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Transformer-Based Prediction of Human Motions and Contact Forces
for Physical Human-Robot Interaction

Alessia Fusco1, Valerio Modugno2, Dimitrios Kanoulas2, Alessandro Rizzo1, Marco Cognetti3,4

Abstract— In this paper, we propose a transformer-based
architecture for predicting contact forces during a physical
human-robot interaction. Our Neural Network is composed of
two main parts: a Multi-Layer Perceptron called Transducer
and a Transformer. The former estimates, based on the kine-
matic data from a motion capture suit, the current contact
forces. The latter predicts – taking as input the same kinematic
data and the output of the Transducer – the human motions
and the contact forces over a time window in the future. We
validated our approach by testing the network on directions
of motions that were not provided in the training set. We
also compared our approach to a purely Transformer-based
network, showing a better prediction accuracy of the contact
forces.

I. INTRODUCTION

In the quest to integrate robots into daily life for societal
benefit, their interaction with humans has become paramount.
Beyond industrial and research settings, robots now engage
with humans, prompting safety concerns.

In human-robot interaction, various strategies have been
developed to prioritize safety. Initially, the focus was on safe
co-existence, ensuring robots avoided or halted in human
presence to prevent harm. With advancements in robotics,
the safe cooperation paradigm emerged, where a robot helps
a human with a task without any physical contact.

A significant challenge in human-robot interaction today is
facilitating direct physical interaction between agents, termed
as safe physical interaction [1]. This allows operators to
guide robots in tasks, while robots gauge human intentions
to adjust assistance. To achieve a behavior close to a human-
human collaboration, robots are required to predict human
movements and the forces exchanged. This capability would
let robots preemptively address risks, ensuring human safety
and reducing their task workload.

In human motion forecasting, numerous studies tackle
this intricate issue. For example, a model-based method is
presented in [2], where a dynamical system is used for
predicting human behavior. However, most research has
favored model-free techniques. For example, a study utilizes
Hidden Markov Models (HMMs) for motion prediction [3].
Lately, the trend has moved towards Neural Networks (NNs)
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Fig. 1. The experimental setup for training our transformer network. The
human is wearing a mocap suit that provides kinematic information about
the human. The robot is controlled through an impedance controller, and it
estimates, in real time, the contact forces. The user exchanges forces with
the robot by moving its end-effector.

for this purpose, with [4] using a recurrent network to predict
short-term human dynamics.

Traditionally, model-based techniques, particularly those
founded on residual estimation [5], have dominated the land-
scape of contact force estimation. These methodologies rely
on dynamical models to infer forces. Although model-free
approaches for force estimation have begun to emerge [6],
the concept of predicting the forces during contact remains
a relatively underexplored area.

The inherent complexity in estimating and predicting
forces exchanged during human-robot interactions empha-
sizes the pressing need for innovative methodologies that
enhance the safety and efficacy of such interactions.

In this paper, we present a framework capable of forecast-
ing both the forces exchanged between a human operator
and a robot, and the associated human motions. To this aim,
we utilize a Transformer network [7], which has proven its
efficacy in time-series forecasting and outperforms traditional
Recurrent Neural Network (RNN) models [8].

The principal contributions of this paper are:

• In our research, we introduce a method that forecasts not
only the human movements but also the contact forces
resulting from physical interactions between humans
and robots in a future time horizon. This predictive skill
can be leveraged by a controller, such as a model predic-



tive controller [9], enabling robots to more effectively
anticipate human intentions. However, the controller is
out of the scope of this paper.

• During the testing phase, our network is able to estimate
the contact forces using only kinematic information
about the human. This makes our framework more flex-
ible, especially in situations where force/torque sensors
might not be available.

The paper is organized as follows. In Section II, we pro-
vide an overview of a selection of related works. In Sec. III,
we describe the framework setup (Sec. III-A), the data set
description (Sec. III-B), the NN architecture (Sec. III-C) used
for force and motion prediction, and its training procedure
(Sec. III-D). In Sec. IV, we show the procedure for collecting
the data (Sec. IV-A), the comparison description with another
network (Sec. IV-B), and the performance of the proposed
framework on a set of benchmarking motions (Sec. IV-
C). Lastly, in Sec. V, we provide and discuss concluding
observations and future directions.

II. RELATED WORKS

The body of literature on predicting safe human-robot
physical interactions is vast. The works in this domain can be
broadly classified into three categories: (i) studies concen-
trated on motion prediction alone; (ii) research delving into
predicting interaction forces; and (iii) hybrid approaches that
predict both motions and forces.

The largest number of contributions belongs to the first
group. Many works focus on deriving a motion model for a
human. In this context, the authors in [10] proposed a model
based on social forces and environmental constraints. A deep
neural network based on the social force model is presented
in [11], while a physics-based network is introduced in [12].
In [3], an HMM is employed for motion sequence modeling.
A multiple predictor for modeling human motion is proposed
in [13], where the predictor is learned directly from the task
the human is performing. Given the human motion model,
some works focused on the control side. For example, a
human-intention-based collision-avoidance algorithm is pro-
posed in [14], while a variable impedance controller – where
the intention of the human is modeled as an adaptive neural
network – is proposed in [15]. A technique for the real-time
estimation of the overloading joint torque for the human is
proposed in [16], where the human is modeled as a humanoid
robot. Finally, several approaches – named shared autonomy
– focus on adapting the autonomy level of a robot based
on the estimation of human actions/intentions. For example,
an adaptive human-robot collaboration scheme is proposed
in [17], while a game-theoretical approach is formulated
in [18], that is integrated inside an impedance controller. A
partially observable Markov decision process is employed
in [19] for determining the expertise level of a human
operator, in order to provide an assistance level in function
of it. Another interesting approach is in [20], where wearable
electromyography sensors are used for measuring human
fatigue, and a variable impedance controller is employed for
minimizing human effort. The reader is referred to [1] for

a recent survey about shared autonomy. Our work extends
the above-mentioned works that focused on the estimation of
human motion, by adding to it the prediction of the contact
forces.

To the best of the authors’ knowledge, most of the existing
works in the literature focus on the estimation of the current
contact force, instead of predicting the future one, as we
do in this paper: An observer that combines environmental
forces and robot velocities is presented in [21]. In [6], the
authors propose a vision-based deep-learning method for
estimating the interaction forces between a robot and objects
during grasping tasks. In [22], the authors introduce a deep
learning-based algorithm that is capable of finding a mapping
between an electromyography sensor and the one-step-ahead
force magnitude that the human operator exchanges with the
environment. One exception in the prediction of the contact
forces is introduced in [23], a constant force model is used
for dyadic cooperative object manipulation tasks.

Lately, several methods have been introduced that jointly
predict human movements and contact forces, enhancing
prediction accuracy in human-robot interaction scenarios. For
example, a Recurrent Neural Network with Long Short-Term
Memory units is used in [24] to predict the human position,
velocity, and force that are used to estimate the parameters
that feed an impedance controller. In this work, differently
from our framework, no human data have been recorded and
their method requires, at test time, an explicit force measure.
Another approach is proposed in [25], where a Bayesian-
based method estimates the stiffness and the motion intention
of a human that is combined with an impedance controller
that uses a neural network that compensates for the uncertain-
ties in robotic dynamics. However, it does not consider the
prediction of human future behavior. Finally, a reinforcement
learning (RL) approach is presented in [26], where the
human is not explicitly modeled but it is considered as an
environmental uncertainty in the RL problem formulation. In
contrast, our framework explicitly models human motion.

III. METHOD

Our system is composed of two main actors: a human
and a robot, as shown in Fig. 1. The former is wearing
a mocap suit, that allows the recording and the real-time
streaming of kinematic information (position, velocity, and
acceleration) associated with each joint and link of the
human body. The latter is a manipulator that is controlled
via a Cartesian impedance controller and it estimates the
contact forces acting on its end-effector through a residual-
based approach (see, e.g., [5]). The choice of the impedance
controller is for allowing a human to safely interact with the
manipulator, since the system is reduced to a mass-spring-
damper system, and the robot is commanded to maintain the
initial configuration. Our method encompasses two different
stages: a training and a testing stage. During the former, we
collect data regarding the human motions and the contact
forces. In the latter, we forecast, within a prediction window,
the same quantities using only the data from the mocap suit.
The learning is performed using a Transformer architecture



which has shown great prediction performance for time series
data [7].

A. Framework setup

In this section, we briefly describe the two sources
from which we collected the data used for training our
Transformer-based network: (i) the mocap suit, and (ii) the
contact forces from the manipulator.

1) Mocap suit data: In our case, the mocap suit is an
Xsens MVN motion capture system [27]. It is composed
of 17 MTx sensors, that are continuously updated through
the Xsens bio-mechanical model of the human body. The
suit provides the position, velocity, and acceleration of each
sensor, whose signal is filtered through a Kalman filter to
improve the quality of the data. All the above-mentioned
quantities are expressed in a common reference frame, that
is defined during the calibration needed for using the suit.

2) Contact forces from the manipulator: The manipulator
used in this paper is a Franka Emika Panda robot [28].
The contact forces are estimated through a residual-based
approach [29], [30]. In particular, given the dynamic model
of the robot

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext

where q ∈ RN is the N -dimensional vector of the robot
joints, M(q) is the positive-definite inertia matrix, C(q, q̇)q̇
encompasses the Coriolis and centrifugal terms, g(q) repre-
sents the gravity term, τ is the control torque, and τ ext is
the resulting torque due to generalized contact forces acting
on the robot from the environment. The residual vector can
be defined as

r(t) = GI

(
m−

∫ t

0

(
τ +CT (q, q̇)q̇ − g(q) + r

)
ds

)
where m = M(q)q̇ is the generalized momentum of the
robot, and GI > 0 is a gain matrix. Computing the residual
dynamics using the dynamic model of the robot results in

ṙ(t) = GI(τ ext − r)

Thus, for sufficiently large GI , we have r ≈ τ ext, meaning
that the residual vector approximates the external torques
acting on the robot. The external forces can be easily
computed from statics through

f ext = J†
c(q)r (1)

where Jc(q) is the Jacobian at the contact point, and J†
c(q)

is its pseudoinverse. In our case, since we assume that the
contact is always at the robot end-effector, Jc(q) is the
geometric Jacobian of the robot.

B. Data Set Description

In our framework, we record the Cartesian velocities and
accelerations of three segments of the human arm interacting
with the manipulator: the shoulder, the upper arm, and the
forearm. These Cartesian data are expressed in an earth-fixed
reference frame, defined by the mocap suit. Concurrently,
we collect the joint positions of the shoulder and the elbow

during the interaction. In the remainder of the paper, we will
refer to the kinematic quantities recorded at a time instant ti
as k(ti) = (qh(ti), ṗ

h(ti), p̈
h(ti))

T , where qh(ti) =
(qhsϕ(ti), q

h
sθ(ti), q

h
sψ(ti), q

h
eψ(ti), q

h
eθ(ti), q

h
eψ(ti))

T ,
ṗh(ti) = (ṗhs (ti), ṗ

h
u(ti), ṗ

h
f (ti))

T and p̈h(ti) is the
time derivative of ṗh(ti) at ti. In particular, the symbol
qhxy, x = {s, e}, y = {ϕ, θ, ψ} denotes the roll (ϕ), pitch
(θ), yaw (ψ) angle of the shoulder (s) or elbow (e) joint.
Moreover, ṗhx, x = {s, u, f} (resp. p̈hx) denotes the Cartesian
velocity (resp. acceleration) of the shoulder (s), upper arm
(u) and forearm (f ) of the arm interacting with the robot.

On the manipulator side, we collect the three-dimensional
force f ext(ti) from eq. (1) at each time instant ti. These
forces are expressed in the “stiffness frame” of the Panda
robot which is positioned right before the robot end-effector.

All the above-mentioned data are indexed with i s.t. ti =
i · δt – with δt being the time step. Since Transformers
were originally developed for natural language processing
tasks, their inherent parallel processing can pose challenges
in recognizing sequential dependencies, potentially limiting
their ability to learn temporal patterns. To address this
limitation, we incorporated timestamps into the input data
using a method called positional encoding, enhancing the
integration of spatial context into the sequence.

A summary of all the data forming the data set for training
our model is given in Table III-C.

The input data undergoes a normalization step to ensure
that every signal is on a consistent scale, preventing any
disproportionate influences on the model’s learning process.
The chosen technique is the MinMax scaler, which maps
the data to a fixed range (from 0 to 1): xMinMax =
(x − xmin)/(xmax − xmin), where x is the data to be
normalized, and xmin, xmax is its minimum and maximum
value, respectively. This approach is often favored because it
results in a smaller standard deviation, effectively mitigating
the impact of outliers (in contrast to other popular normal-
ization methods like Z-score). It is worth mentioning that we
applied the normalization only to the input series, while the
target series were not normalized. In fact, the latter could
unintentionally provide the model with information about
future events, which is a critical consideration to avoid during
training.

C. Neural Network Architecture

As depicted in Fig. 2, our neural network is composed of
two main parts: a Transducer and a Transformer. The former
is a fully-connected Multi-Layer Perceptron (MLP) [31], that
takes as input the kinematic data k(ti) from the suit at
the current time instant ti, and estimates the force f ext(ti)
exerted at ti. The latter is a Transformer that takes a
multivariate time series as input at time ti. In particular, a
sliding time window of width tw selects a portion of the data,
defining the input as (k(t), f̃ ext(t), t) with t ∈ [ti − tw, ti]
where f̃ ext(t) is the sequence of the estimated contact
forces coming from the Transducer (since we assume that
the Transformer has never access to the measured forces as
input). In order to provide the sequence of estimated forces



Fig. 2. The architecture of our neural network. A Transducer continuously
estimates the contact force fext(t) based on the kinematic data k(t) within
a time window t ∈ [ti − tw, ti], with ti the current time instant. The
output of the Transducer is sent to the Transformer that, fusing it with the
kinematic data, produces a prediction of the contact forces fext(t) and of
the kinematic data k(t), t ∈ [ti, ti + tp], with tp the prediction time.

f̃ ext to the Transformer, we use the Transducer to preprocess
the sequence of kinematic data as shown in Fig. 2. The
Transformer target (i.e., the output) is (k(t),f ext(t)) with
t ∈ [ti, ti+ tp], where tp is the prediction time of the target.
The time window slides by increasing the current window
time ti until the final time of the collected data is met.

Transformers are a class of deep-learning models that have
gained immense popularity due to their ability to handle se-
quential data efficiently. Unlike traditional sequence models
like Recurrent Neural Networks (RNNs) [32], Transformers
do not rely on sequential processing. Instead, they employ
a mechanism called attention [7] to capture dependencies
between different elements in a sequence simultaneously.
This parallelism is key to mitigating the issue related to short-
term memory and vanishing gradient that commonly affects
RNN such as Long-Short Term Memory (LSTM) networks
and for dealing with long sequences of data.

The architecture that we have adopted for the Transformer
is an adaptation of GPT-2 [33] for time series. Traditionally, a
transformer model has two main components: an encoder and
a decoder. In the encoder, there is a self-attention mechanism
and a feedforward neural network. The former allows each
element in the input to find the connection on different
parts of the entire sequence, depending on 3 matrices called
Queries (Q), Keys (K), and Values (V ). These matrices
depend on the entire input sequence X , and they are defined
as Q = X ·WQ, K = X ·WK , and V = X ·W V , where
WQ,WK ,W V are weight matrices that are learned during
the Transformer training phase. Therefore, the self-attention
output Y can be computed as

Aw = softmax

(
Q ·KT

√
d

)
Y = Aw · V

where Aw denotes the attention weights, and d is a scaling
factor.

Conversely, the decoder incorporates an extra layer before
the feedforward neural network known as Masked Self-
Attention. The “masking” ensures that an element in a certain
position in the sequence can only attend to past input data,
preserving the autoregressive nature of the decoder.

The major difference between the original Transformer
architecture and GPT-2 is that the latter relies on a decoder-

Data type Description Symbol Units Device Input/Target

Joints

shoulder roll
shoulder pitch
shoulder yaw

elbow roll
elbow pitch
elbow yaw

qhsϕ
qhsθ
qhsψ
qheϕ
qheθ
qheψ

rad mocap suit Input&Target

Cartesian vel.
shoulder

upper arm
forearm

ṗhs
ṗhu
ṗhf

m/s mocap suit Input&Target

Cartesian acc.
shoulder

upper arm
forearm

p̈hs
p̈hu
p̈hf

m/s2 mocap suit Input&Target

Contact force fext N robot+eq. (1) Target

TABLE I
THE DATA USED FOR THE TRAINING OF THE PROPOSED NEURAL

NETWORK.

only structure. Differently from the traditional Transformer
which was originally designed for sequence-to-sequence
tasks like language translation, GPT-2 is more versatile and
it can be used for time series forecasting thanks to its
generative capabilities. Thus, our architecture utilizes only
decoder layers. In particular, we use six decoder blocks,
arranged sequentially.

D. Neural Network Training

In this section, since our architecture is composed of two
networks – the Transducer and the Transformer – we describe
the two training procedures. In the initial phase, the Trans-
ducer network undergoes standalone training. Subsequently,
during the Transformer’s training process, the Transducer
is connected to the Transformer as shown in Fig. 2 while
maintaining its weight parameters constant.

1) Transducer training: The transducer is trained on a
multivariate input composed entirely of kinematic quantities
k from the mocap suit. The data set that we used for the
training contains 86000 data points. Prior to feeding into the
model, all data is shuffled and normalized using a MinMax
scaler. We assess the model’s performance during the training
phase by comparing its predicted outputs to the values
estimated by the Franka Emika manipulator, employing the
Mean Square Error criterion.

2) Transformer training: The main issue affecting any
NN during training regards the discrepancy between the
training and the inference phases. During training, the model
has typically access to the ground truth (i.e., the correct)
output sequence. However, during inference, when the model
is applied to unseen data, the prediction error is always
larger. To mitigate this issue and to enhance the Transformer
performance, we employed a technique called scheduled
sampling [34]. This technique allows the Transformer to
use, during the initial phases of the training, the ground-
truth (i.e., true) data. However, as the training advances,
the Transformer progressively integrates more of its own



predicted outputs into its input sequence, gradually reducing
the usage of true values. This transition begins with a high
probability of using true values as inputs and gradually shifts
towards a greater reliance on the model’s predictions. This
strategy finds an equilibrium between equipping the model
with valuable training insights and preparing it for real-world
situations where actual values might not be accessible. The
transition function we employed is a sigmoid with an inverse
decay pattern

v =
l

l + exp
(nep

l

)
where v is the probability of selecting the ground-truth data,
nep is the epoch number in the training set, l ≥ 1 is a user-
defined parameter for the speed of convergence.

Since our training set encompasses both kinematic and
dynamic (i.e., forces) values, we opted for a weighted mean
square error as a loss function. The decision is influenced
by the consistent access the entire network has to the
measured kinematic values, making them simpler to forecast.
Furthermore, given the greater importance of force prediction
for physical-human-robot interaction, we opt for a higher
emphasis on the force prediction error.

loss =
1

nt

nt∑
i=1

wi · (yi − ŷi)
2

In the last equation, nt represents the number of data in the
training set, wi represents the user-defined weight assigned
to the i-th data point, yi represents the actual value of the
i-th data point, and ŷi represents the predicted value of the
i-th data point.

IV. EXPERIMENTS
In this section, we explain how the data are collected both

for training and testing and we show some experimental re-
sults of using our framework for predicting physical human-
robot interaction. In order to prove the architecture prediction
capabilities and to show the effectiveness of the Transducer,
we compare our network with a pure Transformer-based
architecture.

A. Data Collection Protocol

The human – wearing the mocap suit – is positioned
close to the robot and intentionally applies forces to the end-
effector using their right arm. As mentioned before, the robot
is controlled by means of an impedance controller, keeping
constant the stiffness, the inertial, and the damping matrices
for the entire data collection phase. The robot is commanded
to maintain its initial configuration, waiting for a human to
apply a force to its end-effector.

Different training motions were collected. In each of them,
the robot starts from its resting configuration, and the human
moves it along one of 8 equally spaced planar directions
shown in Fig. 3. We gathered 40 samples for each direction
of motion, encompassing a wide range of force intensities,
spanning from 0 N to ±40 N. This results in a robot end-
effector displacement ranging from 0 cm to ±25 cm. The
duration of each individual sample averages 2.5 seconds.

Fig. 3. Visualization of the 8 directions of motions – all in the manuscript
plane – where our neural network was trained. The robot starts from its
resting configuration and moves along one of the directions denoted with
α = {0, π/4, π/2, 3/4π, π, 5/4π, 3/2π, 7/4π}.

Throughout these interactions, once a force is detected, the
kinematic human information described in Sec. III-A.1 and
the estimated contact forces from Sec. III-A.2 are collected
at 125 Hz, enabling the capture of rapid movements. In
all our experiments, we maintained constant stiffness in the
robotic arm during data collection. After the collection phase,
the data, since they come from two different sources, were
synchronized and filtered using a moving average filter. This
process was employed to enhance the overall data quality
and to mitigate the impact of noise interference.

It is important to stress that we assume that the human
actually produces a motion during an experiment, trying to
keep one of the above-mentioned directions. This is needed
to ensure a correlation between kinematic and force data in
our training set.

B. Comparison description

To perform a fair comparison, the two networks share the
same input and output. In particular, exclusively kinematic
data from the mocap suit are used as input, while the output
is, in both cases, the kinematic quantities and contact forces
within a time horizon. The pure-transformer-based network
has the same structure as the one used in our framework
(a GPT-2-based model with 6 decoder layers). We train the
network using the same data set (as described in Sec. IV-
A), using the same loss function and the same weights. In
particular, we weight the error on the force values four times
more than the error on the kinematic components. Moreover,
we use a prediction window of 1.6 seconds and we employ
an Early Stopping with a dropout rate equal to 0.35 to
reduce overfitting. During the testing phase, we reduced the
forecast window to 800 ms to optimize performance. The
two networks are trained on the same computer (64 GB of
RAM, Intel(R) i7 Core running at 3.20 GHz). We test the
two networks on a dataset that comprises motion directions
that were not present in the training set, as will be described
in the subsequent section.



α qhs [deg] qhe [deg] ṗ
h
s [m/s] ṗ

h
u [m/s] ṗ

h
f [m/s] p̈

h
s [m/s2] p̈

h
u [m/s2] p̈

h
f [m/s2] fext,x [N] fext,y [N] fext,z [N]

4/3π 16.404 5.465 0.013 0.021 0.063 0.197 0.082 0.223 0.016 0.226 0.421
π/3 1.508 3.315 0.010 0.013 0.017 0.042 0.100 0.322 1.959 1.919 2.503
5/3π 15.322 11.554 0.019 0.019 0.054 0.223 0.138 0.358 0.876 0.844 1.104
8/9π 12.482 5.244 0.034 0.043 0.077 0.337 0.136 0.367 0.020 0.328 0.229
10/9π 11.174 8.304 0.017 0.022 0.049 0.179 0.070 0.228 0.143 0.834 1.099
π/6 6.227 12.052 0.014 0.018 0.055 0.072 0.115 0.281 0.228 0.570 2.151

11/6π 0.973 5.128 0.023 0.028 0.040 0.050 0.057 0.185 0.097 0.316 1.425
avg 9.156 7.295 0.019 0.023 0.051 0.156 0.099 0.290 0.477 0.720 1.276

TABLE II
NN PREDICTION ERROR FOR THE ARCHITECTURE THAT COMPRISES THE TRANSDUCER AND THE TRANSFORMER. THE FIRST COLUMN INDICATES

THE DIRECTION ALONG WHICH THE MOTION WAS PERFORMED (ANGLE α IN FIG. 3). THE BAR OVER qhs AND qhe INDICATES THE ERRORS AVERAGED

ALONG THE ROLL, PITCH, AND YAW ANGLES LOCATED AT THE SHOULDER AND ELBOW, RESPECTIVELY. SIMILARLY, ṗhs , ṗhu , ṗhf (RESP. p̈hs , p̈hu , p̈hf )
INDICATES THE ERRORS AVERAGED ALONG THE x, y, z COMPONENTS OF THE VELOCITY (RESP. ACCELERATION) FOR THE SHOULDER, UPPER ARM,

AND FOREARM. THE LAST ROW IS THE AVERAGE OF THE QUANTITIES IN THE PREVIOUS ROWS. THE BOLD VALUES ON THE LAST ROWS ARE THE

ERRORS THAT ARE LOWER FOR THIS ARCHITECTURE COMPARED TO TAB. III.

α qhs [deg] qhe [deg] ṗ
h
s [m/s] ṗ

h
u [m/s] ṗ

h
f [m/s] p̈

h
s [m/s2] p̈

h
u [m/s2] p̈

h
f [m/s2] fext,x [N] fext,y [N] fext,z [N]

4/3π 15.621 6.435 0.013 0.019 0.058 0.188 0.082 0.195 1.091 11.231 4.403
π/3 10.724 8.762 0.012 0.031 0.110 0.057 0.319 0.565 5.039 9.851 10.729
5/3π 2.610 11.586 0.016 0.021 0.035 0.059 0.087 0.346 5.485 6.860 15.795
8/9π 21.478 8.599 0.014 0.018 0.062 0.242 0.205 0.305 7.155 12.634 3.926
10/9π 12.885 10.120 0.019 0.022 0.049 0.158 0.072 0.228 1.485 14.166 3.814
π/6 2.012 8.988 0.012 0.016 0.023 0.075 0.080 0.193 1.007 5.995 1.471

11/6π 1.202 8.027 0.011 0.017 0.030 0.050 0.071 0.184 1.903 7.853 4.137
avg 9.505 8.931 0.014 0.021 0.052 0.118 0.131 0.288 3.309 9.799 6.325

TABLE III
NN PREDICTION ERROR FOR THE ARCHITECTURE THAT COMPRISES ONLY THE TRANSFORMER. THE SYMBOLS ARE DESCRIBED IN TAB. II.

C. Results and discussion

The two networks are tested on 7 different motions which
are not included in the training set. The testing motions are
collected following the same procedure described in Sec. IV-
A with the only difference that we gather only one motion
for each testing direction. The reader is referred to the first
column of Tab. II and Tab. III for the definition of the α
values of Fig. 3 that characterize the testing motion.

In these tables, the prediction errors for the Transducer
and Transformer architecture (Tab. II) and for the pure
Transformer one (Tab. III) are reported. In the tables, the
overbars on qhs and qhe represent the average errors computed
across the roll, pitch, and yaw angles, for the shoulder and
the elbow joints respectively. Likewise, ṗ

h
s , ṗ

h
u, and ṗ

h
f (and

correspondingly, p̈
h
s , p̈

h
u, and p̈

h
f ) represent the mean errors

computed along the spatial components (x, y, z) of velocity
and acceleration pertaining to human shoulder, upper arm,
and forearm, respectively1. The concluding row presents the
average values derived from the aforementioned rows. The
bold terms in Tab. II indicate errors where our presented
model outperforms the purely transformer-based one.

By comparing Tab. II and Tab. III, it is clear that, when
predicting the kinematic components, our model exhibits a
slight error reduction. However, the improvement is not re-

1Due to space constraints, we reported the averages in place of the
individual vector components. However, their evolution is similar.

ally significant. On the other hand, we can notice a significant
improvement in the prediction of the contact forces when a
transducer is added to the architecture.

It is important to notice that our framework is able to
accurately predict the contact forces thanks to the constant
robot stiffness, which allows to create a unique mapping
between the human kinematics and the contact forces.

V. CONCLUSIONS

In this paper, we proposed a transformed-based architec-
ture for predicting kinematic human data and interaction
forces within a physical human-robot interaction context.
Our approach consists of two main components: an MLP
Transducer that estimates the contact forces based on the
kinematic data from a mocap suit, and a Transformer that
predicts the kinematic and force quantities within a future
time horizon. The comparison with a pure Transformer-
based network showed a similar behavior in predicting
the kinematic data and an improvement in the prediction
accuracy of the contact forces. Future works will focus
on (i) considering a variable stiffness for the robot; (ii)
developing other relevant directions of motion (e.g., out-of-
plane motions) (iii) coupling the proposed approach with a
control strategy in order to take into account future human
behavior when planning the robot motion.
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