William B Langdon

Westley Weimer

Justyna Petke

Erik Fredericks

Seongmin Lee

Emily Winter

Michail Basios

Myra B Cohen

Aymeric Blot

Markus Wagner

Bobby R Bruce

Shin Yoo

Simos Gerasimou

Oliver Krauss

Yu Huang

Michael Gerten

Genetic Improvement @ ICSE 2020

Following Prof. Mark Harman of Facebook's keynote and formal presentations (which are recorded in the proceedings) there was a wide ranging discussion at the eighth international Genetic Improvement workshop, GI-2020 @ ICSE (held as part of the International Conference on Software Engineering on Friday 3 rd July 2020). Topics included industry take up, human factors, explainabiloity (explainability, justifyability, exploitability) and GI benchmarks. We also contrast various recent online approaches (e.g. SBST 2020) to holding virtual computer science conferences and workshops via the WWW on the Internet without face to face interaction. Finally we speculate on how the Coronavirus Covid-19 Pandemic will affect research next year and into the future.

1 What is Genetic Improvement Genetic Improvement is a branch of Artificial Intelligence (AI) and Software Engineering which applies optimisation to improve existing programs. It is always possible to compare the new code with the existing code (effectively treating the program as its own specification) allowing GI to make measureable improvements to today's software. Improvements may be functional (e.g., does the new code have fewer bugs? does it have a new feature? does it give more accurate answers?) or non-functional (e.g. does it have better battery life? is it more reliable?)

GI @ ICSE 2020 via Zoom

The eighth Genetic Improvement workshop (GI 2020) was held as part of the forty-second International Conference on Software Engineering (ICSE 2020) during the Corona virus Covid-19 pandemic. Even as late as the close of ICSE workshop submissions, it was intended to hold ICSE in Seoul, the capital of South Korea, from May 23 thru May 29, 2020. However as the Pandemic bit, it became clear that May 2020 was not feasible. Initially it was decided to delay the conference (and hence the workshops) until October 2020. This was later overturned as more experience with virtualising conferences and holding them on the Internet was gained. Hence, the 42 nd ICSE was held as a virtual electronic conference in early July 2020. Some events were cancelled. However it was decided that the GI @ ICSE 2020 workshop would became an Internet only event and was held using Zoom.us on Friday 3 July 2020 13:00-16:20 UTC http:// geneticimprovementofsoftware.com/gi2020icse.html (Notice the Corvid imposed importance of the time zone.)

Fifty people pre-registered for the Genetic Improvement workshop. On the day participation varied with about 35 people "attending" via Zoom at any one time and a further 40 or so watching on a live YouTube channel (recording https://youtu.be/GsNKCifm44A). Also Yu Huang @YuHuang yh ensured that Twitter carried highlights on #gi icse 2020.

As far as possible, the workshop kept the traditional (physical) format, starting with an invited keynote given by Prof. Mark Harman, who described the use of SBSE [START_REF] Harman | Search based software engineering[END_REF] and Genetic Improvement [START_REF] White | Evolutionary improvement of programs[END_REF] [START_REF] Samundur | Genetic improvement: Taking real-world source code and improving it using genetic programming[END_REF], within Facebook and future plans, including social testing [START_REF] Ahlgren | WES: Agent-based user interaction simulation on real infrastructure[END_REF] and Facebook calls for research proposals. This was followed by formal (albeit electronic only) presentations of papers, which are to be published in the ACM digital library [START_REF] Ahlgren | WES: Agent-based user interaction simulation on real infrastructure[END_REF][START_REF] Blot | Stack-based genetic improvement[END_REF][START_REF] Blot | Synthetic benchmarks for genetic improvement[END_REF][START_REF] Kumar Dash | Checkers: Multi-modal darwinian API optimisation[END_REF][START_REF] Krauss | Towards knowledge guided genetic improvement[END_REF][START_REF] Winter | Human factors in the study of automatic software repair: Future directions for research with industry[END_REF]. (The keynote and all of the presentations were recorded and are available via YouTube https://youtu.be/GsNKCifm44A). The formal presentations were followed by free-form discussions across seventeen time zones (again recorded).

[3][4][5][6][7][8][9][10]
In addition to Facebook, industrial particpants included TurinTech (London UK) and GrammaTech (Bethesda MD and Ithaca NY, USA). Academic and student particpants came from universities across five continents. (An edited record, including genetic improvement tools and resources, of last year's workshop was published in the ACM SIGSOFT's Software Engineering Notes [START_REF] William | The state and future of genetic improvement[END_REF] therefore we do not repeat that information here.)

Although the full discussion, as recorded via Bobby Bruce's screen, is available on YouTube, the following sections condense more than an hour's flowing discussion into just a few of the topics covered.

Human Factors and GI

There are now several implementations of genetic improvement in use [START_REF] William | Improving CUDA DNA analysis software with genetic programming[END_REF][START_REF] William | Benchmarking genetically improved BarraCUDA on epigenetic methylation NGS datasets and nVidia GPUs[END_REF][START_REF] William | Genetic improvement of GPU software[END_REF][START_REF] Langdon | Improving SSE parallel code with grow and graft genetic programming[END_REF]] (e.g. Janus Manager [START_REF] Saemundur | Fixing bugs in your sleep: How genetic improvement became an overnight success[END_REF][START_REF] Oskar | Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System[END_REF] and Facebook's SapFix [START_REF] Alshahwan | Industrial experience of genetic improvement in Facebook[END_REF][START_REF] Jia | Finding and fixing software bugs automatically with SapFix and Sapienz[END_REF][START_REF] Marginean | SapFix: Automated end-to-end repair at scale[END_REF]) so it would be the right time to perform human studies to gain insights from developers who have already used GI on what else would be useful. Notice all genetic improvement systems in use require human acceptance of automatically generated source code changes. Indeed in both Janus Manager (Python) and SapFix (Hack, Java) developer acceptance is explicitly part of the continuous integration development protocol.

There is a great need to understand in more depth the human factors surrounding the application and implementation of genetic improvement techniques within industry. Concentrating on usability (often within the context of a controlled experiment) may also obscure the applicability of genetic improvement techniques in real-life settings, and what kind of specific techniques software developers would find useful in their work. However, usefulness alone is not enough and it must also be complemented with trustworthiness, since developers need to be able to trust GI techniques in order to use them with confidence.

It is also vital to understand the broader impact of genetic improvement from a human perspective, such as considering what kind of tasks GI techniques might both remove from and add to software developers' workflow and what this might mean for the future of software engineering work.

Explainable Genetic Improvement

A very engaging discussion on explainable GI ensued during the workshop. Explainability is an important topic in the Artificial Intelligence (AI) literature now [START_REF] Gunning | DARPA's explainable artificial intelligence (XAI) program[END_REF]. It provides users with the reasoning about decisions made during the machine learning, search and optimisation process. It was suggested, that if we can provide explainability along with our patches, this would go a long way in helping users gain confidence in the proposed program modifications. This fits in well with our earlier discussion of trust on the human side of GI. Some argued that GI systems have explainability built in as the algorithms explore parts of a search space and that it should be possible to capture some of the reasoning (why some patches are selected or not) during the search. The discussion centered on two aspects of explainability: structural and semantic. Attendees felt that the semantic explainability is harder and it would not be trivial to build in. Two potential issues are that (1) we are guiding the search towards the positive part of the search space which could bias our explanations, and (2) since part of explainability is providing a minimally explainable set this could lead to overfitting. Both of these issues would need to be overcome. All agreed that research into explainability of GI is an interesting and exciting direction.

Through the discussion, we shared some research methodologies for explainable GI. One approach is to understand the GI process. We already know the goals of the GI objective (fitness) function and which code changes (mutations) have been applied to the program. Based on the record of the changes, we hope to be able to explain how the control flow of the program has changed and how performance (fitness) has changed after applying the change operators. While the approach of understanding the GI is a passive strategy to achieve explainable GI, we can also actively control what GI can do. We may use modification operators that are designed to explain their changes. Therefore, each change can provide more useful information about itself.

A more pragmatic approach could be to build on standard methods used for debugging, including control flow and data flow graphs, which would aid developers, if not to accept the patch then understand its impact on the code base. Perhaps even if the fix is not the right one, if developers understand its influence then they could still accept it as a temporary fix, whilst they think of a permanent one. Also, if we have a reasonable measure of readability, GI could use it as one of the objectives in a multi-objective search.

Justify

The discussion turned towards the need for popular, easyreplicable use cases of GI 1 . It was suggested that in general people do not understand genetic algorithms and that perhaps this makes it a challenge to justify use of GI to a broader audience.

During the discussion it was also noted that some form of metric could be introduced for automatically generated patches. Such a metric could also impact use of patches, similar to how upvotes work in forums such as Stack Overflow. In production environments, such as continuous integration (CI), we certainly see that managers ensure that effectiveness metrics, such as fraction of auto-patches accepted into production, are collected [START_REF] Alshahwan | Industrial experience of genetic improvement in Facebook[END_REF][START_REF] Marginean | SapFix: Automated end-to-end repair at scale[END_REF].

Exploit

The question of exploiting GI was felt to be much the same as how to get uptake of GI by industry (see Sections 5 and 6).

Industry's View of GI 5.1 Artificial Intelligence is very popular across Industry

AI is one of the hottest topics in industry at the moment. Usually businesses that use the term AI refer to the technology that will help them automate their current processes (e.g., chat bots, automatic document text extraction, speech to text), better understand their data (machine learning clustering models) and take automatic prediction decisions (supervised learning models). Thus, there is a very big increase in hiring data scientists who can apply the newest machine learning techniques. Knowledge of machine learning libraries such as Keras, Tensorflow and Pytorch2 has become essential knowledge in most interviews. Practically, in industry the term AI refers to machine learning related problems.

Machine Learning has dominated the AI space

The popularity of AI means that any problem that is in the optimisation space is tackled usually as a machine learning problem. For instance, a lot of industrial problems that have to do with parameter tuning for maximising or minimising an objective function, are treated like machine learning prediction problems, whilst they could be solved, many times, more efficiently using Genetic Algorithms and other optimisation techniques. However, few people in industry are familiar with terms such as genetic algorithms, multi-objective optimisation and genetic improvement. This may be due to limited industrial use so far or not being highly advertised or due to the lack of widely available and popular open source libraries that are used by current data scientists.

AI on data vs. GI on code adoption

Most AI techniques in industry are applied on data, whereas most GI techniques focus on code (recent GI exceptions include [START_REF] William | Evolving better RNAfold structure prediction[END_REF][START_REF] Langdon | Evolving better software parameters[END_REF]). In many organisations, having access to data and exporting them for applying machine learning libraries is quite a straightforward and replicable process. However, applying GI techniques on existing internal code bases can be a bit more tricky because of the different programming languages used (different teams use different languages inside the same company), the different programming tools, and the variety of project code structures. Additionally, many code bases lack proper testing and performance benchmarks, upon which many GI techniques rely on. For instance, when we wanted to apply Artemis [START_REF] Basios | Darwinian data structure selection[END_REF], a GI tool that does automatic code optimisation using better data structures on a performance critical component of a system, we realised that the project did not contain a proper performance benchmark and relying on the test cases was not a realistic behaviour of the application, thus making the optimisations impractical. Additionally, building a performance benchmark for the specific project would take a long time, and thus was considered a lower priority on the project manager list of features.

To summarise, the most common issues when applying GI techniques on existing industrial code bases are:

1. Lack of proper testing and benchmarks on the code bases. Industrial applications are usually much more complex and with many dependencies than the applications used by the research community to apply GI.

2. Lack of popular, easy-replicable successful use cases where GI has been applied. Industry likes ready to use tools that can help them make money.

3. GI tools are mostly understood by only a few people inside an organisation, who are usually technical experts. Technical people have less access to budget and investment in new technologies.

4. Further need to integrate GI as part of the continuous integration process. If GI is inside a development tool, most engineers will not focus on the exact techniques used, and will not be familiar with the term GI.

Researchers and Industry

In addition to TurinTech (Sections 5-5.3), there were two other companies represented in the registered audience: Facebook and GrammaTech. The question of how GI researchers could work with them (or other companies) was raised. A Facebook call for research proposals was announced during the keynote. For examples, would industry accept partnership agreements? Perhaps these could lead to easy ways to try out a new technique (e.g., stack-based GI, presented by Dr. Blot [START_REF] Blot | Stack-based genetic improvement[END_REF]) on Facebook's SapFix [START_REF] Marginean | SapFix: Automated end-to-end repair at scale[END_REF]?

In order to develop GI techniques that are beneficial to industry, greater collaboration with industry may be needed. However, there are several potential barriers to this. Firstly, some companies may be wary of sharing code and documentation with researchers. (This can often be overcome with suitable non-disclosure agreements, NDAs.) Secondly, the time investment needed for industry to work with researchers might be off-putting. Several possible solutions were discussed, including clearly articulated partnership agreements (traditional university ethics procedures may not be necessarily adequate [START_REF] Rybnicek | What makes industry-university collaboration succeed? a systematic review of the literature[END_REF]) and adopting agile-inspired frameworks in order to carry out research in a timely and light-touch fashion [START_REF] Sharp | Overcoming challenges in collaboration between research and practice: The agile research network[END_REF].

Dr. Winter [START_REF] Winter | Human factors in the study of automatic software repair: Future directions for research with industry[END_REF] spoke of the need for more longitudinal and ethnographic research in industry, so as to more fully understand the organisational and human context of GI techniques' use, and potential barriers to their adoption.

More immediately, a GI plug-in or simply better documentation will encourage way more widespread use of GI.

Benchmarks

A call for industry cooperation to create realistic genetic improvement benchmarks was raised. Some argued that benchmarks which have characteristics of real (industrial) applications are needed to allow researchers to build new techniques that will work in practice. If researchers use only small benchmarks, which are open source, their techniques may overfit and/or not scale to real systems. Another benefit of benchmarks is to provide an easy entry point for newcomers to GI. Some of the attendees from industry at the workshop pushed back saying that everyone already has access to realistic systems since many of the large open source applications today are representative of the types of systems in industry. However, they also noted that to make research techniques viable for industry they need to be built into existing continuous integration (CI) build systems. They suggested GitHub open source repository pull requests be provided for genetic improvement patches to find out if they are really good and useful. Some suggested that scalability, especially in data-driven systems, is still a real challenge for genetic improvement. Others argued that some GI tools scale well, but that this may be a factor of whether or not there is good fault (bug) localization behind it.

Benchmarking is a challenge that even the optimisation community continues to struggle with [START_REF] Bartz-Beielstein | Benchmarking in optimization: Best practice and open issues[END_REF]. Indeed the fact that the ten-year impact award at GECCO 2020 was awarded to a paper on benchmarking organisation [START_REF] Hansen | Comparing Results of 31 Algorithms from the Black-Box Optimization Benchmarking BBOB-2009[END_REF], highlights that the challenge is still unsolved. If real world systems taken from industry might provide realistic examples, they come with their inherent cost and complexity. Furthermore, when selecting representatives examples: which project to consider, which programming language to target, what feature in general to take into consideration, are recurrent questions in the genetic improvement community for which there is no clear consensus. One idea, in order to obtain much simpler and cheaper problems instances for GI approaches, would be to take a step back and from the theory point of view focus on the core components and characteristics of GI problems [START_REF] Blot | Synthetic benchmarks for genetic improvement[END_REF]. Such theory-anchored characterisations, while not exactly filling the need of actual complex real-world benchmarks, would have several advantages: 3. an opportunity for people from more traditional optimisation fields to encounter GI problems and share their expertise.

Finally, to further strengthen the connection between the software engineering roots of GI and the knowledge of the optimisation community, GI might provide benchmarks for optimisation competitions (e.g., held at the CEC or GECCO conferences).

8 Next Year: What if we still have a Pandemic

Workshop Virtualization

A new issue that all international gatherings had to manage this year was remote interaction and content delivery for participants located in varying time zones. While ICSE2020 used a time band model, both GI @ ICSE 2020 and the Search-Based Software Testing (SBST 2020) workshops had single synchronous sessions using an online meeting tool and accompanying livestream. Table 1 summarises the two approaches. In terms of "success", both workshops were enjoyable to attend and available technologies minimized problems during both events. The key difference between the two formats was that GI was more presentation-focused and SBST was more discussion-focused. For SBST, additional effort was placed on the chairs to ensure that there is no "dead air" (i.e., questions needed to be prepared in advance). Whereas GI was able to leverage the authors as well as the audience to fuel the interaction. SBST also provided a social event in the form of an enjoyable live pub quiz. Unlike other international events, the ICSE workshops were not under heavy preasure to remain within their scheduled time slot or under the threat of Zoom being closed whilst discussion continued.

Regardless of the differences, both GI and SBST were both successful in their own right. Both had a record number of registered participants. Monitoring attendance rates in the future will determine whether this is a result of lower attendance fees, being available via the world wide web (WWW), or both. However this initial metric makes a strong case for allowing virtual participation via the Internet in future.

Do What the Virtual World Does Best

Perhaps we should not try to replicate the conference experience but work out what is best done in the virtual world and more importantly how to connect via it to give faster discussion (rather than the current yearly or bi-annual cycle).

The use of Slack to continue conversations after scheduled talks/sessions had finished was something that worked well at other conferences and enabled more informal interaction.

Figure 1 :

 1 Figure 1: Surge in downloads via the GP bibliography during the GI workshop (14:00-17:21 BST). (Each day divided into four 6 hour periods.)

Table 1 :

 1 Contrasting Approaches and Tool Usage between GI and SBST ICSE 2020 workshops

		Genetic Improvement	Search-Based Software Testing
	Meeting Software	Zoom	Microsoft Teams
	Livestream	YouTube	Twitch
	Presentation Format Live presentation	Live keynote + pre-recorded author videos
	1. better rationalisation of what makes GI work,	
	2. minimal examples highlighting specific features for prac-	
	titioners to improve the state-of-the-art on, and	

Explainabiloity, Explain, Justify, ExploitExplain, justify and exploit in GI go hand in hand. If how the algorithm works, and the resulting patches can be explained, their use can be justified to a larger community and to industry at large. This in turn increases adoption of GI end opens it for exploitation.

Last year, in Section 3[START_REF] William | The state and future of genetic improvement[END_REF], we listed

tools, also[START_REF] Samundur | Genetic improvement: Taking real-world source code and improving it using genetic programming[END_REF][START_REF] Alexander | Gin: genetic improvement research made easy[END_REF][START_REF] Petke | Software improvement with Gin: a case study[END_REF][START_REF] Gabin An | PyGGI 2.0: Language independent genetic improvement framework[END_REF] were published after the GI @ ICSE 2019 workshop.

See https://keras.io/, https://www.tensorflow.org/, and https://pytorch.org/.