
HAL Id: hal-04215571
https://hal.science/hal-04215571

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive nonlinear output feedback for transient
stabilization and voltage regulation of power generators

with unknown parameters
Gilney Damm, Riccardo Marino, Françoise Lamnabhi-Lagarrigue

To cite this version:
Gilney Damm, Riccardo Marino, Françoise Lamnabhi-Lagarrigue. Adaptive nonlinear output feedback
for transient stabilization and voltage regulation of power generators with unknown parameters. Inter-
national Journal of Robust and Nonlinear Control, 2004, 14 (9-10), pp.833-855. �10.1002/RNC.908�.
�hal-04215571�

https://hal.science/hal-04215571
https://hal.archives-ouvertes.fr


Adaptive nonlinear output feedbak for transient stabilization andvoltage regulation of power generators with unknown parametersGilney Damm1,�,y , Riardo Marino2,z and Fran�oise Lamnabhi-Lagarrigue3,x1 Laboratoire Syst�emes Complexes, LSC-CNRS, 40 rue du Pelevoux, 91020, Evry Cedex, Frane2 Dip. di Ingegneria Elettronia, Universit�a di Roma Tor Vergata, via di Tor Vergata 110, 00133 Rome, Italy3 Laboratoire des Signaux et Syst�emes, L2S-CNRS, Plateau de Moulon, 91192, Gif sur Yvette, FraneSUMMARYThis work presents a nonlinear adaptive output feedbak exitation ontrol, designed for a synhronousgenerator modeled by a standard third order model on the basis of the physially availablemeasurements of relative angular speed, ative and reative eletri power and terminal voltage.The power angle, whih is a ruial variable for the exitation ontrol, as well as mehanial powerand the impedane of the transmission line onneting the generator to an in�nity bus, are notassumed to be available for feedbak. The feedbak ontrol ahieves transient stabilization andvoltage regulation when faults our to the turbines or the transmission lines, suh that parameters(mehanial power and line impedane) may permanently take any (unknown) value. The ontrollerreovers by adaptation the unknown values and simultaneously generates trajetories to be followedby the states, that onverge to the new equilibrium point.key words: non-linear ontrol; adaptive ontrol; power system stabilization; power generators1. IntrodutionPower system stabilization has been dealt with for many years by both ontrol and powersystems ommunities. For the latter, the goal is to have stable, reliable and robust eletrialenergy prodution and distribution. On the other hand, ontrol system teams develop quitemore ompliated systems whih may be diÆult to implement. Our goal here is to present newontrol methods for power system stabilization, whih are loser to physial onsiderations.These new ontrol methods, mainly based on modern nonlinear tehniques, may improve powersystems stabilization sine lassial ontrollers found in most power plants have limitations inperformane and in operation region.On the other hand, the theoretial interest of these systems beomes evident as we remarkthat power generators are desribed by nonlinear equations with unknown time varying�Correspondene to: Gilney Damm, LSC-CNRS, 40 rue du Pelevoux, 91020, Evry Cedex, FraneyEmail:gilney�iup.univ-evry.frzEmail:marino�ing.uniroma2.itxEmail:lamnabhi�lss.supele.fr



2parameters. There is no full state measurement, and they are underatuated systems. All thesefeatures make the problem quite diÆult and interesting from a theoretial point of view. Itslassial solution is presented in [10℄ and [2℄ using robust linear tehniques that are widespreadin most power plants. Modern linear robust and adaptive ontrol tehniques applied to thisproblem, may be seen in [7℄, [8℄ and [3℄. Reently, feedbak linearization ( [11℄, [6℄ and [20℄)as well as nonlinear adaptive tehniques ([1℄ and [21℄) were proposed to design stabilizingontrollers with the purpose of enlarging the stability region of the operating ondition.The nonlinear feedbak ontrol algorithms so far proposed in the literature make use ofpower angle and mehanial power measurements, whih are physially not available. Thesealgorithms have also the diÆulty of determining the faulted equilibrium value whih isompatible with the required terminal voltage one the fault (mehanial or eletrial failure)has ourred. This is our motivation to propose a nonlinear sheme based only on atuallymeasured outputs. First, in Setion 2, following the lines of our previous works [4℄, [12℄ and[5℄, we make use of the standard third order model used in [21℄ (see [2℄ and [19℄) to showthat the terminal voltage, the relative angular speed and the ative eletri power (whih areatually measurable and available for feedbak) are state variables in the physial region ofthe state spae. We then develop an adaptive feedbak linearization of the system ahievingexponential stability of the losed loop system, as presented in Setion 3. To do so, for agiven set of unknown parameters, we reover, by adaptation, the new equilibrium point of thesystem and generate, on-line, a trajetory that drives the generator toward this point. Thistask beomes ompliated as we have a nonlinear and nonlinearly-parametrized system withunknown time-varying parameters, without full state measurement. Traking in suh systemsis a diÆult task, and has been reently studied for the SISO ase in [14℄. We onlude thepaper with simulations (Setion 4) that show the good behavior of the adaptive ontroller inthe presene of transmission line and turbine faults.2. Dynamial ModelThe power generator is represented by the standard model presented in [2℄ (also used in[6℄, [19℄, [20℄ and [21℄) that may be deomposed in a mehanial and an eletrial parts. Theadvantage of suh a model is that although being of low order, it expresses well the behaviorof large systems. This fat (model redution) is well developed in [18℄ where a mathematialapproah leads to the same onlusions of standard physial simpli�ations. In pratie, thismay be seen as the Thevenin equivalent of a large network.Let's �rst onsider the simpli�ed mehanial model expressed in per unit as_Æ = !_! = �DH! + !sH (Pm � Pe) (1)where: Æ(rad) is the power angle of the generator relative to the angle of the in�nite busrotating at synhronous speed !s; !(rad/s) is the angular speed of the generator relative tothe synhronous speed !s i.e. ! = !g � !s with !g being the generator angular speed; H(s)is the per unit inertia onstant; D(p:u:) is the per unit damping onstant; Pm(p:u:) is the perunit mehanial input power; Pe(p:u:) is the per unit ative eletri power delivered by theInt. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



3generator to the in�nite bus. Note that the expression !2s=!g is simpli�ed as !2s=!g ' !s inthe right-hand side of (1). The ative and reative (Q(p:u)) powers are given byPe = VsEqXds sin(Æ) (2)Q = VsXdsEq os(Æ)� V 2sXds (3)where: Eq(p:u:) is the quadrature's EMF; Vs(p:u:) is the voltage at the in�nite bus; Xds(p:u:) a=XT + 12XL+Xd is the total reatane whih takes into aount Xd(p:u:), the generator diretaxis reatane, XL(p:u:), the transmission line reatane, and XT (p:u:), the reatane of thetransformer. The quadrature EMF, Eq , and the transient quadrature EMF, E0q , are related byEq = XdsX 0dsE0q � Xd �X 0dX 0ds Vsos(Æ) (4)while the dynamis of E0q (representing the eletrial part of the generator) are given bydE0qdt = 1Td0 (Kuf �Eq) (5)in whih:X 0ds(p:u:) a= XT+ 12XL+X 0d withX 0d(p:u:) denoting the generator diret axis transientreatane; uf (p:u:) is the input to the (SCR) ampli�er of the generator; K is the gain of theexitation ampli�er; Td0(s) is the diret axis short iruit time onstant. Substituting (2) into(1) and (4) into (5), we obtain the state spae model_Æ = !_! = �DH! + !sH �Pm � VsX 0dsE0q sin(Æ) + Xd �X 0dXdsX 0ds V 2s sin(Æ) os(Æ)�_E0q = 1Td0 �Kuf � XdsX 0dsE0q + Xd �X 0dX 0ds Vs os(Æ)� (6)in whih (Æ; !; E0q) is the state and uf is the ontrol input. Sine Pe is measurable while E0qis not, it is onvenient to express the state spae model using (Æ; !; Pe) as states whih areequivalent states as long as the power angle Æ remains in the open set 0 < Æ < �.In the following, we take into aount the notationT 0d0 = X 0dsXdsTd0where T 0d0 is the diret axis transient short iruit time onstant. Di�erentiating (2) withrespet to time, and using (1)-(5), we obtain Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



4 _Æ = !_! = �DH! � !sH (Pe � Pm)_Pe = � 1T 0d0Pe + 1T 0d0 � VsXds sin(Æ)[Kuf + T 0d0(Xd �X 0d) VsX 0ds!sin(Æ)℄+ T 0d0Pe! ot(Æ)g (7)whih is valid provided that 0 < Æ < �. Note that when Æ is near 0 or near � the e�et of theinput uf on the overall dynamis is greatly redued.The generator terminal voltage is given byVtej' = jXsEqej(�2+Æ) + jXdVsej �2jXdswhere Xs = XT + XL2Xds = Xd +Xsso that its modulus isVt = 1Xds (X2sE2q + V 2s X2d + 2XsXdEqVsos(Æ)) 12or in the new state variablesVt = � X2sP 2eV 2s sin2(Æ) + X2dV 2sX2ds + 2XsXdXds Peot(Æ)� 12 (8)whih is the output of the system to be regulated to its referene value Vtr = 1(p:u:)We must remark in this model that mehanial power, power angle and line impedane arenot available for measurement. Atually, this is the main bloking point for nonlinear ontrolof power generators.We avoid this problem using the relation (see [4℄):Xs = �QV 2s �pQ2V 4s � (Q2 + P 2e )V 2s (V 2s � V 2t )Q2 + P 2e (9)to express the line impedane, and the relation:Æ = arot VsXsPe  �XdVsXds +sV 2t � X2sV 2s P 2e!! (10)to express the power angle. With respet to the mehanial power, we will present an adaptivesheme to reover its value. Note that in equation (9), we use Xs as the impedane of theInt. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



5line up to the point of the network where the voltage is equal to Vs. Errors in the in�nity busvoltage will be expressed as a di�erent value of line impedane, leading to an equivalent resultfor the ontroller.One must also remark that (10) is a one-to-one funtion from Æ to Vt (as Vt is positive). Asa onsequene, (Vt; !; Pe), whih are measurable and are available for feedbak ation, is anequivalent state for the models (6) and (7).3. Nonlinear Adaptive ControllerThe operating onditions (Æ0; !0; Pe0) of the synhronous generator model (7) are given by!0 = 0Pe0 = Pm�Pm + VsXdsKufsin(Æ) = 0 (11)Note that while !0 = 0; Pe0 = Pm are not a�eted by uf , from the third equation abovewe see that there are two operating onditions Æs; Æu, 0 < Æs < �2 , �2 < Æu < � for onstantinputs uf > (PmXds)=(KVs); (Æs; 0; Pm) is an asymptotially stable equilibrium point while(Æu; 0; Pm) is an unstable equilibrium point. The stable operating ondition (Æs; 0; Pm) and theorresponding exitation onstant inputKuf0 = PmXdsVssin(Æs)are hosen so that the modulus of the generator terminal voltageVt = 1Xds (X2sK2u2f0 + V 2s X2d + 2XsXdKuf0Vsos(Æs)) 12is equal to the presribed value Vtr .The objetive of the ontrol system is to keep all states and outputs bounded andasymptotially bring outputs/states to their referene values. These objetives may besummarized as: 0 < Æ < 180j!j � !M <1jPej <1 ; limt!124 !PeVt 35 = 24 0PmVtr 35where !M is a limit value for the angular veloity that is spei�ed by the onstrutor.One must remark that parameters may, and will, abruptly hange in time. For instane, theparameter Pm may abruptly hange to an unknown faulted value Pmf due to turbine failures,so that (Vtr; 0; Pm) may not belong to the region of attration of the faulted equilibrium point(Vtr ; 0; Pmf ). The state feedbak ontrol should be designed so that typial turbine failures donot ause instabilities and onsequently loss of synhronism and inability to ahieve voltageregulation. Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



6 A redution from Pm to (Pm)f of the mehanial power generated by the turbine, hangesthe operating ondition: the new operating ondition (Æ)f is the solution of� (Pm)fPm + sin(Æ)fsin(Æs) = 0and sine (Pm)f is typially unknown, the orresponding new stable operating ondition (Æs)f isalso unknown. The ontrol system must reover this new operation point, generate a trajetorytowards it, and drive the system to this trajetory.To develop the ontrol, the model (7) is rewritten as:_Æ = !_! = �DH! � !sH (Pe � �)_Pe = � 1T 0d0Pe + VsXdsT 0d0 sin(Æ)Kuf + (Xd �X 0d)V 2sXdsX 0ds !sin2(Æ) + Pe! ot(Æ) (12)in whih �(t) is a possibly time-varying disturbane; the parameter � is assumed to be unknownand to belong to the known ompat set [�m; �M ℄ where the lower and upper bounds �m; �Mare known.Let Ær(t) be a (at least) C3 referene signal (toward the new equilibrium point) to be traked.In order to build this trajetory (Ær) toward the equilibrium value of the power angle (Æs), weuse equation (13) where we replae Vt by its referene value Vtr ; Vs is onsidered as 1(p.u.);Xs is the impedane of the line up to the point of the network where the voltage is equal toVs, and is alulated by (9); Xd is a known onstant and �nally Pe is replaed by bPm that isthe estimation of Pm. The resulting expression is:Ær = arot � VsXs bPm� � VsXdsXd +sV 2tr � X2sV 2s bP 2m!! (13)As arot(x) is a one-to-one smooth funtion, one may ompute the orret Ær for eah setof arguments. Remark that as bPm goes to Pm, Ær goes to Æs.In order to estimate Pm we de�ne (!̂ is an estimation of !):ePm = Pm � bPme!e = (! � !̂)One must not onfound this new de�ned e!e with variable e! that we will de�ne later. Wemay then write: :ePm = � :bPm = �1e!e:̂! = �DH !̂ � !sH (Pe � P̂m)and then, using also the seond equation of (7), we onlude that:Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



7:e!e = �DH e!e + !sH ePmor in a more onise form " :ePm:e!e # = � 0 �1!sH �DH �� ePme!e �whih eigenvalues are: �i = 12 �D �pD2 � 4H !s 1HWe may then see that a suitable hoie of 1 will give an exponentially stable estimation.Atually, any 1 > 0 will meet this requirement, in partiular a 0 < 1 � D24H!s that will givetwo negative real roots.Next, we de�ne: eÆ(t) = Æ(t)� Ær(t)where, taking the time derivative, we obtain:_eÆ = ! � _Ær(t)As we want that the error system be a stable linear system, we state !� as the desired valuefor ! (taking �1 > 0): !� = ��1eÆ + _Ærand then we may de�ne: e! , ! � !� = ! + �1eÆ � _ÆrTaking the time derivatives of both equations leads to:_eÆ = ��1eÆ + e! (14)_e! = �DH! + !sH (�(t) � Pe)� �21eÆ + �1e! � �ÆrFollowing the same tehnique, we de�ne (�2 > 0; k > 0) the referene signal for Pe thatlinearizes our system:P �e = H!s ��DH! � �21eÆ + �1e! � �Ær + �2e! + eÆ + 14k �!sH �2 e!�+ �̂where �̂ is an estimate of � and ePe = Pe � P �eRewriting the seond equation of (14): Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



8 _e! = !sH e�(t)�!sH ePe��2e!�eÆ�14k �!sH �2 e!and taking the derivative of P �e :_P �e = H!s (�DH  �e! � �1 �eÆ + �Ær!+��1 + �2 + 14k �!sH �2���DH! + !sH (�(t) � Pe)� �21eÆ + �1e! � �Ær�+ (1� �21)���1eÆ + e!�o+ �̂� � H!s _�Ærequation (12) an �nally be rewritten as (e� = � � �̂)_eÆ = ��1eÆ + e!_e! = �eÆ � �2e! � !sH ePe � k4 �!sH �2 e! + !sH e�_eP e = � 1T 0d0Pe + VsXdsT 0d0 sin(Æ)Kuf + (Xd �X 0d)V 2sXdsX 0ds !sin2(Æ) + Pe! ot(Æ)� H!s ����21 + 1 + �1DH� (��1eÆ + e!)+ ��DH + �1 + �2 + k4 �!sH �2���DH! � �21eÆ + �1e! � !sH Pe � �Ær��� ��DH + �1 + �2 + k4 �!sH �2� �̂ � _̂�� ��DH + �1 + �2 + k4 �!sH �2� e� + D!s �Ær + H!s _�Ær (15)We an see from equation (15) that in order to ompute our ontrol signal we need thederivatives of Ær. To do so, we must remember that::Ær = dÆrd bPm d bPmdt::Ær = d2Ærd bP 2m d bPmdt + dÆrd bPm d2 bPmdt2:::Ær = d3Ærd bP 3m d bPmdt + 2 d2Ærd bP 2m d2 bPmdt2 + dÆrd bPm d3 bPmdt3 (16)These omputations may be seen in the Appendix, leading to:Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



9:Ær = 1 dÆrd bPm e!e::Ær = 1 d2Ærd bP 2m e!e + 1 dÆrd bPm !sH �b� � bPm�� 1 dÆrd bPm DH e!e + 1 dÆrd bPm !sH e�_�Ær = 1 d3Ærd bP 3m e!e + 21 d2Ærd bP 2m !sH �b� � bPm�� 21 d2Ærd bP 2m DH e!e + 21 d2Ærd bP 2m !sH e�+�1D2H2 � 21 !sH � dÆrd bPm e!e � 1 dÆrd bPm D!sH2 �b� � bPm�� 1 dÆrd bPm D!sH2 e�where dÆrd bPm , d2ÆrdbP 2m and d3ÆrdbP 3m are given by (26), (28) and (30) in the Appendix.Beause some of the terms of �Ær and _�Ær are not available for feedbak, we de�ne new variables�Æru and _�Æru that will be used for our ontrol law. These variables are de�ned suh that::Ær � :Æru = 0::Ær � ::Æru = 1 dÆrd bPm !sH e�_�Ær � _�Æru = 21 d2Ærd bP 2m !sH e� � 1 dÆrd bPm D!sH2 e�De�ning (�3 > 0), we may ompute the ontrol signal that will linearize the last equationof (15): uf = T 0d0XdsVsK sin(Æ)�0�0 = 1T 0d0Pe � (Xd �X 0d)XdsX 0ds V 2s ! sin2(Æ)� Pe! ot(Æ)+ H!s ����21 + 1 + �1DH� (��1eÆ + e!)+ ��DH + �1 + �2 + k4 �!sH �2���DH! � �21eÆ + �1e! � !sH Pe � �Æru��+ ��DH + �1 + �2 + k4 �!sH �2� �̂ + _̂�� k4 ��DH + �1 + �2 + k4 �!sH �2�2 ePe � �3 ePe + !sH e! � D!s �Æru � H!s _�ÆruRemark here the use of Æru as the feedbak available variable. Now, de�ning the newonstant: 1 , ��DH + �1 + �2 + k4 �!sH �2�Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



10we may rewrite the previous equations as:uf = T 0d0XdsVsK sin(Æ)�0 (17)�0 = 1T 0d0Pe � (Xd �X 0d)XdsX 0ds V 2s ! sin2(Æ)� Pe! ot(Æ) + 1�̂ + _̂�+ H!s ����21 + 1 + �1DH� (��1eÆ + e!) + 1��DH! � �21eÆ + �1e! � !sH Pe � �Æru���k4  1 � 11 dÆrd bPm � 21 d2Ærd bP 2m!2 ePe � �3 ePe + !sH e! � D!s �Æru � H!s _�Æruand:_eP e = � 1T 0d0Pe + (Xd �X 0d)V 2sXdsX 0ds !sin2(Æ) + Pe! ot(Æ) (18)�H!s ����21 + 1 + �1DH� (��1eÆ + e!) + 1��DH! � �21eÆ + �1e! � !sH Pe � �Ær���1�̂ � _̂� � 1e� + D!s �Ær + H!s _�Ær + VsXdsT 0d0 sin(Æ)K T 0d0XdsVsK sin(Æ)�0Substituting (17) in (18) one will �nd:_eP e = � 1T 0d0Pe + (Xd �X 0d)V 2sXdsX 0ds !sin2(Æ) + Pe! ot(Æ)�H!s ����21 + 1 + �1DH� (��1eÆ + e!) + 1��DH! � �21eÆ + �1e! � !sH Pe � �Ær���1�̂ � _̂� � 1e� + D!s �Ær + H!s _�Ær+ 1T 0d0Pe � (Xd �X 0d)XdsX 0ds V 2s ! sin2(Æ) � Pe! ot(Æ)+H!s ����21 + 1 + �1DH� (��1eÆ + e!) + 1��DH! � �21eÆ + �1e! � !sH Pe � �Æru��+1�̂ + _̂� � k4  1 � 11 dÆrd bPm � 21 d2Ærd bP 2m!2 ePe � �3 ePe + !sH e! � D!s �Æru � H!s _�Æruthat may be rewritten as:_eP e = �k4  1 � 11 dÆrd bPm � 21 d2Ærd bP 2m!2 ePe � �3 ePe + !sH e! � 1 � 11 dÆrd bPm � 21 d2Ærd bP 2m! e�Then, the losed loop system beomes Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



11_~Æ = ��1~Æ + ~!_~! = �~Æ � �2~! � !sH ePe � k4 �!sH �2 ~! + !sH ~�_eP e = �k4  1 � 11 dÆrd bPm � 21 d2Ærd bP 2m!2 ePe��3 ePe + !sH e! � 1 � 11 dÆrd bPm � 21 d2Ærd bP 2m! e� (19)The adaptation law is ( is a positive adaptation gain)_̂� = Proj   � ePe 1 � 11 dÆrd bPm � 21 d2Ærd bP 2m!+ e!!sH ! ; �̂! (20)where Proj(y; �̂) is the smooth projetion algorithm introdued in [16℄Proj(y; �̂) = y; if p(�̂) � 0Proj(y; �̂) = y; if p(�̂) � 0 and hgradp(�̂); yi � 0Proj(y; �̂) = [1� p(�̂)jgrad p(�̂)j℄; otherwise (21)with p(�) = (� � �M+�m2 )2 � ( �M��m2 )�2 + 2�( �M��m2 )for � an arbitrary positive onstant, whih guarantees in partiular that:i) �m � � � �̂(t) � �M + �ii) jProj(y; �̂)j � jyjiii) (� � �̂)Proj(y; �̂) � (� � �̂)yWe may remark that if fPe and e! were the errors from the state to an equilibrium point, theadaptation law would be equivalent to a gradient approah. But this analysis, globally, is nottrue sine these two errors signals are not the state errors. Only in a small region around theequilibrium point this would be valid.To ompute this adaptation law, let's onsider the funtion:W = 12(eÆ2 + e!2 + eP 2e ) (22)whose time derivative, aording to (19), is Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



12 _W = ��1eÆ2 � �2e!2 � �3 eP 2e + e!!sH e� � k4 �!sH �2 e!2�k4  1 � 11 dÆrd bPm � 21 d2Ærd bP 2m!2 eP 2e � 1 � 11 dÆrd bPm � 21 d2Ærd bP 2m! e� ePeCompleting the squares, we obtain the inequality_W � ��1eÆ2 � �2e!2 � �3 eP 2e + 2k e�2 (23)whih guarantees arbitrary L1 robustness from the parameter error e� to the traking errorseÆ; e!; ePe (see [9℄ Setion 5.4).The projetion algorithms (21) guarantee that e� is bounded, and, by virtue of (22) and (23),that eÆ, e! and ePe are bounded. Therefore, _̂� is bounded. Integrating (23), we have for everyt � t0 � 0 � Z tt0 (�1eÆ2 + �2e!2 + �3 eP 2e )d� + 2k Z tt0 e�2d� �W (t)�W (t0)Sine W (t) � 0 and, by virtue of the projetion algorithm (21),e�(t) � �M � �m + �it follows that Z tt0 (�1eÆ2 + �2e!2 + �3 eP 2e )d� �W (t0) + 2k (�M � �m + �)2(t� t0)whih, if W (t0) = 0 (i.e. t0 is a time before the ourrene of the fault), implies arbitraryL2 attenuation (by a fator k) of the errors eÆ, e! and ePe aused by the fault. To analyze theasymptoti behavior of the adaptive ontrol, we onsider the funtionV = 12(eÆ2 + e!2 + eP 2e ) + 12 1 e�2Its time derivative is:_V = ��1eÆ2 � �2e!2 � �3 eP 2e + e!!sH e� � k4 �!sH �2 e!2 + 1 e� �e��  1 � 11 dÆrd bPm � 21 d2Ærd bP 2m! e� ePe � k4  1 � 11 dÆrd bPm � 21 d2Ærd bP 2m!2 eP 2eThen, using the adaptation law, we may �nd (remember that ( �e� = � �̂�)):_V = ��1eÆ2 � �2e!2 � �3 eP 2e � k4 �!sH �2 e!2 � k4  1 � 11 dÆrd bPm � 21 d2Ærd bP 2m!2 eP 2eInt. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



13The projetion estimation algorithm (21) is designed so that the time derivative of V satis�es_V � ��1eÆ2 � �2e!2 � �3 eP 2e (24)Integrating (24), we havelimt!1 Z tt0 (�1eÆ2 + �2e!2 + �3 eP 2e )d� � V (0)� V (1) <1From the boundedness of _eÆ; _e! and _eP e, and Barbalat's Lemma (see [15℄, [13℄ and [17℄) itfollows that limt!1 24 eÆ(t)e!(t)ePe(t) 35 = 0We may now rewrite the losed loop system following the normal form:_ex = Aex+
T e�_e� = ��
exwhih leads to:_ex = 26664 ��1 1 0�1 ���2 + k4 �!sH �2� �!sH0 !sH ���3 + k4 ��DH + �1 + �2 + k4 �!sH �2�2� 37775 ex+264 0!sH���DH + �1 + �2 + k4 �!sH �2� 375 e�_e� = � h 0 !sH �DH � �1 � �2 � k4 �!sH �2� i ex (25)And then omputing (for a onstant 2):

T = !2sH2 +��DH + �1 + �2 + k4 �!sH �2�2 a= 2 > 0we then may show by persisteny of exitation (see [13℄ , [17℄ and [15℄) that ex and e� will beglobally exponentially stable, and then all error signals go exponentially to zero, for all (atleast) C3 Ær( bPm; x).It is important to remark a very interesting feature of the proposed ontroller: all states goexponentially to the faulted equilibrium point that is ompletely unknown. Atually, all statesgo exponentially to trajetories that go themselves exponentially to the unknown equilibriumInt. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



14point. We must also remark that both onvergenies are simultaneous. To detail this feature,note that Æ will onverge to the trajetory Ær but, sine Ær is a one-to-one smooth funtionof bPm, it will onverge exponentially to the orret equilibrium value Æs as bPm onvergesexponentially to Pm. This means that the referene trajetory (Ær) will onverge exponentiallyto the unknown equilibrium point (Æs), and this onvergene will be simultaneous to theonvergene of the power angle (Æ) to the trajetory (Ær), what implies that limt!1(Æ�Æs) = 0exponentially. We must remark that the same happens to the other states (! and Pe). Theyonverge to their referene trajetories [!�; P �e ℄, and these trajetories onverge to the faulted(unknown for Pe) equilibrium points of ! and Pe as e!(t) and ePe(t) onverge to zero.RemarkWe must observe that there are two adapted values for the mehanial power. The reason isthat even if both results �nally reover the same value, they are not used for the same purpose,neither as equivalent variables. Note that bPm is the estimation of the unknown parameter Pm,replaing it in the proess of building the trajetories. It was designed purposely as an estimatorand its behavior an be de�ned as desired, suh that it an respet the restritions imposed forour trajetories, mainly with respet to being at least C3. Furthermore, its time derivatives,that are needed for the ontroller, are available. As a onsequene, bPm is very well behaved,going smoothly to the orret value of Pm.On the other hand, b� was designed as the ontrol adaptation. Even if it �nally reoversthe orret value of Pm (faster than bPm in some ases), it is not as well behaved, nor itstime derivatives are available. As a ontrol variable, it was expeted to be swift. That is whatassures the awareness of the ontrol signal, being able to at very fast to assure the stabilityof the power generator. 4. Simulation ResultsIn this setion we present simulations of the proposed ontroller, using the following data:!s = 314:159 rad/s D = 5 p.u. H = 8sTd0 = 6:9s K = 1 Xd = 1:863 p.u.X 0d = 0:257 p.u. XT = 0:127 p.u. XL = 0:4853 p.u.The operating point is Æs = 72o, Pm = 0:9 p.u., !0 = 0 to whih orresponds Vt = 1 p.u.,with Vs = 1 p.u..The goal of the �rst simulation was to verify the e�et of a severe fault on the turbine. Itwas onsidered a fast redution of the mehanial input power, and the simulation was doneaording to the following sequene:1. The system is in pre-faulted state.2. At t = 0:5s the mehanial input power begins to derease.3. At t = 5:5s the mehanial input power is 50% of the initial value.Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



15The simulations were arried out using as ontrol parameters:�1 = 2 �2 = 10 �3 = 100 = 0:1 k = 0:01 1 = 3D24H!s
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Figure 1. a) Æ (-), Ær (- -) b) ! ) Pe (- -), Pm (-)Fig. 1.a) shows that the trajetory for the power angle (Ær) goes smoothly to its �nalvalue(Æs), and that Æ mathes it almost perfetly, being driven to its faulted unknownequilibrium point.In Fig. 1.b) we see that the rotor veloity is orretly and smoothly driven to its equilibriumvalue, as well as the eletrial power, driven to its trajetory that �nally reovers the unknownequilibrium value as we may remark in Fig. 1.)Fig. 2.1a) shows how the output voltage drops during the fault, and goes to its orret valuewhen the system is driven to the orret equilibrium point. If the estimation were not orret,there would be a steady state error.One an see in Fig. 2.1b) that the ontrol signal is very smooth and is kept inside thepresribed bounds.We may see in Fig. 2.2a) the adapted value, b�, (dashed line) of the mehanial power (fullline). It is aurate and swift, suh that the orret value is adapted almost at one. We mayremark that it reovers the orret value faster than the estimator does, as we may see in Fig.2.2b) where it is plotted the estimated bPm (dashed line) and the mehanial power (full line).Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls
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(1) (2)Figure 2. 1a) Vt 1b) Control signal 2a) �̂ (-.) Pm (-) 2b) bPm (-.), Pm (-)On the other hand, the estimated value bPm is very smooth, respeting the restritions on thederivatives imposed for our traked trajetory.Note that during all time, the errors are very small. They an be made even smaller byinreasing the parameter k. The hoie of parameters is mainly based on the limitation of theontrol signal, as well as the desired bounds for states and outputs.We present now the e�et of faults on the transmission line. It was onsidered a largeinrement of line impedane, followed by a almost as large redution. This is equivalent to thelost of part of the transmission lines, followed by a partial reover. Simulations were arriedout following the sequene:1. The system is in pre-faulted state.2. At t = 1s part of the power lines falls. This is reeted by an inrement of line impedanein 33%. Note that the hange is instantaneous.3. At t = 5s part of the lines are reovered. This is seen as a redution of 25% of the initialvalue of the line impedane.The ontrol parameters used for the simulations in this ase are:�1 = 2 �2 = 10 �3 = 100 = 0:1 k = 0:01 1 = 3D24H!s Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls
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Figure 3. a) Æ (-), Ær (- -) b) ! ) Pe (- -), Pm (-)Fig. 3.a) shows that the trajetory (dashed line) for the power angle (Ær) goes smoothly toits �nal value (Æs), and that Æ (full line) is able to trak this trajetory, suh that it is drivento its faulted equilibrium point.In Fig. 3.b) and 3.) we may see the other two states, the rotor veloity and the eletrialpower, being disturbed by the faults and then driven to their orret values by the ontroller.The same is veri�ed in Fig. 4.1a) for the output voltage.One an see in Fig. 4.1b) that the ontrol signal is very fast, ating at one to keep thestability of our system. It is able to keep all signals inside the presribed bounds, and to drivethem to their orret values. Contrariwise the previous simulation where, as a mehanial fault,the perturbation was quite slow, here we see an eletrial fault, then a muh faster one, askingfor a sharp response from the ontroller.We may observe in Fig. 4.2a) the ontrol adaptation variable �̂ (dashed line) and themehanial power (full line). In Fig. 4.2b), it is presented the estimation bPm (dashed line)of the mehanial power Pm (full line). One may then remark that both variables reover thesame �nal value, but while bPm keeps unhanged, �̂ hanges in time. This shows the di�erenebetween �̂, as ontrol variable, and bPm as estimated value.Finally, in Fig. 4.2), one may see that the orret value for the transmission line impedaneis omputed by our tehnique. The value is reovered very fast, suh that the system may bedriven to its orret equilibrium point. This omputation is �ltered in order to respet physiallimitations on the ontrol signal magnitude. Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls
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(1) (2)Figure 4. 1a)Vt 1b)Control signal 2a)�̂ (-.), Pm (-) 2b) bPm (- -), Pm (-) 2)Xs(-), Computed Xs(- -)5. ConlusionIn this paper, we have treated the problem of exponentially stabilizing a power generatorusing available output measurement. The proposed ontroller may be implemented in pratiesine only atually measured outputs are used for feedbak. Usually, nonlinear ontrollersfound in literature need the mehanial power, the transmission line impedane and the powerangle, whih make them not implementable. On the other hand, the linear ontrollers, usuallyimplemented in power plants, do not assure a large stability region, and are not able to standlarge perturbations.To design the proposed ontroller, we have �rst developed tehniques to ompute theunknown parameters suh that the equilibrium point may be reovered after a fault orparameters hanges. We then design trajetories (one for eah state) toward this new pointthat are traked by the states, driven by the ontroller. This is ahieved by an adaptiveoutput feedbak linearization sheme designed using bakstepping tehniques, that also assuresboundedness of all signals. The onvergene of the trajetories to the equilibrium point issimultaneous to the onvergene of the states toward the trajetories and the generation ofthese trajetories is made on-line by an exponentially stable adaptive estimator that reoversthe mehanial power value.Finally we present simulation results that orroborate our laims. They show the goodbehavior of all states, outputs and ontrol signal even in the presene of severe faults onInt. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



19turbine and on transmission line.As further developments, our main goal is to extend these results to the multi-mahine ase.Atually, the single-mahine study is a step toward the more general (and in pratie the mostimportant) ase of multiple interonneted generators undergoing interzone osillations. Sine,in general, power plants are loated very far from eah others, entralized ontrollers that needinformation from eah mahine in the system are not realisti. The sheme proposed in thispaper ould be a starting point in the design of deentralized ontrollers.
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20 APPENDIXIn the following, we will ompute the terms dÆrd bPm , d2Ærd bP 2m , d3ÆrdbP 3m , dbPmdt , d2 bPmdt2 and d3 bPmdt3 in order tobuild equation (16).For the sake of simpliity, we �rst de�ne:a = VsXsb = VsXdXdssuh that we may rewrite (13) as:Ær = arot0BB�a ��b+qV 2tr � bP 2ma2 �bPm 1CCAUsing: d arot(x)dx = � 11 + x2we ompute dÆrd bPm = ��a �b+rV 2tr� bP2ma2 !bP 2m � 1arV 2tr� bP2ma21 + a2  �b+rV 2tr� bP2ma2 !2bP 2m (26)a= (N1 +N2) �Denwhere: Den = � 11 + a2  �b+rV 2tr� bP2ma2 !2bP 2mN1 = �a ��b+qV 2tr � bP 2ma2 �bP 2mN2 = � 1aqV 2tr � bP 2ma2Now, realling that: Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



21d2Ærd bP 2m = �dDend bPm � (N1 +N2) +Den �� dN1d bPm + dN2d bPm�� (27)we �rst ompute: dN1d bPm = 2 a ��b+qV 2tr � bP 2ma2 �bP 3m + 1a bPmqV 2tr � bP 2ma2dN2d bPm = � bPma3 �V 2tr � bP 2ma2 �( 32 )dDend bPm = �2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma20B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2
and then:
d2Ærd bP 2m = 0B��a �b+rV 2tr� bP2ma2 !bP 2m � 1arV 2tr� bP2ma2 1CA 0B��2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma2 1CA0B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2

�2 a �b+rV 2tr� bP2ma2 !bP 3m + 1a bPmrV 2tr� bP2ma2 � bPma3 �V 2tr� bP2ma2 �( 32 )1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m (28)a=M1 �M2 �M3 +M4 �M5Here again we have split this equation suh that Mi; i = 1::5 as well as its derivatives arede�ned as: Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



22 M1 = 10B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2
M2 = �2 a2 ��b+qV 2tr � bP 2ma2 �2bP 3m � 2 ��b+qV 2tr � bP 2ma2 �bPmqV 2tr � bP 2ma2M3 = �a ��b+qV 2t � bP 2ma2 �bP 2m � 1aqV 2t � bP 2ma2M4 = � 11 + a2  �b+rV 2tr� bP2ma2 !2bP 2mM5 = 2 a ��b+qV 2t � bP 2ma2 �bP 3m + 1a bPmqV 2tr � bP 2ma2 � bPma3 �V 2t � bP 2ma2 �( 32 )and: dM1d bPm = �2 �2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma20B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA3

dM2d bPm = 6 a2 ��b+qV 2tr � bP 2ma2 �2bP 4m + 6 ��b+qV 2tr � bP 2ma2 �bP 2mqV 2tr � bP 2ma2 + 2�V 2tr � bP 2ma2 � a2 � 2 ��b+qV 2tr � bP 2ma2 ��V 2t � bP 2ma2 �( 32 ) a2dM3d bPm = 2 a ��b+qV 2tr � bP 2ma2 �bP 3m + 1a bPmqV 2tr � bP 2ma2 � bPma3 �V 2tr � bP 2ma2 �( 32 )Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



23
dM4d bPm = �2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma20B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2

dM5d bPm = �6 a ��b+qV 2tr � bP 2ma2 �bP 4m � 3a bP 2mqV 2tr � bP 2ma2 � 3 bP 2ma5 �V 2tr � bP 2ma2 �( 52 )
The third derivative of Ær with respet to bPm is then given by:
d3Ærd bP 3m = dM1d bPm �M2 �M3 +M1 � dM2d bPm �M3 +M1 �M2 � dM3d bPm + dM4d bPm �M5 +M4 � dM5d bPm (29)
Its omplete expression being: Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



24
d3Ærd bP 3m = ��6 a �b+rV 2tr� bP2ma2 !bP 4m � 3a bP 2mrV 2tr� bP2ma2 � 3 bP 2ma5 �V 2tr� bP2ma2 �( 52 )1 + a2 �b+rV 2tr� bP2ma2 !2bP 2m (30)

+ 20B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2 �0BBB��2 a2 ��b+qV 2tr � bP 2ma2 �2bP 3m � 2 ��b+qV 2tr � bP 2ma2 �bPmqV 2tr � bP 2ma2 1CCCA
�0BB�2 a ��b+qV 2tr � bP 2ma2 �bP 3m + 1a bPmqV 2tr � bP 2ma2 � bPma3 �V 2tr � bP 2ma2 �( 32 )1CCA�2 0B��2 a2  �b+rV 2tr� bP2ma2 !2bP 3m � 2 �b+rV 2tr� bP2ma2 !bPmrV 2tr� bP2ma2 1CA2 0B��a �b+rV 2tr� bP2ma2 !bP 2m � 1arV 2tr� bP2ma2 1CA0B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA3
+ 10B�1 + a2  �b+rV 2tr� bP2ma2 !2bP 2m 1CA2 266640BBB�6 a2 ��b+qV 2tr � bP 2ma2 �2bP 4m + 6 ��b+qV 2tr � bP 2ma2 �bP 2mqV 2tr � bP 2ma2+ 2�V 2tr � bP 2ma2 � a2 � 2 ��b+qV 2tr � bP 2ma2 ��V 2tr � bP 2ma2 �( 32 ) a2 1CCA 0BB��a ��b+qV 2tr � bP 2ma2 �bP 2m � 1aqV 2tr � bP 2ma2 1CCA3775Now one may remark in (16) that we need the seond and third derivatives of bPm. Thesederivatives are not available, as they would imply the exat knowledge of Pm. To avoid thisproblem we �rst remember: d bPmdt = 1e!eand remarking that: Int. J. Robust Nonlinear Control 20; :{Prepared using rnauth.ls



25Pm = � = e� + b�one may ompute: d2 bPmdt2 = 1 :e!e = 1!sH ePm � 1DH e!e= 1!sH �Pm � bPm�� 1DH e!e= 1!sH �b� � bPm�� 1DH e!e + 1!sH e�and: d3 bPmdt3 = 1!sH :ePm � 1DH :e!e= 1!sH (�1e!e)� 1DH �!sH ePm � DH e!e�= �1D2H2 � 21 !sH � e!e � 1D!sH2 �b� � bPm�� 1D!sH2 e�
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