
HAL Id: hal-04215758
https://hal.science/hal-04215758

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stack-Based Genetic Improvement
Aymeric Blot, Justyna Petke

To cite this version:
Aymeric Blot, Justyna Petke. Stack-Based Genetic Improvement. ICSE ’20: 42nd Inter-
national Conference on Software Engineering, Jul 2020, Seoul, South Korea. pp.289-290,
�10.1145/3387940.3392174�. �hal-04215758�

https://hal.science/hal-04215758
https://hal.archives-ouvertes.fr

Stack-Based Genetic Improvement
Aymeric Blot

University College London
London, United Kingdom

a.blot@cs.ucl.ac.uk

Justyna Petke
University College London
London, United Kingdom

j.petke@ucl.ac.uk

ABSTRACT
Genetic improvement (GI) uses automated search to find improved
versions of existing software. If originally GI directly evolved pop-
ulations of software, most GI work nowadays use a solution repre-
sentation based on a list of mutations. This representation however
has some limitations, notably in how genetic material can be re-
combined. We introduce a novel stack-based representation and
discuss its possible benefits.

CCS CONCEPTS
• Software and its engineering → Search-based software

engineering.
KEYWORDS

Genetic improvement (GI); Automated Program Repair (APR);
Search-based software engineering (SBSE)
ACM Reference Format:
Aymeric Blot and Justyna Petke. 2020. Stack-Based Genetic Improvement. In
IEEE/ACM 42nd International Conference on Software Engineering Workshops
(ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3387940.3392174

1 INTRODUCTION
Genetic improvement (GI) [8] uses automated search to find im-
proved versions of existing software. One of the earliest GI works
used genetic programming (GP) [4] to directly evolve populations of
software [2]. Representation of software variants however quickly
changed to a more convenient intermediary representation that
most GI work nowadays prefers. This intermediary representation
is based on the modifications between the original software and the
mutated variant, usually through the sequence of mutations that
are to be applied. One of its main advantages is that it is much more
compact than the software itself, focusing on the changes at a level
much closer to human understanding and thus ultimately mak-
ing the changes more likely to be adapted into development [11].
However, it also has some limitations, notably in terms of genetic
material recombination [6].

Stack-oriented programming is a powerful, but very rarely used
paradigm. Used, for example, in the Forth, Push, or Postscript pro-
gramming languages, this paradigm provides the main computation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392174

procedure with stacks to store data or code and retrieve them later
in reverse order. The most popular use of stacks is probably the
reverse Polish notation, which was at some point used in many
hand-held calculators. Stacks have been used in general GP sys-
tems [7], and particularly efficiently in the PushGP [10] system for
autoconstructive evolution.

In this paper, we introduce a novel representation for GI sys-
tems, based on new types of edits and the use of stacks. We aim to
propose a representation that keeps the simplicity of the usual rep-
resentation, includes the recombination flexibility of a decoupled
representation [6], while providing many other possible advantages.

2 GENETIC IMPROVEMENT SETUP
The usual GI setup involves computing for the target software a list
of possible modification points, either based on physical representa-
tion (e.g., lines of code) or syntactical data (e.g., using the software’s
abstract syntax tree—AST). Using this list of modification points, a
software variant is then described using a sequence of edits, within
which the most common are the deletion, the replacement, and the
insertion of pieces of software.

Delete(l) removes the code currently at location l;
Replace(l1, l2) replaces the code currently at location l1

by the code originally at location l2;
Insert(l1, l2) inserts, before or after location l1, the code

originally at location l2.
For fitness evaluation, the actual software variant is obtained by

successively applying to the original software every mutation in
order. This intermediary representation enables very quick mutant
generation as well as efficient mutations and crossovers between
software variants. In particular, individual edits can very easily be
added or removed to software variants while maintaining most of
their original semantics.

A downside of such a representation is that it only facilitates ma-
nipulation of coupled genetic material (here, the type of edits and
the location of modification points). Data composing edit sequences
can be decoupled into three sub-spaces [5]—namely operator (e.g.,
here, Replace()), fault (here, l1), and fix spaces (here, l2)—, lead-
ing to new types of mutations and crossovers [6]. However, despite
its benefits, the complexity of the induced representation makes
it much harder to use, especially when multiple granularity levels
are simultaneously considered (e.g., single line statements, Boolean
conditions, and for loop header elements [9]).

3 PROPOSAL
We propose a novel GI software variant representation, based on a
new set of edits with low complexity. The main difference with the
usual representation is the use of one or more stacks when the edit
sequence is used to obtain the actual mutated software.

https://doi.org/10.1145/3387940.3392174
https://doi.org/10.1145/3387940.3392174

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Aymeric Blot and Justyna Petke

3.1 New Edits
The usual set of edits (deletion, replacement, insertions) are replaced
by a set of new operations, that rely on the addition to the edit of a
sequence of stacks, which will contain locations of mutation points.
We describe here the most basic case in which a single stack is used;
the use of multiple stacks is discussed later. We define three new
types of edits: copy, cut, and paste.

Copy(l) puts the location l on top of the stack;
Cut(l) deletes the code currently at location l and then puts

the location l on top of the stack;
Paste(l) retrieves the location at the top of the stack and uses

it to replace the code at location l.
Similarly to the two versions of the insertion edit (insertion be-

fore or after), three versions of the paste edit can be defined: to
replace at position l, or to insert before or after position l. Addi-
tionally, it might also be interesting to reuse the deletion edit.

When evaluating the edit sequence to obtain the mutated soft-
ware, it may happen that some of the operations require data while
the stack is empty. We propose three options. (1) It is possible to
simply and safely ignore such operations; this means keeping in
the representation inactive genetic material that could possibly be
reactivated later through crossover or further mutation. (2) These
operations can also be easily discarded, as are invalid genes [6].
(3) Finally, the empty stack can still produce some data, for example
by returning a default value (e.g., an empty line/statement) or by
keeping track of the last value retrieved from the stack.

Differences to the usual edit sequence representation areminimal.
The usual four types of edits have been traded to either five or
six operations, and obtaining the mutated software now requires
the use of a stack. Edit sequences are at least slightly longer than
beforehand, with replacements and insertions requiring both a copy
and a paste operation. Furthermore, expressiveness is conserved
with immediate conversions from one representation to the other.

3.2 Decoupling and Recombination
One subtle difference between the two sets of edits is that the copy,
cut, and paste (and possibly delete) edits all use a single argument.
Using a decoupled representation [5] this would mean only two sub-
spaces instead of three: the operator one, and a merged fault and
fix one, inducing two sequences that will necessarily always have
the same length. This consistent arity greatly simplifies decoupled
mutations and crossovers [6] while avoiding any additional step to
repair or discard invalid genes. In particular, any subset of operators
could be recombined with any similar-sized subset of locations and
necessarily result in a valid edit sequence.

3.3 Type-Based Stacks
Push [10] is a family of programming languages in which each data
type (including code itself) is associated with a different stack. Our
new representation can very easily benefit from such a scheme.
Indeed, modification points are intrinsically associated with pieces
of software, e.g., lines of code, Boolean operators, or in general any
sub-tree associated to the software AST.

When all modifications points are homogeneous—e.g., only pro-
gram statements or only program conditions—then the GI system
can ensure reasonable syntactic validity. In contrast, when multiple

granularity levels are considered (e.g., simultaneous evolution of
program statements and conditions) operations—e.g., replacement,
insertion; or here, paste—have to be consistent so to not result in
invalid mutated software. In that case, while it is easy to gener-
ate consistent edits, maintaining validity after decoupling quickly
becomes cumbersome as location types need to be considered.

To avoid unsound edits (e.g., replacements of conditions by full
statements, or vice versa), we propose to use different stacks for
each type of data. That way, by enforcing that edits only use the
stack associated to the type of their single argument, operations
are ensured to always use coherent data.

3.4 Content-Based Approaches
In addition or replacement to locations, edits in GI approaches
may also directly include content data (e.g., [1, 3]). Our stack-based
representation is compatible with these concerns and can easily
accommodate being modified to use additional stacks for content
or mixed data.

4 CONCLUSION
Most GI work use edit sequences as solution representation for soft-
ware variants. While very simple and easy to mutate and crossover,
it has limitations in how genetic material can be recombined [6].

We presented a slightly modified solution representations, based
on a set of new edits and the use of stacks. We expect this new stack-
based solution representation to be straightforward to implement
and at least as expressive and effective as the standard one, while
keeping its simplicity and avoiding some of its current limitations.
Lastly, we intend to challenge our claims through empirical analysis.

ACKNOWLEDGMENTS
This work is supported by UK EPSRC Fellowship EP/P023991/1.

REFERENCES
[1] Thomas Ackling, Bradley Alexander, and Ian Grunert. 2011. Evolving patches

for software repair. In Genetic and Evolutionary Computation Conference. ACM,
1427–1434.

[2] Andrea Arcuri and Xin Yao. 2008. A novel co-evolutionary approach to automatic
software bug fixing. In Congress on Evolutionary Computation. 162–168.

[3] Aymeric Blot. 2019. Fuzzy Edit Sequences in Genetic Improvement. In Interna-
tional Workshop on Genetic Improvement. ACM, 30–31.

[4] John R. Koza. 1992. Genetic programming – On the programming of computers by
means of natural selection. MIT Press.

[5] Claire Le Goues, Westley Weimer, and Stephanie Forrest. 2012. Representa-
tions and operators for improving evolutionary software repair. In Genetic and
Evolutionary Computation Conference. ACM, 959–966.

[6] Vinicius Paulo L. Oliveira, Eduardo Faria de Souza, Claire Le Goues, and Celso G.
Camilo-Junior. 2018. Improved representation and genetic operators for linear
genetic programming for automated program repair. Empir. Softw. Eng. 23, 5
(2018), 2980–3006.

[7] Timothy Perkis. 1994. Stack-Based Genetic Programming. In International Con-
ference on Evolutionary Computation. 148–153.

[8] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE Trans. Evol. Comput. 22, 3 (2018), 415–432.

[9] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2018.
Specialising Software for Different Downstream Applications Using Genetic
Improvement and Code Transplantation. IEEE Trans. Softw. Eng. 44, 6 (2018),
574–594.

[10] Lee Spector and Alan J. Robinson. 2002. Genetic Programming and Autoconstruc-
tive Evolution with the Push Programming Language. Genet. Program. Evolvable.
Mach. 3, 1 (2002), 7–40.

[11] Westley Weimer. 2006. Patches as better bug reports. In Generative Programming
and Component Engineering. ACM, 181–190.

	Abstract
	1 Introduction
	2 Genetic Improvement Setup
	3 Proposal
	3.1 New Edits
	3.2 Decoupling and Recombination
	3.3 Type-Based Stacks
	3.4 Content-Based Approaches

	4 Conclusion
	Acknowledgments
	References

