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RESOLVING A CLEARING MEMBER’S DEFAULT

A RADNER EQUILIBRIUM APPROACH

DORINEL BASTIDEa, b, STÉPHANE CRÉPEYc, SAMUEL DRAPEAUd, MEKONNEN TADESEe

SEPTEMBER 22, 2023

ABSTRACT. For vanilla derivatives that constitute the bulk of investment banks’ hedging
portfolios, central clearing through central counterparties (CCPs) has become hegemonic.
A key mandate of a CCP is to provide an efficient and proper clearing member default
resolution procedure. When a clearing member defaults, the CCP can hedge and auction
or liquidate its positions. The counterparty credit risk cost of auctioning has been analyzed
in terms of XVA metrics in Bastide, Crépey, Drapeau, and Tadese (2023). In this work we
assess the costs of hedging or liquidating. This is done by comparing pre- and post-default
market equilibria, using a Radner equilibrium approach for portfolio allocation and price
discovery in each case. We show that the Radner equilibria uniquely exist and we provide
both analytical and numerical solutions for the latter in elliptically distributed markets.
Using such tools, a CCP could decide rationally on which market to hedge and auction or
liquidate defaulted portfolios.

Keywords: financial markets, exchanges, central counterparties (CCPs), default resolu-
tion, Radner equilibrium, price impact, entropic risk measure, expected shortfall, hedging,
auctioning, liquidation, market risk, credit risk, cross-valuation adjustments (XVA).
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1. INTRODUCTION

Financial actors can discover counterparties for their transactions by participating
in an exchange. In the case of derivatives, an exchange is backed by a central coun-
terparty (CCP). As surveyed in Gregory (2014, Sections 13.3.5, 13.3.6 and 13.4) and
Menkveld and Vuillemey (2021), a CCP transforms counterparty credit risk into liquid-
ity risk by netting and managing multiple flows of collateral, including a default fund that
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is pooled among the clearing members. A CCP is also responsible for rewiring or liquidat-
ing the CCP portfolios of a defaulted clearing member within a few days of the default. As
emphasized in Table 1, an ordered resolution of clearing members’ defaults might actually

Pros Cons

Netting Multilateral netting benefit Loss of bilateral netting across
asset classes

Counterparty credit risk

and liquidity risk

Reduced default risk of
the CCP itself and reduced
“domino effects” between
members

Concentration risk if a major
CCP were to default.
Joint membership and feed-
back liquidity issues.

- about 30 major CCPs to-
day and only a few promi-
nent ones (CME, LCH, Eu-
rex, ICE,..)

Information Better information of the reg-
ulator via access to the reposi-
tories of the CCP

Opacity of the default fund for
the clearing members, which
are not in a position of esti-
mating their risks and the cor-
responding costs with accu-
racy

Costs Default resolution cheaper:

- Bilateral trading means a
completely arbitrary trans-
action network.

- An orderly default proce-

dure cannot be done man-

ually. It requires an IT net-

work, whether it is CCPs,

block-chain technology,...

High cost of raising funding
initial margins (at least, if
funded by unsecured borrow-
ing)

TABLE 1. Pros and cons of CCPs (Gregory, 2014;
Menkveld and Vuillemey, 2021; Albanese, Armenti, and Crépey, 2020).

be the most tangible benefit of CCPs. However, a CCP is faced with several possibilities for
settling the default of a clearing member. This paper provides quantitative tools to assess
and compare the costs of alternative default resolution strategies.

So far, the optimal settlement of the portfolio of a clearing member has been
mostly addressed from the financial engineering viewpoint of optimal liquidation
schedules accounting for exogenous liquidity constraints (Avellaneda and Cont, 2013;
Vicente, Cerezetti, Faria, Iwashita, and Pereira, 2015). In this paper, we look at the default
resolution procedure from a less dynamic but more endogenous, economic equilibrium per-
spective, with offer and demand determined by clearing member strategies, positions, and
preferences. Our default resolution market costs arise from the perturbation of the market
equilibrium triggered by the default resolution procedure. To estimate these costs, one has
to know the values of the traded assets as well as the positions of all market participants,
in both the pre- and post-default markets. A classical method for valuing a derivative is
to compute the expectation of its discounted payoffs under an equivalent martingale mea-
sure. But in a realistic, incomplete market, this strategy may not perform properly, because
of the non-uniqueness of a pricing measure. An equilibrium approach may then be more
appropriate. As surveyed in Magill and Shafer (1991) or Radner (1982), the concept of
competitive or Walras equilibrium in economics was first stated in deterministic and static

2



settings. Debreu (1959) extends it to a stochastic framework based on a sequence of mar-
ket future conditions, but with trading taking place only at time zero. Radner (1968, 1972)
revisit the approach in a multi-period and stochastic setting, well suited to the pricing of
financial assets, financial derivatives in particular, with inherently uncertain future cash
flows. We use a Radner equilibrium approach to discover prices and reallocate a defaulted
derivative portfolio among trading participants, under two (main) possible specifications:
either the CCP hedges the portfolio by trading on an exchange, or it liquidates the portfo-
lio on an exchange. The ensuing costs are determined by comparing pre- and post-default
Radner equilibria. This is done in a one-period specification of the discrete-time Radner
equilibrium approach of Cheridito, Horst, Kupper, and Pirvu (2015). Though the applica-
tion of Radner equilibrium in static and dynamic problems is not new, using it to estimate
CCP close-out costs appears to be a novel approach.

On top of hedging and liquidation, there is a third vertex to the triangle of the possible
close-out procedures, namely auctions. Hedging and liquidation are driven by equilibria
between the agents, whereby the market decides endogenously the optimal prices and asset
allocation. Auctioning, instead, is of a game theoretical nature. Actual default resolution
procedures are in fact a combination of the three, with implications not only in terms of
price impact liquidity risk as emphasized in the above, but also of counterparty credit risk,
the way addressed in the last section of the paper.

Outline. Section 2 provides our Radner equilibrium market model. Section 3 introduces
the related comparative statics approach for the analysis of the market costs of hedging or
liquidating a defaulted clearing member portfolio, either on the exchange of the CCP of
the defaulter, or on an external exchange. Sections 4 and 5 detail these costs in the case of
entropic and expected shortfall risk measures. Section 6 analyzes the additional impact of
counterparty credit risk, based on XVA specifications detailed in Section A.

Standing notation. Given vectors x ∈ R
m and y ∈ R

n (understood as column matrices),
x⊤ is the transpose of x and (x, y) is the vector of Rm+n formed by stacking x above y.
We denote by Nn(µ,Γ), the n-variate Gaussian distribution with mean µ and covariance
matrix Γ, and by φ and Φ, the standard univariate Gaussian probability density and cumu-
lative density functions; by En(µ,Γ, ψ), the n-variate elliptical distribution with mean µ,
covariance matrix Γ, and characteristic generator function ψ, by Tn(µ,Γ, ν), the n-variate
Student t-distribution of degree of freedom ν with mean µ and covariance matrix Γ, and
by tν and Tν , the standard univariate Student t probability density and cumulative density
functions of degree ν. Throughout the paper, (Ω,A,P) denotes a fixed probability space,
with expectation, variance and covariance operators E, Var and Cov; L0 and L1 respec-
tively denote the space of all the measurable and integrable random variables (identified in
the P almost sure sense), X is a linear subspace of L1 containing the constants. Capital
letters denote random vectors with components in X . Bold letters refer to the solution of a
Radner equilibrium.

For a function f : Rm → R, its directional derivative at x in the direction of y is
defined as

Dyf(x) = lim
ǫց0

f(x+ ǫy)− f(x)

ǫ
; (1.1)

for f convex, a point y ∈ R
m is said to be a subgradient of f at x, denoted y ∈ ∂f(x), if

f(z) ≥ f(x) + y⊤(z − x), z ∈ R
m; (1.2)

the convex conjugate f∗ of f is defined as

f∗(y) = sup
{
y⊤x− f(x); x ∈ R

m
}
, y ∈ R

m. (1.3)
3



Let fi : Rm → R be convex functions, for i in a finite set E. The inf-convolution f of the
fi is defined as

f(x) = inf

{
∑

i∈E

fi(xi);
∑

i∈E

xi = x

}
, x ∈ R

m. (1.4)

2. RADNER EQUILIBRIUM MARKET MODEL

We consider a one-period model of a financial exchange, with trading participants
indexed by a finite set E. A unitary position in each of the assets traded on the exchange
pays a vector of random payoffs P ∈ R

m (with m ≥ 1) at the terminal time T . We assume
that each participant i inE is endowed with a real valued random receivable Ri (i.e.Ri ≥ 0
means a cash flow promised to the participant i). For each i ∈ E, the participant i hedges1

Ri by entering a portfolio qi ∈ R
m of traded assets. The corresponding market loss of

member i is

−Ri + q⊤
i (p− P ), (2.1)

where p ∈ R
m is the vector of prices of the traded assets at initial time: see Table 2, where

Γi =

[
Var(Ri) covi
covi Γ

]
. (2.2)

p equilibrium prices of the traded (hedging) assets
qi equilibrium positions of participant i in the traded (hedging) assets
µ the vector E[P ]
Γ the matrix Cov(P )
Ri receivable to be hedged by the participant i ∈ E
µi the vector E[(Ri, P )]
covi the vector Cov(Ri, P ) =

(
Cov(Ri, P1), . . . ,Cov(Ri, Pm)

)

cov
∑

i∈E covi
Γi the covariance matrix Cov((Ri, P )), i.e. of the vector (Ri, P )
ρi risk measure of the participant i
̺i risk-aversion parameter of an entropic risk measure of the participant i
̺ the number (

∑
i∈E(1/̺i))

−1

αi confidence level for an expected shortfall risk measure of the participant i

TABLE 2. Main notation relative to an exchange E.

For the monetary valuation of the risk of the participant i, we consider a law invariant
risk measure ρi : X → R monotonous, convex2, translation equivariant3 in the sense that4,
and normalized (ρi(0) = 0). We want to determine the portfolios qi and the prices p

endogenously as a Radner equilibrium driven by the offer and demand of all the participants
to the exchange:

1unhedged market risk can generate significant regulatory capital requirements, rendering the contrac-
tual commitments non viable for the trading participant (Bank For International Settlements, 2019, Section
MAR23, pp. 64 and 93).

2in the sense of McNeil, Frey, and Embrechts (2015, Definition 2.24, p. 74).
3also known as translation invariance.
4see Pflug and Römisch (2007, Definition 2.2 (i), page 29) ρi(L+m) = ρi(L) +m holds for any L in X

and real constant m.
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Definition 2.1. A matrix of positions (qi)i∈E and a price vector p ∈ R
m form a Radner

equilibrium on E if
• (optimality condition relative to each market participant i ∈ E)

ρi(−Ri + q⊤
i (p− P )) ≤ ρi(−Ri + q⊤i (p− P )), qi ∈ R

m, (2.3)
• (zero clearing condition) ∑

i∈E

qi = 0. (2.4)

Remark 2.2. Since Ri is assumed to be exogenously given, the price of the corresponding
receivable to the participant i is not part of the equilibrium. We say nothing on this price
(assumed exogenously given and in fact implicitly part of Ri itself in our setup) in the
paper, nor on the way it could be impacted (in our setup it is simply not) by the instant
default of a participant to the exchange.

2.1. Generic Results. For each trading participant i inE, we consider the convex function
ri : R

m → R defined as

ri(qi) = ρi(−Ri − q⊤i P ), qi ∈ R
m.

By translation equivariance of ρi, the member i optimality condition (2.4) can be rewritten
as

ri(qi) ≥ ri(qi) + (−p)⊤(qi − qi), qi ∈ R
m,

i.e., by (1.2),
− p ∈ ∂ri(qi). (2.5)

By Rockafellar (1970, Theorem 23.5), this is in turn equivalent to

ri(qi) = −q⊤
i p− r∗i (−p), (2.6)

where r∗i is the convex conjugate (1.3) of ri. Note that

− q⊤i p− r∗i (−p) ≤ ri(qi), qi, p ∈ R
m,

with equality if and only if − p ∈ ∂ri(qi),
(2.7)

by Rockafellar (1970, Theorem 23.5).
Lemma 2.1 and Theorems 2.2-2.3 below are variants, for a single period model but

with unbounded (Ri, P ) (as we want to endorse elliptical factor models later in the paper),
of Cheridito, Horst, Kupper, and Pirvu (2015, Theorems 1 and 2). Radner equilibria admit
the following dual characterization in terms of the inf-convolution (1.4) r of the ri.

Lemma 2.1. A matrix of positions (qi)i∈E and a price vector p ∈ R
m form a Radner

equilibrium on E if and only if

(i) −p ∈ ∂r(0),
(ii) r(0) =

∑
i∈E ri(qi), and

(iii)
∑

i∈E qi = 0.

Proof. Let ((qi)i∈E ,p) be a Radner equilibrium as per Definition 2.1. The zero clearing
condition (2.4) yields (iii). By Rockafellar (1970, Theorem 16.4, page 145), the convex
conjugate of the inf-convolution of proper convex functions is the sum of the corresponding
conjugates, i.e.

r∗(−p) =
∑

i∈E

r∗i (−p).

Summing the expression (2.6) across all ri and using (iii) gives
∑

i∈E

ri(qi) = 0− r∗(−p) ≤ r(0),
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where the inequality holds by definition (1.3) of the convex conjugate of r. By definition
of r(0), the above inequality becomes equality, i.e.

r(0) = −r∗(−p) =
∑

i∈E

ri(qi).

Hence (ii) holds and so does also (i), in view of the equivalence between (2.5) and (2.6),
here applied to r (instead of ri there).

Conversely, suppose that ((qi)i∈E ,p) satisfies (i)–(iii). (iii) is the zero clearing con-
dition (2.4), whereas (i) implies via (2.6) applied to r that

r(0) = −r∗(−p) =
∑

i∈E

(
−q⊤

i p− r∗i (−p)
)
. (2.8)

By (2.7) and (2.8), −p /∈ ∂ri(qi) for some i ∈ E would imply that r(0) <
∑

i∈E ri(qi),
contradicting (ii). Hence (2.5), which is equivalent to the member i optimality condition
(2.4), holds for each i ∈ E.

Since the subgradient of a real valued convex function is non-empty, Lemma 2.1 implies
that a Radner equilibrium exists if and only if the inf-convolution r is attained at 0. It also
implies that, whenever a Radner equilibrium exists, the optimal price is unique if and only
if r is differentiable at 0.

Theorem 2.2. If ρi is sensitive to large losses, i.e.5 limλ→∞ ρi(λL) = ∞ for all L ∈ X
such that P[L > 0] > 0, i in E, then there exists a Radner equilibrium on E.

Proof. LetQ be the set of vector of positions (qi)i∈E satisfying the zero clearing condition,
i.e.

Q =
{
q ∈ R

m|E| : q⊤bk = 0, k = 1, . . . ,m
}
,

where bk is a vector in R
m|E| such that, for all j = 0, . . . , |E| − 1, the k + jm entries of

bk equal 1 and all the other entries of bk are 0 . Note that Q is a non-empty closed convex
polyhedral subset of R

m|E|. Let µ = E[P ]. By Dalang, Morton, and Willinger (1990,
Theorem 3.3), q⊤i (µ − P ) = 0 almost surely holds or P[q⊤i (µ − P ) > 0] > 0 holds, for
any qi in R

m. The closed proper convex function

R
m|E| ∋ q = (q1, . . . , q|E|)

β7→
∑

i∈E

ρi(−Ri + q⊤i (µ − P )) ∈ R (2.9)

is such that
inf
q∈Q

β(q) = inf
∑

i∈E qi=0

∑

i∈E

ri(qi).

In view of the comment preceding the statement of the theorem, it suffices to show that
β attains its minimum on Q. Let B = {q ∈ R

m|E| : β(q) ≤ β(0)}, with recession cone
0+B = {y ∈ R

m|E| : b+ λy ∈ B,∀λ ≥ 0,∀b ∈ B} . Let 0+β = {y ∈ R
m|E| : β0+(y) ≤

0} denote the recession cone of β, where β0+ is its recession function6. By Rockafellar
(1970, Theorem 8.7, page 70), 0+B = 0+β. Since B is a closed convex set containing the
origin, Rockafellar (1970, Corollary 8.3.2, page 64) yields

0+B = {y ∈ R
m|E| : λy ∈ B ∀λ > 0}. (2.10)

Let y = (y1, . . . , y|E|) ∈ R
m|E|\{0} (where each yi is in R

m). (i) If P[y⊤i (µ−P ) > 0] > 0
holds for some i ∈ E, then, by the sensitivity to large losses condition on ρi, β(λy) goes to
infinity as λ goes to infinity, which implies that y /∈ 0+B. (ii) If, instead, y⊤i (µ − P ) = 0

5see Cheridito et al. (2015, Section 2.3).
6the recession function β0+ is the map defined on R

m|E| as β0+(y) = inf
{

m ∈ R : (y,m) ∈ 0+epi β
}

,

where epi β =
{

(q, n) ∈ R
m|E| × R : n = g(q)

}

.
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holds for all i ∈ E, then ±y ∈ 0+B hold by definitions (2.9) of β, B and (2.10) of 0+B.
In particular, for any y ∈ R

m|E| \ {0} such that y ∈ 0+β, we have −y ∈ 0+β. Hence, by
Rockafellar (1970, Corollary 8.6.1, page 69), every direction of recession is a direction in
which β is constant. Following Rockafellar (1970, Theorem 27.3, page 267), in either case
(i) or (ii), β attains its minimum over Q.

Remark 2.3. Let X be given as the Orlicz heart corresponding to the Young function
θ : [0,∞) → [0,∞) given by θ(t) = exp(t− 1)− exp(−1), i.e.

X = {L ∈ L0 : E[θ(c|L|)] <∞, c > 0} ⊆ L1,

where L0 is the space of all real valued measurable random variables. An entropic risk
measure of the form, for some ̺i > 0,

ρi(L) =
1

̺i
ln(E[exp(̺iL)]), L ∈ X , (2.11)

is sensitive to large losses (Cheridito et al., 2015, Section 2.3).

Regarding the uniqueness of an optimal solution:

Theorem 2.3. Let ((qi)i∈E ,p) be a Radner equilibrium on E.

(i) If ri is differentiable at qi for some i in E, then p is unique.

(ii) For any i ∈ E, if ri is differentiable and strictly convex on R
m then qi is unique.

Proof. Let ((qi)i∈E ,p) be optimal. If ri is differentiable at qi, then Lemma 2.1(i) together
with Rockafellar (1970, Theorems 23.2, p. 216 and 25.2, page 244) yield

Dxri(qi) = x⊤(−p) ≤ Dxr(0), (2.12)

where Dxri(qi) is the directional derivative (1.1) of ri at qi along x. Take q̂i = qi + ǫx
and q̂j = qj for all j 6= i. By definition (1.4) of the inf-convolution,

r(ǫx) ≤
∑

j∈E

rj(q̂j) =
∑

j 6=i

rj(qj) + ri(qi + ǫx).

This together with Lemma 2.1(ii) yields

Dxr(0) = lim
ǫց0

r(ǫx)− r(0)

ǫ
≤ lim

ǫց0

∑
j∈E rj(q̂j)− r(0)

ǫ
= Dxri(qi) ≤ Dxr(0),

where the second inequality is due to (2.12). Hence x 7→ Dxr(0) is linear. Thus, by
Rockafellar (1970, Theorem 25.2, page 244), r is differentiable at 0 , i.e. ∂r(0) is a single-
ton, which, in view of Lemma (2.1) (ii) implies (i). As for (ii), if ri is a strictly convex and
differentiable on R

m, then it is closed and proper. Following Rockafellar (1970, Corollary
26.3.1, page 254), ∂r∗i (−p) is a singleton and qi = ∇r∗i (−p) is unique, by (2.6).

Remark 2.4. Let ((qi)i∈E ,p) be optimal. Following Cheridito et al. (2015, Proposition 2),
if a risk measure ρi is differentiable7 at −Ri−q⊤

i P for some i inE, then ri is differentiable
at qi, hence the optimal price p is unique.

7ρi is differentiable at L ∈ X if there exist a random variable W ∈ X ∗ (the dual space of X ) such that
(cf. (1.1))

lim
ǫց0

ρi(L+ ǫY )− ρi(L)

ǫ
= E[YW ] Y ∈ X .

In this case, we write W = ∇ρi(L).
7



2.2. Results Specific to Entropic or Expected Shortfall Risk Measures. With explicit
solutions and regulatory standards in view, from now on, ρi is either an entropic or an
expected shortfall risk measure. In elliptical markets, entropic or coherent8 risk measures
lead to analytical expressions for equilibria. We first consider the case of entropic ρi and
normally distributed (Ri, P ).

Proposition 2.4. Let (Ri, P ) ∼ Nm+1(µi,Γi), i in E, and Γ9 be invertible. If ρi(L) =
1
̺ i
ln(E[exp(̺iL)] for some ̺i > 0, i in E, then

qi = Γ−1

(
̺

̺i
cov − covi

)
, i ∈ E, and p = µ− ̺cov, (2.13)

where ̺ =
(∑

i∈E
1
̺i

)−1
and cov =

∑
i∈E covi, is a unique Radner equilibrium.

Proof. By Theorem 2.2 and Remark 2.3, there exists a Radner equilibrium. In view of
(2.2),

−Ri − q⊤
i P ∼ N1

(
− E[Ri]− q⊤

i µ,Var(Ri) + 2q⊤
i covi + q⊤

i Γqi

)
. (2.14)

The moment generating function of a standard normal variate L is R ∋ z 7→ E[exp(zL)] =
exp

(
zE[L] + Var(L)z2/2

)
, hence ρi(L) = E[L] + ̺iVar(L)/2. This and (2.14) yield

ri(qi) = −E[Ri]− q⊤i µ+
̺iVar(Ri)

2
+ ̺iq

⊤
i covi +

1

2
̺iq

⊤
i Γqi (2.15)

and
∇ri(qi) = −µ+ ̺icovi + ̺iΓqi, i ∈ E. (2.16)

The optimality condition relative to the participant i ∈ E yields

−p = ∇ri(qi) = −µ+ ̺icovi + ̺iΓqi,

hence

qi = Γ−1

(
1

̺i
(µ− p)− covi

)
. (2.17)

On the other hand, the clearing condition yields
∑

i∈E

qi = 0 = Γ−1

(
1

̺
(µ − p)− cov

)
,

which is equivalent to
p = µ− ̺cov.

(2.17) in turn gives (2.13).

We now turn to the case where each ρi is an expected shortfall risk measure
(McNeil et al., 2015, page 69)

ρi(L) = ESαi
(L) =

1

1− αi

1∫

αi

qu(L)du, L ∈ X = L1, (2.18)

for some 0 ≤ αi < 1, where qu(L) is the left u-quantile of L.

Proposition 2.5. If (Ri, P ) ∼ Nm+1(µi,Γi) and ρi = ESαi
for some 0 ≤ αi < 1, i ∈ E,

then there exists a Radner equilibrium with a unique equilibrium price. If Γi is further

positive definite, i ∈ E, then the Radner equilibrium is unique.

Proof. We divide the proof in three steps.

8e.g. expected shortfall.
9see Table 2.
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• Existence: For a univariate normally distributed L, by McNeil et al. (2015, Example
2.14, page 70), ESα(L) = E[L] +

√
Var(L) ESα(Z) with Z ∼ N1(0, 1), ESα(Z) =

φ(Φ−1(α))
1−α

. This and (2.14) yield

ri(qi) = −E[Ri]− q⊤i µ+ ESαi
(Z)
√

Var(Ri) + 2q⊤i covi + q⊤i Γqi, qi ∈ R
m. (2.19)

By Rockafellar (1970, Corollary 8.5.2), the recession function of ri is given by

(ri0
+)(y) = lim

λց0
λri(y/λ) = −y⊤µ+

√
y⊤Γy ESαi

(Z).

Let q1, . . . , q|E| be vectors in R
m such that

∑

i∈E

(ri0
+)(qi) ≤ 0 and

∑

i∈E

(ri0
+)(−qi) > 0,

i.e.

−µ⊤
(
∑

i∈E

qi

)
<
∑

i∈E

√
q⊤i Γqi ESαi

(Z) ≤ µ⊤

(
∑

i∈E

qi

)
.

Thus
∑

i∈E qi 6= 0. By Rockafellar (1970, Corollary 9.2.1, page 76), the inf-convolution
of real valued convex functions is a real valued convex function. Hence the inf-convolution
r is attained on R

m and, by Lemma 2.1, there exists a Radner equilibrium ((qi)i∈E ,p).
• Unique price: We know that −Ri − q⊤

i P , i ∈ E, is a continuous random variable. By
Kalkbrener (2005, Theorem 4.3 and Section 5.2), an expected shortfall is differentiable at
continuous random variables. Therefore, by Remark 2.4, the optimal price p is unique.
• Unique portfolio: If Γi is positive definite, then,

(1, qi)
⊤Γi(1, qi) = Var(Ri) + 2q⊤i covi + q⊤i Γqi > 0, qi ∈ R

m.

This and (2.19) implies that ri is differentiable such that

∇ri(qi) = −µ+
ESαi

(Z)√
(1, qi)⊤Γi(1, qi)

(covi + Γqi) , qi ∈ R
m.

Following Rockafellar and Wets (1998, Theorem 2.14, page 47), the strict convexity of ri
is equivalent to

ri(y) > ri(qi) +∇ri(qi)
⊤(y − qi), qi 6= y.

A simple computation reduces this first order condition to
√
[(1, qi)⊤Γi(1, qi)] [(1, y)⊤Γi(1, y)] > (1, qi)

⊤Γi(1, y), qi 6= y. (2.20)

If y 6= qi, then (1, y) is not colinear to (1, qi). Hence, by Johnson and Wichern (2007,
Eqn. (2.49), page 79) applied with b = (1, qi),d = Γi(1, y), and B = Γi (hence (1, qi) =
b 6= cB−1d = c(1, y) for any constant c),
[
(1, qi)

⊤Γi(1, qi)
] [

(1, y)⊤Γi(1, y)
]
>
[
(1, qi)

⊤Γi(1, y)
]2

holds for any qi 6= y.

This in turn yields (2.20). Hence by Theorem 2.3 there exists a unique equilibrium.

Remark 2.5. If Var(Ri) > 0, covi = 0, and Γ is invertible, then z⊤Γiz = z21Var(Ri) +
2z1ẑ

⊤covi + ẑ⊤Γẑ > 0 holds for any z = (z1, . . . , zm+1) ∈ R
m+1 \ {0}, where ẑ =

(z2, . . . , zm+1). Hence Γi is positive definite as assumed in the last part of Proposition 2.5.
Instead, the positive definiteness of Γi is not guaranteed when Var(Ri) =

cov⊤i Γ
−1covi, because z⊤Γiz = 0 for z = (−1,Γ−1covi). This is for instance the case

when Ri is in the span of P , i.e. Ri = a⊤i P + bi for some constants ai ∈ R
m and bi ∈ R,

whence covi = Γai and Var(Ri) = a⊤i Γai = cov⊤i Γ
−1covi.
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Remark 2.6. An n-variate random vector L has an elliptical distribution written as L ∼
En(µ,Γ, ψ) if its characteristic function is expressed as

E

[
ei z

⊤L
]
= exp(i z⊤µ)ψ

(
1

2
z⊤Γz

)
, z ∈ R

n,

for µ = E[L],Γ = Cov(L), and a function ψ : [0,∞) → R such that −ψ′(0) = −1.
As is well known (Landsman and Valdez, 2003; McNeil, Frey, and Embrechts, 2015), if

L ∼ En(µ,Γ, ψ) (or, more specifically10 , Tn(µ,Γ, ν)), then a⊤L
d
= a⊤µ +

√
a⊤Γ a Z ,

where Z ∼ E1(0, 1, ψ) (specifically, T1(0, 1, ν)). Hence, for any coherent risk measure ρ,

ρ(a⊤L) = a⊤µ+ ρ(Z)
√
a⊤Γa. (2.21)

Assuming (Ri, P ) ∼ Em+1(µi,Γi, ψ) (e.g. Tm+1(µi,Γi, ν)) with Γi positive definite,
i ∈ E, the above implies that

ri(qi) = −E[Ri]− q⊤i µ+ ρi(Z)
√

Var(Ri) + 2q⊤i covi + q⊤i Γqi. (2.22)

The proof of Proposition 2.5 thus works for any law invariant and coherent risk measure ρi
differentiable on the linear space spanned by the components of (Ri, P ), i in E.

3. THE COMPARATIVE STATICS APPROACH FOR DEFAULT RESOLUTION ANALYSIS

When a clearing member of a CCP defaults, its position is taken over by the CCP.
The CCP should then close the defaulter’s positions in a way that does not harm the
other members or the CCP itself. As outlined in (Bank For International Settlements,
2020), the CCP can settle the defaulter’s positions via an auction organized by the CCP
between the surviving members (and sometimes invited participants). According to
(Bank For International Settlements, 2020, page 7), the chance of a successful auction is
increased by hedging the defaulted portfolio’s risks prior to the auction:

A CCP should establish a framework for its approach to hedging risks from
a defaulted participant’s portfolio prior to a default management auction to
increase the chance of a successful auction. [...] The goals of a CCP’s
hedging strategy are generally to minimise the CCP’s exposure to the de-
faulted participant’s portfolio and to decrease the overall risk that the port-
folio may pose to the CCP and the auction participants. Portfolios with
less risk exposure lessen the potential effects of market volatility on the
portfolio [...] and time dependency of valuations by auction participants.

A close-out procedure can also involve some liquidation on open markets. As different
positions are liquidated separately, hedging prior to liquidation would entail additional
costs for liquidating the hedging side of the portfolio. The main default resolution strategies
are thus liquidation versus hedging then auctioning. As pointed out in Oleschak (2019),

in cases where the position to be transferred is large in relation to mar-
ket liquidity or where a central market does not exist, auctions with the
surviving agents as bidders is the mechanism of choice.

In any case, the CCP deals with the losses incurred throughout the close-out period by
using the collateral of the defaulter, its own resources (skin in the game), and financial
resources pooled between the clearing members in the form of a default fund (Gregory,
2014; Biais et al., 2016; Oleschak, 2019). The CCP should assess the adequacy of these
financial resources by a careful estimation of the close-out costs of the defaulters’ positions,
which is the focus of this paper.

10A Student t-distribution is elliptical (Gaunt, 2021).
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Let an index d represent a clearing member of a CCP defaulting instantaneously at
time 011. We want to analyze and compare different close-out procedures, of the ‘hedging
or not and liquidation or auctioning’ types, for the CCP portfolio of member d. These
strategies can be implemented on several possible exchanges E, starting with the one of
the CCP itself, denoted hereafter by D. For each (pre-default) exchange E, we denote by
E′ its advent in the wake of the instant default of d, depending on the settlement procedure
implemented by the CCP. We assume that the different exchanges E trade the same assets
with terminal payoff P , possibly at different initial prices p (interpreted in this setup as
“time 0−”, pre-default prices), reflecting different market equilibria. Hedging procedures
involve the CCP itself in the form of a new trading participant, represented for this purpose
by a new index c (not involved in any exchange E). We use similar notation for d and
c as for participants i of E in Section 2 (see Table 2). Although other choices could be
used without methodological change in what follows, fault of suitable calibration data in
this regard, we assume that any data other than p and qi in Table 2 are not affected by
the instant default of d—with the only exception reflected in (3.7) below of Rc, which
represents the post-default receivable12 of the hedging CCP due to the portfolio of the
defaulted member d taken over by the hedging CCP, whereas the pre-default receivable of
the CCP is zero (a CCP should not bear any positions, except for the ones inherited from
defaulted market participants during the close-out period of their portfolios).

The pair ((q′
i)i∈E′ ,p′) relative to any post-default exchange E′ involved in the set-

tlement of the defaulted portfolio is derived using a Radner equilibrium in E′. Note that all
the receivables and equilibrium portfolios and prices implicitly depend on the correspond-
ing exchange. Regarding prices, we make this dependence explicit hereafter, denoting by
pE a pre-default (“time 0−”) equilibrium price on E and by p′E a post-default (“time 0”)
equilibrium price on E′.

3.1. Price Impact. We define qi = 0, i ∈ E′ \E, and ∆qi = q′
i −qi, i ∈ E′ ∪E, hence

∑

i∈E′∩E

qi +
∑

i∈E′

∆qi =
∑

i∈E′

qi +
∑

E′

∆qi =
∑

i∈E′

q′
i. (3.1)

If the CCP chooses to liquidate a portion ql
d of qd and hedge the remaining qh

d = qd −ql
d,

then the incremental positions of the participants to any post-default exchange E′ can be
split as ∆qi = ∆ql

i + ∆qh
i , where ∆ql

i and ∆qh
i are the increments implied by the

liquidation and hedging legs of the strategy (see e.g. Sections 3.3.7-3.3.8)–with always in
particular

∆ql
c = 0, (3.2)

as a CCP does not take part as a participant to a liquidation. Since the amount demanded
should be equal to the amount supplied on both legs of the strategy, we have

∑

i∈E′

∆ql
i = ql

d and
∑

i∈E′

∆qh
i = 0, hence

∑

i∈E′

∆qi = ql
d (3.3)

The first consequence of a default resolution strategy is then a liquidity cost

LC =
∑

E

LCE , (3.4)

11Considering several instant defaulters would mainly mean replacing qd by
∑

d
qd hereafter, see e.g. Re-

mark 4.1. We refrain from doing so for parsimony of notation.
12see (3.14) below.
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where

LCE =
∑

i∈E′∩E

q⊤
i (p

E − p′E) +
∑

i∈E′

(∆ql
i)
⊤(pE − p′E)

=
∑

i∈E′

(qi +∆ql
i)
⊤(pE − p′E)︸ ︷︷ ︸
LCi

(3.5)

(as qi = 0, i ∈ E′\E) corresponds to margin payments (like in futures markets) by market
participants at time 0 in response to the default settlement procedure of d, i.e. the price they
have to pay for the transition from the pre-default to the post-default exchanges.

As reflected in (3.5), it is only the contracts ∆ql
i involved in the liquidation leg of the

strategy, which are old (“time 0−”) contracts with the pre-default prices pE , that deserve
margin payments, while the new (“time 0”) contracts ∆qh

i involved in the hedging leg of
the strategy are post-default contracts with the new prices p′E . However, the following
reformulation of LCE in terms of the qi +∆qi = q′

i (instead of the qi +∆ql
i natively in

(3.5)) is possible:

Lemma 3.1. On each exchange E,

LCE =
∑

i∈E′∩E

q⊤
i (p

E − p′E) +
∑

i∈E′

∆q⊤
i (p

E − p′E) =
∑

i∈E′

(q′
i)
⊤(pE − p′E). (3.6)

Proof. By (3.3),
∑

i∈E′ ∆qh
i = 0. Hence (3.5) yields

LCE =
∑

i∈E′

(
qi +∆ql

i +∆qh
i

)⊤
(pE − p′E),

where ∆ql
i +∆qh

i = ∆qi.

3.2. Funds Transfer Price. Let

∆ρi = ρi
(
−Ri + (q′

i)
⊤(p′E − P )

)
− ρi

(
− 1i 6=cRi + q⊤

i (p
E − P )

)
, i ∈ E′. (3.7)

Using (3.1) and ∆ql
i+∆qh

i = ∆qi, the post-default market loss of any trading participant
i ∈ E′ is

−Ri + q⊤
i (p

E − P )︸ ︷︷ ︸
pre-default market loss

+(∆qh
i )

⊤(p′E − P ) + (∆ql
i)
⊤(pE − P )

=−Ri + q⊤
i (p

E − P ) + ∆q⊤
i (p

′E − P ) +
(
∆ql

i

)⊤
(pE − p′E)

=−Ri + (q′
i)
⊤(p′E − P ) + LCi,

(3.8)

for LCi as per (3.5). Hence, by translation equivariance of ̺i, the post-default risk of
participant i is

ρi
(
−Ri + (q′

i)
⊤(p′E − P )

)
+ LCi.

The risk incremental of participant i is therefore LCi + ∆ρi, i ∈ E′. Accordingly, we
assess the market cost (MC) of a default resolution strategy by the funds transfer price

MC =
∑

E

MCE , where MCE = LCE +
∑

i∈E′

∆ρi. (3.9)

If the CCP of an exchange D faces the default of a clearing member d, then this CCP can
envision different default resolution procedures, impacting possibly different exchanges
E′ (starting with D′ itself), for the CCP portfolio qd of the defaulter (in a pre-default
equilibrium on D). For each considered default resolution strategy, each of the impacted
exchanges E′ (or their corresponding CCPs) would compute its corresponding MCE and
communicate it to the CCP of D . The ensuing MC (3.9) of the strategy is the price that the
markets would charge to the CCP of D, should the latter choose this strategy for resolving
qd. The CCP of D would then choose the most efficient strategy, i.e. the one minimizing

12



MC. This approach is inspired by a notion of Pareto optimality in financial markets, where
numerous exchanges (and trading participants themselves in Section 6) compete with one
another.

3.3. Examples. The pre-default equilibria ((qi)i∈E ,p
E) involved in (3.9) are obtained

by direct application of the results of Section 2. We now detail the corresponding post-
default Radner equilibria ((q′

i)i∈E′ ,p′E) in eight reference cases (without post-default new
invited participants other than the CCP itself in the hedging cases, though; extra new invited
participants will only be considered later in the paper). The member optimality condition
for the post-default market participant i ∈ E′ is always of the form

ρi
(
−Ri + (q′

i)
⊤(p′E − P )

)
≤ ρi

(
−Ri + q⊤i (p

′E − P )
)
, qi ∈ R

m. (3.10)

The clearing condition, instead, depends on the considered default resolution strategy.

3.3.1. The CCP fully liquidates on its own exchange. As a first default resolution alter-
native, the CCP may want to liquidate the defaulter’s position qd on its own exchange D.
Then MCE = 0, E 6= D, and

∑
i∈D′=D\{d} ∆qi = qd. As

∑
i∈D\{d} qi + qd = 0, we

obtain a post-default equilibrium clearing condition
∑

i∈D′=D\{d}

q′
i = 0 (3.11)

and
LC = LCD = 0, MC = MCD =

∑

D′=D\{d}

∆ρi.

3.3.2. The CCP fully liquidates on another exchange. If the CCP liquidates qd on some
exchange E

/∈

d (hence E 6= D), then MCE = 0, E 6= E,D, and
∑

i∈E′=E∆qi = qd. As∑
i∈E qi = 0, the ensuing the post-default equilibrium clearing condition on E′ is

∑

i∈E′=E

q′
i = qd. (3.12)

Remark 3.1. By change of variables z′i = q′
i − kiqd and R′

i = Ri + kiq
⊤
d P , for reals ki

such that
∑

i∈E′ ki = 1, the clearing condition (3.12) and the optimality condition (3.10)
relative to the post-default equilibrium ((q′

i)i∈E′ ,p′E) become
∑

i∈E′ z
′
i = 0 and

ρi(−R′
i + (z′i)

⊤(p′E − P )) ≤ ρi(−R′
i + z⊤i (p

′E − P )), zi ∈ R
m.

On E′, we thus recover a zero clearing condition and member optimally conditions formally
similar to Definition 2.1.

On the exchange D of the CCP, we have
∑

i∈D′=D\{d} ∆qi = 0, whence the post-
default clearing condition ∑

i∈D′=D\{d}

q′
i = −qd. (3.13)

Therefore
MC = MCE +MCD,

where

MCE = q⊤
d (p

E − p′E)︸ ︷︷ ︸
LCE

+
∑

i∈E′=E

∆ρi, MCD = −q⊤
d (p

D − p′D)︸ ︷︷ ︸
LCD

+
∑

i∈D′=D\{d}

∆ρi.

Remark 3.2. By change of variable z′i = ∆qi and R′
i = Ri + q⊤

i P , i ∈ D′ = D \ {d},
the clearing condition (3.13) and optimality condition (3.10) relative to the post-default
equilibrium ((q′

i)i∈D′ ,p′D) become
∑

i∈D′ z
′
i = 0 and

ρi
(
−R′

i + (z′i)
⊤(p′D − P )

)
≤ ρi

(
−R′

i + z⊤i (p
′D − P )

)
, zi ∈ R

m.
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3.3.3. The CCP fully hedges on its own exchange. If qd is not instantaneously liquidated
upon the default of member d at time 0, then the CCP c of d endorses at time 0 the receivable

Rc = q⊤
d (P − pD), (3.14)

which it can hedge by holding on its own exchange D a portfolio ∆qc minimizing some
risk measure ρc. The corresponding member optimality condition (3.10) for the CCP c,
playing the role of a new post-default trading participant, is

ρc

(
q⊤
d (p

D − P ) + (q′
c)

⊤(p′D − P )
)
≤ ρc

(
q⊤
d (p

D − P ) + q⊤c (p
′D − P )

)
, qc ∈ R

d.

(3.15)
In this case, MCE = 0, E 6= D, and

∑
i∈D′=(D\{d})∪{c} ∆qi = 0 (as, in this hedging

case, on the post-default market D′, the amount demanded must be equal to the amount
supplied). Since

∑
i∈D\{d} qi = −qd and ∆q′

c = q′
c, we obtain a post-default equilibrium

clearing condition ∑

i∈D′=(D\{d})∪{c}

q′
i = −qd (3.16)

and
MC = MCD = −q⊤

d (p
D − p′D)︸ ︷︷ ︸

LCD

+
∑

i∈D′=(D\{d})∪{c}

∆ρi.

Remark 3.3. Much like in Remark 3.2, by change of variable z′i = ∆qi, i ∈ (D \ {d}) ∪
{c}, and R′

i = Ri + q⊤
i P , i ∈ D \ {d}) and R′

c = Rc, the clearing condition (3.16)
relative to the post-default equilibrium ((q′

i)i∈D′ ,p′D) can be converted to a zero clearing
condition as per Definition 2.1 on D′.

3.3.4. The CCP fully hedges on another exchange. The considered CCP of d can also
hedge the portfolio qd that it inherit from member d (if not liquidated) by trading on an
exchange E

/∈

d, in which case E′ = E ∪ {c} and Rc = q⊤
d

(
P − pD

)
(arising from

the pre-default Radner equilibrium on the exchange D of the CCP). In this case, MCE =
0, E 6= E,D, and

∑
E′=E∪{c} ∆qi = 0 (the amount demanded must be equal to the amount

supplied on the post-default exchange E′ where the hedge is implemented). As
∑

i∈E qi =
0 and ∆q′

c = q′
c, the ensuing post-default equilibrium clearing condition on E′ is

∑

i∈E′=E∪{c}

q′
i = 0. (3.17)

The corresponding member optimality condition (3.10) for the CCP c is

ρc

(
q⊤
d (p

D − P ) + (q′
c)

⊤(p′E − P )
)
≤ ρc

(
q⊤
d (p

D − P ) + q⊤c (p
′E − P )

)
, qc ∈ R

d.

On the own exchange D of the CCP, we have
∑

i∈D′=D\{d} ∆qi = 0, whence the
post-default clearing condition

∑

i∈D′=D\{d}

q′
i = −qd. (3.18)

Therefore MC = MCE +MCD, where

MCE = 0︸︷︷︸
LCE

+
∑

E′=E∪{c}

∆ρi, MCD = −q⊤
d (p

D − p′D)︸ ︷︷ ︸
LCD

+
∑

D′=D\{d}

∆ρi.

Remark 3.4. As in Remark 3.2 again, by change of variable z′i = ∆qi and R′
i = Ri +

q⊤
i P , i ∈ D \ {d}, the clearing condition (3.18) relative to the post-default equilibrium

((q′
i)i∈D′ ,p′D) can be converted to a zero clearing condition as per Definition 2.1 on D′.

14



3.3.5. The CCP fully replicates on its own exchange. By replication, we refer to a default
resolution strategy whereby the CCP c replicates the portfolio qd (if not liquidated) that the
CCP inherits from d by mirroring position q′

c = −qd on its own exchange D. In this case
MCE = 0, E 6= D, and we have D′ = (D \ {d}) ∪ {c},∆qc = −qd (in the replication
case, the only admissible trading strategy for c as a post-default trading participant is −qd),

∆ρc = ρc

(
q⊤
d (p

D−P )−q⊤
d (p

′D−P )
)
= q⊤

d

(
pD−p′D

)
. On the post-default exchange

D′ where the hedge is implemented, the amount demanded must be equal to the amount
supplied i.e.

∑
i∈D′=(D\{d})∪{c} ∆qi = 0, whence the post-default clearing condition

∑

i∈D′=(D\{d})∪{c}

q′
i =

∑

i∈D′=D\{d}

q′
i

︸ ︷︷ ︸
0

+ q′
c︸︷︷︸

−qd

= −qd. (3.19)

Therefore

MC = MCD = −q⊤
d (p

D − p′D)︸ ︷︷ ︸
LC=LCD

+
∑

i∈D\{d}

∆ρi + ∆ρc︸︷︷︸
q⊤
d
(pD−p′D)

=
∑

i∈D\{d}

∆ρi.

The market cost is the same as in the liquidation case of 3.3.1 (note that the embedded
post-default Radner equilibria are the same), but its split between LC and

∑
i∈D′ ∆ρi is

different, see Table 3.

Remark 3.5. As in Remark 3.2, by change of variable z′i = ∆qi, i ∈ (D \ {d}) ∪ {c},
and R′

i = Ri + q⊤
i P , i ∈ D \ {d}), R′

c = Rc, the clearing condition (3.19) relative to
the post-default equilibrium ((q′

i)i∈D′ ,p′D) can be converted to a zero clearing condition
as per Definition 2.1 on D′.

3.3.6. The CCP fully replicates on another exchange. Alternatively, the considered CCP
of d can replicate the portfolio qd (if not liquidated) that it inherits from d by mirroring
positions q′

c = −qd on an external exchange E

/∈

d, hence E′ = E ∪ {c}. As in Section
3.3.5, replication means that the only admissible trading strategy for the post-default trad-
ing participant c is −qd. In this case, MCE = 0, E 6= E,D, and

∑
E′=E∪{c} ∆qi = 0

(the amount demanded must be equal to the amount supplied on the post-default exchange
E′ where the hedge is implemented),

∑
i∈E qi = 0. The ensuing post-default clearing

condition on E′ is ∑

i∈E′=E∪{c}

q′
i =

∑

i∈E

q′
i

︸ ︷︷ ︸
qd

+ q′
c︸︷︷︸

−qd

= 0.

We also have ∆ρc = ρc

(
q⊤
d (p

D − P )− q⊤
d (p

′E − P )
)
= q⊤

d

(
pD − p′E

)
.

On the own exchange D of the CCP, we have
∑

i∈D′=D\{d} ∆qi = 0, whence the
post-default clearing condition

∑

i∈D′=D\{d}

q′
i = −qd.

Therefore MC = MCE +MCD, where

MCE = 0︸︷︷︸
LCE

+
∑

i∈E

∆ρi +∆ρc and MCD = −q⊤
d (p

D − p′D)︸ ︷︷ ︸
LCD

+
∑

i∈D′=D\{d}

∆ρi.

Remark 3.6. As in Remark 3.2, by change of variable z′i = ∆qi and R′
i = Ri + q⊤

i P ,
i ∈ D \ {d}), we recover member optimally and zero clearing conditions as per Definition
2.1 on D′.
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3.3.7. The CCP partially liquidates and hedges on its own exchange. The CCP can also
liquidate a portion ql

d of the defaulted position qd and hedge the remaining qh
d = qd − ql

d

on its own exchange D. The amount demanded should be equal to the amount supplied
on each leg of the strategy, hence

∑
i∈D\{d} ∆ql

i = ql
d and

∑
i∈(D\{d})∪c ∆qh

i = 0, thus∑
i∈(D\{d})∪c ∆qi = ql

d. As
∑

i∈D\{d} qi = −qd, the ensuing post-default clearing con-
dition on D′ is ∑

i∈D′=(D\{d})∪{c}

q′
i = −qh

d , (3.20)

We assume that both liquidation and hedging happen simultaneously at the same price
p′D. Hence each trading participant on the post-default market D′ has a single member
optimality condition (3.10) (with, in particular, Rc = (qh

d)
⊤(P − pD)). Then

MC = MCD = −(qh
d)

⊤(pD − p′D)︸ ︷︷ ︸
LC=LCD

+
∑

i∈D′=(D\{d})∪{c}

∆ρi.

Remark 3.7. By change of variables z′i = q′
i+kiq

h
d andR′

i = Ri−ki(qh
d)

⊤P , for reals ki
such that

∑
i∈D′ ki = 1, the clearing condition (3.20) and the optimality conditions (3.10)

relative to the post-default equilibrium ((q′
i)i∈D′ ,p′D) respectively become

∑
i∈D′ z

′
i = 0

and
ρi(−R′

i + (z′i)
⊤(p′D − P )) ≤ ρi(−R′

i + z⊤i (p
′D − P )), zi ∈ R

m.

3.3.8. The CCP partially liquidates and hedges on another exchange. The CCP can also
liquidate a portion ql

d of the defaulted position qd and hedge the remaining qh
d = qd − ql

d

on another exchange E

/∈

d. In this case, MCE = 0, E 6= E,D. Since the amount
demanded should be equal to the amount supplied on each leg of the strategy, we have∑

i∈E′ ∆ql
i = ql

d and
∑

i∈E′ ∆qh
i = 0, hence

∑
i∈E′ ∆qi = ql

d. As
∑

i∈E qi = 0 and
qc = 0, the ensuing post-default equilibrium clearing condition on E′ is

∑

i∈E′

q′
i = ql

d. (3.21)

We assume that both liquidation and hedging happen simultaneously on the exchange E
with the same price p′E. Hence each trading participant on the post-default market E′ has
a single member optimality condition (3.10) (with, in particular, Rc = (qh

d)
⊤(P − pD)).

Regarding the own exchange of the CCP, the post-default equilibrium clearing condi-
tion on D′ is ∑

i∈D′=D\{d}

q′
i = −qd (3.22)

Hence MC = MCE +MCD, where

MCE = (ql
d)

⊤(pE − p′E)︸ ︷︷ ︸
LCE

+
∑

E′=E∪{c}

∆ρi, MCD = −q⊤
d (p

D − p′D)︸ ︷︷ ︸
LCD

+
∑

D′=D\{d}

∆ρi.

Remark 3.8. Similarly to Remarks 3.1 and 3.2, by change of variables, the clearing
conditions (3.21) and (3.22) relative to the post-default equilibria ((q′

i)i∈E′ ,p′E) and
((q′

i)i∈D′ ,p′D) can be converted to zero clearing conditions on the exchanges E′ and D′.

In Sections 4-5, we provide explicit or numerical solutions regarding the market cost
of default resolutions on D, hence

LC = LCD =
∑

i∈D′

(q′
i)
⊤(pD − p′D), MC = MCD = LCD +

∑

i∈D′

∆ρi. (3.23)

By translation equivariance of the ρi, (3.7) yields

∆ρi = ri(q
′
i)− 1i 6=cri(qi) + (q′

i)
⊤p′D − q⊤

i p
D, i ∈ D′.
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LC
∑

E

∑

i∈E′

∆ρi

1. 0
∑

i∈D\{d}

∆ρi

2. −q⊤
d (p

D − p′D) + q⊤
d (p

E − p′E)
∑

i∈D\{d}

∆ρi +
∑

i∈E

∆ρi

3. −q⊤
d (p

D − p′D)
∑

i∈(D\{d})∪{c}

∆ρi

4. −q⊤
d (p

D − p′D)
∑

i∈D\{d}

∆ρi +
∑

i∈E∪{c}

∆ρi

5. −q⊤
d (p

D − p′D)
∑

i∈(D\{d})∪{c}

∆ρi with ∆ρc = q⊤
d

(
pD − p′D

)

6. −q⊤
d (p

D − p′D)
∑

i∈D\{d}

∆ρi +
∑

i∈E∪{c}

∆ρi with ∆ρc = q⊤
d

(
pD − p′E

)

7. −(qh
d)

⊤(pD − p′D)
∑

i∈(D\{d})∪{c}

∆ρi

8. −q⊤
d (p

D − p′D) + (qh
d)

⊤(pE − p′E)
∑

i∈D\{d}

∆ρi +
∑

i∈E∪{c}

∆ρi

TABLE 3. Decomposition of the market costs in the eight examples of
Section 3.3.

A further computation based on (3.23) then yields

MC = MCD =
∑

i∈D′

(∆qi)
⊤pD +

∑

i∈D′

(
ri(q

′
i)− 1i 6=cri(qi)

)
. (3.24)

4. MARKET COST: THE CASE OF ENTROPIC RISK MEASURES

Throughout this section, we assume that the risk preference of each trading participant
i in D ∪D′ is an entropic risk measure of the form

ρi(L) =
1

̺i
ln(E[exp(̺iL)]), for some ̺i > 0. (4.1)

We also assume that each (Ri, P ) is jointly normal, so that ri(qi) is given by (2.15).

4.1. Liquidation on D.

Proposition 4.1. Let (Ri, P ) ∼ Nm+1(µi,Γi), i ∈ D∪D′, and Γ be invertible. If the CCP

liquidates the defaulter position qd on its own exchange D, then

LCD = 0 and

MCD =
1

2
̺′q⊤

d Γqd − ̺′
(
Γ−1

∑

j∈D′\D

̺

̺j
cov − covj

)⊤(
cov′ +

1

2
Γqd

)
+

∑

i∈D′\D

(
Γ−1(̺cov − ̺icovi)

)⊤(
covi +

1

2
Γq′

i

)
,

(4.2)

where ̺′ =
(∑

i∈D′
1
̺i

)−1
.

Proof. By the clearing condition
∑

i∈D′ q
′
i = 0 (established like (3.11)), (3.23) yields

LCD =
∑

i∈D′(q′
i)
⊤(pD − p′D) = 0. Letting D and D′ successively play the role of E in

Proposition 2.4, the pre-default and the post-default equilibrium are uniquely given by

qi = Γ−1
( ̺
̺i
cov − covi

)
, i ∈ D; pD = µ− ̺cov, (4.3)
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and

q′
i = Γ−1

(̺′
̺i
cov′ − covi

)
, i ∈ D′; p′D = µ− ̺′cov′, (4.4)

where ̺ =
(∑

i∈D
1
̺i

)−1
, cov =

∑
i∈D covi, ̺′ =

(∑
i∈D′

1
̺i

)−1
, cov′ =

∑
i∈D′ covi.

From (2.15), we obtain

ri(q
′
i

)
− ri

(
qi) = −∆q⊤

i µ+ ̺i∆q⊤
i

[
covi + Γ

(
qi +

1

2
∆qi

)]
, i ∈ D′. (4.5)

As also
∑

i∈D′ ∆qi = qd holds in a liquidation setup and since qi = 0 for each trading
participant i ∈ D′ \D, (3.24) yields

MCD = q⊤
d (p

D − µ) +
∑

i∈D′

̺i(∆qi)
⊤
[
covi + Γ

(
qi +

1

2
∆qi

)]

= −̺q⊤
d cov +

∑

i∈D′

̺i(∆qi)
⊤
[
covi + Γ

(
qi +

1

2
∆qi

)]
, (4.6)

by the second identity in (4.3).
To compute ∆qi therein, note that

cov′ = cov − covd +
∑

i∈D′\D

covi =
̺

̺d
cov +

(
1− ̺

̺d

)
cov − covd +

∑

i∈D′\D

covi

= Γqd +
̺

̺′
cov −

∑

i∈D′\D

( ̺
̺i
cov − covi

)
,

by the first identity in (4.3) and the fact that 1
̺′

= 1
̺
− 1

̺d
+
∑

i∈D′\D
1
̺i

. This implies

̺′cov′ = ̺′Γqd + ̺cov − ̺′
∑

i∈D′\D

( ̺
̺i
cov − covi

)
. (4.7)

The definition of ∆qi, (4.3), (4.4), and (4.7) yield

∆qi =

{
̺′

̺i
qd − ̺′

̺i
Γ−1

∑
j∈D′\D

(
̺
̺j
cov − covj

)
i ∈ D \ {d}

̺′

̺i
qd − ̺′

̺i
Γ−1

∑
j∈D′\D

(
̺
̺j
cov − covj

)
+ Γ−1

(
̺
̺i
cov − covi

)
i ∈ D′ \D.

(4.8)
As
∑

i∈D\{d} qi = −qd and
∑

i∈D′ ∆qi = qd, substituting (4.8) into (4.6) yields

MCD = −̺q⊤
d cov +

[
̺′qd − ̺′Γ−1

∑

j∈D′\D

( ̺
̺j

cov − covj

)]⊤(
cov′ − 1

2
Γqd

)
+

∑

i∈D′\D

(
Γ−1(̺cov − ̺icovi)

)⊤(
covi +

1

2
Γq′

i

)
,

whence the expression for MCD in (4.2) .

Remark 4.1. To cope with the case of several instant defaulters d at time 0, one just needs
to replace qd, covd and ̺

̺d
by
∑

d qd,
∑

d covd and
∑

d
̺
̺d

in Proposition 4.1 and its proof.

Remark 4.2. If the CCP liquidates the defaulter’s position among the surviving members,
i.e. for D′ \D = ∅ in the above, then Proposition 4.1 yields

MCD =
1

2
̺′q⊤

d Γqd ≥ 0.

Using (4.3), (4.5), and (4.7), we obtain p′D = pD − ̺′Γqd. Moreover, (4.8) yields ∆qi =
̺′

̺i
qd, i ∈ D \ {d}. In the case m = 1 for simplicity, the reason why MC ≥ 0 when the

CCP liquidates among the surviving member can thus be explained as follows. If qd > 0,
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then the CCP replaces the defaulter’s contract with each surviving member by selling at a
“fire sales” price p′D < pD. If qd < 0, then the CCP buys from each surviving member at
a “dear” price p′D > pD. In both cases, there is a market cost.

Example 4.3. Let D = {1, . . . , 15}, d = {15}, D′ \ D = ∅, ̺i = 1, m = 1 and
(Ri, P ) ∼ N2(µi,Γi), i ∈ D . Suppose covi = ciσ

√
Var(Ri), where σ2 = Var(P ),

ci = (−1)i+10.8 (the correlation coefficient between Ri and P ), and Var(Ri) = 0.09i2,
i ∈ D. Fix σ = 0.2. The corresponding pre- and post-default optimal positions computed
from (4.3) and (4.4) are given by Table 4. Note that each qi or q′

i is positive (negative)

CMi 1 2 3 4 5 6 7 8

covi 0.05 −0.10 0.14 −0.19 0.24 −0.29 0.34 −0.38
qi −0.56 3.04 −2.96 5.44 −5.36 7.84 −7.76 10.24
q′
i −1.80 1.80 −4.20 4.20 −6.60 6.60 −9.00 9.00

CMi 9 10 11 12 13 14 15

covi 0.43 −0.48 0.53 −0.58 0.62 −0.67 0.72
qi −10.16 12.64 −12.56 15.04 −14.96 17.44 −17.36
q′
i −11.40 11.40 −13.80 13.80 −16.20 16.20

TABLE 4. Pre- and post-default optimal positions of each clearing mem-
ber i (CMi) when the CCP liquidates qd on its own exchange in the en-
tropic case.

provided covi is negative (positive) (here and again in Table 7 below), in line with the
hedging feature of the exchange. For µ = 2, Proposition 4.1 and its proof yield pD =

1.97,p′D = 2.02, and MCD = 0.43 (with LCD = 0 as per the first line in Table 3).

As it can be seen from the analytical expressions (4.3)-(4.4) and Table 4, the covari-
ance matrices Γi, i ∈ D∪D′, are the major driving factors for portfolio and price changes.
But the number and the risk preferences of the trading participants can also significantly
affect these optimal quantities and the market cost:

Example 4.4. Let D = {1, . . . , |D| = n + 1}, d = {n + 1}, ̺i = ̺1, and (Ri, P ) ∼
N2(µi,Γi), i ∈ D. Suppose covi = 0, i ∈ {1, . . . , n − 1}, and covn = −covn+1 = δ. We
consider two cases.
(i) D′ \D = ∅. By (4.3) and (4.4), the pre- and post-default portfolios are then given by

qi =





0, i = 1, . . . , n− 1,

− δ
σ2 , i = n,

δ
σ2 , i = n+ 1,

and q′
i =

{
δ

nσ2 , i = 1, . . . , n − 1

− (n−1)δ
nσ2 , i = n.

The pre- and post-default prices are given by

pD = µ and p′D = µ− ̺1δ

n
.

A further computation based on (4.2) yields

MC =
̺1
2n

(
δ

σ

)2

,

which decreases to 0 as the number n of surviving members to ∞.
(ii) D′ \ D = {n + 2} with covn+2 = δ′. In this case, the pre-default equilibrium is the
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same as in case (i), while the post-default equilibrium is given by

q′
i =





δ+δ′

(n+1)σ2 , i = 1, . . . , n− 1,
δ′−nδ

(n+1)σ2 , i = n,
δ−δ′n

(n+1)σ2 , i = n+ 2.

and p′D = µ− ̺1(δ + δ′)

n+ 1
.

A further computation based on (4.2) yields

MC =
2̺1δ

2 + 2̺1δ
′δ − ̺1(δ

′)2n

2σ2(n+ 1)
,

the sign of which depends on the value of the parameters.

4.2. Hedging on D. We now turn to the “hedging on own exchange D" case of Section
3.3.3, but with possibly new participants beyond the CCP c in D′.

Proposition 4.2. Let (Ri, P ) ∼ Nm+1(µi,Γi), i ∈ D ∪ D′, with invertible covariance

matrix Γ of P . When the CCP hedges the defaulter position qd on its own exchange D,

then

LCD = −q⊤
d (p

D − p′D),

MCD =
∑

i∈D′

̺i(∆qi)
⊤
[
covi + Γ

(
qi +

1

2
∆qi

)]
+
(̺cVar(Rc)

2
− E[Rc]

)
,

(4.9)

where ̺′ =
(∑

i∈D′
1
̺i

)−1
. In the absence of new participants (other than the CCP itself

c) to D′,

MC =
̺2(̺′ − ̺c)

2̺c2
cov⊤Γ−1cov +

̺′

2
q⊤
d Γqd −

̺′̺

̺c
q⊤
d cov. (4.10)

Proof. By the clearing condition
∑

i∈D′ q′
i = −qd (established like (3.16)), (3.23) yields

LCD =
∑

i∈D′(q′
i)
⊤(pD−p′D) = −q⊤

d (p
D −p′D). Applying Proposition 2.4 to E = D,

the pre-default equilibrium is uniquely given by (4.3). As for the post-default equilibrium,
if the CCP hedges on D, then, in view of Remark 3.3, introducing the changed variable
z′i = q′

i − qi and R′
i = Ri + q⊤

i P yields

r′i(zi) := ρi(−R′
i − z⊤i P ) = ρi(−Ri − (zi + qi)

⊤P ), i ∈ D′.

Following the proof of Proposition 2.4 with r′i here in the role of ri there, we obtain a
unique post-default equilibrium

q′
i = Γ−1

(
̺′

̺i
cov′ − covi

)
− ̺′

̺i
qd, i ∈ D′, and p′D = µ−̺′cov′+̺′Γqd. (4.11)

Hence, by (2.15),

ri(q
′
i

)
− ri

(
qi) = −∆q⊤

i µ+ ̺i(∆qi)
⊤
[
covi + Γ

(
qi +

1

2
∆qi

)]
, i ∈ D′.

This and
∑

i∈D′ ∆qi = 0 reduce (3.24) to (4.9).
In the absence of new participants other than the CCP itself to D′, (4.3) and (4.11)

yield

∆qi =

{
1
̺i
Γ−1(̺′cov′ − ̺cov)− ̺′

̺i
qd i ∈ D \ {d},

1
̺i
Γ−1̺′cov′ − qd − ̺′

̺i
qd i = c.

One can check that the value of ̺′cov′ given by (4.7) also holds true for the hedging case.
Hence, using ̺′cov′ given by (4.7) and covc = Γqd, we obtain

∆qi =

{
̺′

̺i
Γ−1

(
Γqd − ̺

̺c
cov
)
, i ∈ D \ {d},

̺′

̺i
Γ−1

(
Γqd − ̺

̺c
cov
)
+ ̺

̺i
Γ−1cov − qd, i = c.

(4.12)
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Since Rc = q⊤
d (P − pD), we have Var(Rc) = q⊤

d Γqd and E[Rc] = ̺q⊤
d cov. Further

computations using ∆qi given by (4.12) reduce (4.9) to (4.10).

Example 4.5. In the “CCP hedging on its own exchange” case, let D = {1, . . . , 15}, d =

{15}, D′ \ D = {c}, ̺i = 1 = ̺c, and (Ri, P ) ∼ N2(µi,Γi) with covi = σci
√

Var(Ri),
σ = 0.2, ci = (−1)i+10.8, and Var(Ri) = 0.09i2, i ∈ D. The corresponding pre- and
post-default optimal positions computed from (4.3) and (4.11) are given in Table 5. For

CMi 1 2 3 4 5 6 7 8

covi 0.05 −0.10 0.14 −0.19 0.24 −0.29 0.34 −0.38
qi −0.56 3.04 −2.96 5.44 −5.36 7.84 −7.76 10.24
q′
i −1.76 1.84 −4.16 4.24 −6.56 6.64 −8.96 9.04

CMi 9 10 11 12 13 14 15 c

covi 0.43 −0.48 0.53 −0.58 0.62 −0.67 0.72 −0.69
qi −10.16 12.64 −12.56 15.04 −14.96 17.44 −17.36
q′
i −11.36 11.44 −13.76 13.84 −16.16 16.24 16.80

TABLE 5. Pre- and post-default optimal positions when the CCP hedges
on its own exchange D with D′ \D = ∅ in the entropic case.

µ = 2, Proposition 4.2 and its proof yield pD = 1.97,p′D = 2.02, and MCD = 0.42
(with, by the third line in Table 3, LCD = −0.83).

Table 6 displays the impacts of the default resolution of d in terms of LCi and
∆ρi, i ∈ D′. As can be seen from the table, the impact of the default resolution on the
∆ρi is almost the same in the liquidation and hedging cases, whereas its impact on the LCi

is significantly different in the two cases.

CMi 1 2 3 4 5 6 7 8

Liquidation
LCi 0.09 −0.09 0.21 −0.21 0.33 −0.33 0.45 −0.45
∆ρi −0.06 0.1 −0.18 0.24 −0.30 0.36 −0.42 0.48

Hedging
LCi 0.03 −0.15 0.14 −0.26 0.26 −0.38 0.37 −0.49
∆ρi −0.06 0.12 −0.17 0.23 −0.29 0.35 −0.40 0.46

CMi 9 10 11 12 13 14 c

Liquidation
LCi 0.56 −0.56 0.68 −0.68 0.80 −0.80
∆ρi −0.53 0.60 −0.65 0.72 −0.77 0.83

Hedging
LCi 0.49 −0.61 0.60 −0.72 0.72 −0.84 0
∆ρi −0.52 0.58 −0.63 0.69 −0.75 0.81 0.83

TABLE 6. Impacts of the default resolution on the LCi and ∆ρi in the
liquidation and hedging cases in the entropic risk measure examples 4.3-
4.5.

5. MARKET COST: THE CASE OF EXPECTED SHORTFALL

Throughout this section, we assume that the risk preferences of each market partici-
pant is an expected shortfall ESαi

as per (2.18); each vector (Ri, P ) ∼ Em+1(µi,Γi, ψ) (or,
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sometimes, a more specific Tm+1(µi,Γi, νi)); the CCP only operates on its own exchange
D. Hence MC = MCD as in (3.24), with, by (2.21),

ri(qi) = −E[Ri]− q⊤i µ+ ESαi
(Zi)

√
Var(Ri) + 2q⊤i covi + q⊤i Γqi

where Zi ∼ E1(0, 1, ψ) (or Zi ∼ T1(0, 1, νi)), i ∈ D ∪D′.
(5.1)

5.1. Liquidation on D. Let us first consider the liquidation case of Section 3.3.1, but with
possibly new participants in D′. If (Ri, P ) ∼ Em+1(µi,Γi, ψ) with Γi positive definite,
i ∈ D ∪ D′, then, by Proposition 2.6, there exists a unique pre-default Radner equilib-
rium ((qi)i∈D,p

D). Following (2.5) and (2.22), the pre-default member i ∈ D optimality
condition yields

pD = µ− ESαi
(Z)√

Var(Ri) + 2q⊤
i covi + q⊤

i Γqi

(covi + Γqi) , i ∈ D. (5.2)

The zero clearing condition and (5.2) imply




∑
i∈D qi = 0

ESα1
(Z)

ESαi
(Z)

√
Var(Ri)+2q⊤

i covi+q⊤
i Γqi

Var(R1)+2q⊤
1
cov1+q⊤

1
Γq1

(cov1 + Γq1)− covi − Γqi = 0, i ∈ D.
(5.3)

Therefore, computing the optimal position is equivalent to finding the root of a vector
function from R

m|D| into R
m|D|. Likewise, the post-default optimal positions solve





∑
i∈D′ q

′
i = 0

ESα1
(Z)

ESαi
(Z)

√
Var(Ri)+2(q′

i)
⊤covi+(q′

i)
⊤Γq′

i

Var(R1)+2q′
1
⊤cov1+q′

1
⊤Γq′

1

(cov1 + Γq′
1)− covi − Γq′

i = 0, i ∈ D′

(5.4)
and the post-default price is equal to

p′D = µ− ESαi
(Zi)√

Var(Ri) + 2(q′
i)
⊤covi + (q′

i)
⊤Γq′

i

(
covi + Γq′

i

)
, i ∈ D′.

In the remainder of this subsection, we assume that m = 1, αi = 0.975 for each
market participant, µ = 2, and σ = 0.2.

Example 5.1 (Multivariate normal). Let D = {1, . . . , 15}, d = {15}, D′ \ D = ∅,
̺i = 1, (Ri, P ) ∼ N2(µi,Γi), covi = ciσ

√
Var(Ri) with ci = (−1)i+10.8, and

Var(Ri) = 0.09i2, i ∈ D. Solving (5.3)-(5.4) yields the pre- and post-default optimal
positions displayed in Table 7. The above results also yield pD = 1.96,p′D = 2.04, and

CMi 1 2 3 4 5 6 7 8

covi 0.05 −0.10 0.14 −0.19 0.24 −0.29 0.34 −0.38
qi −1.12 2.56 −3.36 5.12 −5.60 7.68 −7.84 10.24
q′
i −1.28 2.24 −3.84 4.48 −6.40 6.72 −8.96 8.96

CMi 9 10 11 12 13 14 15

covi 0.43 −0.48 0.53 −0.58 0.62 −0.67 0.72
qi −10.08 12.80 −12.32 15.36 −14.56 17.92 −16.80
q′
i −11.52 11.20 −14.08 13.44 −16.64 15.68

TABLE 7. Pre- and post-default optimal positions when the CCP liqui-
dates on its own exchange D with D′ \ D = ∅ in the expected shortfall
case.
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MCD = 0.69 (with LC = 0 as per the first line in Table 3).

Example 5.2 (Multivariate Student t). Reconsider Example 5.1 but for (Ri, P ) ∼
T2(µi,Γi, νi) with νi = ν = 2.5, i ∈ D. (5.1) yields

ri(qi) = −E[Ri]− q⊤i µ+ ESαi
(Z)
√

Var(Ri) + 2q⊤i covi + q⊤i Γqi

with Z ∼ T1(0, 1, ν), i ∈ D.

By McNeil et al. (2015, Example 2.15, page 71), we obtain ESαi
(Z) =

√
ν−2
ν

tν(T−1
ν (αi))

[

ν+(T−1
ν (α))

2
]

(1−α)(ν−1) . By inspection, q and q′ are the same as in Example 5.1,

given by Table 7. The above result also yield pD = 1.94,p′D = 2.06, and MCD = 1.06
(with LCD = 0 as per the first line in Table 3).

5.2. Hedging on D. We now turn to the “hedging on own exchange D" case of Sec-
tion 3.3.3, but with possibly new participants beyond the CCP c in D′. Let (Ri, P ) ∼
Em+1(µi,Γi, ψ) with Γi positive definite, for each i ∈ D∪ (D′ \ {c}). By Proposition 2.5,
there exists a unique pre-default Radner equilibrium ((qi)i∈D,p

D), which can be computed
by (5.2) and (5.3). Since Rc = q⊤

d (P − pD), letting z = (z1, z2, . . . , zm+1) = (z1, ẑ), we
obtain

E

[
eiz

⊤(Rc,P )
]
= E

[
ei
(
(z1qd+ẑ)⊤P−z1q

⊤
d
pD
)]

= exp(i z⊤µc)ψ

(
1

2
z⊤Γcz

)
, z ∈ R

m+1,

as (z1qd + ẑ)⊤P − z1q
⊤
d p

D ∼ E1
(
z⊤µc, z

⊤Γcz, ψ
)
. Hence (Rc, P ) ∼ Em+1(µc,Γc, ψ).

However, as Rc is in the span of P , Γc is not positive definite (see Remark 2.5). To
nevertheless ensure a unique post-default equilibrium (beyond the setup of Proposition
2.5), we assume that D′ \ {c} 6= ∅. By Theorem 2.3, we have a unique post-default price
p′D and a unique post-default portfolio q′

i, i ∈ D′ \{c}. Hence by the post-default clearing
condition, we also have a unique post-default position q′

c.
Letting R′

i = Ri + q⊤
i P play the role of Ri in (2.19), we obtain

r′i(zi) := ESαi
(−R′

i − z⊤i P )

= −E[Ri]− (zi + qi)
⊤µ+ ESαi

(Z)
√

(1, zi + qi)⊤Γi(1, zi + qi), i ∈ D′

with Z ∼ E1(0, 1, ψ). In view of Remark 3.3, by change of variable z′i = q′
i−qi, the proof

of Proposition 2.5 shows that, for i ∈ D′ \ {c}, r′i is differentiable and strictly convex with

− p′D = ∇r′i(z′i) = −µ+
ESαi

(Z)√
(1, z′i + qi)⊤Γi(1, z′i + qi)

(covi + Γz′i + Γqi)

= −µ+
ESαi

(Z)√
Var(Ri) + 2(q′

i)
⊤covi + (q′

i)
⊤Γq′

i

(
covi + Γq′

i

)
.

For the CCP, the member c optimality condition gives −p′D ∈ ∂r′c(z
′
c) = ∂r′c(q

′
c), i.e.

(r′c)
∗(−p′D) = −q′

c
⊤
p′D − r′c(q

′
c). Hence computing the optimal post-default position

reduces to the root-finding problem




∑
i∈D′ q

′
i + qd = 0

ESα1
(Z)

ESαi
(Z)

√
Var(Ri)+2(q′

i)
⊤covi+(q′

i)
⊤Γq′

i

Var(R1)+2q′
1
⊤cov1+q′

1
⊤Γq′

1

(cov1 + Γq′
1)− covi − Γq′

i = 0, i ∈ D′ \ {c}

r′c(q
′
c) + q′

c
⊤
p′D + (r′c)

∗(−p′D) = 0.

(5.5)
23



Example 5.3. In the “hedging on own exchange D" case with D′ \ D = {c} (as per
Section 3.3.3) and expected shortfall risk measures, let D = {1, . . . , 15}, d = {15}, αi =

0.975 and (Ri, P ) ∼ N2(µi,Γi) (so m = 1) with covi = σci
√

Var(Ri), σ = 0.2,
ci = (−1)i+10.8, and Var(Ri) = 0.09i2, i ∈ D. The corresponding pre- and post-
default optimal positions computed by (5.3) and (5.5) are given in Table 8. For µ = 2,

CMi 1 2 3 4 5 6 7 8

covi 0.05 −0.10 0.14 −0.19 0.24 −0.29 0.34 −0.38
qi −1.12 2.56 −3.36 5.12 −5.60 7.68 −7.84 10.24
q′
i −1.28 2.24 −3.84 4.48 −6.40 6.72 −8.96 8.96

CMi 9 10 11 12 13 14 15 c

covi 0.43 −0.48 0.53 −0.58 0.62 −0.67 0.72 −0.69
qi −10.08 12.80 −12.32 15.36 −14.56 17.92 −16.80
q′
i −11.52 11.20 −14.08 13.44 −16.64 15.68 16.80

TABLE 8. Pre- and post-default optimal positions when the CCP hedges
on its own exchange D with D′ \D = {c} in the expected shortfall case.

we obtain pD = 1.96,p′D = 2.04, and MCD = 0.69 (with, by the third line in Table 3,
LCD = −1.39).

Table 9 is the expected shortfall analog of Table 6, with qualitatively similar conclu-
sions.

CMi 1 2 3 4 5 6 7 8

Liquidation
LCi 0.11 −0.18 0.32 −0.37 0.53 −0.56 0.74 −0.74
∆ρi −0.10 0.20 −0.30 0.40 −0.50 0.60 −0.70 0.80

Hedging
LCi 0.09 −0.21 0.28 −0.42 0.46 −0.64 0.65 −0.85
∆ρi −0.10 0.20 −0.30 0.40 −0.50 0.60 −0.70 0.80

CMi 9 10 11 12 13 14 c

Liquidation
LCi 0.95 −0.93 1.167 −1.11 1.38 −1.30
∆ρi −0.89 0.99 −1.09 1.19 −1.29 1.39

Hedging
LCi 0.84 −1.06 1.02 −1.27 1.21 −1.48 0
∆ρi −0.89 0.99 −1.09 1.19 −1.29 1.39 1.39

TABLE 9. Impacts of the default resolution on the LCi and ∆ρi in the
liquidation and hedging cases in the expected shortfall examples 5.1-5.3.

6. CREDIT COST

The MC term (3.9) only addresses the impact of the considered default resolution
strategy in terms of mis-hedge of market risk. It remains to address its credit cost (CC),
meant to account for counterparty credit risk in a broad sense including the implications of
this risk in terms of capital and funding costs. There is in fact empirical evidence that credit
risk could actually even dominate market risk (European Bank Authority, 2022, Figure
65 page 67). Accordingly, the overall impact of a clearing member default’s resolution
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strategy should not be assessed in terms of MC only, but of the following all-inclusive
funds transfer price:

FTP = MC+CC, (6.1)

which should thus supersede MC in the default resolution approach depicted in the last
paragraph of Section 3.2.

6.1. Structure of the Exchanges. As depicted in Figure 1, clearing member bank a’s
trades with a CCP are divided into proprietary or house trades qa, which are in effect
hedges of the bank’s OTC bilateral trading exposures Ra =

∑
o∈O R

o
a (where the non-

cleared, end-clients o are “outside” of the exchange), and back-to-back hedges qa
b of inter-

mediated cleared client trades, through which non-member clients b (simple participants to
the exchange) can access the CCP clearing services.

b
a CCP

Rb qa
b qa

b

qa

Ra
=

∑

o∈
O

R
o
a

FIGURE 1. Client clearing (qa
b transits from b to the CCP via a) versus

bilateral hedging (a hedges Ra =
∑

o∈O R
o
a by a proprietary trading posi-

tion qa with the CCP).

Table 10 shows that both categories are really significant and should therefore be en-
compassed in the analysis. Our next task is to clarify the nature of the Radner equilibrium

Interest Rates Credit Equity Commodity

ISDA (USA) 90% 83% 26%
ESMA (Europe) 71% 41% 2% 1%

TABLE 10. Percentage of derivative notionals cleared by asset classes.
See International Swaps and Derivatives Association (2021, pages 2
and 5) for US as of end of 2020 (no figure for commodity
derivatives), European Securities and Markets Authority (2021, page 16)
for European interest rates and credit as of end of 2020, and
International Swaps and Derivatives Association (2018, page 18) for Eu-
ropean equities.

on an exchange E accounting for this distinction between proprietary and cleared deals.
Let E = A ∪ B, with A ∩ B = ∅, be the split between the set A of those participants
a to the exchange that are also clearing members of the CCP and the set B of simple
participants (non clearing members) b, having recourse to the clearing members for inter-
mediating trades with the CCP. Let qa be the proprietary position of member a and qab be the
position of client (simple participant to the exchange) b cleared by member a. As depicted
in Figure 1, the position qab only transits from b to a and then passes from a to the CCP.
Hence, even though the total position of a vis-à-vis the CCP is qa +

∑
b∈B q

a
b , as a holds

−∑b∈B q
a
b vis-à-vis the clients it clears for, the respective positions of a and b involved

in the Radner equilibrium on E are qa and qb =
∑

a∈A q
a
b . Once ((qi)i∈E=A∪B,p

E)
has been obtained as the solution of the corresponding Radner equilibrium (2.3)-(2.4), the
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splits qb =
∑

a∈A qa
b (for each b ∈ B) should follow in a second stage from pure credit risk

considerations. Similar comments apply “with ·′ everywhere" to any post-default Radner
equilibrium on E′ = A′ ∪B′.

6.2. Credit Costs XVA Framework. The settlement of a CCP portfolio of a defaulted
clearing member entails a mixture of market and/or counterparty credit risk, which depends
on the nature of this portfolio.

Figure 2 and the rows of Table 11 take up the distinction of Section 6.1 between
house and intermediation deals. The intermediated client deals of a clearing member are
perfectly (back-to-back) hedged by the corresponding intermediating transactions (upper
part of Figure 1). If a clearing member d defaults, its client deals and their static hedge are
ported as a package to a surviving clearing member (right panel in Figure 2). As market risk
is perfectly hedged throughout, such porting has no market impact, but entails a transfer
of counterparty credit risk that can be quantified by XVA costs as per Bastide et al. (2023,
Section 7) (second row in Table 11).

The columns of Table 11 distinguish delta-one financial assets, often rolled over
time with no upfront payment, such as repo market transactions, equity swaps and futures
(Crépey, Bielecki, and Brigo, 2014, Section 4.2.1), from upfront derivative assets traded
on a primary market, such as multi-legs swaps and options. Delta-one rolled transactions
have a nominal maturity that is infinite, but an effective maturity determined by the next
reset date, i.e. typically less than one day, whence a very little counterparty credit risk foot-
print (second column of Table 11), but possibly significant liquidation or hedging costs.
The market costs analysis of the above sections can be enough to deal with a portfolio of
delta-one assets. In the case of swaps or derivatives portfolios, however (first column of
Table 11), the XVA implications of a default resolution strategy also matter, which is the
object of this section.

Cleared

Assets
swaps and options delta-one

centrally via house account liquidity and credit liquidity, no credit
centrally via client account no liquidity, credit ∅

TABLE 11. Costs of the CCP for settling a netting set of deals of a de-
faulted clearing member, depending on the nature of the defaulted portfo-
lio.
The deals corresponding to the lower right cell would entail no liquidity nor credit risk,
but this cell is in fact empty, due to the nature of delta-one transactions that do not require
intermediation.

Our XVA metrics are computed under the premise that the (random) loss triggered by
the default of a market participant in the future is allocated between the surviving members
of its CCP, pro-rata of their default fund contribution to the CCP (see e.g. after (A.8)). At
time “0−”, i.e. “right before” the instant default of the clearing member d at time 0, the
participants i to the exchanges charge to their clients the expectation of their ensuing losses,
in the form of their CVAi, as well as their collateral funding costs FVAi and MVAi, and
costs of capital KVAi. These costs sum up to XVAi = CVAi + FVAi +MVAi + KVAi,
computed for each participant i the way detailed for i = 0 in Section A, based on the pre-
default Radner equilibrium quantities and prices on each exchange. To quantify the XVA
impact of a given default resolution procedure for a CCP portfolio of d, we also compute
the time 0, post-default XVA′

i, for any participant i 6= d to the exchanges. The credit cost
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CCP

a

d

CCP

∑

o∈O
R
o
d = Rd

q ⊤
d (p ′D−

P)

q
⊤
d
(p
D −P

)

case of a house portfolio

CCP

b

a

d

CCPR
b
d

R
b
d

R b
d

(q
d
b
)
⊤ (p

D −P)
=
R
b
d

case of a client portfolio

FIGURE 2. Default management of the CCP portfolios of a defaulted
clearing member d. With pre-default positions in red dashed lines and
post-default positions in red solid lines: (Left) The receivable Rd of d
from its OTC bilateral counterparties (which are outside the exchange)
is left aside in the default resolution procedure, while the corresponding
house (hedging) portfolio qd is ported to the surviving clearing member a;
(Right) The client account qd

b of the defaulted clearing member d, as well
as the corresponding (mirroring) receivable Rb

d from its cleared client b,
are ported as a package to the surviving clearing member a.
Notations as detailed below and in Sections 2-3-A.

of the settlement of the defaulted portfolio, coming on top of the already computed MC, is

CC =
∑

i 6=d

(XVA′
i −XVAi)︸ ︷︷ ︸

∆XVAi

+AC,
(6.2)

where the auctioning cost AC is another XVA incremental impact corresponding to the
FTP in Bastide et al. (2023, Section 7) (which only involved credit costs), i.e. the XVA
impact of auctioning any hedged (as opposed to liquidated) positions. Indeed, a CCP is
not inclined to keep the defaulted portfolio and the corresponding hedge on its book, it will
look at auctioning them (Ferrara and Li, 2020; Oleschak, 2019).

In the end, the full FTP (6.1) that emerges from the present paper (where both market
and credit costs are involved) can be detailed as

FTP = LC +
∑

E′

∑

i∈E′

∆ρi

︸ ︷︷ ︸
MC

+
∑

i 6=d

∆XVAi +AC

︸ ︷︷ ︸
CC

.
(6.3)

Remark 6.1. Under the pure auctioning default resolution strategy, only the last term re-
mains. But this AC term could be very expensive in the case of an unhedged portfolio (see
the first quotation in Section 3).

6.3. Example 5.1 Continued. We complete from the credit costs perspective the “liqui-
dation on own exchange” Example 5.1. In the case of default resolution procedures imple-
mented on the own exchange D of the CCP, (6.3) boils down to

FTP = LCD +
∑

i∈D\{d}

∆ρi

︸ ︷︷ ︸
MC

+
∑

i∈D\{d}

∆XVAi +AC

︸ ︷︷ ︸
CC

.
(6.4)
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We assume risk-free OTC bilateral counterparties (end-users) o and no simple participants
to the exchange D, which thus only involves proprietary trading between its clearing mem-
bers. We endorse the Gaussian latent factors XVA setup of Section A.1. Table 12 provides
the resulting “time 0−” XVAi (with all members, d included) and time 0 XVA′

i (without
d), using the allocated positions of Table 7 and the XVA specifications of Table 21 along
with IMi = DFi = 0, whilst Table 13 presents the same results for IMi and DFi set at the
75% and 80% confidence level. Note that the chosen period length of T = 5 years cov-
ers the bulk (if not the final maturity) of most realistic CCP portfolios13 . The aggregated
XVA cost (6.2) of liquidating the defaulted portfolio14 is CC =

∑
i∈D\{d} ∆XVAi, namely

−0.77 for the case IMi = DFi = 0 and −0.25 with IMi and DFi set at the 75% and 80%
confidence level, coming on top of the market cost of MC = 0.70 already obtained in
Example 5.1.

CMi 1 2 3 4 5 6 7 8

XVAi 0.81 1.21 1.36 1.70 1.74 2.05 2.02 2.37
XVA′

i 0.92 1.17 1.47 1.61 1.82 1.93 2.07 2.19
∆XVAi 0.11 −0.04 0.12 −0.09 0.08 −0.12 0.05 −0.18

CMi 9 10 11 12 13 14 15

XVAi 2.25 2.62 2.42 2.84 2.57 3.04 2.69
XVA′

i 2.28 2.42 2.42 2.60 2.54 2.77
∆XVAi 0.03 −0.20 −0.01 −0.24 −0.03 −0.27

TABLE 12. The pre- and post-default XVAs computed from (A.11) when
the CCP liquidates d on its own exchange, D, in the expected shortfall case
with IMi = DFi = 0.

.

CMi 1 2 3 4 5 6 7 8

XVAi 0.37 0.59 0.72 0.89 1.00 1.12 1.21 1.34
XVA′

i 0.42 0.56 0.80 0.84 1.07 1.05 1.28 1.22
∆XVAi 0.05 −0.03 0.08 −0.06 0.07 −0.07 0.07 −0.11

CMi 9 10 11 12 13 14 15

XVAi 1.42 1.50 1.57 1.64 1.72 1.77 1.85
XVA′

i 1.49 1.37 1.63 1.49 1.78 1.60
∆XVAi 0.07 −0.12 0.06 −0.15 0.06 −0.17

TABLE 13. The pre- and post-default XVAs computed from (A.11) when
the CCP liquidates d on its own exchange, D, in the expected shortfall case
with IMi and DFi set at the 75% and 80% confidence level.

Instead of liquidation on the CCP’s own exchange D, we now consider another default
resolution strategy, in the form of an (idealized) auction inducing the taker giving rise to the

13most OTC derivatives have a maturity of less than 5 years (Bank for International Settlements, 2022,
Graphs A.2–4).

14note that there is no auction in this (liquidation) case.
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least auction cost AC among all possible takers i ∈ D \ {d}15. The results are displayed
in Table 14 for the case IMi = DFi = 0 and in Table 15 for IMi and DFi set at the
75% and 80% confidence level. From Tables 14-15, participant 14 is the survivor taker

CMi

∑

i∈D\{d}

(CVA′
i − CVAi)

∑

i∈D\{d}

(KVA′
i −KVAi) AC

14 -1.00 (-0.38) -3.52 (-0.63) -4.52 (-1.01)
12 -0.85 (-0.34) -2.93 (-0.57) -3.78 (-0.91)
10 -0.58 (-0.23) -2.02 (-0.42) -2.60 (-0.64)
8 -0.31 (-0.11) -1.13 (-0.24) -1.44 (-0.35)
6 -0.04 (0.02) -0.30 (-0.04) -0.34 (-0.02)
4 0.23 (0.15) 0.42 (0.20) 0.65 (0.35)
2 0.50 (0.29) 0.95 (0.52) 1.45 (0.81)
1 0.77 (0.43) 1.59 (0.86) 2.35 (1.29)
3 0.77 (0.39) 2.09 (0.62) 2.85 (1.01)
5 0.77 (0.36) 2.47 (0.47) 3.23 (0.82)
7 0.77 (0.32) 2.70 (0.37) 3.46 (0.70)
9 0.77 (0.29) 2.84 (0.30) 3.60 (0.60)

11 0.77 (0.26) 2.92 (0.27) 3.69 (0.53)
13 0.77 (0.23) 2.96 (0.25) 3.73 (0.48)

TABLE 14. Auctioning costs AC corresponding to the different possible
takers of the portfolio of the defaulted member d = 15, ranked by increas-
ing value, for IMi = DFi = 0. In parenthesis, the contributions to AC of
the considered possible taker itself.

CMi

∑

i∈D\{d}

(MVA′
i −MVAi)

∑

i∈D\{d}

(CVA′
i − CVAi)

∑

i∈D\{d}

(KVA′
i −KVAi) AC

14 -0.06 (-0.15) -0.49 (-0.13) -2.33 (-0.42) -2.88 (-0.71)
12 -0.01 (-0.11) -0.45 (-0.12) -2.00 (-0.39) -2.46 (-0.63)
10 0.06 (-0.04) -0.36 (-0.08) -1.47 (-0.27) -1.77 (-0.40)
8 0.13 (0.03) -0.27 (-0.04) -0.93 (-0.14) -1.07 (-0.16)
6 0.20 (0.10) -0.17 (0.00) -0.44 (0.01) -0.41 (0.11)
4 0.26 (0.17) -0.07 (0.04) 0.00 (0.19) 0.20 (0.40)
2 0.33 (0.23) 0.03 (0.09) 0.38 (0.41) 0.74 (0.74)
1 0.41 (0.31) 0.11 (0.14) 0.76 (0.64) 1.28 (1.09)
3 0.42 (0.31) 0.10 (0.13) 0.92 (0.51) 1.44 (0.95)
5 0.42 (0.31) 0.09 (0.11) 1.06 (0.42) 1.58 (0.85)
7 0.43 (0.32) 0.08 (0.10) 1.16 (0.37) 1.67 (0.78)
9 0.44 (0.32) 0.07 (0.09) 1.23 (0.31) 1.74 (0.72)

11 0.45 (0.32) 0.06 (0.08) 1.28 (0.28) 1.78 (0.68)
13 0.45 (0.33) 0.05 (0.06) 1.29 (0.26) 1.80 (0.65)

TABLE 15. Auctioning costs AC corresponding to the different possible
takers of the portfolio of the defaulted member d = 15, ranked by increas-
ing value, for IMi and DFi set at the 75% and 80% confidence level. In
parenthesis, the contributions to AC of the considered possible taker itself.

15This approach developed in (Bastide et al., 2023, Section 7) can indeed be seen as rendering the output of
an idealized, efficient auction used for closing out the account of a defaulted clearing member (cf. Oleschak
(2019, Section 3.3)).
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leading to the smallest auctioning cost AC, namely−4.52 and −2.88, when taking over
the defaulted portfolio of CM15 (and there are in this case no additional costs to consider,
cf. Remark 6.1). Such take-over makes intuitive sense given the pre-default position q15 =
−16.8 of the defaulting member d = 15, compared with the position of member 14 at
q14 = 17.92, an almost offset of q15. Member 12 shows the second best solution with an
auctioning cost AC close to zero, also justifiable by his offsetting position at q12 = 15.36.

Finally, we consider one more default resolution strategy, where the CCP hedges (as
per Section 3.3.3) the defaulted portfolio before auctioning all its positions. In the hedg-
ing case, with the CCP c contributing to the post-default quantities and price discovery
((q′

i)i∈D′=(D\{d})∪{c},p
′D), resolving (3.10) (for E = D) and (3.14)–(3.16) in the config-

uration of Example 5.1 (except for the new member c) leads to q′
c = −qd. Coincidentally,

this hedging resolution thus leads to a perfect replication as per Section 3.3.5. The corre-
sponding

∑
i 6=d ∆XVAi, detailed in Tables 16 and 17, is −14.45 for IMi = DFi = 0 and

−6.80 for IMi and DFi set at the 75% and 80% confidence levels. As the residual market
risk is null in such a replication case, taking over the defaulted portfolio and its hedge does
not generate any market risk. Hence in these cases no additional cost is generated by the
auctioning process, i.e. AC = 0.

CMi 1 2 3 4 5 6 7 8

XVAi 0.81 1.21 1.36 1.7 1.74 2.05 2.02 2.37
XVA′

i 0.19 0.34 0.54 0.63 0.83 0.89 1.07 1.13
∆XVAi −0.62 −0.87 −0.81 −1.06 −0.91 −1.15 −0.94 −1.24

CMi 9 10 11 12 13 14 15 c

XVAi 2.25 2.62 2.42 2.84 2.57 3.04 2.69
XVA′

i 1.28 1.34 1.44 1.54 1.59 1.72 2.39
∆XVAi −0.98 −1.27 −0.98 −1.3 −0.98 −1.32

TABLE 16. The pre- and post-default XVAs computed from (A.11) when
the CCP hedges the portfolio of the defaulted member d = 15 on its own
exchange D, in the expected shortfall case with IMi = DFi = 0.

CMi 1 2 3 4 5 6 7 8

XVAi 0.37 0.59 0.72 0.89 1 1.12 1.21 1.34
XVA′

i 0.13 0.21 0.38 0.4 0.6 0.56 0.79 0.72
∆XVAi −0.24 −0.38 −0.34 −0.5 −0.4 −0.56 −0.42 −0.62

CMi 9 10 11 12 13 14 15 c

XVAi 1.42 1.50 1.57 1.64 1.72 1.77 1.85
XVA′

i 0.97 0.85 1.12 0.98 1.26 1.09 1.30
∆XVAi −0.45 −0.64 −0.45 −0.67 −0.46 −0.68

TABLE 17. The pre- and post-default XVAs computed from (A.11) when
the CCP hedges the portfolio of the defaulted member d = 15 on its own
exchange D, in the expected shortfall case with IMi and DFi at the 75%
and 80% confidence level.

We sum up in Tables 18 and 19 the FTP of each considered default management
scheme without and with collateral (in the sense here of initial margins and default fund

30



contributions), from the cheapest to the dearest one (again, in this example, hedging then
auctioning with D′ \ D = {c} happens to coincide with replicating then auctioning with
D′ \D = ∅). The FTPs of the hedging then auctioning scheme provides much larger gains
then the pure auctioning strategy, which itself provides more gains than the full liquidation
strategy. Coincidentally in this example, at least, this happens to be in line with the BIS
recommendations quoted in the beginning of Section 3. However, our approach only en-
dorses the point of view of the participants to the exchange. Indeed, our costs of settling
the house portfolio of a defaulted clearing member ignore the damage of the default to the
“outer” actors o (end-users external to the exchanges). From this viewpoint (compare the
two panels of Figure 2), whenever available, centrally cleared trading is preferable to bilat-
eral trading (but, as per today, centrally cleared trading can only concern the standardized
half of the market, cf. Table 10).

LCD

∑

i∈D′

∆ρi

∑

i∈D\{d}

∆XVAi AC FTP

liquidating 0 0.70 -0.77 0 -0.08
auctioning 0 0 0 -4.52 -4.52
hedging then auctioning -1.39 2.09 -14.45 0 -13.75

TABLE 18. FTPs of different default management schemes on D split as
per (6.4) for IMi = DFi = 0.

LCD

∑

i∈D′

∆ρi

∑

i∈D\{d}

∆XVAi AC FTP

liquidating 0 0.70 -0.25 0 0.45
auctioning 0 0 0 -2.88 -2.88
hedging then auctioning -1.39 2.09 -6.80 0 -6.11

TABLE 19. FTPs of different default management schemes on D split as
per (6.4) for IMi and DFi set at the 75% and 80% confidence level.
In this example, hedging then auctioning with D′ \ D = {c} happens to coincide with
replicating then auctioning with D′ \ D = ∅.

APPENDIX A. XVA GAUSSIAN SETUP

The purpose of this part is to provide a bridge from the equilibrium setup of Sections
2–5 to the XVA setup of Bastide et al. (2023), so that we are able to provide an overall FTP
(6.3) quantifying the market but also credit costs of a given default resolution strategy. We
leave for future research the extension of the approach of this paper to a setup where not
only the market costs, but also the credit costs, would be treated endogenously as part of a
global (or perhaps two-stage16) equilibrium, ideally in the setup of a dynamic model.

We endorse the structure of exchanges E = A ∪ B depicted in Section 6.1. Note
that even for those clients clearing through a CCP member and also having OTC positions
with that same member, the corresponding exposures must be treated separately, hence
B ∩ O = ∅. For each participant i to an exchange E, a comparison of the present setup
with Bastide et al. (2023, Eqns. (15)-(16)) yields the mapping of Table 20.

16accounting for the segregation between the market and credit spheres in banks (Bellini, 2017, Section 6.1)
(The European Parliament and the Council of the European Union, 2013, Article 92).
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(Bastide et al., 2023,

Eqns. (15)-(16))

This paper Description

Pccp
c −MtMccp

c (q0
b)

⊤(pE − P ) Cash flows from a cleared client (c in
Bastide et al. (2023), b in this paper) of
a CCP (ccp in Bastide et al. (2023), the
CCP of exchange E in this paper) to the
participant 0 (if the latter is not a clearing
member of the CCP, these cash flows are
simply zero)

Pccp
i −MtMccp

i

∑
b∈B(q

a
b )

⊤(pE − P ) Client account cash flows from a clear-
ing member (i in Bastide et al. (2023),
a in this paper) to his CCP (ccp in
Bastide et al. (2023), the CCP of ex-
change E in this paper)

Pccp

i −MtM
ccp

i q⊤
a (p

E − P ) Proprietary account cash flows from
a clearing member (i in Bastide et al.
(2023), a in this paper) to his CCP

Pb −VMb Ro
0 Cash flows from an end-user (b in

Bastide et al. (2023), o in this paper) to
participant 0

TABLE 20. Some notation adaptation for the cash flows of some mar-
ket participants after variation margin is subtracted, in the setup of
Bastide et al. (2023) and in this paper.

Let Ji be the survival indicator of participant i to an exchange E, i.e. Ji = 1{τi>T},
where τi is the default time of participant i over the period [0, T ], with probability γi =
P(Ji = 0) of default over [0, T ]. We denote likewise Jo = 1{τo>T} for any end-user o ∈ O.
Via the mapping of Table 20, (Bastide et al., 2023, Eqns. (15)-(16)) yield the following
(pre-default equilibrium) credit loss profile C0 of a participant i = 0 to the exchanges, on
which we focus in what follows: C0 =

∑
E=A∪B(CB

0 + CA
0 ) + CO

0 , where

CB
0 =

∑

b∈B

(1− Jb)
(
(q0

b)
⊤(pE − P )− IMb

0

)+
,

CA
0 = wA

0

∑

a∈A

(1− Ja)
[((∑

b∈B

qa
b

)⊤
(pE − P )− IMA

a

)+
+

(
q⊤
a (p

E − P )− IM
A
a

)+
−DFA

a

]+
,

CO
0 =

∑

o∈O

(1− Jo)(R
o
0 − IMo

0)
+.

(A.1)

Here IMb
0 is the initial margin (IM) requested by the participant 0 to the simple participant

b ∈ B on the cleared position q0
b (equal to 0 if 0 /∈ A); wA

0 (equal to 0 if 0 /∈ A) is
the loss allocation coefficient of the participant 0 w.r.t. the CCP of the exchange E =

A ∪B; IMA
a , IM

A

a , and DFA
a are the initial margins for the cleared clients and proprietary

accounts as well as the default fund contribution requested by (the CCP of) exchange E to
the clearing member a; Ro

0 is the exogenous receivable of the participant 0 from its OTC
bilateral counterparty o, with corresponding initial margin IMo

0 (which can be null under
OTC agreement) requested by 0 to o (cf. Figure 1).
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Likewise, the post-default equilibrium17 default loss profile C′
0 of the participant 0 is

C′
0 =

∑
E′=A′∪B′(C′B

0 + C′A
0 ) + CO

0 , for CO
0 as in (A.1) and (cf. Table 20 and (3.8)-(3.5))

C′B
0 =

∑

b∈B′

(1− Jb)
(
(q′0

b )
⊤(p′E − P ) +

(
q0
b + (∆q0

b)
l
)⊤

(pE − p′E)− IM′b
0

)+
,

C′A
0 =

(3.8)
w′A
0

∑

a∈A′

(1− Ja)×
((∑

b∈B′

(q′a
b )

⊤(p′E − P ) +
∑

b∈B′

(
qa
b + (∆qa

b )
l
)⊤

(pE − p′E)− IM′A
a

)+
+

(
(q′

a)
⊤(p′E − P ) + (qa +∆ql

a)
⊤(pE − p′E)− IM

′A
a

)+
−DF′A

a

)+

,

(A.2)

where w′A
0 , IM′A

a , IM
′A
a , DF′A

a , and IM′b
0 are the post-default analogs of wA

0 , IMA
a , IM

A
a ,

DFA
a , and IMb

0 in (A.1).
The pre- and post-default CVA of the participant 0 are given by

CVA0 = E
[
C0
∣∣J0 = 1

]
= (1− γ0)

−1
E [J0C0] , CVA′

0 = (1− γ0)
−1

E
[
J0C′

0

]
, (A.3)

by Bastide et al. (2023, Theorem 3.7). Denoting by IM
o
0 the initial margin from the par-

ticipant 0 to its OTC bilateral counterparty o, based on Remark 2.2, such margin remains
constant in the post-default equilibrium, hence the pre- and post-default MVA of participant
0 are given by

MVA0 = γ̃0

(
∑

o∈O

IM
o

0 +
∑

E

(
IME

0 + IM
E

0 +DFE
0

))
,

MVA′
0 = γ̃0

(
∑

o∈O

IM
o

0 +
∑

E

(
IME′

0 + IM
E′

0 +DFE′

0

))
,

(A.4)

for some possibly blended funding rate γ̃0 ≤ γ0 as detailed in
Albanese, Armenti, and Crépey (2020, Section 5). The pre-default KVA, defined for
a hurdle rate h, is calculated based on an expected shortfall ES0α̃0

of the participant 0 under
its own survival measure, P(·J0)/(1 − γ0) (with α̃0 > the confidence level α0 introduced
for the market cost computation in Section 5 when the risk measures used by the hedgers
are expected shortfall risk measures18), as

KVA0 =
h

1 + h
ES

0
α̃0

(C0 − CVA0)

=
h

1 + h
E
[
J0 (C0 − CVA0)

∣∣C0 − CVA0 ≥ VaR0
α̃0

(J0(C0 − CVA0)) , J0 = 1
]
,

(A.5)

by Bastide et al. (2023, Theorem 3.7, last row of Table 2), where VaR0
α̃0

denotes the value-
at-risk at the confidence level α̃0 under the measure (1 − γ0)

−1
P (·J0). The post-default

17post-default referring as usual in the paper to the instant default at time 0 of a clearing member d, here
assumed 6= the reference clearing member 0.

18regulatory and economic capital aim at capturing extreme losses that can occur once every 1000 years
(Basel Committee on Banking Supervision, 2005, paragraph 5.1), which leads to considering a much higher
confidence level α̃0 for economic capital calculation, such as 0.9975, from which the KVA is defined, than the
α0 used for market risk, set to 0.975, in line with (Bank for International Settlements, 2013, Section 1.4 (i)).
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KVA has a similar expression substituting C′
0 to C0 and CVA′

0 to CVA0 in (A.5):

KVA′
0 =

h

1 + h
ES

0
α̃0

(
C′
0 − CVA′

0

)

=
h

1 + h
E
[
J0
(
C′
0 − CVA0

) ∣∣C′
0 − CVA0 ≥ VaR0

α̃0

(
J0(C′

0 − CVA′
0)
)
, J0 = 1

]
,

(A.6)

Finally, by Bastide et al. (2023, Theorem 3.7, next to last row of Table 2), the pre- and post-
FVA of the participant 0 is given by

FVA0 =
γ0

1 + γ0

(
∑

o∈O

ERo
0 − (CVA0 +MVA0)− ES

0
α̃0

(C0 − CVA0)

)+

,

FVA′
0 =

γ0
1 + γ0

(
∑

o∈O

ERo
0 − (CVA′

0 +MVA′
0)− ES

0
α̃0

(
C′
0 − CVA′

0

)
)+

.

(A.7)

A.1. XVA details in the setup of Section 6.3. In the setup of Section 6.3, only clearing
members a participate to the only exchange of interest D (so all participants i are clearing
members a and there are no cleared clients b) and all the end-users (OTC bilateral coun-
terparties) o are assumed to be default risk-free, Hence the pre-default credit loss (A.1) of
member 0 ∈ D reduces to

C0 = wD
0

∑

j∈D

(1− Jj)
(
qj(p

D − P )− IM
D
j −DFD

j

)+
, (A.8)

where wD
0 =

DFD
0 J0

∑

j∈D
DFD

j Jj
. Under the post-default equilibrium when the CCP fully liqui-

dates on D (so that ∆qh
i = 0), the post-default credit loss (A.2) of member 0 ∈ D reduces

to

C′
0 = w′D

0

∑

i∈D′

(1− Ji)
(
q′
i(p

′D − P ) + q′
i(p

D − p′D)− IM
′D
i −DF′D

i

)+

= w′D
0

∑

i∈D′

(1− Jj)
(
q′
i(p

D − P )− IM
′D
i −DF′D

i

)+
,

(A.9)

whereas, when the CCP fully hedges on D (so that ∆ql
i = 0, qj +∆qh

j = q′
j),

C′
0 = w′D

0

∑

i∈D′

(1− Ji)
(
q′
i(p

′D − P ) + qi(p
D − p′D)− IM

′D
i −DF′D

i

)+
. (A.10)

In both cases w′D
0 , IM

′D
i and DF′D

i , i ∈ D′, are the post-default analogs of wD
0 , IM

D
i and

DFD
i , i ∈ D, based on the post-default updated portfolio positions. The pre- and post-

default CVA, MVA and KVA of member 0 ∈ D \ {d} are given by

CVA0 = (1− γ0)
−1

E [J0C0] , CVA′
0 = (1− γ0)

−1
E
[
J0C′

0

]
,

MVA0 = γ̃0
(
IM0 +DF0

)
, MVA′

0 = γ̃0

(
IM

′
0 +DF′

0

)
,

KVA0 =
h

1 + h
E
[
J0 (C0 − CVA0)

∣∣C0 −CVA0 ≥ VaR0
α̃0

(J0(C0 − CVA0)) , J0 = 1
]
,

KVA′
0 =

h

1 + h
E
[
J0
(
C′
0 − CVA′

0

) ∣∣C′
0 − CVA′

0 ≥ VaR0
α̃0

(
J0(C′

0 − CVA′
0)
)
, J0 = 1

]
.

(A.11)

Moreover, in the setup of Section 6.3, ERo
0 in (A.7) corresponds to MtMb − VMb in the

setup of Bastide et al. (2023), i.e. a difference of received (VMb) variation margin by the
member 0 and posted (MtMb) variation margin by the member 0 for an OTC bilateral
position between the clearing member 0 and the end-user o. We assume, as it is the case in
practice, that there is only marginal, if no, difference between the two quantities. Hence we
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have ERo
0 ≈ 0 and, in any case, dominated by (CVA0+MVA0)−ES

0
α̃0

(C0 − CVA0) and
(CVA′

0 +MVA′
0) − ES

0
α̃0

(C′
0 − CVA′

0) in (A.7), leading to negligible FVA0 and FVA′
0,

which we therefore simply take as 0 in our numerics (and do not report in the numerics of
Section 6.3).

Latent Factor Model. For default modeling purposes, we introduce for each member i ∈ D
a latent variable Xi ∼ N1(0, 1) such that {Ji = 0} ⇐⇒

{
Xi ≤ Φ−1(γi)

}
. These default

latent variables are correlated as per Xi =
√
̺crε +

√
1− ̺crεi, where ε and εi are i.i.d.

N1(0, 1), while ̺cr is a positive credit/credit correlation coefficient. Writing P = µ+ σY
with Y ∼ N1(0, 1), the IM posted to the CCP by member i, based on the idea of a qi(p

D−
P ) VM call not fulfilled over its corresponding time period T (versus ∆s in Bastide et al.
(2023)), is computed by the VaR metric19 at a confidence level αim ∈ (1/2, 1) as

IM
D
i = VaRαim

(
qi(p

D − P )
)
= qi(p

D − µ) + |qi|σΦ−1(αim). (A.12)

The liquidation time period ∆l in Bastide et al. (2023) is also taken as the one-period of
time considered in the Radner equilibrium setup of the present paper, so that ∆s = ∆l = T .
The default fund is calculated at the level of the considered CCP of d as the sum of the two
highest stress loss over IM (SLOIM), where SLOIM is given for each member i as

SLOIMD
i = VaRαdf

(
qi(p

D − P )− IM
D
i

)
= |qi|σ

(
Φ−1(αdf )−Φ−1(αdf )

)
,

for some confidence level αdf > αim. The default fund contribution of member i is given
as

DFD
i =

SLOIMD
i∑

j∈D SLOIMD
j

(
SLOIMD

(0) + SLOIMD
(1)

)
, (A.13)

based on the cover-2 amount given as the sum of two largest stressed losses over IM
(SLOIMi) among its members, identified with subscripts (0) and (1).

Portfolios maturity T 5 years
Liquidation period at default ∆l 5 years
Credit factors correlation ̺cr 20%
IM covering period (margin period of risk) ∆s 5 years
Default probabilities γi 39.3%
MVA funding blending ratio γ̃i/γi 25%
Quantile levels α̃i used for clearing members KVA 99.75%
Hurdle rate h used for KVA computations 10.0%
Number of Monte-Carlo simulations (for CVA and KVA computations) 10M
Number of batches (for KVA computations) 100

TABLE 21. XVAs calculation configuration
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