
HAL Id: hal-04215571
https://hal.science/hal-04215571

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive nonlinear output feedback for transient
stabilization and voltage regulation of power generators

with unknown parameters
Gilney Damm, Riccardo Marino, Françoise Lamnabhi-Lagarrigue

To cite this version:
Gilney Damm, Riccardo Marino, Françoise Lamnabhi-Lagarrigue. Adaptive nonlinear output feedback
for transient stabilization and voltage regulation of power generators with unknown parameters. Inter-
national Journal of Robust and Nonlinear Control, 2004, 14 (9-10), pp.833-855. �10.1002/RNC.908�.
�hal-04215571�

https://hal.science/hal-04215571
https://hal.archives-ouvertes.fr


Adaptive nonlinear output feedba
k for transient stabilization andvoltage regulation of power generators with unknown parametersGilney Damm1,�,y , Ri

ardo Marino2,z and Fran�
oise Lamnabhi-Lagarrigue3,x1 Laboratoire Syst�emes Complexes, LSC-CNRS, 40 rue du Pelevoux, 91020, Evry Cedex, Fran
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eSUMMARYThis work presents a nonlinear adaptive output feedba
k ex
itation 
ontrol, designed for a syn
hronousgenerator modeled by a standard third order model on the basis of the physi
ally availablemeasurements of relative angular speed, a
tive and rea
tive ele
tri
 power and terminal voltage.The power angle, whi
h is a 
ru
ial variable for the ex
itation 
ontrol, as well as me
hani
al powerand the impedan
e of the transmission line 
onne
ting the generator to an in�nity bus, are notassumed to be available for feedba
k. The feedba
k 
ontrol a
hieves transient stabilization andvoltage regulation when faults o

ur to the turbines or the transmission lines, su
h that parameters(me
hani
al power and line impedan
e) may permanently take any (unknown) value. The 
ontrollerre
overs by adaptation the unknown values and simultaneously generates traje
tories to be followedby the states, that 
onverge to the new equilibrium point.key words: non-linear 
ontrol; adaptive 
ontrol; power system stabilization; power generators1. Introdu
tionPower system stabilization has been dealt with for many years by both 
ontrol and powersystems 
ommunities. For the latter, the goal is to have stable, reliable and robust ele
tri
alenergy produ
tion and distribution. On the other hand, 
ontrol system teams develop quitemore 
ompli
ated systems whi
h may be diÆ
ult to implement. Our goal here is to present new
ontrol methods for power system stabilization, whi
h are 
loser to physi
al 
onsiderations.These new 
ontrol methods, mainly based on modern nonlinear te
hniques, may improve powersystems stabilization sin
e 
lassi
al 
ontrollers found in most power plants have limitations inperforman
e and in operation region.On the other hand, the theoreti
al interest of these systems be
omes evident as we remarkthat power generators are des
ribed by nonlinear equations with unknown time varying�Corresponden
e to: Gilney Damm, LSC-CNRS, 40 rue du Pelevoux, 91020, Evry Cedex, Fran
eyEmail:gilney�iup.univ-evry.frzEmail:marino�ing.uniroma2.itxEmail:lamnabhi�lss.supele
.fr



2parameters. There is no full state measurement, and they are undera
tuated systems. All thesefeatures make the problem quite diÆ
ult and interesting from a theoreti
al point of view. Its
lassi
al solution is presented in [10℄ and [2℄ using robust linear te
hniques that are widespreadin most power plants. Modern linear robust and adaptive 
ontrol te
hniques applied to thisproblem, may be seen in [7℄, [8℄ and [3℄. Re
ently, feedba
k linearization ( [11℄, [6℄ and [20℄)as well as nonlinear adaptive te
hniques ([1℄ and [21℄) were proposed to design stabilizing
ontrollers with the purpose of enlarging the stability region of the operating 
ondition.The nonlinear feedba
k 
ontrol algorithms so far proposed in the literature make use ofpower angle and me
hani
al power measurements, whi
h are physi
ally not available. Thesealgorithms have also the diÆ
ulty of determining the faulted equilibrium value whi
h is
ompatible with the required terminal voltage on
e the fault (me
hani
al or ele
tri
al failure)has o

urred. This is our motivation to propose a nonlinear s
heme based only on a
tuallymeasured outputs. First, in Se
tion 2, following the lines of our previous works [4℄, [12℄ and[5℄, we make use of the standard third order model used in [21℄ (see [2℄ and [19℄) to showthat the terminal voltage, the relative angular speed and the a
tive ele
tri
 power (whi
h area
tually measurable and available for feedba
k) are state variables in the physi
al region ofthe state spa
e. We then develop an adaptive feedba
k linearization of the system a
hievingexponential stability of the 
losed loop system, as presented in Se
tion 3. To do so, for agiven set of unknown parameters, we re
over, by adaptation, the new equilibrium point of thesystem and generate, on-line, a traje
tory that drives the generator toward this point. Thistask be
omes 
ompli
ated as we have a nonlinear and nonlinearly-parametrized system withunknown time-varying parameters, without full state measurement. Tra
king in su
h systemsis a diÆ
ult task, and has been re
ently studied for the SISO 
ase in [14℄. We 
on
lude thepaper with simulations (Se
tion 4) that show the good behavior of the adaptive 
ontroller inthe presen
e of transmission line and turbine faults.2. Dynami
al ModelThe power generator is represented by the standard model presented in [2℄ (also used in[6℄, [19℄, [20℄ and [21℄) that may be de
omposed in a me
hani
al and an ele
tri
al parts. Theadvantage of su
h a model is that although being of low order, it expresses well the behaviorof large systems. This fa
t (model redu
tion) is well developed in [18℄ where a mathemati
alapproa
h leads to the same 
on
lusions of standard physi
al simpli�
ations. In pra
ti
e, thismay be seen as the Thevenin equivalent of a large network.Let's �rst 
onsider the simpli�ed me
hani
al model expressed in per unit as_Æ = !_! = �DH! + !sH (Pm � Pe) (1)where: Æ(rad) is the power angle of the generator relative to the angle of the in�nite busrotating at syn
hronous speed !s; !(rad/s) is the angular speed of the generator relative tothe syn
hronous speed !s i.e. ! = !g � !s with !g being the generator angular speed; H(s)is the per unit inertia 
onstant; D(p:u:) is the per unit damping 
onstant; Pm(p:u:) is the perunit me
hani
al input power; Pe(p:u:) is the per unit a
tive ele
tri
 power delivered by theInt. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



3generator to the in�nite bus. Note that the expression !2s=!g is simpli�ed as !2s=!g ' !s inthe right-hand side of (1). The a
tive and rea
tive (Q(p:u)) powers are given byPe = VsEqXds sin(Æ) (2)Q = VsXdsEq 
os(Æ)� V 2sXds (3)where: Eq(p:u:) is the quadrature's EMF; Vs(p:u:) is the voltage at the in�nite bus; Xds(p:u:) a=XT + 12XL+Xd is the total rea
tan
e whi
h takes into a

ount Xd(p:u:), the generator dire
taxis rea
tan
e, XL(p:u:), the transmission line rea
tan
e, and XT (p:u:), the rea
tan
e of thetransformer. The quadrature EMF, Eq , and the transient quadrature EMF, E0q , are related byEq = XdsX 0dsE0q � Xd �X 0dX 0ds Vs
os(Æ) (4)while the dynami
s of E0q (representing the ele
tri
al part of the generator) are given bydE0qdt = 1Td0 (K
uf �Eq) (5)in whi
h:X 0ds(p:u:) a= XT+ 12XL+X 0d withX 0d(p:u:) denoting the generator dire
t axis transientrea
tan
e; uf (p:u:) is the input to the (SCR) ampli�er of the generator; K
 is the gain of theex
itation ampli�er; Td0(s) is the dire
t axis short 
ir
uit time 
onstant. Substituting (2) into(1) and (4) into (5), we obtain the state spa
e model_Æ = !_! = �DH! + !sH �Pm � VsX 0dsE0q sin(Æ) + Xd �X 0dXdsX 0ds V 2s sin(Æ) 
os(Æ)�_E0q = 1Td0 �K
uf � XdsX 0dsE0q + Xd �X 0dX 0ds Vs 
os(Æ)� (6)in whi
h (Æ; !; E0q) is the state and uf is the 
ontrol input. Sin
e Pe is measurable while E0qis not, it is 
onvenient to express the state spa
e model using (Æ; !; Pe) as states whi
h areequivalent states as long as the power angle Æ remains in the open set 0 < Æ < �.In the following, we take into a

ount the notationT 0d0 = X 0dsXdsTd0where T 0d0 is the dire
t axis transient short 
ir
uit time 
onstant. Di�erentiating (2) withrespe
t to time, and using (1)-(5), we obtain Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



4 _Æ = !_! = �DH! � !sH (Pe � Pm)_Pe = � 1T 0d0Pe + 1T 0d0 � VsXds sin(Æ)[K
uf + T 0d0(Xd �X 0d) VsX 0ds!sin(Æ)℄+ T 0d0Pe! 
ot(Æ)g (7)whi
h is valid provided that 0 < Æ < �. Note that when Æ is near 0 or near � the e�e
t of theinput uf on the overall dynami
s is greatly redu
ed.The generator terminal voltage is given byVtej' = jXsEqej(�2+Æ) + jXdVsej �2jXdswhere Xs = XT + XL2Xds = Xd +Xsso that its modulus isVt = 1Xds (X2sE2q + V 2s X2d + 2XsXdEqVs
os(Æ)) 12or in the new state variablesVt = � X2sP 2eV 2s sin2(Æ) + X2dV 2sX2ds + 2XsXdXds Pe
ot(Æ)� 12 (8)whi
h is the output of the system to be regulated to its referen
e value Vtr = 1(p:u:)We must remark in this model that me
hani
al power, power angle and line impedan
e arenot available for measurement. A
tually, this is the main blo
king point for nonlinear 
ontrolof power generators.We avoid this problem using the relation (see [4℄):Xs = �QV 2s �pQ2V 4s � (Q2 + P 2e )V 2s (V 2s � V 2t )Q2 + P 2e (9)to express the line impedan
e, and the relation:Æ = ar

ot VsXsPe  �XdVsXds +sV 2t � X2sV 2s P 2e!! (10)to express the power angle. With respe
t to the me
hani
al power, we will present an adaptives
heme to re
over its value. Note that in equation (9), we use Xs as the impedan
e of theInt. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



5line up to the point of the network where the voltage is equal to Vs. Errors in the in�nity busvoltage will be expressed as a di�erent value of line impedan
e, leading to an equivalent resultfor the 
ontroller.One must also remark that (10) is a one-to-one fun
tion from Æ to Vt (as Vt is positive). Asa 
onsequen
e, (Vt; !; Pe), whi
h are measurable and are available for feedba
k a
tion, is anequivalent state for the models (6) and (7).3. Nonlinear Adaptive ControllerThe operating 
onditions (Æ0; !0; Pe0) of the syn
hronous generator model (7) are given by!0 = 0Pe0 = Pm�Pm + VsXdsK
ufsin(Æ) = 0 (11)Note that while !0 = 0; Pe0 = Pm are not a�e
ted by uf , from the third equation abovewe see that there are two operating 
onditions Æs; Æu, 0 < Æs < �2 , �2 < Æu < � for 
onstantinputs uf > (PmXds)=(K
Vs); (Æs; 0; Pm) is an asymptoti
ally stable equilibrium point while(Æu; 0; Pm) is an unstable equilibrium point. The stable operating 
ondition (Æs; 0; Pm) and the
orresponding ex
itation 
onstant inputK
uf0 = PmXdsVssin(Æs)are 
hosen so that the modulus of the generator terminal voltageVt = 1Xds (X2sK2
u2f0 + V 2s X2d + 2XsXdK
uf0Vs
os(Æs)) 12is equal to the pres
ribed value Vtr .The obje
tive of the 
ontrol system is to keep all states and outputs bounded andasymptoti
ally bring outputs/states to their referen
e values. These obje
tives may besummarized as: 0 < Æ < 180j!j � !M <1jPej <1 ; limt!124 !PeVt 35 = 24 0PmVtr 35where !M is a limit value for the angular velo
ity that is spe
i�ed by the 
onstru
tor.One must remark that parameters may, and will, abruptly 
hange in time. For instan
e, theparameter Pm may abruptly 
hange to an unknown faulted value Pmf due to turbine failures,so that (Vtr; 0; Pm) may not belong to the region of attra
tion of the faulted equilibrium point(Vtr ; 0; Pmf ). The state feedba
k 
ontrol should be designed so that typi
al turbine failures donot 
ause instabilities and 
onsequently loss of syn
hronism and inability to a
hieve voltageregulation. Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



6 A redu
tion from Pm to (Pm)f of the me
hani
al power generated by the turbine, 
hangesthe operating 
ondition: the new operating 
ondition (Æ)f is the solution of� (Pm)fPm + sin(Æ)fsin(Æs) = 0and sin
e (Pm)f is typi
ally unknown, the 
orresponding new stable operating 
ondition (Æs)f isalso unknown. The 
ontrol system must re
over this new operation point, generate a traje
torytowards it, and drive the system to this traje
tory.To develop the 
ontrol, the model (7) is rewritten as:_Æ = !_! = �DH! � !sH (Pe � �)_Pe = � 1T 0d0Pe + VsXdsT 0d0 sin(Æ)K
uf + (Xd �X 0d)V 2sXdsX 0ds !sin2(Æ) + Pe! 
ot(Æ) (12)in whi
h �(t) is a possibly time-varying disturban
e; the parameter � is assumed to be unknownand to belong to the known 
ompa
t set [�m; �M ℄ where the lower and upper bounds �m; �Mare known.Let Ær(t) be a (at least) C3 referen
e signal (toward the new equilibrium point) to be tra
ked.In order to build this traje
tory (Ær) toward the equilibrium value of the power angle (Æs), weuse equation (13) where we repla
e Vt by its referen
e value Vtr ; Vs is 
onsidered as 1(p.u.);Xs is the impedan
e of the line up to the point of the network where the voltage is equal toVs, and is 
al
ulated by (9); Xd is a known 
onstant and �nally Pe is repla
ed by bPm that isthe estimation of Pm. The resulting expression is:Ær = ar

ot � VsXs bPm� � VsXdsXd +sV 2tr � X2sV 2s bP 2m!! (13)As ar

ot(x) is a one-to-one smooth fun
tion, one may 
ompute the 
orre
t Ær for ea
h setof arguments. Remark that as bPm goes to Pm, Ær goes to Æs.In order to estimate Pm we de�ne (!̂ is an estimation of !):ePm = Pm � bPme!e = (! � !̂)One must not 
onfound this new de�ned e!e with variable e! that we will de�ne later. Wemay then write: :ePm = � :bPm = �
1e!e:̂! = �DH !̂ � !sH (Pe � P̂m)and then, using also the se
ond equation of (7), we 
on
lude that:Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



7:e!e = �DH e!e + !sH ePmor in a more 
on
ise form " :ePm:e!e # = � 0 �
1!sH �DH �� ePme!e �whi
h eigenvalues are: �i = 12 �D �pD2 � 4H !s 
1HWe may then see that a suitable 
hoi
e of 
1 will give an exponentially stable estimation.A
tually, any 
1 > 0 will meet this requirement, in parti
ular a 0 < 
1 � D24H!s that will givetwo negative real roots.Next, we de�ne: eÆ(t) = Æ(t)� Ær(t)where, taking the time derivative, we obtain:_eÆ = ! � _Ær(t)As we want that the error system be a stable linear system, we state !� as the desired valuefor ! (taking �1 > 0): !� = ��1eÆ + _Ærand then we may de�ne: e! , ! � !� = ! + �1eÆ � _ÆrTaking the time derivatives of both equations leads to:_eÆ = ��1eÆ + e! (14)_e! = �DH! + !sH (�(t) � Pe)� �21eÆ + �1e! � �ÆrFollowing the same te
hnique, we de�ne (�2 > 0; k > 0) the referen
e signal for Pe thatlinearizes our system:P �e = H!s ��DH! � �21eÆ + �1e! � �Ær + �2e! + eÆ + 14k �!sH �2 e!�+ �̂where �̂ is an estimate of � and ePe = Pe � P �eRewriting the se
ond equation of (14): Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



8 _e! = !sH e�(t)�!sH ePe��2e!�eÆ�14k �!sH �2 e!and taking the derivative of P �e :_P �e = H!s (�DH  �e! � �1 �eÆ + �Ær!+��1 + �2 + 14k �!sH �2���DH! + !sH (�(t) � Pe)� �21eÆ + �1e! � �Ær�+ (1� �21)���1eÆ + e!�o+ �̂� � H!s _�Ærequation (12) 
an �nally be rewritten as (e� = � � �̂)_eÆ = ��1eÆ + e!_e! = �eÆ � �2e! � !sH ePe � k4 �!sH �2 e! + !sH e�_eP e = � 1T 0d0Pe + VsXdsT 0d0 sin(Æ)K
uf + (Xd �X 0d)V 2sXdsX 0ds !sin2(Æ) + Pe! 
ot(Æ)� H!s ����21 + 1 + �1DH� (��1eÆ + e!)+ ��DH + �1 + �2 + k4 �!sH �2���DH! � �21eÆ + �1e! � !sH Pe � �Ær��� ��DH + �1 + �2 + k4 �!sH �2� �̂ � _̂�� ��DH + �1 + �2 + k4 �!sH �2� e� + D!s �Ær + H!s _�Ær (15)We 
an see from equation (15) that in order to 
ompute our 
ontrol signal we need thederivatives of Ær. To do so, we must remember that::Ær = dÆrd bPm d bPmdt::Ær = d2Ærd bP 2m d bPmdt + dÆrd bPm d2 bPmdt2:::Ær = d3Ærd bP 3m d bPmdt + 2 d2Ærd bP 2m d2 bPmdt2 + dÆrd bPm d3 bPmdt3 (16)These 
omputations may be seen in the Appendix, leading to:Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



9:Ær = 
1 dÆrd bPm e!e::Ær = 
1 d2Ærd bP 2m e!e + 
1 dÆrd bPm !sH �b� � bPm�� 
1 dÆrd bPm DH e!e + 
1 dÆrd bPm !sH e�_�Ær = 
1 d3Ærd bP 3m e!e + 2
1 d2Ærd bP 2m !sH �b� � bPm�� 2
1 d2Ærd bP 2m DH e!e + 2
1 d2Ærd bP 2m !sH e�+�
1D2H2 � 
21 !sH � dÆrd bPm e!e � 
1 dÆrd bPm D!sH2 �b� � bPm�� 
1 dÆrd bPm D!sH2 e�where dÆrd bPm , d2ÆrdbP 2m and d3ÆrdbP 3m are given by (26), (28) and (30) in the Appendix.Be
ause some of the terms of �Ær and _�Ær are not available for feedba
k, we de�ne new variables�Æru and _�Æru that will be used for our 
ontrol law. These variables are de�ned su
h that::Ær � :Æru = 0::Ær � ::Æru = 
1 dÆrd bPm !sH e�_�Ær � _�Æru = 2
1 d2Ærd bP 2m !sH e� � 
1 dÆrd bPm D!sH2 e�De�ning (�3 > 0), we may 
ompute the 
ontrol signal that will linearize the last equationof (15): uf = T 0d0XdsVsK
 sin(Æ)�0�0 = 1T 0d0Pe � (Xd �X 0d)XdsX 0ds V 2s ! sin2(Æ)� Pe! 
ot(Æ)+ H!s ����21 + 1 + �1DH� (��1eÆ + e!)+ ��DH + �1 + �2 + k4 �!sH �2���DH! � �21eÆ + �1e! � !sH Pe � �Æru��+ ��DH + �1 + �2 + k4 �!sH �2� �̂ + _̂�� k4 ��DH + �1 + �2 + k4 �!sH �2�2 ePe � �3 ePe + !sH e! � D!s �Æru � H!s _�ÆruRemark here the use of Æru as the feedba
k available variable. Now, de�ning the new
onstant: 
1 , ��DH + �1 + �2 + k4 �!sH �2�Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



10we may rewrite the previous equations as:uf = T 0d0XdsVsK
 sin(Æ)�0 (17)�0 = 1T 0d0Pe � (Xd �X 0d)XdsX 0ds V 2s ! sin2(Æ)� Pe! 
ot(Æ) + 
1�̂ + _̂�+ H!s ����21 + 1 + �1DH� (��1eÆ + e!) + 
1��DH! � �21eÆ + �1e! � !sH Pe � �Æru���k4  
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m!2 ePe � �3 ePe + !sH e! � D!s �Æru � H!s _�Æruand:_eP e = � 1T 0d0Pe + (Xd �X 0d)V 2sXdsX 0ds !sin2(Æ) + Pe! 
ot(Æ) (18)�H!s ����21 + 1 + �1DH� (��1eÆ + e!) + 
1��DH! � �21eÆ + �1e! � !sH Pe � �Ær���
1�̂ � _̂� � 
1e� + D!s �Ær + H!s _�Ær + VsXdsT 0d0 sin(Æ)K
 T 0d0XdsVsK
 sin(Æ)�0Substituting (17) in (18) one will �nd:_eP e = � 1T 0d0Pe + (Xd �X 0d)V 2sXdsX 0ds !sin2(Æ) + Pe! 
ot(Æ)�H!s ����21 + 1 + �1DH� (��1eÆ + e!) + 
1��DH! � �21eÆ + �1e! � !sH Pe � �Ær���
1�̂ � _̂� � 
1e� + D!s �Ær + H!s _�Ær+ 1T 0d0Pe � (Xd �X 0d)XdsX 0ds V 2s ! sin2(Æ) � Pe! 
ot(Æ)+H!s ����21 + 1 + �1DH� (��1eÆ + e!) + 
1��DH! � �21eÆ + �1e! � !sH Pe � �Æru��+
1�̂ + _̂� � k4  
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m!2 ePe � �3 ePe + !sH e! � D!s �Æru � H!s _�Æruthat may be rewritten as:_eP e = �k4  
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m!2 ePe � �3 ePe + !sH e! � 
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m! e�Then, the 
losed loop system be
omes Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



11_~Æ = ��1~Æ + ~!_~! = �~Æ � �2~! � !sH ePe � k4 �!sH �2 ~! + !sH ~�_eP e = �k4  
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m!2 ePe��3 ePe + !sH e! � 
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m! e� (19)The adaptation law is (
 is a positive adaptation gain)_̂� = 
Proj   � ePe 
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m!+ e!!sH ! ; �̂! (20)where Proj(y; �̂) is the smooth proje
tion algorithm introdu
ed in [16℄Proj(y; �̂) = y; if p(�̂) � 0Proj(y; �̂) = y; if p(�̂) � 0 and hgradp(�̂); yi � 0Proj(y; �̂) = [1� p(�̂)jgrad p(�̂)j℄; otherwise (21)with p(�) = (� � �M+�m2 )2 � ( �M��m2 )�2 + 2�( �M��m2 )for � an arbitrary positive 
onstant, whi
h guarantees in parti
ular that:i) �m � � � �̂(t) � �M + �ii) jProj(y; �̂)j � jyjiii) (� � �̂)Proj(y; �̂) � (� � �̂)yWe may remark that if fPe and e! were the errors from the state to an equilibrium point, theadaptation law would be equivalent to a gradient approa
h. But this analysis, globally, is nottrue sin
e these two errors signals are not the state errors. Only in a small region around theequilibrium point this would be valid.To 
ompute this adaptation law, let's 
onsider the fun
tion:W = 12(eÆ2 + e!2 + eP 2e ) (22)whose time derivative, a

ording to (19), is Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



12 _W = ��1eÆ2 � �2e!2 � �3 eP 2e + e!!sH e� � k4 �!sH �2 e!2�k4  
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m!2 eP 2e � 
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m! e� ePeCompleting the squares, we obtain the inequality_W � ��1eÆ2 � �2e!2 � �3 eP 2e + 2k e�2 (23)whi
h guarantees arbitrary L1 robustness from the parameter error e� to the tra
king errorseÆ; e!; ePe (see [9℄ Se
tion 5.4).The proje
tion algorithms (21) guarantee that e� is bounded, and, by virtue of (22) and (23),that eÆ, e! and ePe are bounded. Therefore, _̂� is bounded. Integrating (23), we have for everyt � t0 � 0 � Z tt0 (�1eÆ2 + �2e!2 + �3 eP 2e )d� + 2k Z tt0 e�2d� �W (t)�W (t0)Sin
e W (t) � 0 and, by virtue of the proje
tion algorithm (21),e�(t) � �M � �m + �it follows that Z tt0 (�1eÆ2 + �2e!2 + �3 eP 2e )d� �W (t0) + 2k (�M � �m + �)2(t� t0)whi
h, if W (t0) = 0 (i.e. t0 is a time before the o

urren
e of the fault), implies arbitraryL2 attenuation (by a fa
tor k) of the errors eÆ, e! and ePe 
aused by the fault. To analyze theasymptoti
 behavior of the adaptive 
ontrol, we 
onsider the fun
tionV = 12(eÆ2 + e!2 + eP 2e ) + 12 1
 e�2Its time derivative is:_V = ��1eÆ2 � �2e!2 � �3 eP 2e + e!!sH e� � k4 �!sH �2 e!2 + 1
 e� �e��  
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m! e� ePe � k4  
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m!2 eP 2eThen, using the adaptation law, we may �nd (remember that ( �e� = � �̂�)):_V = ��1eÆ2 � �2e!2 � �3 eP 2e � k4 �!sH �2 e!2 � k4  
1 � 
1
1 dÆrd bPm � 2
1 d2Ærd bP 2m!2 eP 2eInt. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
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13The proje
tion estimation algorithm (21) is designed so that the time derivative of V satis�es_V � ��1eÆ2 � �2e!2 � �3 eP 2e (24)Integrating (24), we havelimt!1 Z tt0 (�1eÆ2 + �2e!2 + �3 eP 2e )d� � V (0)� V (1) <1From the boundedness of _eÆ; _e! and _eP e, and Barbalat's Lemma (see [15℄, [13℄ and [17℄) itfollows that limt!1 





24 eÆ(t)e!(t)ePe(t) 35





 = 0We may now rewrite the 
losed loop system following the normal form:_ex = Aex+
T e�_e� = ��
exwhi
h leads to:_ex = 26664 ��1 1 0�1 ���2 + k4 �!sH �2� �!sH0 !sH ���3 + k4 ��DH + �1 + �2 + k4 �!sH �2�2� 37775 ex+264 0!sH���DH + �1 + �2 + k4 �!sH �2� 375 e�_e� = �
 h 0 !sH �DH � �1 � �2 � k4 �!sH �2� i ex (25)And then 
omputing (for a 
onstant 
2):

T = !2sH2 +��DH + �1 + �2 + k4 �!sH �2�2 a= 
2 > 0we then may show by persisten
y of ex
itation (see [13℄ , [17℄ and [15℄) that ex and e� will beglobally exponentially stable, and then all error signals go exponentially to zero, for all (atleast) C3 Ær( bPm; x).It is important to remark a very interesting feature of the proposed 
ontroller: all states goexponentially to the faulted equilibrium point that is 
ompletely unknown. A
tually, all statesgo exponentially to traje
tories that go themselves exponentially to the unknown equilibriumInt. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



14point. We must also remark that both 
onvergen
ies are simultaneous. To detail this feature,note that Æ will 
onverge to the traje
tory Ær but, sin
e Ær is a one-to-one smooth fun
tionof bPm, it will 
onverge exponentially to the 
orre
t equilibrium value Æs as bPm 
onvergesexponentially to Pm. This means that the referen
e traje
tory (Ær) will 
onverge exponentiallyto the unknown equilibrium point (Æs), and this 
onvergen
e will be simultaneous to the
onvergen
e of the power angle (Æ) to the traje
tory (Ær), what implies that limt!1(Æ�Æs) = 0exponentially. We must remark that the same happens to the other states (! and Pe). They
onverge to their referen
e traje
tories [!�; P �e ℄, and these traje
tories 
onverge to the faulted(unknown for Pe) equilibrium points of ! and Pe as e!(t) and ePe(t) 
onverge to zero.RemarkWe must observe that there are two adapted values for the me
hani
al power. The reason isthat even if both results �nally re
over the same value, they are not used for the same purpose,neither as equivalent variables. Note that bPm is the estimation of the unknown parameter Pm,repla
ing it in the pro
ess of building the traje
tories. It was designed purposely as an estimatorand its behavior 
an be de�ned as desired, su
h that it 
an respe
t the restri
tions imposed forour traje
tories, mainly with respe
t to being at least C3. Furthermore, its time derivatives,that are needed for the 
ontroller, are available. As a 
onsequen
e, bPm is very well behaved,going smoothly to the 
orre
t value of Pm.On the other hand, b� was designed as the 
ontrol adaptation. Even if it �nally re
oversthe 
orre
t value of Pm (faster than bPm in some 
ases), it is not as well behaved, nor itstime derivatives are available. As a 
ontrol variable, it was expe
ted to be swift. That is whatassures the awareness of the 
ontrol signal, being able to a
t very fast to assure the stabilityof the power generator. 4. Simulation ResultsIn this se
tion we present simulations of the proposed 
ontroller, using the following data:!s = 314:159 rad/s D = 5 p.u. H = 8sTd0 = 6:9s K
 = 1 Xd = 1:863 p.u.X 0d = 0:257 p.u. XT = 0:127 p.u. XL = 0:4853 p.u.The operating point is Æs = 72o, Pm = 0:9 p.u., !0 = 0 to whi
h 
orresponds Vt = 1 p.u.,with Vs = 1 p.u..The goal of the �rst simulation was to verify the e�e
t of a severe fault on the turbine. Itwas 
onsidered a fast redu
tion of the me
hani
al input power, and the simulation was donea

ording to the following sequen
e:1. The system is in pre-faulted state.2. At t = 0:5s the me
hani
al input power begins to de
rease.3. At t = 5:5s the me
hani
al input power is 50% of the initial value.Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



15The simulations were 
arried out using as 
ontrol parameters:�1 = 2 �2 = 10 �3 = 100
 = 0:1 k = 0:01 
1 = 3D24H!s
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Figure 1. a) Æ (-), Ær (- -) b) ! 
) Pe (- -), Pm (-)Fig. 1.a) shows that the traje
tory for the power angle (Ær) goes smoothly to its �nalvalue(Æs), and that Æ mat
hes it almost perfe
tly, being driven to its faulted unknownequilibrium point.In Fig. 1.b) we see that the rotor velo
ity is 
orre
tly and smoothly driven to its equilibriumvalue, as well as the ele
tri
al power, driven to its traje
tory that �nally re
overs the unknownequilibrium value as we may remark in Fig. 1.
)Fig. 2.1a) shows how the output voltage drops during the fault, and goes to its 
orre
t valuewhen the system is driven to the 
orre
t equilibrium point. If the estimation were not 
orre
t,there would be a steady state error.One 
an see in Fig. 2.1b) that the 
ontrol signal is very smooth and is kept inside thepres
ribed bounds.We may see in Fig. 2.2a) the adapted value, b�, (dashed line) of the me
hani
al power (fullline). It is a

urate and swift, su
h that the 
orre
t value is adapted almost at on
e. We mayremark that it re
overs the 
orre
t value faster than the estimator does, as we may see in Fig.2.2b) where it is plotted the estimated bPm (dashed line) and the me
hani
al power (full line).Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls
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(1) (2)Figure 2. 1a) Vt 1b) Control signal 2a) �̂ (-.) Pm (-) 2b) bPm (-.), Pm (-)On the other hand, the estimated value bPm is very smooth, respe
ting the restri
tions on thederivatives imposed for our tra
ked traje
tory.Note that during all time, the errors are very small. They 
an be made even smaller byin
reasing the parameter k. The 
hoi
e of parameters is mainly based on the limitation of the
ontrol signal, as well as the desired bounds for states and outputs.We present now the e�e
t of faults on the transmission line. It was 
onsidered a largein
rement of line impedan
e, followed by a almost as large redu
tion. This is equivalent to thelost of part of the transmission lines, followed by a partial re
over. Simulations were 
arriedout following the sequen
e:1. The system is in pre-faulted state.2. At t = 1s part of the power lines falls. This is re
e
ted by an in
rement of line impedan
ein 33%. Note that the 
hange is instantaneous.3. At t = 5s part of the lines are re
overed. This is seen as a redu
tion of 25% of the initialvalue of the line impedan
e.The 
ontrol parameters used for the simulations in this 
ase are:�1 = 2 �2 = 10 �3 = 100
 = 0:1 k = 0:01 
1 = 3D24H!s Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls
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Figure 3. a) Æ (-), Ær (- -) b) ! 
) Pe (- -), Pm (-)Fig. 3.a) shows that the traje
tory (dashed line) for the power angle (Ær) goes smoothly toits �nal value (Æs), and that Æ (full line) is able to tra
k this traje
tory, su
h that it is drivento its faulted equilibrium point.In Fig. 3.b) and 3.
) we may see the other two states, the rotor velo
ity and the ele
tri
alpower, being disturbed by the faults and then driven to their 
orre
t values by the 
ontroller.The same is veri�ed in Fig. 4.1a) for the output voltage.One 
an see in Fig. 4.1b) that the 
ontrol signal is very fast, a
ting at on
e to keep thestability of our system. It is able to keep all signals inside the pres
ribed bounds, and to drivethem to their 
orre
t values. Contrariwise the previous simulation where, as a me
hani
al fault,the perturbation was quite slow, here we see an ele
tri
al fault, then a mu
h faster one, askingfor a sharp response from the 
ontroller.We may observe in Fig. 4.2a) the 
ontrol adaptation variable �̂ (dashed line) and theme
hani
al power (full line). In Fig. 4.2b), it is presented the estimation bPm (dashed line)of the me
hani
al power Pm (full line). One may then remark that both variables re
over thesame �nal value, but while bPm keeps un
hanged, �̂ 
hanges in time. This shows the di�eren
ebetween �̂, as 
ontrol variable, and bPm as estimated value.Finally, in Fig. 4.2
), one may see that the 
orre
t value for the transmission line impedan
eis 
omputed by our te
hnique. The value is re
overed very fast, su
h that the system may bedriven to its 
orre
t equilibrium point. This 
omputation is �ltered in order to respe
t physi
allimitations on the 
ontrol signal magnitude. Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
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(1) (2)Figure 4. 1a)Vt 1b)Control signal 2a)�̂ (-.), Pm (-) 2b) bPm (- -), Pm (-) 2
)Xs(-), Computed Xs(- -)5. Con
lusionIn this paper, we have treated the problem of exponentially stabilizing a power generatorusing available output measurement. The proposed 
ontroller may be implemented in pra
ti
esin
e only a
tually measured outputs are used for feedba
k. Usually, nonlinear 
ontrollersfound in literature need the me
hani
al power, the transmission line impedan
e and the powerangle, whi
h make them not implementable. On the other hand, the linear 
ontrollers, usuallyimplemented in power plants, do not assure a large stability region, and are not able to standlarge perturbations.To design the proposed 
ontroller, we have �rst developed te
hniques to 
ompute theunknown parameters su
h that the equilibrium point may be re
overed after a fault orparameters 
hanges. We then design traje
tories (one for ea
h state) toward this new pointthat are tra
ked by the states, driven by the 
ontroller. This is a
hieved by an adaptiveoutput feedba
k linearization s
heme designed using ba
kstepping te
hniques, that also assuresboundedness of all signals. The 
onvergen
e of the traje
tories to the equilibrium point issimultaneous to the 
onvergen
e of the states toward the traje
tories and the generation ofthese traje
tories is made on-line by an exponentially stable adaptive estimator that re
oversthe me
hani
al power value.Finally we present simulation results that 
orroborate our 
laims. They show the goodbehavior of all states, outputs and 
ontrol signal even in the presen
e of severe faults onInt. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



19turbine and on transmission line.As further developments, our main goal is to extend these results to the multi-ma
hine 
ase.A
tually, the single-ma
hine study is a step toward the more general (and in pra
ti
e the mostimportant) 
ase of multiple inter
onne
ted generators undergoing interzone os
illations. Sin
e,in general, power plants are lo
ated very far from ea
h others, 
entralized 
ontrollers that needinformation from ea
h ma
hine in the system are not realisti
. The s
heme proposed in thispaper 
ould be a starting point in the design of de
entralized 
ontrollers.
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20 APPENDIXIn the following, we will 
ompute the terms dÆrd bPm , d2Ærd bP 2m , d3ÆrdbP 3m , dbPmdt , d2 bPmdt2 and d3 bPmdt3 in order tobuild equation (16).For the sake of simpli
ity, we �rst de�ne:a = VsXsb = VsXdXdssu
h that we may rewrite (13) as:Ær = ar

ot0BB�a ��b+qV 2tr � bP 2ma2 �bPm 1CCAUsing: d ar

ot(x)dx = � 11 + x2we 
ompute dÆrd bPm = ��a �b+rV 2tr� bP2ma2 !bP 2m � 1arV 2tr� bP2ma21 + a2  �b+rV 2tr� bP2ma2 !2bP 2m (26)a= (N1 +N2) �Denwhere: Den = � 11 + a2  �b+rV 2tr� bP2ma2 !2bP 2mN1 = �a ��b+qV 2tr � bP 2ma2 �bP 2mN2 = � 1aqV 2tr � bP 2ma2Now, re
alling that: Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



21d2Ærd bP 2m = �dDend bPm � (N1 +N2) +Den �� dN1d bPm + dN2d bPm�� (27)we �rst 
ompute: dN1d bPm = 2 a ��b+qV 2tr � bP 2ma2 �bP 3m + 1a bPmqV 2tr � bP 2ma2dN2d bPm = � bPma3 �V 2tr � bP 2ma2 �( 32 )dDend bPm = �2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma20B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2
and then:
d2Ærd bP 2m = 0B��a �b+rV 2tr� bP2ma2 !bP 2m � 1arV 2tr� bP2ma2 1CA 0B��2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma2 1CA0B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2

�2 a �b+rV 2tr� bP2ma2 !bP 3m + 1a bPmrV 2tr� bP2ma2 � bPma3 �V 2tr� bP2ma2 �( 32 )1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m (28)a=M1 �M2 �M3 +M4 �M5Here again we have split this equation su
h that Mi; i = 1::5 as well as its derivatives arede�ned as: Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
ls



22 M1 = 10B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2
M2 = �2 a2 ��b+qV 2tr � bP 2ma2 �2bP 3m � 2 ��b+qV 2tr � bP 2ma2 �bPmqV 2tr � bP 2ma2M3 = �a ��b+qV 2t � bP 2ma2 �bP 2m � 1aqV 2t � bP 2ma2M4 = � 11 + a2  �b+rV 2tr� bP2ma2 !2bP 2mM5 = 2 a ��b+qV 2t � bP 2ma2 �bP 3m + 1a bPmqV 2tr � bP 2ma2 � bPma3 �V 2t � bP 2ma2 �( 32 )and: dM1d bPm = �2 �2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma20B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA3

dM2d bPm = 6 a2 ��b+qV 2tr � bP 2ma2 �2bP 4m + 6 ��b+qV 2tr � bP 2ma2 �bP 2mqV 2tr � bP 2ma2 + 2�V 2tr � bP 2ma2 � a2 � 2 ��b+qV 2tr � bP 2ma2 ��V 2t � bP 2ma2 �( 32 ) a2dM3d bPm = 2 a ��b+qV 2tr � bP 2ma2 �bP 3m + 1a bPmqV 2tr � bP 2ma2 � bPma3 �V 2tr � bP 2ma2 �( 32 )Int. J. Robust Nonlinear Control 20; :{Prepared using rn
auth.
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23
dM4d bPm = �2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma20B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2

dM5d bPm = �6 a ��b+qV 2tr � bP 2ma2 �bP 4m � 3a bP 2mqV 2tr � bP 2ma2 � 3 bP 2ma5 �V 2tr � bP 2ma2 �( 52 )
The third derivative of Ær with respe
t to bPm is then given by:
d3Ærd bP 3m = dM1d bPm �M2 �M3 +M1 � dM2d bPm �M3 +M1 �M2 � dM3d bPm + dM4d bPm �M5 +M4 � dM5d bPm (29)
Its 
omplete expression being: Int. J. Robust Nonlinear Control 20; :{Prepared using rn
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d3Ærd bP 3m = ��6 a �b+rV 2tr� bP2ma2 !bP 4m � 3a bP 2mrV 2tr� bP2ma2 � 3 bP 2ma5 �V 2tr� bP2ma2 �( 52 )1 + a2 �b+rV 2tr� bP2ma2 !2bP 2m (30)

+ 20B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2 �0BBB��2 a2 ��b+qV 2tr � bP 2ma2 �2bP 3m � 2 ��b+qV 2tr � bP 2ma2 �bPmqV 2tr � bP 2ma2 1CCCA
�0BB�2 a ��b+qV 2tr � bP 2ma2 �bP 3m + 1a bPmqV 2tr � bP 2ma2 � bPma3 �V 2tr � bP 2ma2 �( 32 )1CCA�2 0B��2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma2 1CA2 0B��a �b+rV 2tr� bP2ma2 !bP 2m � 1arV 2tr� bP2ma2 1CA0B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA3
+ 10B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2 266640BBB�6 a2 ��b+qV 2tr � bP 2ma2 �2bP 4m + 6 ��b+qV 2tr � bP 2ma2 �bP 2mqV 2tr � bP 2ma2+ 2�V 2tr � bP 2ma2 � a2 � 2 ��b+qV 2tr � bP 2ma2 ��V 2tr � bP 2ma2 �( 32 ) a2 1CCA 0BB��a ��b+qV 2tr � bP 2ma2 �bP 2m � 1aqV 2tr � bP 2ma2 1CCA3775Now one may remark in (16) that we need the se
ond and third derivatives of bPm. Thesederivatives are not available, as they would imply the exa
t knowledge of Pm. To avoid thisproblem we �rst remember: d bPmdt = 
1e!eand remarking that: Int. J. Robust Nonlinear Control 20; :{Prepared using rn
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25Pm = � = e� + b�one may 
ompute: d2 bPmdt2 = 
1 :e!e = 
1!sH ePm � 
1DH e!e= 
1!sH �Pm � bPm�� 
1DH e!e= 
1!sH �b� � bPm�� 
1DH e!e + 
1!sH e�and: d3 bPmdt3 = 
1!sH :ePm � 
1DH :e!e= 
1!sH (�
1e!e)� 
1DH �!sH ePm � DH e!e�= �
1D2H2 � 
21 !sH � e!e � 
1D!sH2 �b� � bPm�� 
1D!sH2 e�
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