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Abstract

We introduce a fast, new algorithm for inferring from allele count data the FST parameters

describing genetic distances among a set of populations and/or unrelated diploid individuals,

and a tree with branch lengths corresponding to FST values. The tree can reflect historical

processes of splitting and divergence, but seeks to represent the actual genetic variance as

accurately as possible with a tree structure. We generalise two major approaches to defining

FST, via correlations and mismatch probabilities of sampled allele pairs, which measure

shared and non-shared components of genetic variance. A diploid individual can be treated

as a population of two gametes, which allows inference of coancestry coefficients for individ-

uals as well as for populations, or a combination of the two. A simulation study illustrates

that our fast method-of-moments estimation of FST values, simultaneously for multiple popu-

lations/individuals, gains statistical efficiency over pairwise approaches when the population

structure is close to tree-like. We apply our approach to genome-wide genotypes from the

26 worldwide human populations of the 1000 Genomes Project. We first analyse at the pop-

ulation level, then a subset of individuals and in a final analysis we pool individuals from the

more homogeneous populations. This flexible analysis approach gives advantages over tra-

ditional approaches to population structure/coancestry, including visual and quantitative

assessments of long-standing questions about the relative magnitudes of within- and

between-population genetic differences.

Author summary

We propose new ways to measure, and visualise in a tree, the genetic distances among a

set of populations using allele frequency data. The two genomes within a diploid individ-

ual can be treated as a small population, which allows a flexible framework for investigat-

ing genetic variation within and between populations. Genetic structure is represented in

a best-fitting tree with nodes corresponding either to populations or to individuals. This

permits both homogeneous populations and genetically diverse individuals, for example
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due to admixture, to be represented efficiently and informatively. We first generalise the

long-established measure of genetic distance, FST, to tree-structured populations and indi-

viduals, deriving two measures for each pair of populations, corresponding to their shared

and non-shared genetic variation. We show using a simulation study that our tree-based

estimators can be more efficient than current pairwise estimators, and we illustrate the

potential for novel ways to explore and visualise genetic variation within and between

populations using a worldwide human genetic dataset.

Introduction

FST is a measure of between-population genetic distance introduced in the seminal work of

[1]. Several definitions have been proposed, for example in terms of correlations of alleles sam-

pled from populations, relative to an actual or hypothetical reference population, or in terms

of average mismatch probabilities for pairs of alleles from the same population, and from dif-

ferent populations. Different underlying definitions have complicated comparisons of the

many FST estimators that have been proposed. These include sum-of-squares estimators in a

components-of-variance framework [2], and maximum likelihood estimation based on the

variance parameter of the multinomial-Dirichlet distribution (beta-binomial for diallelic

markers) [3]. Many method-of-moments (MoM) approaches have been proposed [4–8], based

on statistics that measure matching alleles or, equivalently, mismatches (often referred to as

expected heterozygosity). The MoM estimators are generally simple and computationally fast,

suitable for the very large numbers of single-nucleotide variants (SNV) that are now available.

With such large SNV datasets, estimators can be precise and so differences in definitions can

be important. FST estimates for pairs of worldwide human populations have differed by almost

a factor of two, due to sensitivity to the minor allele frequency (MAF) [7].

Currently, researchers with multi-population data typically apply a standard estimator sepa-

rately for each pair of populations. Recent advances [8, 9], following earlier suggestions [10,

11], have added flexibility through integrating the analyses of individuals and populations.

Here we propose fast and statistically-efficient MoM estimation of FST, simultaneously for

multiple populations and/or individuals, by inferring a tree of ancestral populations with

branch lengths that can be used to compute shared and unshared components of allele-fre-

quency variance.

Unrelated diploid individuals can be treated as populations of two gametes. While accurate

tree inference with all tip nodes corresponding to individuals is infeasible for large sample

sizes, a hybrid approach can be used with some tips corresponding to homogeneous popula-

tions and others to individuals with greater genetic diversity, perhaps due to admixture. A flex-

ible modelling framework using a sequence of analyses can be employed to converge on a

best-fitting representation of population structure. Here, we do not model the effects of link-

age, and so we only consider unrelated individuals (no very recent shared ancestors).

Inbreeding is one of the evolutionary forces that contributes to genetic distance. To intro-

duce our new approach simply, we do not distinguish the effects of inbreeding in the main

text, but in S3 Text we outline a more computationally-demanding extension to jointly esti-

mate inbreeding and coancestry parameters.

While the tree typically reflects evolutionary history, it primarily provides a visual represen-

tation of the actual genetic variance inferred from observed allele frequencies. Many authors

interpret coancestry parameters in terms of identity-by-descent (IBD) probabilities [9, 12, 13].

The IBD concept is popular and allows an intuitive language, but can be problematic [14]
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because there is a common ancestor at each genome site and different approaches are used to

convert the continuous time-since-common-ancestor into a binary IBD state. These include

current or ancestral reference populations [8, 9, 13] or mutation events [11, 15]. Our coances-

try parameters describe components of allele frequency variance, but our framework is similar

to the IBD-centred approach of [9] in that reference allele frequencies are assumed to be those

of the most recent population ancestral to the sampled populations. It follows that FST� 0

here, as in [9], whereas other approaches allow FST < 0 [7, 8].

We first generalise to multiple populations the correlation and mismatch definitions,

denoted FW
ST and FH

ST , respectively, the superscripts referring to the seminal authors Weir/

Wright and Hudson. For tree-structured populations, FW
ST and FH

ST capture complementary

aspects of population structure, corresponding to the lengths of shared and non-shared

branches between two populations and the inferred ancestral population. For example, in Fig

1 there are no shared branches and all between-population FW
ST values are zero, but in Fig 2

Populations C and D share Branches 2 and 3, whose lengths contribute to FW
STðCDÞ, while the

lengths of non-shared Branches C and D contribute to the value of FH
STðCDÞ. Our inferred trees

are binary, but since zero branch lengths are allowed, more general tree structures are possible.

Fig 1. The independent-descent population model. The ancestral population (Population 0) is unobserved. Allele count data

are available from each of the other populations, which are assumed to have evolved independently from Population 0, with the

level of divergence reflected in the θ values.

https://doi.org/10.1371/journal.pgen.1010054.g001

Fig 2. Tree-structured populations. Global ancestral Population 0 and intermediate ancestral populations 1 to 3 are

unobserved, while allele frequency data is available for populations A to E. The genetic differences among the

populations are described by the branch lengths, denoted θ. The branches whose lengths contribute to the

computation of FW
STðCDÞ and FH

STðCDÞ are highlighted in blue and red, respectively.

https://doi.org/10.1371/journal.pgen.1010054.g002
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In a simulation study based on a tree-like population structure, we find a small performance

advantage of our novel tree-based estimator of FH
ST over the pairwise estimator [7] in most

comparisons. Indeed, similar to [6, 8] our estimator draws information from all sampled popu-

lations, not only the two being compared. We also simulate a non-tree-like population struc-

ture that includes admixing of two highly-diverged populations, finding that the performance

advantage is lost for large admixture proportions, but we retain very high correlation of esti-

mates with true FH
ST values. We also analyse the 1000 Genomes Project data and obtain a tree-

based representation of the genetic variation among the 26 populations that reveals important

insights, even though highly-admixed populations are included. We further investigate 6 of

these populations using individual coancestry coefficients, contrasting visually and quantita-

tively the within- and between-population genetic differences and showing how admixed indi-

viduals can be identified and analysed appropriately.

Materials and methods

Statistical model and definitions of FST in the classical setting

Assuming the independent-descent population model of [2] (see Fig 1), write p for the

(unknown) reference allele frequency in Population 0 at a given locus, while pk denotes its

value in Population k. We assume:

E½pkjp� ¼ p

Var½pkjp� ¼ ykpð1 � pÞ

Cov½pk; pk0 jp� ¼ 0 k 6¼ k0

ð1Þ

where θk 2 [0, 1] (we use [a, b] and (a, b) for closed and open intervals, respectively, the former

including the boundaries a and b). Let xk, yk0 2 {0, 1} be indicators of the reference allele for

random allele draws at the locus in populations k and k0. We assume E½xkjpk� ¼ pk, E½yk0 jpk0 � ¼

pk0 and Cov½xk; yk0 jpk; pk0 � ¼ 0. Following [6], and close to [1], we define FW
STðkk0Þ ¼

Cor½xk; yk0 jp� and from (1) we have

FW
ST kk0ð Þ ¼

0 if k 6¼ k0

yk if k ¼ k0 ;

(

ð2Þ

In the case k = k0, we will write k in place of kk0. Correlations can in general be negative, and

FST < 0 could arise if the reference population were not ancestral to those sampled [8]. We

also define the population analogue of the Hudson estimator [5, 7] as

FH
STðkk0Þ ¼ 1 �

P½xk 6¼ yk� þ P½xk0 6¼ yk0 �

2P½xk 6¼ yk0 �
: ð3Þ

for k 6¼ k0, with FH
STðkÞ ¼ 0. Here xk and yk are indicators for distinct alleles drawn from popu-

lation k. Eq (3) can be viewed as a special case of the multi-population estimator of [8].

Whereas FW
ST is a correlation of sampled alleles, FH

ST is based on mismatch probabilities, or

expected heterozygosity, within and between two sampled populations. Under the indepen-

dent-descent model, (1) leads to P½xk 6¼ yk0 � ¼ pð1 � pÞ and P½xk 6¼ yk� ¼ ð1 � ykÞpð1 � pÞ, so

that

2FH
STðkk0Þ ¼ yk þ yk0 ¼ FW

STðkÞ þ FW
STðk

0Þ : ð4Þ
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While FW
STðkÞmeasures the divergence of Population k from Population 0, FH

STðkk0Þ is the

average divergence of Populations k and k0. The value of θk can be affected by drift, mutation,

migration, inbreeding and selection between Populations 0 and k. We will see below that in

more complex multi-population settings FW
STðkk0Þ and FH

STðkk0Þmeasure, respectively, shared

and non-shared genetic variation in populations k and k0.

The pairwise estimator F̂H
ST

At a given locus, the pairwise estimator [7] is F̂H
STðkk0Þ ¼ Nkk0=Dkk0 , where

Nkk0 ¼ ðp̂k � p̂k0 Þ
2
�

p̂kð1 � p̂kÞ

nk � 1
�

p̂k0 ð1 � p̂k0 Þ

nk0 � 1
ð5Þ

Dkk0 ¼ Nkk0 þ
nk

nk � 1
p̂kð1 � p̂kÞ þ

nk0

nk0 � 1
p̂k0 ð1 � p̂k0 Þ

¼ p̂kð1 � p̂k0 Þ þ p̂k0 ð1 � p̂kÞ

ð6Þ

and nk is the number of gametes sampled in population k, while p̂k is the sample allele fre-

quency. By expanding ðp̂k � p̂k0 Þ
2
, both Nkk0 and Dkk0 can be expressed as sums of terms of the

form p̂kð1 � p̂k0 Þ which for k 6¼ k0 is an unbiased estimator of pk(1 − pk0). Assuming the condi-

tional moments (1) we obtain

E½Nkk0 jp� ¼ ðyk þ yk0 Þpð1 � pÞ

E½Dkk0 jp� ¼ 2pð1 � pÞ :

From (4), we see that the ratio of the above two expectations is FH
STðkk0Þ and so, provided

that Dkk0 has a low coefficient of variation which is typically the case in practice, F̂H
STðkk0Þ is

approximately unbiased for FH
STðkk0Þ.

FST can vary over SNVs, due to locus-specific effects of selection or mutation. In humans,

there are relatively few strong outlier SNVs, and these can be removed prior to analysis if

required, so that locus-specific selection and mutation effects are often ignored for genome-

wide inferences of FST. The multi-locus F̂H
ST is defined by summing numerator and denomina-

tor over SNVs:

F̂H
STðkk0Þ ¼

P
Nkk0P
Dkk0

: ð7Þ

An unbiased alternative is to average the ratios over SNVs but, as previous authors have

noted [2, 7, 9], the increased precision of the ratio of averages (7) more than offsets the small

bias introduced.

Tree-structured population setting

We generalise the independent-descent population model to tree-structured populations, see

Fig 2 for an example. In place of (1) we now assume

E½pkjpA� ¼ pA

Var½pkjpA� ¼ ykpAð1 � pAÞ

Cov½pk; pk0 jpM� ¼ 0 k 6¼ k0

ð8Þ
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where A = A(k) denotes the parent population of Population k, and M = M(kk0) is the popula-

tion that is the most recent common ancestor of k and k0.
In Theorem 1 (see Results), we extend the definitions of FW

ST and FH
ST , and express them as

functions of the θk. Here we consider the problem of inferring these parameters, along with

the tree structure. Similar to the pairwise estimator, the inference procedure will be based on

terms of the form p̂kð1 � p̂k0 Þ. Let

Skk0 ¼
2nk

nk � 1

P
NkP
Dkk0

ð9Þ

where Nk ¼ p̂kð1 � p̂kÞ and Dkk0 is defined at (6). The two summations in (9) are over the

same set of SNVs, but any SNV that is monomorphic in k and k0 combined does not contribute

to either sum and hence does not affect Skk0. While the fraction of monomorphic sites can be

informative about θ values, data quality issues make it difficult to use this information in real

datasets and it is ignored by our estimators.

To understand the statistic Skk0 intuitively, assume nk large so that nk/(nk − 1) can be

neglected. Then Skk0 = 0 precisely when p̂k is either 0 or 1, while Skk0 = 1 if and only if p̂k ¼ p̂k0 .

Skk0 is undefined if both p̂k 2 f0; 1g and p̂k0 2 f0; 1g. For other values of p̂k and p̂k0 , we have 0

< Skk0 < 1 with Skk0 tending to decrease as the difference between p̂k and p̂k0 increases.

Proposition 1. For k 6¼ k0,

E½Skk0 � � 1 � Cor½xk; ykjpM� ¼
Y

q2Rðkk0Þ

ð1 � yqÞ ð10Þ

where R is defined in Table 1.

For the proof, see S1 Text. Proposition 1 states that 1 − Skk0 is an unbiased estimator of the

correlation of two alleles drawn from Population k given the allele frequencies in M(kk0). It

motivates the following logarithmic least-squares estimation procedure for the θk.

Fast inference of the θk and the population tree

For K populations, and noting that Skk0 6¼ Sk0k, there are K(K − 1) values of Skk0 available to esti-

mate the 2(K − 1) values of θ. Write βq = log(1 − θq). We estimate β. the vector of all βq coeffi-

cients, by solving:

b̂ ¼ arg min
b

x where x ¼
X

k6¼k0

�

logðSkk0 Þ �
X

q2Rðkk0Þ

bq

�2

ð11Þ

subject to βq� 0 since θq� 0.

We propose a fast algorithm to jointly infer the tree topology and θ values. Restricting the

search to binary trees ensures that any two trees with K tip nodes have the same number of θ

Table 1. Notations for population trees. MRCA = most recent common ancestor. The label of a population also refers

to the branch above that population. Intuitively, Qðkk0Þ denotes the set of “shared” branches that are ancestral to both

Population k and Population k0, and Rðkk0Þ denotes the set of “non-shared” branches that are ancestral to k but not k0.

Notation Definition Examples from Fig 2

M(kk0) MRCA of k and k0 M(CD) = 3

PðkÞ tree path from 0 to k PðAÞ ¼ f1;Ag; PðCÞ ¼ f2; 3;Cg; PðEÞ ¼ f2;Eg
Qðkk0Þ PðkÞ \ Pðk0Þ QðkÞ ¼ PðkÞ; QðCEÞ ¼ QðECÞ ¼ f2g
Rðkk0Þ PðkÞ n Pðk0Þ RðkÞ ¼ ;; RðCEÞ ¼ f3;Cg; RðECÞ ¼ fEg

https://doi.org/10.1371/journal.pgen.1010054.t001
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parameters to estimate, allowing the trees to be compared using the values of ξ in (11). A global

search over all possible trees is infeasible even for moderate K. Instead, we first use a pairwise

clustering strategy, as illustrated for K = 4 sampled populations in Fig 3. Starting with the inde-

pendent-descent model, at each step an intermediate ancestral population is added between

Population 0 and two of its child populations, chosen to minimise ξ.

After K − 2 steps a binary tree is obtained which we then seek to improve. For each tip node

k, chosen in random order, we consider each branch in the current tree as an alternative loca-

tion for the parent of k, fitting each of these 2(K − 1) trees and choosing the one that minimises

ξ, which may be the current tree in which case no change occurs.

In the clustering phase there are K − 2 merge steps, and at the jth step there are
K � j

2

 !

pairs of populations to consider merging. Overall we require OðK3Þ solutions of the non-nega-

tive least-square optimization problem (11), for which we use the Lawson-Hanson algorithm

[16]. The improvement phase of the algorithm scales with K2, because there are K tips to con-

sider relocating, and 2(K − 1) locations to consider for each of them. In practice each step in

the clustering phase can be solved easily using a warm-start strategy for initialization: each

new fitting can be initialized using the tree and parameters inferred in the previous step. Con-

sequently the computational burden of the improvement phase is usually higher. Solving (11)

also requires computation of the Skk0, which is linear in m, the number of SNVs. This computa-

tion only has to be performed once, after which there is no further dependence on m, making

the procedure feasible for any number of SNVs. See S2 Text for more details.

Simulation study design

We simulated the allele frequency at each SNV in populations A to E that evolved with con-

stant, large size according to the tree of Fig 4. Sites were simulated independently (no LD). We

first simulated the allele frequency p in the unobserved ancestral population (Population 0)

from a beta(0.4,0.4) distribution, so that 19% of SNVs have p =2 (0.01, 0.99) and 36% have p =2
(0.05, 0.95). The allele frequency in each other population was simulated from a beta distribu-

tion with moments (8). Finally, we randomly sampled gametes from a binomial distribution

using the simulated value of the allele frequency in each of populations A to E.

The top two rows of Table 2 show simulation parameters, ordered from the most informa-

tive scenario (S1) to the least informative (S6) in terms of the number of correct tree inferences

(Table 2, final row). While all population allele frequencies remain positive under our model,

Fig 3. Hierarchical clustering to infer a binary tree with K = 4 sampled populations. (a) The starting tree corresponds to the

independent-descent model, and has all populations directly connected to ancestral Population 0. (b) We identify the pair of

populations (here AC) such that an intermediate ancestral population between the pair and Population 0 minimises ξ in (11). (c)

Repeating step (b), now 1D is the optimal pair of populations in {1, B, D} (the children of Population 0). After K − 2 = 2 steps, the

resulting tree is binary and the algorithm stops.

https://doi.org/10.1371/journal.pgen.1010054.g003
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genetic drift between Population 0 and the sampled populations increases the proportions of

low-MAF SNVs, and many sites are monomorphic in the sample (Table 2, third row).

For each simulated dataset we used (7) to compute the pairwise estimator F̂H
STðkk0Þ for k, k0

2 {A, B, C, D, E}. Then, treating the population tree as unknown, we jointly inferred it and θ
for each branch, and computed our novel estimators ~FW

STðkk0Þ and ~FH
STðkk0Þ.

We repeated the S4 simulations but now one of the sampled populations is an admixture of

two highly-diverged ancestral populations: Population C descends from a parent population

with fraction α of its alleles drawn from Population 1 and the remaining fraction 1 − α drawn

from Population 3. In S4 Text we derive the exact FH
ST values under this model.

The 1000 Genomes dataset

We applied our joint estimation of tree and θ values to data from Phase 3 of the 1000 Genomes

Project [17, 18], from 2 504 individuals sampled in 26 populations classified into five continen-

tal-scale “superpopulations” (Table 3). We included all available diallelic SNPs across the 22

Fig 4. Population tree used for the simulation study. Each branch length θq is shown next to the corresponding

branch. In the simulation with admixture, the parent of Population C has a contribution α from Population 1.

https://doi.org/10.1371/journal.pgen.1010054.g004

Table 2. Details of six simulation scenarios based on the population tree of Fig 4. # denotes “number of”. 104 simulation replicates were performed for each scenario.

An SNV has at least one copy of a minor allele in at least one population, there is no MAF threshold.

Parameter S1 S2 S3 S4 S5 S6

# gametes sampled per pop 25 10 2 25 10 10

# sites simulated 104 104 104 103 103 102

% of sites that are SNVs 69.72 65.95 52.42 69.7 66.0 66

% of trees correctly inferred 100 100 99.99 99.98 99.57 70.31

https://doi.org/10.1371/journal.pgen.1010054.t002
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autosomes, totalling 72M, with a binary coding indicating presence/absence of the major allele.

The four AMR populations are strongly affected by historical admixture, including from dif-

ferent Native American source populations who are closest to the EAS superpopulation

among the study populations. Estimated fractions of Native American ancestry are PEL 0.77,

MXL 0.47, CLM 0.26 and PUR 0.13 [19]. The remaining ancestry comes mainly from Euro-

pean populations best represented among our study populations by IBS, but nearly 10% of the

ancestry of AMR individuals is African (both European and African ancestry fractions are

highest in PUR and lowest in PEL). ASW and ACB individuals also show some European

admixture, but their ancestry is predominantly African (estimated fractions ACB 0.88, ASW

0.76 [19]). Some ASW individuals also show substantial Native American ancestry.

As well as the population-level analysis of all 2 504 individuals, we performed individual-

level analyses for a subsample of five individuals from each of six populations: three AMR pop-

ulations (CLM, MXL, PUR) and one population from each of AFR, EAS and EUR, namely the

MSL, CHB and IBS populations. See S1 Table for identifiers of the selected individuals. Of the

72M SNVs in the full dataset, 13.4M remained SNVs in the 30-individual dataset. Of these

4.7M and 1.5M had one and two copies of the minor allele, respectively, while 1.7M had over

20 copies of the minor allele. We also performed principal component (PC) analysis which is a

standard approach to visualising individuals based on their genome-wide genotypes. However,

Table 3. Description of 1000 Genomes Project data, and FW
ST estimates. Pop = population. The superpopulation label is used for discussion but not in any analysis. FW

ST
measures divergence of the population from the inferred global ancestral population.

Pop code Superpop code Ancestry descriptor; place sampled Sample size (gametes) ~FW
ST

ACB AFR African Caribbeans; Barbados 192 0.028

ASW AFR African Americans; SW USA 122 0.054

ESN AFR Esan; Nigeria 198 0.016

GWD AFR Gambian; Western Divisions, Gambia 226 0.017

LWK AFR Luhya; Webuye, Kenya 198 0.014

MSL AFR Mende; Sierra Leone 170 0.015

YRI AFR Yoruba; Ibadan, Nigeria 216 0.017

CLM AMR Colombians; Medellin, Colombia 188 0.208

MXL AMR Mexicans; Los Angeles 128 0.242

PEL AMR Peruvians; Lima, Peru 170 0.303

PUR AMR Puerto Ricans; Puerto Rico 208 0.191

CDX EAS Chinese Dai; Xishuangbanna, China 186 0.307

CHB EAS Han Chinese; Bejing 206 0.305

CHS EAS Southern Han Chinese 210 0.308

JPT EAS Japanese; Tokyo 208 0.307

KHV EAS Kinh; Ho Chi Minh City, Vietnam 198 0.300

CEU EUR NW Europeans; Utah 198 0.257

FIN EUR Finnish; Finland 198 0.263

GBR EUR British; England and Scotland 182 0.259

IBS EUR Iberians; Spain 214 0.249

TSI EUR Toscani; Italia 214 0.251

BEB SAS Bengali; Bangladesh 172 0.231

GIH SAS Gujarati Indian; Houston, Texas 206 0.237

ITU SAS Indian Telugu; UK 204 0.234

PJL SAS Punjabi; Lahore, Pakistan 192 0.230

STU SAS Sri Lankan Tamil; UK 204 0.233

https://doi.org/10.1371/journal.pgen.1010054.t003
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we did not apply the usual standardising of the SNV variables. Due to the absence of an MAF

threshold, with standardisation the first five PCs are dominated by the 4.7M singleton sites

and only differentiate the five MSL individuals from each other and the rest of the sample.

Computation for the 26-population and 30-individual analyses each took around 10 min-

utes on a standard desktop computer. The different numbers of SNVs (72M and 13.4M) has

little impact on computing time, and the first (clustering) phase of the tree-inference algorithm

required just a few seconds for both analyses, with the improvement phase requiring most of

the computing time.

Results

Generalisation of FW
ST and FH

ST to tree-structured populations

Underlying all our results is the parameter θk 2 [0, 1], which equals FW
STðkÞ in the independent-

descent model of Fig 1. See under “Statistical model and definitions of FST in the classical set-

ting” in Materials and Methods for a review. Given a pre-specified tree topology (see for

example Fig 2) and assuming (8), we define FW
ST and FH

ST and express them in terms of the θk

(see S1 Text for proofs).

Theorem 1.

FW
STðkk0Þ ¼

1

pð1 � pÞ
Var pMjp½ � ¼ 1 �

Y

q2Qðkk0Þ

ð1 � yqÞ ð12Þ

FH
STðkk0Þ ¼

1

2
fCor xk; ykjpM½ � þ Cor xk0 ; yk0 jpM½ �g

¼ 1 �
1

2

(
Y

q2Rðkk0Þ

ð1 � yqÞ þ
Y

q2Rðk0kÞ

ð1 � yqÞ

) ð13Þ

where a product over an empty set is defined to equal one. See Table 1 for definitions of M = M
(kk0), Q and R.

From (12) and (13) we see that FW
STðkk0Þ and FH

STðkk0Þ are functions of disjoint sets of θ coeffi-

cients. Fig 2 illustrates the θ coefficients that contribute to FW
ST and FH

ST . In particular, FW
STðkk0Þ

measures the shared genetic variation of populations k and k0 relative to Population 0, and so

depends on θ values for tree branches between populations 0 and M. If M = 0, then FW
STðkk0Þ ¼

0 while if k = k0 then FW
STðkÞmeasures the divergence of Population k from Population 0. Both

FW
STðkk0Þ and FH

STðkk0Þ are invariant to switching k and k0. The value of FW
STðkk0Þ, but not

FH
STðkk0Þ, can change if new populations are included or existing populations (other than k and

k0) are removed such that the ancestral population changes.

We compute our novel estimators ~FW
STðkk0Þ and ~FH

STðkk0Þ by replacing each θq with ŷq ¼

1 � expðb̂qÞ in (12) and (13), respectively, where the b̂q are obtained from the optimisation

(11) in Material and Methods. While our approach explicitly allows for linkage disequilibrium

(LD) due to population structure, LD due to tight linkage is not modelled. Any effects of link-

age on estimates are expected to be small for random samples from large, outbred species.

Simulation study

All the estimators considered here have low bias and so RMSE (Table 4) is close to the standard

error. We typically have RMSEð~FW
STðkk0ÞÞ > RMSEð~FH

STðkk0ÞÞ when the true values are similar

(Table 5), the lower precision of ~FW
ST reflecting that it estimates lengths of branches close to the
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root of the population tree, whereas ~FH
ST relates to branches near the tips. While FH

STðkÞ ¼ 0 by

definition, FW
STðkÞmeasures divergence for a single population or individual.

We observe RMSEð~FH
STÞ < RMSEðF̂H

STÞ for 38 of the 42 values reported in Table 4. The

mean RMSE ratio over the 10 population pairs ranges from 1.03 to 1.07. This small gain in effi-

ciency of ~FH
ST over F̂H

ST is consistent across simulation scenarios and comes with the important

gains in visualisation and interpretability of our approach. F̂H
STðABÞ performs almost as well as

~FH
STðABÞ, reflecting that there are no populations sufficiently close to A and B to provide useful

information. Conversely, for all the population pairs only connected in the population tree via

the root, ~FH
ST is superior to F̂H

ST . For example, in estimating FH
STðACÞ, allele frequencies in popu-

lation B are informative about frequencies in the path between A and C, and only ~FH
ST exploits

this information. The exception is the pair CE, for which the allele frequencies in D convey

some relevant information, but it does not always improve inferences of FH
STðCEÞ, reflecting

that D is highly diverged from the path connecting C with E.

In S3, the five sampled populations are each represented by a sample of size two gametes,

and so FW
ST and FH

ST describe the coancestries among five individuals. For S6 with only 66 poly-

morphic SNVs, the population tree was correctly inferred in only 70% of simulations (Table 2,

final row), but enough correct features of the tree were extracted to improve inference such

Table 4. FH
STðkk0Þ and the RMSE of ~FH

STðkk0Þ. Based on 104 replicates of each simulation scenario. In brackets is the ratio of the RMSE of F̂H
STðkk0Þ, the pairwise estimator of

[7], to that of the novel tree-based estimator ~FH
STðkk0Þ; values>1 indicate that ~FH

STðkk0Þ performs better than F̂H
STðkk0Þ. The final row gives the average of the RMSE ratios

over the 10 population pairs.

RMSEð~FH
STÞ � 104 (RMSE(F̂H

ST)/RMSE(~FH
ST))

kk0 FH
STðkk

0Þ S1 S2 S3 S4 S5 S6

AB 0.050 17 (1.00) 29 (1.00) 123 (1.00) 54 (1.00) 90 (1.00) 264 (1.08)

CE 0.074 23 (0.92) 33 (0.99) 118 (1.07) 72 (0.92) 102 (0.99) 305 (1.06)

CD 0.075 22 (1.00) 34 (1.00) 129 (1.00) 70 (1.00) 107 (1.00) 331 (1.01)

DE 0.097 24 (1.03) 34 (1.04) 117 (1.06) 76 (1.03) 108 (1.05) 333 (1.08)

AE,BE 0.192 34 (1.01) 42 (1.04) 108 (1.08) 109 (1.01) 133 (1.04) 416 (1.05)

AC,BC 0.213 35 (1.07) 42 (1.08) 106 (1.10) 110 (1.06) 130 (1.09) 418 (1.09)

AD,BD 0.233 36 (1.10) 43 (1.10) 106 (1.10) 113 (1.10) 134 (1.11) 426 (1.10)

Mean RMSE ratio (1.03) (1.05) (1.07) (1.03) (1.05) (1.07)

https://doi.org/10.1371/journal.pgen.1010054.t004

Table 5. FW
STðkk0Þ and the RMSE of ~FW

STðkk0Þ in three simulation scenarios. Based on 104 replicates in each simulation

scenario (see Table 2).

RMSEð~FW
STÞ � 104

kk0 FW
STðkk0Þ S1 S3 S6

AB 0.150 53 100 578

CE 0.150 52 91 588

DE 0.150 52 91 594

A,B 0.192 55 153 631

E 0.192 55 154 636

CD 0.192 56 105 636

C 0.233 56 150 649

D 0.273 58 150 665

https://doi.org/10.1371/journal.pgen.1010054.t005
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that ~FH
ST showed the largest relative improvement over F̂H

ST in this low-information scenario

(Table 4).

When the parent of C is constructed as an admixture of Populations 1 and 3 (see Materials

and methods), the small advantage of ~FH
ST over F̂H

ST is retained only when the admixture pro-

portion is low, due to the high divergence between the two parent populations. However the

correlation between estimate and true value remains very high for both estimators (Table 6).

We show in the example below that the visualisation and interpretation advantages of our

tree-based approach are evident in the presence of substantial admixture.

1000 Genomes population analysis (26 populations, n = 2504)

The single-population ~FW
ST values, measuring the divergence of each of the 26 populations from

the inferred global ancestral population (Table 3), are lowest for the AFR populations (0.01—

0.05) and highest for PUR and the EAS populations (0.30—0.31). Greater divergence of non-

AFR populations may reflect an out-of-Africa bottleneck. The AMR superpopulation has the

greatest range of ~FW
ST , 0.19—0.30, with values ordered by the level of African admixture. The

average of the four values is 0.24, close to the average individual-specific FST of 0.23 for AMR

reported by [20].

The ~FH
ST values, measuring divergence between pairs of populations, show a familiar pattern

for human population genetic studies, with the largest values comparing AFR with non-AFR

populations, particularly the 35 AFR-EAS population pairs (Fig 5A). The largest value is

~FH
ST(CHS,ESN) = 0.165. Within superpopulations, the maximum ~FH

ST values are 0.007 for SAS,

0.011 for EUR, 0.013 for EAS, 0.031 for AFR and 0.068 for AMR.

The inferred population tree (Fig 5B) reveals more structure than is evident from the matrix

of ~FH
ST values. As expected, the AFR, EAS, EUR and SAS superpopulations each cluster

together, but now we can also see that the admixed AFR populations, ACB and ASW, are

closer to non-AFR populations, and IBS is the EUR population closest to non-EUR popula-

tions, reflecting the contribution of Iberians to AMR populations. The longest branch in the

tree, which connects ASW with PUR, lies on the path between every AFR and non-AFR

population pair, giving PUR a central position among the 1000 Genomes populations. Conse-

quently, ~FH
STðkk0Þ where k 2 AFR and k0 =2 AFR is well approximated by

~FH
STðkPURÞ þ ~FH

STðPURk0Þ.
The root of the inferred tree separates West African (ESN, GWD, MSL, YRI) from all other

populations, consistent with the origins of modern humans in Africa. The largest genetic dis-

tances are between West-African and EAS populations, which reflects their geographical sepa-

ration and low historical migration.

Table 6. Performance of estimators under admixture of highly-diverged populations. RMSE values are averages

over 10 pairs of observed populations, and the correlations (Corr) are over these 10 estimate-parameter pairs. 104 simu-

lation replicates were performed under the model of Fig 4 except that a fraction α of the alleles in the parent of Popula-

tion C now come from Population 1, with the remaining alleles continuing to come from Population 3. The admixing

populations are highly diverged: FH
STð1; 3Þ ¼ 0:175.

Admixture proportion α

0.01 0.05 0.1

RMSE(F̂H
ST)/RMSE(~FH

ST) 1.03 0.98 0.90

Corr(F̂H
ST ,FH

ST) 0.996 0.995 0.995

Corr(~FH
ST ,FH

ST) 0.996 0.995 0.993

https://doi.org/10.1371/journal.pgen.1010054.t006
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Fig 5B gives a visual representation of actual genetic variation among the 1000 Genomes

populations. The observed variation is strongly influenced by historical processes of splitting

and divergence, but the tree may not accurately reflect actual historical events. For example,

the inferred global ancestral population provides a convenient reference for describing compo-

nents of genetic variance, but may not accurately represent any actual population in human

history.

While admixture events are not explicitly modelled, effects of admixture can be discerned

in the current patterns of genetic similarity. The AMR populations are divergent from each

other and other populations, with CLM closest to EUR and PEL and MXL closest to EAS pop-

ulations, corresponding with their levels of admixture outlined above. PEL is the population

most distant from its nearest neighbour, MXL, with ~FH
ST(MXL,PEL) = 0.038.

The high correlation of ~FH
ST and F̂H

ST values (0.984) is driven by the similarity of the two esti-

mators for the largest genetic distances (Fig 6A), whereas there are substantial differences

between them over most of the range. The comparisons between PUR and the five EUR popu-

lations give the largest values of ~FH
ST � F̂H

ST , between 0.027 and 0.030 (Fig 6B). There are three

comparisons for which ~FH
ST � F̂H

ST < � 0:014, each involving a EUR and an EAS population

(TSI-CDX, KHV-IBS, and CDX-IBS).

1000 Genomes individual analysis (6 populations, n = 30)

There is good agreement in ~FW
ST values between the individual and population analyses

(Table 7), despite the great difference in sample size and populations sampled. This is impor-

tant because ~FW
ST is based on the inferred ancestral population, but estimates can still be compa-

rable across very different datasets.

Fig 7 shows a PC plot and the inferred tree for the 30 individuals. The two plots convey sim-

ilar information, with the tree giving finer detail about shared and non-shared components of

variance among the individuals plus interpretability from horizontal branch lengths corre-

sponding to θ and hence FW
ST and FH

ST estimates. The CLM, MXL and PUR population labels

Fig 5. Tree-based inferences from the 26 populations of the 1000 Genomes dataset. A: ~FH
ST values (see scale for

colour coding) for each pair of populations. B: The inferred population tree, with horizontal branch lengths

corresponding to coancestry parameter estimates ŷ (see x-axis scale). Vertical distances have no meaning and are for

display purposes only.

https://doi.org/10.1371/journal.pgen.1010054.g005
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indicate location of sampling, but they do not accurately reflect genetic structure because of

the high within-group diversity, with many instances of between-group pairs of individuals

being genetically closer to each other than within-group pairs. One MXL individual is geneti-

cally closer to all of the IBS sample than to any other MXL individual.

Table 7 shows a wide range of between-individual divergence (~FH
ST) in the admixed AMR

populations. The non-AMR populations are more homogeneous, although there is higher

between-pair divergence in IBS than in CHB or MSL, which may reflect some migration

from the Americas. S1 Fig shows the corresponding tree when the non-AMR individuals are

pooled into 3 population samples. This analysis reduces computing time with little loss of

information.

Discussion

We have extended the definitions of the genetic distance FST to the tree-structured multi-pop-

ulation setting, showing that correlation and mismatch probability definitions of FST measure

shared and non-shared genetic variation.

Compared to the independent descent population model, the tree structure describes

covariances of allele frequencies across actual populations. Previous authors have allowed for

Fig 6. A: pairwise estimator F̂H
ST [7] (x axis) and tree-based estimator ~FH

ST (y axis) for all 325 pairs of populations in the

1000 Genomes dataset. B: colour-coded values of ~FH
ST � F̂H

ST , which is largest for comparisons of PUR with all 5 EUR

populations (dark-blue squares).

https://doi.org/10.1371/journal.pgen.1010054.g006

Table 7. For 5 individuals from the population in column 1, column 2 gives the range of ~FW
STðkÞmeasuring diver-

gence from the inferred ancestral population, and (in brackets) the corresponding population-level value from

Table 3. Also shown are the ranges over the 10 within-population pairs of individuals of ~FW
ST and ~FH

ST , measuring

respectively shared genetic variance and between-pair divergence.

Individual Within-pop pairs

Pop ~FW
STðkÞ ~FW

STðkk
0Þ ~FH

STðkk
0Þ

MSL 0.009 − 0.013 (0.015) 0.009 − 0.012 0.001 − 0.004

CHB 0.31 − 0.32 (0.31) 0.31 − 0.31 0.006 − 0.008

IBS 0.25 − 0.26 (0.25) 0.25 − 0.26 0.004 − 0.015

CLM 0.21 − 0.26 (0.21) 0.21 − 0.24 0.004 − 0.030

PUR 0.19 − 0.24 (0.19) 0.19 − 0.23 0.002 − 0.032

MXL 0.23 − 0.27 (0.24) 0.21 − 0.23 0.001 − 0.062

https://doi.org/10.1371/journal.pgen.1010054.t007
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non-zero covariances [6, 8, 9, 11] without specification of a correlation structure. While the

tree structure may not fully reflect the evolutionary history of the population studied, adopting

it brings two attractive features. Firstly, from a theoretical perspective it leads to closed-form

expressions for both FW
ST and FH

ST . In contrast, for unstructured covariances [8] note that “it

is not possible to find estimates for each [allele correlation parameter, corresponding to our

FW
ST] . . .when sampled populations have correlated sample allele frequencies”, although they go

on to point out that an approximate ranking is available. In our framework the number of θ
parameters (= 2(K − 1)) is less than the number of pairs of populations (K(K − 1)/2) and hence

less than the number of empirical moments available for inference, allowing estimation of

both FW
ST and FH

ST . Secondly, from a practical point of view, our framework allows the joint

inference of tree structure and both FST parameters, for which we have developed an efficient

procedure, and comes with a natural representation of the divergence between populations.

Although methods for inferring a population tree from allele frequency data are already avail-

able, including Treemix [21] and Neighbor Joining [22], our procedure is unique in per-

forming joint inference of FST and the tree, which allows sharing of information about allele

frequencies in ancestral populations and a range of options for visualising genetic structure by

combining homogeneous groups of individuals.

The inferred tree can reflect historical population splitting and divergence, but it may not

accurately reconstruct the evolutionary history of the populations studied because there is no

explicit role for admixture. Instead, the tree provides a visual representation of the actual

genetic variation across the populations via an approximately best-fitting tree, with branch

lengths that are interpretable as FST values. However, in the presence of admixture it may be

the case that no tree can accurately capture the genetic structure. In S4 Text we have taken a

first step towards showing that our tree-based procedure generalises naturally to admixture

graphs, by illustrating in a particular case the generalisations of the definitions of FH
ST and FW

ST ,

and the computational formulas in Theorem 1. Generalising our logarithmic least-squares

inference procedure (11) to admixture graphs will be explored in future work.

Our methods also provide a novel approach to describing coancestry among sets of diploid

individuals, treating each as a population of two gametes. This is not practical for pairwise esti-

mators of FST because of inadequate information about reference allele frequencies, whereas

other individuals and populations inform about them in our approach. Any pair of individuals

are related through many ancestral lineages of varying lengths. Pedigree-relatedness captures

only very short lineage paths (within the known pedigree), whereas ~FH
ST for two individuals is

affected by all lineage paths connecting them, which can be useful to construct adjustments for

even subtle population structure in heritability analyses and genetic association analyses. Cur-

rently we do not model LD among the markers and so cannot accommodate closely related

individuals, but close relatives are also usually excluded from GWAS.

Since the seminal contribution of Lewontin [23], there has been interest in comparing

genetic diversity within and between human populations. For example, within-Africa genetic

differences were reported to be larger than differences between Eurasians and Africans [24].

Estimates ~FW
ST provide a convenient way to quantify such comparisons. Fig 7B shows that, for

these six populations, diversity is much lower within CHB and MSL than for any between-pop-

ulation comparison, but for CLM, MXL and PUR within-population and between-population

~FW
ST can be of similar magnitude.

In S3 Text, our inference procedure is extended to distinguish the effects of inbreeding

from other evolutionary forces, based on comparing expected and observed heterozygosities

to estimate individual inbreeding coefficients jointly with coancestry coefficients measuring

the effects of other evolutionary processes. Another extension is to model the component of
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variance shared by a set of populations or individuals, rather than just pairs, which requires

replacing Q in (12) with Pðk1Þ \ Pðk2Þ \ ::: \ PðkpÞ.

Locus-specific FST values that diverge from genome-wide averages have long been used to

help identify the effects of natural selection [25–28], with some methods depending explicitly

on a population tree [29, 30]. Our tree-based approach may be able to increase the power of

such methods, and simultaneous inference of all θ parameters should lead to better characteri-

sation of the selection effect, which will also be explored in future research.

Values of ~FH
ST for pairs of individuals, illustrated graphically in Fig 7B, can be useful in

assessing forensic match probabilities comparing alleged and alternative sources of a crime-

related DNA sample [31]. For practical reasons FST has been estimated at the level of popula-

tions [32, 33] but the relevant value of FST measures relatedness of pairs of individuals, the

alleged and alternative sources of a crime-related DNA sample. While it is not typically possi-

ble to estimate FST for all possible alternative sources, a range of FST values over many pairs of

individuals can indicate values that may be relevant to a particular case. We can also include

population data from a forensic database, which can be used to ensure a representative refer-

ence population that is the same over different cases. Forensic DNA profiling primarily uses

short tandem repeat loci rather than SNVs, and these have different FH
ST values due to a differ-

ent mutation process, but SNV-based DNA profiling is becoming more common [34].

Supporting information

S1 Text. Proofs.

(PDF)

S2 Text. Details of the tree-based inference algorithm.

(PDF)

Fig 7. A: First two principal components (explaining 29% of variance) from 13.4M unstandardised SNVs in a sample

of 30 individuals from the 1000 Genomes dataset (5 each from six populations as indicated in the legend box). B:

Inferred tree for the 30 individuals, with horizontal branch lengths corresponding to coancestry parameter estimates ŷ.

https://doi.org/10.1371/journal.pgen.1010054.g007
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