
HAL Id: hal-04215751
https://hal.science/hal-04215751

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy Edit Sequences in Genetic Improvement
Aymeric Blot

To cite this version:
Aymeric Blot. Fuzzy Edit Sequences in Genetic Improvement. 2019 IEEE/ACM International Work-
shop on Genetic Improvement (GI), May 2019, Montreal, Canada. pp.30-31, �10.1109/GI.2019.00016�.
�hal-04215751�

https://hal.science/hal-04215751
https://hal.archives-ouvertes.fr

Fuzzy Edit Sequences in Genetic Improvement
Aymeric Blot

University College London
London, United Kingdom

a.blot@cs.ucl.ac.uk

Abstract—Genetic improvement uses automated search to find
improved versions of existing software. Edit sequences have been
proposed as a very convenient way to represent code modifica-
tions, focusing on the changes themselves rather than duplicating
the entire program. However, edits are usually defined in terms
of practical operations rather than in terms of semantic changes;
indeed, crossover and other edit sequence mutations usually never
guarantee semantic preservation. We propose several changes to
usual edit sequences, specifically augmenting edits with content
data and using fuzzy matching, in an attempt to improve semantic
preservation.

Keywords-GI; genetic improvement; SBSE; search-based soft-
ware engineering; fuzzy matching

I. INTRODUCTION

Genetic improvement (GI) [1], [2] uses automated search in
order to improve existing software. Because it is expected that,
in the search space of all possible programs the evolved ones
stay to some extent close to the original ones (see the “plastic
surgery hypothesis” [3]), many GI work use representations
based on the sequence of modifications applied to the original
software rather than evolving it as a whole [4]–[8].

Edit sequences have many advantages. They are a sparse
representation of the mutated programs and are very close to
the human understanding of which changes are performed,
making them more likely to be adapted into development [9].
Furthermore, they are easily combined, thus greatly facilitating
crossover between different mutants. In addition, they are
abstract enough so that they can be used with both linear
representations (e.g., with the grammars of [6], [8]) and AST-
based representations (e.g., in GenProg [5]).

Edits can be formulated using three pieces of information:
(1) the type of modification (e.g., is the operation a deletion,
an insertion, a replacement, a swap), (2) the place at which
the edit takes place (e.g., which line of code has to be
deleted), and (3) some new content if applicable (e.g., the
content being inserted). The three associated search spaces are
sometimes called operation, fault location, and fix code [10],
[11]. Information about fault location and fix code are usually
given through unique identifiers of modification points in the
original source code. For example, following the notation used
in [7], the edit “i(1,2)” (i.e., the triple “(i,1,2)”) will
represent the insertion at location “1” of the content originally
at location “2”, while “d(3)” will represent a deletion at
location “3”.

II. MOTIVATION

As a motivating example, we consider the transformation
of Listing 1 into Listing 2, in which two modifications
are to be found: (1) as illustrated in Listing 3, the call to
“foo()” should be moved from its original location “a” to
the location “b”; and (2) as illustrated in Listing 4, the call to
“foo()” should be preceded by a call to “setup_foo()”
(already present somewhere in the source code, here at loca-
tion “z”). The ideal edit sequence “i(b,a)d(a)i(b,z)”
unfortunately cannot be directly obtained from the existing
edits, because the insertion “i(a,z)” has to be modified into
“i(b,z)” to follow the reinsertion of line “foo()” to its
new location.

The idea behind our proposal is that a practitioner, being
given two conflicting patches such as the ones of Listing 3 and
Listing 4, may presumably be able to understand the semantic
of the edit “i(a,z)” as “insert the line “setup_foo()”
before the line “foo()”” rather than “insert the content of
line “z” before line “a””, and naturally try to insert it as in
Listing 2. In practice, we can expect to guide the GI process
into automatically considering the variant “i(b,z)” of the
edit “i(a,z)” following the semantic change induced by
“i(b,a)d(a)”—that is, the content of location “a” being
moved to location “b”.

III. PROPOSAL

It has already been shown, using crossover on decoupled
edit sequences [7], that re-using knowledge already present in
existing sequences (here, over all possible modification points
only “a”, “b”, and “z” were used) can positively influence
the creation of new edits. Furthermore, a lot of successful GI
work already have demonstrated the relevance of relying on
code semantic [2].

In the following, we propose to use the content relevant at
the time of creation of an edit as a marker of the initial edit
semantic, in order to generate new variants of the edit when
this semantic is modified.

A. Content-first Edits

In the literature [5]–[8], [10], [11], edits are tradition-
ally based on location first, and content second: in the
edit “i(a,b)”, “a” and “b” refer to modifications points
usually in the original source code, and only through them
the content at these locations. Instead, we propose to base
edits on content first and location second. That is, given f
a lookup function, that associates content with a location,

Listing (1) Original code
...

a: foo();
...

b: bar();
...

z: setup_foo();
...

Listing (2) Ideal code
...

a: // empty line
...

b: setup_foo();
foo();
bar();
...

z: setup_foo();
...

Listing (3) Mutant 1
// edits: i(b,a)d(a)

...
a: // empty line

...
b: foo();

bar();
...

z: setup_foo();
...

Listing (4) Mutant 2
// edit: i(a,z)

...
a: setup_foo();

foo();
...

b: bar();
...

z: setup_foo();
...

α = f(a) and β = f(b) the contents at locations “a”
and “b” at the time of the edit creation, we would like to
use “op(α,β)” rather than using “op(a,b)” and perform
lookup only when the edit is actually applied. Unfortunately,
because the lookup function f cannot be inverted (while
locations are unique, content is not), we propose to use
both content and location, i.e., “op((α,a),(β,b))”. For
example, the edit “i(a,z)” of Listing 4 could be replaced
by “i(("foo();",a),("setup_foo();",z))”.

Note that there is no reason to actually store content
data inside edits (e.g., α literally being the code fragment
“foo();”), which unnecessarily enlarges edit size. Indeed,
α and β can similarly simply correspond to content through
identifiers to a separate bank of genetic material.

B. Fuzzy Matching

In our motivating example, this means that when appending
the insertion of Listing 4 at the end of the edit sequence of
Listing 3, the GI process now has the opportunity to realise that
the line “foo()” has changed location. In the general case,
when interpreting the edit “op((α,a),(β,b))”, a check
should be made to verify if the two matchings “(α,a)” and
“(β,b)” are still valid. If not, then fuzzy matching can pro-
vide new plausible alternative variants of the edit, by searching
for similar content at the same location (i.e., “(α′,a)”, with
α′ some content related to α) or for the same content at similar
locations (i.e., “(α,a’)”, with “a’” a nearby location).
Possible similarity metrics for content include string or tree
edit distances. As for locations, similarity could be defined
in terms of restriction to the context of the original location
(e.g., the same method body).

This fuzzy matching can be performed every time the
context of edits changes—i.e., whenever an edit in the middle
of an edit sequence is inserted, modified, or deleted, or
whenever a crossover is performed. When a conflict arises,
and one or multiple plausible matches are found, they can
then be used in order to help the GI process with additional
diversity. If no sufficiently plausible match is found, then
it might provide a clue to discard the edit. In any case, it
can be expected that falling back to the current approach
(i.e., applying edits without regard to the original content)
should still be considered to avoid losing potentially useful
edits.

IV. CONCLUSION

Edit sequences have been proven to be a very convenient
and versatile solution representation for a lot of genetic
improvement work. However, edit sequence implementations
usually only focus on practical modifications [5]–[8], [10],
[11] and often overlook semantics in the general GI litera-
ture [2].

We proposed to augment individual edits by the inclusion of
content data. We expect that content data may be used to track
semantic changes, which then, through fuzzy matching, may
lead to the generation of new edits beneficial to the overall GI
process.

REFERENCES

[1] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improvement of
programs,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 4, pp. 515–538, 2011.

[2] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: A comprehensive
survey,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 415–432, 2018.

[3] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro, “The plastic
surgery hypothesis,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, (FSE-22).
ACM, 2014, pp. 306–317.

[4] T. Ackling, B. Alexander, and I. Grunert, “Evolving patches for software
repair,” in Proceedings of the 13th Genetic and Evolutionary Computa-
tion Conference, GECCO 2011. ACM, 2011, pp. 1427–1434.

[5] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[6] W. B. Langdon and M. Harman, “Optimizing existing software with ge-
netic programming,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 1, pp. 118–135, 2015.

[7] V. P. L. Oliveira, E. F. de Souza, C. Le Goues, and C. G. Camilo-
Junior, “Improved representation and genetic operators for linear ge-
netic programming for automated program repair,” Empirical Software
Engineering, vol. 23, no. 5, pp. 2980–3006, 2018.

[8] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Specialising soft-
ware for different downstream applications using genetic improvement
and code transplantation,” IEEE Transactions on Software Engineering,
vol. 44, no. 6, pp. 574–594, 2018.

[9] W. Weimer, “Patches as better bug reports,” in Proceedings of the 5th
International Conference on Generative Programming and Component
Engineering, GPCE 2006. ACM, 2006, pp. 181–190.

[10] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proceedings of the 34th International Conference on Software
Engineering, ICSE 2012. IEEE, 2012, pp. 3–13.

[11] C. Le Goues, W. Weimer, and S. Forrest, “Representations and operators
for improving evolutionary software repair,” in Proceedings of the
14th Genetic and Evolutionary Computation Conference, GECCO 2012.
ACM, 2012, pp. 959–966.

	Introduction
	Motivation
	Proposal
	Content-first Edits
	Fuzzy Matching

	Conclusion
	References

