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224 ). These results may indicate a potential overfitting of the tools towards the previous version of the Defects4J dataset.

Introduction

Automated Program Repair (APR) [START_REF] Monperrus | The living review on automated program repair[END_REF], as the name suggests, tries to automatically derive software patches, in order to fix bugs with none (or little) human intervention. Various approaches, based on symbolic execution, machine learning and search-based algorithms, have been proposed for APR [START_REF] Gazzola | Automatic software repair: A survey[END_REF][START_REF] Monperrus | The living review on automated program repair[END_REF]. In this work we focus on search-based APR.

Given a buggy program and related test suite, search-based APR approaches iteratively generate candidate patches by mutating the program. A fitness func-tion compiles and tests each candidate patch to assess whether it produces expected outputs for all inputs in the test suite. If the test suite passes, then it is an indication that the generated patch was successful and it is deemed "adequate". This type of Boolean fitness function has been the approach most used so far, and only recently a more fine-grained fitness evaluation (i.e., non-Boolean), which uses not only the binary result of test cases but also their output in case of a failure, has been proposed [START_REF] Bian | Refining fitness functions for search-based program repair[END_REF][START_REF] Yuan | Toward better evolutionary program repair: An integrated approach[END_REF].

Yuan and Banzhaf [START_REF] Yuan | Toward better evolutionary program repair: An integrated approach[END_REF] have been the first to propose a more refined fitness function and included it in the ARJA-e tool. Their empirical evaluation, conducted on 224 real-world Java bugs from Defects4J [START_REF] Just | Defects4J: A database of existing faults to enable controlled testing studies for Java programs[END_REF] v1.0.1, showed that ARJA-e correctly fixed 39 bugs, achieving substantial performance improvements over the more traditional search-based APR tools using fitness functions based on Boolean test results. On the other hand, a more recent study conducted by Bian et al. [START_REF] Bian | Refining fitness functions for search-based program repair[END_REF] did not reveal any major significant difference when comparing the effectiveness and efficiency of such traditional vs. refined fitness functions.

In this challenge paper, we aim at unveiling whether there is indeed any difference in using traditional vs. refined fitness functions. We use a corpus of real-world software projects with potentially harder-to-fix bugs that has not been used in previous studies. This corpus consists of 151 non-deprecated bugs from 13 software programs from Defects4J v.2, which were not contained in earlier versions of this dataset. We evaluate and compare two well-known stateof-the-art search-based APR software: ARJA [START_REF] Yuan | ARJA: Automated repair of Java programs via multiobjective genetic programming[END_REF] and its extension, ARJA-e [START_REF] Yuan | Toward better evolutionary program repair: An integrated approach[END_REF]. Both use Multi-Objective Evolutionary Algorithms (MOEAs) and differ in the implemented fitness functions. While ARJA uses the more traditional fitness function, based on number of failing test cases; ARJA-e uses the "smooth" non-Boolean fitness to gradually guide the APR process towards a passing test suite.

Our results show that there is little benefit in using refined fitness functions, with ARJA producing 10 patches vs. 12 produced by ARJA-e. Moreover, the fix rates are much lower than those reported in the literature, pointing to overfitting to the previous Defects4J dataset.

Background

A handful of approaches has been proposed to refine fitness functions in searchbased program repair, to not rely on just Boolean test case results. We present all of them below.

ARJA-e Unlike most other APR tools in the literature, ARJA, ARJA-e's predecessor, uses multi-objective optimisation search, considering both patch size (f 1 ) and weighted failure rate (f 2 ). Whilst the patch size simply is the number of edits in a given patch x, the weighted failure rate is defined by Equation 1, with T pos and T neg the sets of negative and positive sets and w ∈ [0, 1] the weight parameter introducing bias against the latter.

f 2 (x) = |{t ∈ T pos : x fails t}| |T pos | + w * |{t ∈ T neg : x fails t}| |T neg | (1) 
ARJA-e further extends ARJA with a more fine-grained fitness function, given by Equation 2. Instead of simply counting the number of failed test cases, the error ratio (h) of each executed test is calculated. This ratio is the mean assertion distance (d(e)) of each assertion executed by the test (e ∈ E(x, t)) for a particular patch. A specific normalised distance metric is used for each type of assertion, e.g., the Levenshtein distance for string objects, or absolute distance for numbers.

f 2 (x) = t∈Tpos h(x, t) |T pos | + w * t∈Tneg h(x, t) |T pos | ; h(x, t) = e∈E(x,t) d(e) |E(x, t)| (2) 
2Phase 2Phase's [START_REF] Bian | Refining fitness functions for search-based program repair[END_REF] fitness function takes a hybrid approach between ARJA and ARJA-e. When two patches produce differing numbers of passing and failing tests, the one with the least failing/most passing will be considered better.

Otherwise, the sum of their assertion distances on failing tests will determine which patch is preferred.

GenProgNS GenProgNS [START_REF] Trujillo | A novel approach for search-based program repair[END_REF] is an implementation of GenProg [START_REF] Goues | GenProg: A generic method for automatic software repair[END_REF] which replaces fitness evaluation based on the number of passing tests with the novelty of the solution. A Boolean vector b represents the outcome of each test case for a particular variant. For test case i, b i is assigned 1 if the test case passes and 0 if it fails. The Hamming distance of these vectors is then used to calculate novelty and the most novel solutions are preferred. This approach prioritises exploration of the large search space over exploitation of the improvements found so far.

Checkpoints Checkpoints [START_REF] De Souza | A novel fitness function for automated program repair based on source code checkpoints[END_REF] implements a fitness function in which the values of variables that are present in test cases are tracked throughout execution. These variables' values are compared with those from the original test executions of the buggy program, and fitness is assigned based on their comparison. For failing test cases on a particular variant, the variant is considered more fit if it maintains the values of variables in tests which originally passed and changes variable values in the tests which originally failed.

Experimental Design

In this work we want to answer the following question: How effective is search-based APR if refined fitness functions are used when compared with traditional fitness evaluation, which considers only Boolean test case results? With this in mind we focus on comparing effectiveness and efficiency of ARJA and ARJA-e. ARJA is a mature tool and ARJA-e provides an extension with the fitness function change, thus making fitness comparison fair for our purposes. Dataset Defects4J [START_REF] Just | Defects4J: A database of existing faults to enable controlled testing studies for Java programs[END_REF] is a prevalent and extremely widespread dataset of real Java bugs. Recently Defects4J has been updated with many new bugs for which very little is known in comparison. We use these new bugs to drive our investigation. To our knowledge, the new bugs introduced in Defects4J v2.0 have only been tackled with non-search-based approaches [START_REF] Motwani | Automatically repairing programs using both tests and bug reports[END_REF][START_REF] Zhu | A syntaxguided edit decoder for neural program repair[END_REF]. Table 1 shows strument the code, localise faults, or it simply hanged. The 151 projects used in this paper are the only ones we could execute without any issues.

Experimental Setup We used the latest commits of ARJA1 and ARJA-e2 . Both tools were run to completion using their default recommended configuration without a specific time limit. Experiments were repeated ten times using independent random seeds, using a Sun Grid Engine cluster running CentOS Linux 7 nodes with Java v1.8.0_131, Perl v5.16, SVN v1.8.19, and Git v2.9.5.

Results and Discussion

Figure 1 shows the summary of our results. The solid circles represent bugs for which the tools were able to successfully run, whereas the dashed lines represent the subset of bugs for which the tools found test-suite adequate patches.

Our results show that ARJA is able to find adequate patches for 6.62% ( 10 151 ) of the subjects, or 10 out of 138 of the bugs if we consider only successful runs. ARJA-e is able to find adequate patches for 7.95% ( 12 151 ) of the subjects, or 12 out of 99 of the bugs if we consider only successful runs.

According to the original work of ARJA and ARJA-e using Defects4J v1.0.1, the tools found adequate patches for 26.33% ( 59 224 ) and 47.32% ( 106 224 ) of the bugs, respectively. The dissimilarity between our findings and the results of previous work [START_REF] Yuan | ARJA: Automated repair of Java programs via multiobjective genetic programming[END_REF][START_REF] Yuan | Toward better evolutionary program repair: An integrated approach[END_REF] is striking: the differences between both tools is rather small (6.62% vs 7.95%) when compared to the difference found in their original papers (26.33% vs 47.32%). Furthermore, the low fixing rate suggests that the effectiveness of these tools can drop with the addition of unseen bugs, unveiling a possible overfitting (a known issue with APR tools [START_REF] Smith | Is the cure worse than the disease? Overfitting in automated program repair[END_REF][START_REF] Kechagia | Evaluating automatic program repair capabilities to repair api misuses[END_REF]) to Defects4J v1.0.1, specially for ARJA-e with a steeper drop. On the other hand, our discoveries are aligned with the work of Bian et al. [START_REF] Bian | Refining fitness functions for search-based program repair[END_REF], who also found a negligible difference.

Finally, ARJA generated 6 383 patches, while ARJA-e a total of 8 703 patches. The medians were 97.5 and 63 per bug, respectively, meaning, in the worst case scenario, an engineer would have to analyse over 60 patches per bug to check for semantic correctness. This hinders the feasibility of both tools in practice due to the great amount of manual effort needed.

Conclusions

Search-based APR has been successfully used to generate test-suite adequate patches. The search over mutated program variants is guided by a fitness function that usually only considers Boolean test case results. In order to improve it's effectiveness, more refined fitness functions were proposed, that take types of failures into account. However, previous work is not unanimous on whether this more sophisticated fitness function actually is more effective.

In this work we ran two state-of-the-art tools, ARJA and ARJA-e, that differ in their fitness implementation, to compare whether the more refined fitness version in ARJA-e indeed helps the search. We ran our experiments on the newly added 151 bugs in the famous Defects4J set. Our results show that neither fitness is significantly better than another. Moreover, we also reveal that the two ARJA variants struggle to find test-suite adequate patches on the new dataset, having found significantly more on older benchmarks.
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 131 Fig. 1. Set of bugs with successful runs and repairs for ARJA and ARJA-e.
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the set of bugs in both versions Defects4J v1.0.1 and v2.0. Although there are 444 non-deprecated new bugs in the dataset, we ended up using a subset of 151 buggy project versions due to a few technical challenges. The list of all bugs and results of our experiments can be found at https://figshare.com/s/ 35ea3fd819e737ed806b.

Technical Challenges ARJA has a few undocumented requirements. ARJA is divided into two modules: the core module contains all the classes for the execution of the algorithms and generation of patches; the external module is used by the core module to instrument the code, run test cases, and capture code coverage. The default location of the external module is hard-coded into ARJA's source code, thus executing the tool within a working directory different from ARJA's root directory results in failures. This can be fixed by providing the path to the external module as an argument, but this is undocumented. This problem is aggravated because ARJA neither fails/crashes when it does not find the external project, nor does it output errors. Hence, it executes normally with missing functionalities, but the results seem to be successful with no generated patches. The second and most crucial challenge regards the resource files/scripts provided by Defects4J to checkout, compile, and to export metadata of projects. The supporting scripts sometimes fail due to various reasons. For example, we could not compile the Compress projects using Defects4J because using Java 8 (required by Defects4J) in combination with the Maven and Ant compilation scripts provided by Defects4J results in failures due to unsupported compilation of Java 1.4 sources (version of the project). Other examples of failures include: inclusion of nonexistent files and missing items in the classpaths, missing configuration files during checkout, and failure to replace placeholders (e.g. ${project.root.dir}) with actual paths. These problems can be fixed by manually (and laboriously) inspecting each of the 444 subjects' resource files. Finally, even with working projects, correct set-ups, and correct metadata, ARJA sometimes failed to in-