Improvement[END_REF][START_REF] White | Evolutionary Improvement of Programs[END_REF]), a GI tool was built on top of a general evolutionary framework; whilst those frameworks are still available, we were unable to obtain the source code specific to the GI tool itself. Moreover, a few tools were listed on GitHub without a license, which would have prohibited their use. We raised the issue with the authors of such tools in those instances, who have promptly added a permissive license.

Summary

Detailed information on the 31 papers from which we were able to find available code is presented in Table 3. Table 4 details the 32 additional papers describing work that used GI tools, yet their source code was unavailable.

Answer to RQ1: We found 63 papers whose authors used GI tools for improvement of non-functional properties of software. We found source code associated with only 31 of those papers.

2 http://www0.cs.ucl.ac.uk/staff/ucacbbl/gismo/

USABILITY STUDY

In this section, we conduct a set of experiments to answer RQ2: whether the GI tools we found can actually be used. We downloaded and tested all found tools following their requirements and the instructions given by their developers.

Experiments

Within the 31 papers detailed in Table 3 we can find 13 distinct tools3 : a tool for shader simplification [START_REF] Sitthi-Amorn | Genetic Programming for Shader Simplification[END_REF], GISMO [START_REF] Petke | Using Genetic Improvement and Code Transplants to Specialise a C++ Program to a Problem Class[END_REF], locoGP [START_REF] Cody-Kenny | locoGP: Improving Performance by Genetic Programming Java Source Code[END_REF], HOMI [START_REF] Wu | HOMI: Searching Higher Order Mutants for Software Improvement[END_REF], PyGGI 2.0 [START_REF] Gabin An | PyGGI 2.0: Language Independent Genetic Improvement Framework[END_REF], GGGP [START_REF] Langdon | Improving SSE Parallel Code with Grow and Graft Genetic Programming[END_REF], Optmizer [START_REF] De | Challenges on applying genetic improvement in JavaScript using a high-performance computer[END_REF], a tool for data optimisation [START_REF] Langdon | Evolving Better Software Parameters[END_REF], Gin [START_REF] Alexander | Gin: Genetic improvement research made easy[END_REF], PowerGAUGE [START_REF] Dorn | Automatically Exploring Tradeoffs Between Software Output Fidelity and Energy Costs[END_REF], GEVO [START_REF] Liou | Genetic Improvement of GPU Code[END_REF], DFAHC [START_REF] De | Evolving JavaScript Code to Reduce Load Time[END_REF], and finally a tool dedicated to routing protocols [START_REF] Lorandi | Genetic Improvement of Routing Protocols for Delay Tolerant Networks[END_REF]. However, two of them -the tool for data optimisation and the tool for routing protocols -target application-specific NFPs and cannot be expected to be easily applied to different software, as non-trivial manipulation of the software to be improved is required. Thus, we only focus on the remaining 11 GI tools. Finally, we only considered a single version of each tool, either the latest version, the most general one, or if possible, the version with the fewest software and hardware dependencies.

Methodology

All tools were tested on the local virtual machines under their required environments. Because of the different environmental requirements, four local virtual machines running Ubuntu 20.04 and Ubuntu 16.04 were set up, with different versions of Java and C/C++ tools.

The steps to check whether the tools can be run are listed below. Tools were deemed unable to work if they failed any of those steps.

(A) Whether the testing machines meet hardware requirements. (B) Whether the dependencies can be installed. (C) Whether the tool can be compiled. (D) Whether the tool can successfully run on data provided with its associated publication.

Results

Of the 11 tools investigated, we were able to run 8 without any issues.

We were unable to meet hardware requirements for GEVO [START_REF] Liou | Genetic Improvement of GPU Code[END_REF]. The tool is available, but requires CUDA-compatible GPU hardware as an essential dependency.

We were unable to install dependencies for Optmizer [START_REF] De | Challenges on applying genetic improvement in JavaScript using a high-performance computer[END_REF]. The source code of the tool used in this paper is available on GitHub, but it relies on outdated NodeJS dependencies that do not resolve on a fresh install. In particular, the dependency tree seems to trigger 23 different deprecated packages, and the installation ultimately fails to complete.

Finally, we were unable to run HOMI [START_REF] Wu | HOMI: Searching Higher Order Mutants for Software Improvement[END_REF]. The source code of the tool used in this paper is available, but no instruction is provided. After close observation, the bash file of run.sh was decided to be the file to run this tool based on the names of files and the source code. This file can be run, and the information shows that the tool is running the genetic programming algorithm to improve its subjects. However, information about current iteration simply

Summary

Section 4 exposed 63 papers that used GI tools to improve software's NFPs. Upon investigation, we found a total of 13 distinct GI tools with open-source code, 11 of which deemed possible to be run on other software. Further 3 had to be excluded due to lack of required hardware, software dependencies, and required documentation details. Ultimately, we were able to successfully run 8 GI tools.

Answer to RQ2: From our literature review we found 13 distinct GI tools that target software's NFPs, 8 of which we were able to run without any issues.

GENERALISABILITY STUDY

Section 5 revealed eight working GI tools. To answer RQ3, these tools were investigated in more detail to examine how they work and how easily they can be applied to other software.

Methodology

We apply a cross-testing strategy to check whether the tools can work on different software. More precisely, we applied each tool to a new software, chosen to have been previously targeted by another similar tool. This strategy ensures that targeted software are not chosen blindly, and that there are known improvements to be found for all tools.

Because of the significant amount of time required to undertake complete GI experimentation, we only checked whether the tools can be run on different software. This means that GI runs were terminated early as soon as it could be decided that the tool can successfully run. Therefore, the records and results of the tools were not analysed.

In particular, we conducted the following experiments4 :

(1) Testing Gin with SAT4J, which is the software improved by PyGGI 2.0 in previous work [START_REF] Blot | Empirical Comparison of Search Heuristics for Genetic Improvement of Software[END_REF]. (2) Testing PyGGI 2.0 with Gson, which is the software improved by Gin in previous work [START_REF] Petke | Software Improvement with Gin: A Case Study[END_REF].

Evaluation of Gin

Gin5 is a well-developed tool. It can operate on the source code of the target software at both line-level and AST-level. Unlike other GI work that focuses on NFP improvement, it targets methods, rather than entire class files for improvement. Furthermore, Gin supports both local search and genetic programming algorithms for genetic improvement. By default, it improves runtime, though program repair, and memory consumption can be improved using the latest version of Gin.

The experiment of running Gin on SAT4J was successful. It was possible to run the profiling function of Gin on SAT4J (which finds the most time-consuming methods in a given project), although the processing was time-consuming and was stopped in 2 minutes when we found this function works. Also, we provided a simulated profiling result, and Gin worked with that file to try to improve SAT4J. This processing was also stopped after 2 minutes because we believe this tool is likely to work fine for SAT4J.

As to the available instructions of the tool, we find that the documentation of Gin is one of the best ones among all the available tools in this section. Several frequently used commands are presented in the README instruction, and an example case of applying Gin on spatial4j is provided for reference. Moreover, all the commands used in this research are well explained, meaning that it is easy to get the explanation of the arguments for this command and the detailed information about what the arguments are for.

Moreover, Gin works well with Maven and Gradle. It can automatically find the classpath for these projects, saving time for the settings of the subjects. Also, It has the profiling function, which is very useful for finding the methods used frequently in the projects and helps users decide which methods to improve. Gin also provides a function to automatically validate generated patches on a given test suite.

However, Gin has some limitations. Firstly, as the developers indicated in the README instruction, the documentation of this tool is not complete, which may cause trouble when users intend to use it for projects that are not in Maven or Gradle. Also, because of the limitation of the GI research circle, there are not many developers who can help with the maintenance of Gin. We found some issues from three years ago that were still not solved.

In summary, Gin is the GI tool with the most detailed documentation among all the tools we investigated. Also, it provides relatively complete functions for Maven and Gradle projects, making it easy to use. We thus conclude it can be easily used for different projects. We flag the need for better maintainance of the tool.

Evaluation of PyGGI

PyGGI6 can operate on the target software's source code at both line-level or AST-level. Unlike Gin, which only works for Java, PyGGI can target software written in Python, C, Java, and others. It provides only a local search algorithm (although variants of it in later research also implement GP). PyGGI requires users to provide a script to execute the target software and its variants. The default fitness is the execution time of the software but can also be manually provided. The documentation of PyGGI also provides information on how to run it for the purpose of program repair.

The experiment on Gson was successful. We modified the example code of improve_java.py, which is the file to define the software to be improved, and TestRunner.java, which is the file to define how the patches are to be validated in PyGGI. Since PyGGI does not have a profiling tool to find the frequently used Java files, we use the same file of GsonBuilder.java in Gson and define the test file as GsonBuilderTest.java. We do not validate the generated patches with the complete test files because this experiment only tests whether PyGGI can work on other software. Therefore, we only test the patches with one test file, which saves the time to modify the source code in TestRunner.java. The improvement is terminated after several iterations, and the result shows that PyGGI can be applied to other software.

The validation procedure of PyGGI is easy to modify for different software. Although PyGGI cannot automatically find the tests and execute them to validate the generated patches, users can understand the code of validation definition in the provided example and choose their preferred validation method. Taking Gson as an example; users can choose different ways to validate the patches, such as using mvn test or using JUnit to run the tests chosen by users. PyGGI only requires the result of the validation, which is represented in the format of "true/false" and the execution time of the tests in milliseconds.

However, PyGGI does not have the tool for analysing the patches recorded in the log file. Only the changes on the source code of the best patch in each epoch are shown in the terminal output, and this only happens when the best patch has a better fitness score than the original code.

Also, the documentation of PyGGI is not as detailed as that of Gin, but it is unlikely to cause serious difficulty for using the tool because the source code of PyGGI is straightforward and easy to understand.

In summary, PyGGI is an easy-to-use tool and can be used for different software, written in different programming languages. Better documentation and further development of the patch analyser are suggested.

Evaluation of LocoGP

LocoGP7 modifies the source code to the AST representation and applies the genetic programming algorithm to improve a given Java program. The evaluation of the performance of the modified code relies on the number of instructions used in execution to calculate the fitness score.

However, this tool is unlikely to be used for large projects such as Gson. There is no instruction on how to apply this tool to general software, meaning that we have to refer to the example file of Ascon128V11DecryptProblem.java to modify the tool for Gson. After close inspection, we find that this tool requires users to complete considerable programming work to define the subject to be improved. In this experiment, we selected GsonBuilder.java for improvement and had to modify eleven functions in the example file to make this example file suitable for Gson.

Moreover, tests defined in Gson cannot be used directly in this tool. This tool requires that all tests should be defined in classes. A list of all test classes for validation is also required, which helps the tool retrieve information, including the results of tests and the number of cases. Moreover, this tool does not rely on JUnit to execute the test cases but applies the simple method to directly check whether the output is consistent with the expected one. It means that the original tests written with JUnit are no longer helpful for this tool, and all the testing files have to be re-written for this tool.

Therefore, the workload for using the tool for Gson is highly significant. We have to define the improvement by imitating the example code and re-define thousands of tests to make them available for this tool. Because of the unacceptable preparation work to use this tool, this tool is not tested with Gson.

In summary, the usability of this tool is not satisfactory, especially for large-scale Java projects. Users have to modify a significant amount of the source code to define the software to be improved and create new test classes for the software.

Evaluation of the tool for shader simplification

This tool (reimplementation8) modifies software source code at the AST level. It uses genetic programming to improve the target software. As for patch fitness it relies on both rendering time and error. The tool is easy to use as is does not require dependency installation. This tool is very unlikely to improve MiniSAT. After close observation of the source code, this tool is likely only useful for the shader software. For the core Python files determining how this tool behaves, they are designed for shader simplification only. For the validation, the relevant files are "evaluator.py" and "fresnel.py". In these files, the improved AST is transformed into the OpenGL Shading Language, which is the language used in shader programs, and evaluated the improved code by rendering the new code of the shader. Therefore, necessary modification is required if this tool is planned to be used for different software.

Meanwhile, the files used for genetic programming are also closely related to the shader software. The generate_individual function in the gp.py file requires a shader variant as an input, meaning that this genetic programming algorithm is unlikely to work on software like MiniSAT. Furthermore, as its name shows, the shader.py file is mainly about representing the operators in the shader programs and converting shader programs to the genetic programming tree, which is unlikely to be suitable for software not related to a shader. Therefore, it can be concluded that the core algorithms used in this tool are targeted to improve shader software only.

Since the tool is specifically designed for shader software and the source code is targeted at shader programs, it is not easy to re-write the code for other kinds of software. The workload can be significant because all the files in this tool have to be reviewed and modified. Therefore, MiniSAT is not tested with this tool.

In summary, although the tool for shader simplification is easy to use, it is likely to work with shader software only. Significant modification is required for the core algorithms and validation code if users intend to use this tool for other kinds of software.

Evaluation of the GISMO-based tool

This tool9 uses a BNF grammar to represent the target software's source code. It implements a genetic programming algorithm to improve the fitness of software variants. For the evaluation of the generated patches, this tool inserts and uses a counter incremented at each executed statement, however, execution time is also presented in the final result.

The experiment of running the GISMO-based tool on RNAfold is not successful because the tool fails to find the program to be improved in BNF format. There is no general instruction provided on how to apply this tool to different software, and we did not find any comment in the source code that may contribute to the modification. Therefore, we fail to find a way to transfer the source code of RNAfold into the BNF format. Moreover, it can still be challenging to modify the code even if the source code is in BNF format due to the lack of direction. However, we find that the GISMO framework has been used for different software in other research, such as the work conducted by Langdon [START_REF] William | Genetic Improvement of Genetic Programming[END_REF]. Therefore, it is very likely that this framework can work on different software, but we fail to make it because of the poor documentation and missing instruction about how to use this tool for general software.

In summary, the GISMO-based tool failed to improve RNAfold because of the missing method to generate the BNF representation and the lack of necessary instructions for applying this tool on different software. It is suggested that the developers of the tool should improve the documentation and conduct essential maintenance.

Evaluation of the tool for OpenCV

This tool 10 uses deep parameter optimisation [START_REF] Wu | Deep Parameter Optimisation[END_REF] to form a more extensive search space for optimisation and tuning the found parameters with the NSGA-II algorithm. Modifications of the source code are determined at the level of lines, and the generated patches are evaluated in terms of execution time and accuracy.

However, the testing with MiniSAT failed. In order to understand the failure better, the previous publication [START_REF] Bruce | Deep Parameter Optimisation for Face Detection Using the Viola-Jones Algorithm in OpenCV[END_REF] is reviewed. As the paper indicates, three steps are required while using the tool:

(1) finding the location of the deep parameters;

(2) exposing the deep parameters;

(3) tuning the parameters. The error occurred in the second step. We learn from the example provided with the tool that the replace.hpp file, which defines integer constants, is required as an input for this step to expose the deep parameters in the files found in Step 1. However, there was no such file defining the integer constants for MiniSAT. Although we intended to solve the problem, we did not find any information about how to generate this file from the paper and the README instruction.

Therefore, applying the tool for MiniSAT is unlikely to be completed because of the error in exposing the deep parameters. However, it is possible that this tool can be used in other similar projects, especially the ones containing a large number of parameters if the step of defining parameter constants can be well explained or automated. However, the performance of this tool can be determined mainly by the number of deep parameters in the software to be improved.

Evaluation of GGGP

Similarly to GISMO, from the same author, this tool 11 represents the source code of the software using a BNF grammar and implements a genetic programming algorithm. For the evaluation of the generated patches, this tool relies on the test cases and uses the execution time of the tests as the fitness score.

However, we were unable to use this tool to improve MiniSAT. A README file is present but provides no instruction on how to apply this tool to another program. We tried but ultimately were unsuccessful in modifying the RNAfold example to accommodate MiniSAT instead. More precisely, we were unable to fix errors pertaining to the RE_gp.bat file. Inspection of the source code was also unhelpful as the code includes no comments. 10 https://github.com/BobbyRBruce/DPT-OpenCV 11 http://www0.cs.ucl.ac.uk/staff/ucacbbl/gggp Therefore, unless additional documentation can be provided, this tool is not likely to be used on other software.

Evaluation of PowerGAUGE

This tool 12 harnesses the GenProg [START_REF] Le Goues | GenProg: A Generic Method for Automatic Software Repair[END_REF] software 13 to apply a genetic programming algorithm to the targeted software. Fitness computation is to be manually provided, although code samples provide examples for execution time and output-related fitness functions.

We were unable to use this tool on MiniSAT. PowerGAUGE evolves and thus requires access to assembly files for the targeted software. Whilst those may generally not be hard to obtain, in practice it could require rewriting the entire compilation pipeline, which even in the case of the fairly simple MiniSAT was unreasonable.

Overall, it is unlikely that this tool can easily be applied to other, especially complex, software.

Summary

We tried to assess the generalisability of all eight GI tools we could run by applying them to new software. For only two tools, Gin and PyGGI, we were able to find adequate documentation to do so. Ultimately we were unsuccessful in making any of the six other tools work on new software. We note that some tools target specialist software (e.g., shaders), and thus cannot be easily applied on general software.

Answer to RQ3: Gin and PyGGI are the only two GI tools are application-agnostic and can be easily applied to improve new software.

CONCLUSION

In this paper we investigated genetic improvement (GI) tooling for improvement of non-functional properties (NFP) of software. More precisely, we focused on the available GI tools described in the literature, whether they were available, whether they were actually usable, and whether they could easily be applied to software, to which they have not been applied to in previous work.

In the survey, we found 63 relevant papers, within which 31 come with associated open-source code. The usability study exposed 11 different general GI tools, but only 8 that we were able to run without any issues. Furthermore, the generalisability study ultimately showed that within these eight GI tools only two -Gin and PyGGI -can be readily applied to new software for improvement of non-functional properties of software. We recommend addition of more detailed documentation and better maintenance of current GI tooling.

Figure 1 :

 1 Figure 1: Distribution of non-functional properties in GI tool literature.

(3)

 3 Testing LocoGP with Gson. (4) Testing the tool for shader simplification with MiniSAT, which is the software used in previous work on a GISMObased tool [70]. (5) Testing the GISMO-based tool with RNAfold, which is the software improved by GGGP in previous work [39]. (6) Testing the tool for OpenCV with MiniSAT. (7) Testing GGGP with MiniSAT. (8) Testing PowerGAUGE with MiniSAT.

Table 1 :

 1 Filters for the collections

	Source	Filters	
	IEEE Xplore	Metadata with the exact key words of
		'genetic improvement'
		Publication time between 2016 and 2022
	ACM Digital Library Title OR Abstract with the exact words
		of 'genetic improvement'
		Publication year between 2016 and 2022
	Living Survey on GI Publication year between 2016 and 2022
		Conference and journal papers only
				Papers
	Source		Total On NFP With code
	Petke et al. [69]		66	27	19
	ACM Digital Library	35	15	4
	IEEE Xplore		57	10	9
	Living survey on GI	264	63	45

Table 2 :

 2 Results of the literature review

Table 3 :

 3 Papers with open source GI tools targeting non-functional properties of software

	Year Paper

Table 4 :

 4 Papers with unavailable GI tools targeting non-functional properties of software

	Year	Paper

http://geneticimprovementofsoftware.com/learn/survey

We cite in brackets the version of software we examined in detail.

We frequently chose MiniSAT, if not previously improved by a given GI tool, due to quick setup required.

https://github.com/gintool/gin

https://github.com/coinse/pyggi

https://github.com/codykenb/locoGP

https://github.com/fabianishere/shadevolution

http://www0.cs.ucl.ac.uk/staff/W.Langdon/gismo

ACKNOWLEDGMENTS

This work was supported by UK EPSRC Fellowship EP/P023991/1.