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Abstract. Evolving LLVM IR is widely applicable, with LLVM Clang
offering support for an increasing range of computer hardware and pro-
gramming languages. Local search mutations are used to hill climb in-
dustry C code released to support geographic open standards: Open Lo-
cation Code (OLC) from Google and Uber’s Hexagonal Hierarchical Spa-
tial Index (H3), giving up to two percent speed up on compiler optimised
code.
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automatic code optimisation, world wide location, plus codes, zip code.

1 Introduction

LLVM https://www.llvm.org/ is now a well established freely available open
source software package containing the clang C/C++ language compiler and
other tools to support human software engineers with maintaining and devel-
oping software. Clang converts program source code to LLVM’s intermediate
representation (IR). We speedup two programs (one from Google’s OLC and
the other from Uber’s H3) by applying genetic improvement [1,2] directly to IR.
LLVM IR is independent of both the source code language and the target hard-
ware. The clean separation of the two has facilitated LLVM support for ad-
ditional imperative and functional languages (e.g. Fortran, Rust, Haskell) and
multiple processor types (e.g. Intel X86, ARM and nVidia). LLVM IR is like a
typed hardware-independent assembly language, with a clean separation of code,
memory and single assignment registers, meaning all registers are created with
a fixed typed value which they keep until they deleted, e.g. on exiting the func-
tion containing them. The task of mapping the code, memory and this infinite
set of registers into real hardware is left to the compiler backed. The compiler
comes with many optimisation passes which transform the LLVM IR. Indeed it
is possible to write in C++ additional LLVM IR passes. Although LLVM IR can
be stored both in memory and binary files, we use the human-readable text files
format.

Genetic Improvement [1,2] applies search-based software engineering [3] tech-
niques, principally genetic programming [4], to existing human written software.
Genetic Improvement has been applied to automatic porting [2], transplanting
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code [5,6] code optimisation [7] and automatic bugfixing. Indeed genetic pro-
gramming [8] and other optimisation techniques are increasingly being used to
automatically repair programs [9]–[16].

In Section 3 we describe our chromosome’s representation: a variable length
list of 3 different LLVM IR deletion mutations. (Delete is the most common way
programmers speed up code [17].) Fitness (Section 4) is based on speed up whilst
retaining each program’s ability to process the locations of many thousands of
zip codes. Our local search GI is detailed in Section 5 and the results given in
Section 6 and Table 1. In three cases GI gives modest generalised speed-ups
by specialising industrial C code for global locations to a definite application
(postal delivery addresses in Great Britain, see Figure 1). However one of the
four cases also gives a speed up and passes 9 999 holdout tests but fails the
very last holdout test. The GI code changes, generalisation and future work are
discussed in Section 7 before Section 8 summarises. But first the next section
describes the existing GI work on evolving LLVM IR.

2 Background

We have demonstrated genetic improvement of real world GPU applications
[18,19,20,21], including BarraCUDA [22], the first GI code to be accepted into
actual use [23]. At EuroGP’19 [24], we showed GI could also speed up parallel
CPU code, this time Intel AVX vector instructions were optimised. The result-
ing GIed RNAfold [25] was accepted into production and like the GI version of
BarraCUDA has been downloaded many thousands of times (for example [26]).
We applied genetic programming to human written CUDA (or C) source code,
whereas Tony Lewis showed GP could be used to evolve nVidia’s PTX GPU
assembler [27]. More recently Jhe-Yu Liou et al. [28,29,30] have applied gram-
matical evolution (GE) [31] to LLVM IR for CUDA applications running on
nVidia parallel hardware and shown further real world examples where GI finds
considerable improvement on hand optimised high level GPU code. GE runs were
either for two or seven days. Shuyue Li and Hannah Peeler, et al. [32,33,34] ap-
plied linear genetic programming [35] to selecting and ordering existing LLVM
optimisation passes (Section 1). Their GP automatically tailors the compiler
pass sequence to examples from Thomas Stuetzle’s ACOTSP and Parth Shirish
Nandedkar’s backtrack algorithm for the subset sum problem (SSP).

3 Mutating LLVM IR

3.1 Representation

The changes to the LLVM IR are stored as a list of line numbers and local
registers to be mutated separated by semicolons “;”. After all the changes have
been made to the LLVM IR, Clang converts it to binary executable machine
code. Due to neutrality [36,37], the changes may or may not alter the overall
program’s behaviour.
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Where multiple changes to an individual line are possible, e.g. conditional
branches, which branch is to be deleted is indicated by appending its number
to the line number, separated by a colon “:”. For example, 2046:2 means the
second branch option on line 2046 is deleted. This is actually implemented by
setting the one bit (i1) conditional <cond> to true. In the following LLVM IR
code snippet, the local register variable %32 is replaced with 1 forcing the code
to branch to label %37. Notice LLVM IR local label identifiers, such as %37,
have the same format as local register identifiers such as %32.
br syntax br i1 <cond>, label <iftrue>, label <iffalse>.
clang .ll line 2046 br i1 %32, label %37, label %33.
mutation 2046:2 br i1 1, label %37, label %33 ;deleted 2

3.2 LLVM IR define functions

The LLVM IR call instruction is used to pass control to LLVM IR subroutines.
These are delimited by define and } and contain local registers, whose names
always start with a % character. Local registers names are reused by each sub-
routine. The closing } shows where local registers go out of scope.

3.3 Mutable LLVM IR

Our system is able to mutate the following lines of LLVM IR (unless we have
already deleted them):

– store
– call
– conditional branches
– assignments to local registers (except from alloca). E.g. %25 = load i32, i32* %3, align 4

There are at least 33 types of mutable assignments to local registers.
We chose not to make alloca mutable since it declares the local register to

be a pointer. Although we can delete a pointer by setting it to null, this will
usually cause a run time exception. This means that there is usually a group
of unmutable local registers at the start of a function. These correspond to
the function’s arguments and its variables. In the following example the C
program entry point main(int argc, char *argv[]) {... in the human
written source code is translated by the clang compiler into the define

statement and the following alloca assignments for the local registers which
correspond to main’s arguments and some of its variables.

define dso_local i32 @main(i32 noundef %0, i8** noundef %1) local_unnamed_addr #1 {

%3 = alloca %struct.LatLng, align 8

%4 = alloca i64, align 8

%5 = alloca %struct.LatLng, align 8

%6 = alloca i64, align 8

%7 = alloca i32, align 4

%8 = alloca double, align 8

%9 = alloca double, align 8
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3.4 Compiling C/C++ etc. to generate LLVM IR

The source code is compiled in the usual way, except instead of generating an
object file the clang -emit-llvm -S command line option is used to direct the
clang compiler to generate an .ll file holding LLVM IR. Similarly the linker is
replaced by using the LLVM linker command llvm-link -S to create a single
file containing all the LLVM IR.

3.5 Selecting which LLVM IR to optimise

The LLVM linker will generate LLVM IR for all the compiled code, including
functions which are not called. Either the user can list the functions they wish
to be optimised or we can recursively select all the functions which can be called
by the program’s main routine.

3.6 Deleting LLVM IR

LLVM IR store instructions and call of functions without a return value can
be deleted by removing the line. (Actually to improve traceability they are com-
mented out using the LLVM IR comment character “;”.)

Assignment statements are not deleted. Instead all other occurrences of the
left hand local register are replaced with zero. We use LLVM IR’s zeroinitializer
to ensure the zero matches the type of the “deleted” local register. Notice here
the fact that LLVM is static single assignment (SSA) means that we are guar-
anteed that the register is only set once.

Functions which do return a value are actually assignment statements, with
their return value being written into a local register. If the return value is not a
pointer, to avoid disrupting the LLVM IR naming convention, the call instruction
is replaced by a dummy add or fadd instruction. This adds two zeros together
to generate a zero value of the same type as the removed function. To deal with
integer, floating point and other types, we use the LLVM IR zeroinitializer

to generate zero. Thus ensuring the local register has the same type as before
but the function is not called. Note when the LLVM IR is compiled to executable
binary code, the clang compiler may optimise the code and so remove unneeded
instructions and memory.

If the function (which may be a system call) returns a pointer, then the
call instruction is replaced with an alloca instruction, again ensuring the local
register’s type is unchanged. As with other assignments the local register is
flagged as having been deleted and replaced by zero (i.e. null) everywhere else
in the LLVM IR. Again for traceability, the original LLVM IR code is retained
as a comment.

As mentioned above (Section 3.1), conditional branches are deleted by forcing
the condition to be either true or false. Unconditional branches br and return
ret instructions cannot be deleted.

By taking care of both syntax and types we ensure the mutated code remains
valid LLVM IR and it compiles into executable binary code.
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4 Fitness Function

There are multiple aspects of a mutation’s fitness: 1) could we perform the
mutation, 2) does the mutated LLVM IR compile without error, 3) is the mutated
binary code different from the original version, 4) does the mutant program run
ok on each test case, 5) does it produce output files, 6) how different are those
outputs from the outputs of unmutated code, 7) how long does it take.

In these experiments all mutants pass (1) and (2). In a few cases, e.g. due to
the clang compiler’s optimisations, although the LLVM IR is changed, the binary
machine code executable file is identical to that of the human written code (3).
Since we already know their performance will be identical to that of the original
code, such mutants are discarded without fitness testing1. Note, except for using
-S -emit-llvm to generate the LLVM IR, we use the same compiler options as
are normally used to compile the program.

In check (4), both the framework running the mutant on each of the test
cases (see Sections 4.3 to 4.5) and the mutant itself, can signal a problem via
the usual unix exit status. In either case, the framework attempts to continue
as usual. For (5) and (6) it will attempt to inspect the expected output files
(one per test case) and compare them with those produced by the unmutated
human written code, which (on the test cases) always successfully terminates.
However due to the exit status error, fitness for that test case will be reduced.
Finally (7) the GI framework will extract timing output generated by the unix
perf command (see Section 4.2).

The GI framework will attempt to run the mutant program on all the test
cases, summing the fitness for each test case. Section 4.2 describes how times for
individual test cases are combined to lessen the impact of noisy outliers.

4.1 Test cases for Google’s OLC and Uber’s H3: GB post codes

Both Google’s Open Location Code (OLC)2 and Uber’s Hexagonal Hierarchical
Geospatial Indexing System (H3)3 are open industry standards. We obtained
their human written sources from GitHub (total sizes OLC 14 024 and H3 15 015
lines of source code, LOC). Both OLC and H3 include C programs which convert
global positions (i.e. pairs of latitude and longitude numbers) into their own
internal codes (see Table 1). For OLC we used their 16 character coding and for
H3 we used their highest resolution (-r 15) which uses 15 characters. Rather
than work on abstract locations, we use as test cases the actual locations of
homes and commercial premises.

1 In [38] we used a similar idea to test if mutated code is identical by inspecting
X86 assembler generated by the GNU gcc compiler. Also Mike Papadakis et al. [39]
compared compiler output to look for equivalent mutants.

2 https://github.com/google/open-location-code downloaded 4 August 2022.
3 https://github.com/uber/h3 downloaded 3 August 2022.
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validation data
10 OLC training data

validation data
40 training data

H3 1 error

Fig. 1. Left: Ten OLC training points randomly selected in the neighbourhood
of Aberdeen (red). + holdout set (blue) GB post codes (zip codes). Right: Forty
training points randomly selected from ten H3 runtime classes (see also Figures 2
and 3). + holdout set (blue), locations of ten thousand random GB post codes
(no overlap with H3 training or OLC (left) holdout data). Both OLC mutants
and H3 -O3 pass all their holdout tests.

For Google’s OLC, the location of the first ten thousand GB postcodes
(zip codes) were obtained4. For training (see next section) ten pairs of latitude
and longitude were selected uniformly at randomly (see Figure 1). The unmu-
tated code was run on each pair and its output saved (16 bytes). For each test
case each mutant’s output is compared with the original output.

Uber’s H3 was treated similarly. However the H3 utility comprises about 13
times as much C code as the OLC utility does (see Table 1). Although significant
speed up could be obtained with the same 10 training data as OLC and for more
than 90% of post codes the mutated programs generalised, it was decided to
increase the number of training data to 40 selected from a much wider pool of
GB post codes (see red × right of Figure 1). To get not only a geographic spread
but also a spread of difficulty, the original code was timed on 10 000 uniformly
chosen post codes and divided into ten classes see Figure 2). Where possible, four
points were chosen uniformly at random from each class. Some run time classes

4 https://www.getthedata.com/downloads/open_postcode_geo.csv.zip dated
16 March 2022. The data are alphabetically sorted starting with AB1 0AA, which
is in Aberdeen.
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were empty (see Figure 3), in which case their training points were allocated to
the next slower non-empty class (shown with crosses in Figure 2).

Although (see previous section) a series of fitness scores were defined to deal
with partial matches between the correct and the mutant’s output. For brevity
they are omitted, since in practise all worthwhile mutants produced exactly the
required output on all tests. Similarly if the mutant aborted or itself reported
an error, on any test case, it was discarded. The secondary aspect of fitness is
run time.

4.2 Counting instructions with perf stat -e instructions -x,

In some previous GI work we had used actual run time, e.g. [40]. However in [40],
we evolved subroutines which could be called directly by our GI system, whereas
here we will test complete programs and so need the unix process time. Also
runtime is notoriously noisy and we had previously found success using the
unix perf tool, e.g. [41], which easily reports statistics for a complete program,
including reporting the number of instructions actually used.

Although perf stat -e instructions is much less variable than elapse
time, we run each mutant ten or forty times. Since run time typically has a noisy
long tailed distribution [40], we sort the ten (H3 40) instruction counts and use
the 3rd (11th) fastest. This means there are about three times as many (7, 29)
larger counts than there are smaller (2, 10). Thus giving a stable average. We
need not worry about a systematic bias, as the fitness function only ever com-
pares the average count with other average counts obtained in the same way.

4.3 Sandboxing to prevent running mutations causing harm

In software engineering mutation testing [42] there may be the possibility of rogue
mutants doing unwanted things, such as writing to unprotected files. Therefore it
may be necessary to protect system calls, such as fopen, or to run the mutants in
a sandbox. In our experiments, the mutations are constrained and, for example,
they cannot change file names but we still needed to guard against mutants
consuming excessive resources, such as running into indefinite loops or the output
file becoming too big (see next two sections).

4.4 Timeouts to stop poor mutants delaying search

In these experiments each test case normally completes in well under a second.
We used two Linux tcsh commands to impose a limit on mutants:

limit cputime 2 The tcsh limit command can impose run time limits on many resources
consumed by a unix process. limit cputime 2 prevents a process using
more than two seconds of CPU time. Sadly this was not sufficient, as during
development, a mutant managed to open an empty input (stdin) and then
wait indefinitely (consuming no CPU time) for the first byte to arrive.
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timeout 2 This timeout command aborts a process if it runs for more than a couple of
seconds.

Although it should not be necessary to use both limit cputime 2 and timeout 2,
it seemed safer to retain both and the overhead of using both appears to be neg-
ligible.

Where a system imposed limit is exceeded and the process terminated, the
fitness function will detect the non-success exit status and give the mutant a
zero score on that test case.

4.5 Limiting output size to avoid filling disk or exceeding disk quota

In our example, typical output size is 18 or 19 bytes. Nonetheless we use the
linux tcsh limit filesize 1M command to ensure a rogue mutant does not fill
the disk. The 1 megabyte limit is deliberately excessive, since it will avoid the
disk filling problem and we found (with Centos 7) limits close to the expected
output size could trigger the file size exceeded exception early.

5 Hillclimbing Search

The complete C source is compiled to LLVM IR but the search is focused on the
functions in the LLVM IR which can be indirectly called by the program’s main
C entry point. Depending which geopositioning example we are considering,
this gives between 219 and 2113 possible individual mutations (column 6 in
Table 1). In the first pass we test them all one at a time. Between 37% and 63%
of individual mutations pass all the test cases ( column 7

column 6 in Table 1).
In the second (hill climbing) pass, we start from the fastest individual mu-

tation and try adding the first of the other non-fatal mutants. For example, in
one run of H3 compiled with -O3, the fastest individual mutation which still
passes all the test cases was 10633:1. This mutates the conditional branch in-
struction on LLVM IR line 10633 (see Section 3.1). The first non-fatal mutation
is on line 1972 (speed up 7 instructions). Adding it gives the double mutation
10633:1;1972;. However the combination of both mutations does not improve on
mutation 10633:1 by itself. Therefore we do not include 1972, and instead move
on to consider the next non-fatal mutation. The first additional mutation to give
a speed up is that on LLVM IR line 2044. So we add 2044 to our current search
point (giving 10633:1;2044;) and try the next non-fatal mutant (line 2045). In
this way we work through all the non-fatal mutations in a single pass. This is
fast, O(n), but does not consider all possible combinations, O(2n). Nevertheless
it does find a combined set of mutations which give still further speed up on
pass one and continues to pass all the test cases.

6 Results

The results are summarised in Table 1. For both OLC and H3 we conducted
two experiments. Firstly with default parameters for the clang C compiler and
secondly using the -O3 optimisation flag.
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Table 1. Size of C sources for Google’s OLC and Uber’s H3 code optimised.
The rows labeled -O3 are for the same programs but when compiled with LLVM
14.0.0 clang’s optimisation flag -O3. Columns 2 and 3 refer to the source files,
including C .h header files. The (used) column gives the size of C code, exclud-
ing header files, to be optimised. Column 5 is the total size of the intermediate
representation, whilst column 6 shows how many .ll lines we try to optimise.
Column 7 gives the number of mutants which may run faster or slower, but do
not change the program’s output. The complete optimisation (columns 8–10) is
assembled from these. Speedup is the average reduction in unix perf’s instruc-
tions per test case. Average run times are for 1 core on a 3.6GHz Intel i7-4790
desktop.

C files LOC (used) LLVM IR no output- Mutant GI duration
total mutable change size speed up holdout

OLC 4 586 (127) 2546 294 141 2 698 682 5 minutes
-O3 4 586 (127) 2248 219 82 5 683 681 7 minutes

H3 43 5708 (1615) 19415 2113 955 51 2897 2631a 2.5 hours
-O3 43 5708 (1615) 15680 1762 1108 46 3272 2985 3.25 hours

a One holdout test failed

For OLC clang generates 2546 lines of LLVM IR (2248 with -O3). Con-
sidering only mutable LLVM IR in functions which are reachable from main

(see Section 3.5), there are 294 (-O3 219) possible individual mutations5. Of
these 141 (-O3 82) can be individually applied without impacting OLC’s out-
put on the ten training cases. The hill climbing search described in the previ-
ous section, finds six 2323%11;2185;2052%168;2329;2356;2323%25; (-O3 15)
which together give an average reduction of 698 (-O3 683) instructions. Of these
four can be removed without changing OLC’s performance, leaving just two
2323%11;2052%168; (-O3 5), which together give a speedup of 698 (-O3 683).
When tested on ten thousand uniformly chosen post codes (excluding those used
to select the training data) the combined mutation gives an average reduction
in number of instructions of 682 (-O3 681).

The results for H3 are given in the lower two lines of Table 1. The hill
climbing search described in Section 5 finds 89 (-O3 113) individual changes
which together give an average reduction of 2874 (-O3 3267) instructions. Again
some (38, -O3 67) can be removed without changing H3’s output and with little
impact on its speed (see columns 8 and 9 in Table 1). When tested on ten
thousand uniformly chosen post codes (excluding all those used to select the
training data) the combined mutation gives an average reduction in number of
instructions of 2631 (-O3 2985). However, although the 46 changes to H3 -O3
LLVM IR pass all 10 000 holdout tests, the 51 changes to LLVM IR compiled
without -O3 fail just the last holdout test ZEX XXX (see purple * in Figure 1).
ZEX XXX is unusual in being almost the last post code (99.97%th). Also, H3’s
run time on ZEX XXX of 156 466 is 3845 above the average and so there is only

5 Mutable conditional br instructions give rise to two mutations per line, Section 3.1.
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one of the forty H3 training points which has a similar run time (see Figure 2).
Section 7.2 suggests ways to perhaps further increase the number or diversity of
the training data, which might increase the mutant code’s generalisation.

7 Discussion

7.1 Types of Improvement Found

OLC two deletions 2323%11;2052%168; Fortunately OLC compiled with-
out -O3, gives us a simple example to start with. The two changes are indepen-
dent.

2323%11 deletes local register %11 (from the scope defined by the main

routine on line 2323). This has the effect of disabling a sanity check:
fprintf(stderr,"need two arguments latitude longitude\n");

return 1;

which, as all the tests are well formed, is never invoked. Oddly this gives a greater
speed up than the equivalent conditional branch mutation 2334:1 which disables
the preceding if(argc != 1+2){. Although both mutations enter pass two (Sec-
tion 5), 2323%11 is first in the list and as adding 2334:1 gives no additional speed
up, only 2323%11 is retained.

2052%168 removes the line setting local register %168 (declared in the scope
starting on LLVM IR line 2052, which is where function print OLC Encode is
defined). In the LLVM IR produced by clang with no optimisation, this has the
effect of removing the call to printf("\n") at the end of print OLC Encode.
(With -O3 clang converts printf("\n") into a more efficient putchar(10) but
gives a much more complicated mapping between C and LLVM IR.) Removing
printf("\n") reduces the size of the output by one byte and so reduces the
OLC’s run time but makes no difference to its functionality. Again the mutated
OLC code has been made slightly faster by removing non-essential code.

OLC -O3 five deletions 2148:2;1895%6;1905:2;1895%40;1895%178;
1895%178 deletes local register %178 (from scope starting on line 1895 print
OLC Encode). This has the effect of deleting the call to putchar(10) men-
tioned in the previous section as having been generated by clang -O3 to replace
printf("\n"). I.e. GI has found the same optimisation in more convoluted
LLVM IR.
2148:2 br i1 1, label %7, label %4 ;deleted 2 disables the if(argc != 1+2){

mentioned in the previous section. So again skipping the number of arguments
sanity check in main. With the -O3 optimised code, the mutation equivalent to
2323%11 is retained in the second pass (Section 5) but then is correctly found
to be redundant and eliminated in the cleanup pass (Section 6). The three other
deletions are all in print OLC Encode.

print OLC Encode is only called by main and its third parameter is always 16,
whereas kMaximumDigitCount is 15. Thus:

if (length > kMaximumDigitCount) {

length = kMaximumDigitCount;

}
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always sets length to 15. Mutation 1895%6 deletes local register %6 (i.e. sets it to
zero). This has the knock on that the following %7 = select i1 %6, i64 %5, i64 15

is forced to set register %7 to 15 (i.e. kMaximumDigitCount). Effectively elimi-
nating if (length > kMaximumDigitCount).

With -O3 clang inlines the calls to adjust latitude(lat, length) and
normalize longitude(lon). However both lat and lon are always already nor-
malised. Therefore the conditional branch mutation 1905:2 is able to force the
branch on line 1905 to effectively skip over much inlined code.

1895%40 deletes local register %40 so removing the comparison lon degrees

< -kLonMaxDegrees of the first while loop in normalize longitude and forc-
ing the following conditional branch to always jump to over the never needed
adjustment lon_degrees += kLonMaxDegreesT2;

Thus again GI has sped up OLC (above that obtained by clang’s -O3 op-
timisations) by specialising it to the training data and removing some internal
checks and branches which either can never be taken or which must be taken.
It seems that GI has been helped by clangs -O3 extensive inlining greatly ex-
panding the LLVM IR in the print OLC Encode scope. Although the LLVM IR
with and without -O3 are different, it is not yet clear why GI was unable to
exploit the same opportunities when the LLVM IR was split into several smaller
called functions with equivalent functionality, or if there are further similar but
unexploited opportunities.

H3 51 deletions speedup 2631, H3 -O3 46 deletions speedup 2985 There
are too many H3 improvements to describe them all in detail. Several follow the
same ideas as OLC, with redundant operations being removed. Such as removing
calls to normalise data which are always already normalised and simplifying H3
command line processing. (For example, the post code tests never invoke H3’s
“help” command line option.)

As an example consider 10508%74, which in one run gave the biggest in-
dividual saving (872 instructions). Again with -O3, clang inlines functions. In
particular, doCoords (which converts the inputs, given in degrees, into radians
and so must be called) is inlined into main’s LLVM IR. Mutation 10508%74
forces local register %74 to be zero, so causing the immediately following con-
ditional branch to always call doCoords. The direct mutation 10633:1 has the
same effect, but due to noise in perf gets a speed up measurement of 871 and
so 10508%74 is preferred. (In the run described in Section 5 mutation 10633:1
was the fastest.) Naturally 10633:1 gives no additional improvement in the hill
climbing phase and so is dropped in favour of the conceptually slightly more
complicated (but equivalent) 10508%74 mutation.

7.2 Discussion: future work, co-evolution, perf, fitness landscape

The H3 example is an order of magnitude bigger than the OLC. In retrospect,
we should have been surprised if the simplistic choice of training data which
works so well for OLC was sufficient for H3. Although the open source makes
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white box software engineering techniques (e.g. fuzzing) to target edge cases and
branch coverage feasible, we have, so far tried to avoid in-depth analysis of the
program’s internal behaviour. Instead we used external measures, such as run
time and geographic spread to increase the fraction of “difficult” cases in the
training data, Figure 2. It seems further improvements in the training data may
be necessary, in which case an antagonistic co-evolutionary approach, perhaps
where a population of training points is optimised to adversarially increase run
time, might be beneficial.

As expected [41], when perf is used to measure whole program performance,
it offers considerable noise reduction compared to the unix time command. How-
ever even perf’s count of instructions executed is noisy. It is also subjected to
systematic variation, e.g. between test cases, and also due to changes in the
program’s environment. For example, systematic changes in the harness running
the test program, such as when more data are held in unix global environment
variables as training progresses, can increase measured run time.

We have targeted only functions that can be called (see Section 3.5). In
principle it should be possible to use LLVM profiling tools to target more finely
individual LLVM IR instructions that are executed, possibily multiple times,
during training. At present we use run time as a final pass to eliminate individual
changes which appear to have no or little effect (see Section 6). This could be
because they are never executed or because their beneficial effect is also obtained
by other changes in the combined mutation. Although noisy, using run time
potentially allows a (Pareto) tradeoff between size of the GI change and the
benefit it gives [43]6.

We have considered only a few types of mutation. Many others, swaps and
crossover could be included. It seems that in a few cases individual changes are
independent and can all be applied to give each’s own improvement. However
some changes interfere, giving rise to an epistatic fitness landscape [36,44] for
which genetic search may be suitable.

8 Conclusions

LLVM is a mature open collection of tools to support human programmers work-
ing with high level language comprised of compilers, linkers, profilers, debuggers
and other tools. Although initially targeting C and C++ and Intel x86, the
range of languages, supported hardware and analysis tools continues to grow.
LLVM IR offers an intermediate target for genetic improvement (GI) which is
independent of both the source code language and underlying hardware. Its
simple line originated syntax offers a universal GI target without the need for
specialised grammars. However the current black box training needs strengthen-
ing, perhaps using additional LLVM tools, or white box analysis. So far we have
taken two examples from industry standard codes (Google’s OLC and Uber’s H3)
and shown GI on IR can in a few minutes or hours (rather than days or weeks)
give 0.5% (OLC) and 2% (H3) speed up even on compiler optimised code.

6 Our LLVM IR representation allows ready calculation of how many lines of LLVM IR
are impacted, as an alternative to counting the number of mutations.
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