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Shape Servoing of a Soft Object
Using Fourier Series and a Physics-based Model

Fouad Makiyeh1, François Chaumette1, Maud Marchal2, Alexandre Krupa1

Abstract— In this paper, we propose a physics-based robot
controller to deform a soft object toward a desired 3D shape
using a limited number of handling points. For this purpose,
the shape of the deformable object is represented using Fourier
descriptors. We derive the analytical relation that provides
the variation of the Fourier coefficients as a function of the
movements of the handling points by considering a mass-
spring model (MSM). A control law is then designed from
this relation. Since the MSM provides an approximation of the
object behavior, which in practice can lead to a drift between
the object and its model, an online realignment of the model
with the real object is performed by tracking its surface from
data provided by a remote RGB-D camera. Simulation results
validate the approach for the case where many points interact
on a 2D soft object while experimental results obtained with
two robotic arms demonstrate the autonomous shaping of a 3D
soft object.

I. INTRODUCTION

While traditional robotic applications focus on manipulat-
ing rigid objects, interacting with soft objects remains a more
challenging task due to their deformable behavior. Robotic
manipulation of soft objects has already been considered in
applications such as robotic surgical assistance, clothing, and
food handling, as well as in the automotive industry, to name
a few.

Recently, in [1], we proposed a vision-based and model-
based control strategy to indirectly position one point belong-
ing to a soft object, referred as the feature point, by acting
on a distant point, referred as the manipulated point. This
approach is useful when one point needs to be automatically
positioned. However, when the entire shape of the object
needs to be controlled, it is no longer appropriate as it would
require a large number of feature points for representing the
object shape. To address this issue, a global representation
of the object shape can be used. For example, Collewet et
al. [2] used Fourier coefficients as features in image-based
visual servoing for describing the contour of a rigid object.
Chaumette [3] described the object contours from image
moments and Yazicioglu et al. [4] approximated the object
boundaries with polynomials, to name a few. While these
approaches have been used in visual servoing to control the
displacement of a camera with respect to a rigid object,
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Navarro et al. used truncated Fourier series to approximate
the 2D contour of a soft object and to control its 2D shape in
the image plane [5]. Recently, Qi et al. [6] used a compact
feedback vector built from 2D contour moments and applied
sliding mode control to servo the shape of a 3D deformable
object. One limitation of these two previous approaches is
that they only control the boundary contour observed from
a particular incidence view of the camera. Indeed, for a
3D object, there exists an infinite number of possible outer
boundary 2D contours since they depend on the relative
orientation between the camera and the object. Our objective
in this work is therefore to develop a new approach for
controlling the shape of the complete visible 3D surface of
the object and not only its outer 2D contour. Our goal is
to align the 3D surface shape of the object to a desired
3D surface shape by controlling the motion of the robotic
manipulators deforming it.

To perform this task, two key components have to be
examined. The first one is the determination of the relation
that links the variation of the extracted features to the
displacement of the 3D points belonging to the soft object.
This depends on the definition of the shape parametrization
used. The second one involves determining the relation
between the displacement of any 3D point belonging to
the soft object and the motions applied to the available
manipulated points. Some works have already focused on
these topics and they can be classified in two categories.
The first one concerns the model-free approaches, which
do not require neither prior information on deformation
behavior, nor physics-based models. For instance, Navarro-
Alarcon et al. developed a series of works for controlling the
configuration of deformable objects using visual servoing. In
these works, the shape of the object is described by a set of
visual features extracted from a 2D image corresponding, for
example, to multiple 2D points, the relative angle of a line
of interest constructed from two 2D points, the curvature
of a contour of interest defined from three 2D points [7],
[8], or the object 2D contour [9]. The shape servoing task is
performed by numerically estimating a deformation Jacobian
matrix, which relates the visual feature variations to the
motions of the manipulated points, using data provided
by a RGB camera [7]–[9]. These works present important
advantages since they do not rely on any deformation model
of the object. However, they are sensitive to measurement
noise since the estimation of the deformation Jacobian is
only based on these measurements. The second category
of approaches concerns the physics-based methods, where
a model approximating the physical behavior of the object



is considered. Recently, Shetab-Bushehri et al. [10] used the
As-Rigid-As-Possible deformation model to approximate the
object shape and they considered 3D points belonging to the
object as feedback for the shape servoing task. Other types
of physics-based models such as the finite element model
(FEM) [11] and the mass-spring model (MSM) [12], [13]
were also used. Das and Sarkar [12] developed a method
for handling a 2D deformable object relying on MSM with
multiple robotic manipulators. The shape of the object is
controlled by applying an optimization technique over the
model boundary points, but only simulation results were
presented. Das et al. [13] used three robotic fingers to
deform an object represented by a MSM for driving a single
internal point to a desired position. They used a proportional
integrator (PI) controller for each finger and only simulation
results were presented. Other approaches used FEM instead
of MSM, such as Ficuciello et al. [11] who presented an
approach for the dexterous manipulation of 3D deformable
objects in an open-loop system.

In this work, we present a new approach that controls
multiple manipulator points to drive the entire shape of a
soft object parametrized by a set of Fourier coefficients to
a desired configuration. We previously proposed a physics-
based control law to move a single 3D feature point to
a desired location by acting on a different manipulated
point [1]. In this study, we expand our method to simul-
taneously control the position of several 3D feature points
by acting on multiple manipulation points. Additionally, we
employ Fourier series to describe the surface of a 3D object
using spherical coordinates. In case of planar objects, Fourier
series can also be used from the polar coordinates of the
2D contour shape. We use the MSM to simulate the object
physical behavior and utilize a RGB-D camera to online track
its current shape and correct any possible drift between the
simulated model and the actual object. The main contribution
of this work is the analytic derivation of the relation that
links the variation of the Fourier coefficients, which represent
the object shape parameters, to the movements of multiple
manipulated points. Based on this relation, a closed-loop
control law is then developed to automatically deform the
soft object toward a desired shape.

An overview of our approach is presented in Fig. 1. The
main steps can be outlined as:

1) Compute the velocities to be applied to the manipu-
lated points (see Section II-E).

2) Update the physics-based model using the internal and
external forces acting on it (see Section II-A).

3) Reduce the drift between the model and the real
object by imposing external constraints on the model
surface from data provided by the RGB-D camera (see
Section IV-A ).

4) Compute the error between the feature vector repre-
senting the object surface and the one corresponding
to the desired shape (see Sections II-C and II-E). If
this error is not low enough, go to step 1).

The paper is organized as follows: Section II presents

Fig. 1. Block diagram of the approach: visual tracking part in blue, physics-
based simulator in green, and closed-loop control scheme in red.

briefly the MSM physics-based model, details the modelling
of the features representing the object shape, and develops
the control law. Section III and Section IV show simulation
and experimental results respectively. Finally, Section V ends
the paper with a conclusion on the proposed approach and
introduces future works.

II. MANIPULATION CONTROLLER DESIGN

A. MSM model

This part presents a brief description of the mass-spring
model used to approximate the soft object behavior. It has
been chosen since it is simple to implement and it has already
been applied to simulate and deform soft objects as in [1].
The position of any point Pi, where i ∈ N = [1, ..., N ] and
N is the number of model points, with corresponding mass
mi, coordinate xxxi and velocity ẋxxi, is given at time t = t+dt
by:

xxxi(t+ dt) = xxxi(t) +
dt2

mi
fsfsfsi(t) + (dt− dt2

mi
Dv)ẋxxi(t)

+
dt2

mi
fefefei(t) (1)

with dt the simulation step time and fefefei = fGfGfGi + fgfgfgi + fcfcfci.
fGfGfGi and fgfgfgi are respectively the 3D gravitational force and
the normal force exerted by the support on which the object
lies, while fcfcfci is a 3D force vector representing additional
external constraints. This force is applied each time a drift
between the model and the real object is detected (see
Section IV-A). Finally, fsfsfsi is the 3D force vector acting on
Pi due to springs with stiffness KKKij connecting Pi to its
neighbors, Pj , ∀j ∈ νννi ⊂ N , given by:

fsfsfsi =
∑
j∈νννi

fsfsfsij =
∑
j∈νννi

ΓijKKKij(xxxj − xxxi) (2)

where Γij =
∥xxxi−xxxj∥−l0ij

∥xxxj−xxxi∥ with l0ij the rest length of the spring
connecting Pi and Pj , and νννi denotes the indices in N of
the points in the neighborhood of Pi.



B. Problem formulation
The main objective of this work is to deform a 3D

soft object with w surface points, represented by xxxo =
(xxxo1 , ...,xxxow);∀1 ≤ i ≤ w; oi ∈ N , where oi is the index of
each surface point in N . Let sss be a feature vector represent-
ing the 3D surface xxxo of the object. The goal is to drive sss to
a desired target shape sss∗ by simultaneously manipulating
M points on the object, represented by [Pm1

, ..., PmM
],

with coordinates (xxxm1
, ...,xxxmM

). By determining how sss
changes due to the motion of these manipulated points, the
required motions to be applied on them for achieving the
desired shape can be determined as a classical visual servoing
problem [14].

C. Surface shape parameters
By expressing the points xxxol , l ∈ [1, ..., w] on the object

surface with spherical coordinates, each component can be
written as: xol = xg

o + ρ(θol , ϕol) cos(ϕol) sin(θol)
yol = ygo + ρ(θol , ϕol) sin(ϕol) sin(θol)
zol = zgo + ρ(θol , ϕol) cos(θol)

(3)

with xxxg
o = (xg

o, y
g
o , z

g
o) the 3D coordinates of the centroid of

xxxo, ρ(θol , ϕol) the radial distance ∥xxxol−xxxg
o∥ of the point Pol

from xxxg
o, θol = arccos(zol/ρ(θol , ϕol)) the polar angle and

ϕol = atan2(yol , xol) the azimuthal angle. ρ(θ, ϕ) is a closed
continuous periodic function, which can be represented as a
sum of cosine and sine functions with increasing frequencies,
known as Fourier descriptors. It can be approximated using
Fourier series as following:

ρ(θol , ϕol) =

p∑
i=0

q∑
j=0

[aijc(iθol)c(jϕol) + bijc(iθol)s(jϕol)

+cijs(iθol)c(jϕol) + dijs(iθol)s(jϕol)] (4)

where c stands for cos, s for sin, aij , bij , cij and dij are the
Fourier coefficients, and p and q are the number of harmonics
corresponding to θ and ϕ respectively. Hence, sss representing
the shape parameters is selected as:

sss = (xg
o, y

g
o , z

g
o , a00, ..., apq, b01, ..., bpq, cpq, dpq) (5)

As noticed from (5), the dimension k of sss, (k = 4(p+1)(q+
1)− 2(p+ q)) is significantly less than the number of object
surface points for low values of p and q.

Regarding the components of sss, they are obtained as
follows:

1) The centroid of the model surface points is first com-
puted: xxxg

o = 1
w

∑w
i=1 xxxoi

2) The model surface points are centered with respect to
the centroid: x̂xxo = xxxo − xxxg

o

3) The Fourier coefficients are then computed by a least
squares method. In theory, only (dim(sss) − 3) sur-
face points are needed, but to increase robustness to
measurement noise, all w points are considered in the
computation.

Once sss has been calculated, an approximation of the object
surface can be reconstructed by setting the range of θ to [0,
π] and ϕ to [0, 2π].

D. Modeling

By approximating the physical behavior of the object using
the MSM, we demonstrated in [1] that the velocity ẋxxf of
a feature point Pf due to the velocity ẋxxm applied on a
manipulated point Pm is given by:

ẋxxf = γγγfm ẋxxm + δδδf (6)

where the vector δδδf = rrrf/∆t represents the transient
dynamics of the system and ∆t denotes the step time of
the control law. The 3 × 3 matrix γγγfm is the velocity ratio
between ẋxxf and ẋxxm and is given at each time t by [1]:

γγγfm(t+ dt) = γγγfm(t) +
dt2

mf
γsγsγsf (t)

+ (1− dt

mf
Dv)(γγγfm(t)− γγγfm(t− dt)) (7)

with

γsγsγsf (t) =
∑
F∈νννf

∂fsfsfsfF
∂xxxF

(γγγF (t)− γγγf (t))

where νννf is the set of points in the neighborhood of Pf

and fsfsfsfF is the spring forces between Pf and its neighbors.
Finally, the form of rrrf is quite complex but fully given in [1].
Let us note that rrrf = 000 at the beginning and at the end of
the servo.

Eq. (6) is valid when a single manipulated point is
considered. When several manipulated points deform the
object simultaneously, the velocity of a feature point Pf

is obtained from the combination of the motions of these
manipulated points. More precisely, when M manipulators
(Pm1 , Pm2 , ..., PmM

) are deforming the object simultane-
ously with corresponding velocities ẋxxm = (ẋxxm1

, ..., ẋxxmM
),

we can show by similarity with (6) that the velocity of Pf

is given by:

ẋxxf =

M∑
l=1

γγγf ml
ẋxxml

+ δδδf (8)

where ẋxxml
is the applied velocity on Pml

, l ∈ [1, ...,M ].
γγγf ml

is calculated in the same way as presented in (7).
Additionally, δδδf can also be computed similarly as in [1].

From (8), we directly obtain the velocity of all points
belonging to the model surface:

ẋxxo = LoLoLo ẋxxm + δoδoδo (9)

with

LoLoLo =


γγγo1m1 . . . γγγo1mM

γγγo2m1 . . . γγγo2mM

...
. . .

...
γγγowm1

. . . γγγowmM

 , δoδoδo =

δδδo1...
δδδow

 , ẋxxo =

ẋxxo1
...

ẋxxow

 .

The ultimate goal is to find the variation ṡss of the features
with respect to the motions ẋxxm of the manipulated points,
through the following form:

ṡss = LsLsLs ẋxxm + δsδsδs (10)



By deriving (3) and (4), we obtain the motion ẋxxol =
(ẋol , ẏol , żol) of each point belonging to the object surface,
as a function of ṡss, θ̇ol and ϕ̇ol . However, we have to eliminate
θ̇ and ϕ̇ in order to express the motions of these points solely
in terms of ṡss. For that, by summing the three equations in (3)
after introducing terms αol , βol and σol , we obtain:

αol ẋol + βol ẏol + σol żol = [αol βol σol νol
∂ρ(θol , ϕol)

∂qqq
]ṡss

(11)
∀l ∈ [1, ..., w] with

αol = b1c2 − b2c1

βol = a2c1 − a1c2

σol = a1b2 − a2b1

νol = αol [(cos(ϕol) + βol sin(ϕol)) sin(θol) + σol cos(θol)]

qqq = (a00, ..., apq, b01, ..., bpq, cpq, dpq)

and

a1 = (
∂ρ(θol , ϕol)

∂θol
sin(θol) + ρ(θol , ϕol) cos(θol)) cos(ϕol),

b1 = (
∂ρ(θol , ϕol)

∂θol
sin(θol) + ρ(θol , ϕol) cos(θol)) sin(ϕol),

c1 =
∂ρ(θol , ϕol)

∂θol
cos(θol)− ρ(θol , ϕol) sin(θol),

a2 = (
∂ρ(θol , ϕol)

∂ϕol

cos(ϕol)− ρ(θol , ϕol) sin(ϕol)) sin(θol),

b2 = (
∂ρ(θol , ϕol)

∂ϕol

sin(ϕol) + ρ(θol , ϕol) cos(ϕol)) sin(θol),

c2 =
∂ρ(θol , ϕol)

∂ϕol

cos(θol).

By processing similarly with (9) and identifying the equation
obtained with (11), we get: αo1 ẋo1 + βo1 ẏo1 + σo1 żo1

...
αow ẋow + βow ẏow + σow żow

 = AoAoAo ẋxxm + bobobo

= CoCoCo ṡss (12)

with

AoAoAo =


[αo1 βo1 σo1 ]

...
[αow βow σow ]︸ ︷︷ ︸

1x3

[γγγo1m1
. . . γγγo1 mM

]
...

[γγγowm1
. . . γγγow mM

]︸ ︷︷ ︸
3x3M


bobobo =

 [αo1 βo1 σo1 ] δδδo1
...

[αow βow σow ] δδδow



CoCoCo =


αo1 βo1 σo1 νo1

∂ρ(θo1 ,ϕo1
)

∂qqq
...

...
. . .

...
αow βow σow νow

∂ρ(θow ,ϕow )
∂qqq



By identifying (12) with (10), we finally obtain:

LsLsLs = CoCoCo
+AoAoAo and δsδsδs = CoCoCo

+bobobo (13)

with CoCoCo
+ the Moore-Penrose pseudo-inverse of CoCoCo. Ma-

trix CoCoCo is of dimension w×k and is full rank since the num-
ber w of surface points is highly larger than the number of
harmonics. LsLsLs can be considered as the interaction matrix by
similarity with the classical visual servoing framework [14],
while δsδsδs is a feed-forward term that does not appear in
classical shape servoing works.

E. Control scheme

This section presents the control law to be applied to
the manipulated points in order to drive the object to its
desired shape. Similarly to what is classically done in visual
servoing, by specifying a decoupled exponential decay for
the visual features sss to their desired values sss∗, that is,
ṡss = −λ (sss − sss∗) where λ is a positive gain, we obtain
from (10):

ẋxxm = −λLLL+
sss (sss− sss∗)−LLL+

sss δsδsδs (14)

Regarding the achievement of the deformation task, it de-
pends on the number of harmonics p and q. When k > 3M ,
the controller (14) is under-actuated and cannot guarantee
the asymptotic convergence of the system. Conversely, when
k ≤ 3M , the controller is either fully-actuated or over-
actuated and therefore stability and convergence of sss towards
sss∗ is theoretically guaranteed. Let us note however that this
does not necessarily mean that the full object will reach
its desired shape, but only its representation by the selected
Fourier coefficients. So, the choice of number of harmonics
to be injected in sss depends on the complexity of the shape
to be obtained, while complex deformations require more
harmonics and consequently more manipulated points.

F. Specific application to planar objects

The method described previously can easily be applied
to planar objects. The shape of a 2D object is represented
by its contour xxxc containing wc contour points xxxcl . It can
be parameterized by its centroid (xg

c , y
g
c ) and radial distance

ρ(θ) that now only depends on a single angle θ. Doing so,
any point xxxcl in xxxc can be expressed using polar coordinates
as follows:

xxxcl = (xg
c + ρ(θcl) cos(θcl), y

g
c + ρ(θcl) sin(θcl)). (15)

As ρ(θ) is periodic, it can be approximated using Fourier
series as following:

ρ(θcl) = ac0 +

pc∑
i=1

[aci cos(iθcl) + bci sin(iθcl)] (16)

with pc the number of harmonics corresponding to θ. The
features sssc are thus naturally selected as:

sssc = (xg
c , y

g
c , a

c
0, a

c
1, b

c
1, ..., a

c
pc
, bcpc

) (17)



Following the same reasoning as in Section II-D, the vari-
ation of sssc with respect to the motions of the manipulated
points ẋxxm can be expressed as in (10):

ṡssc = LscLscLsc ẋxxm + δscδscδsc (18)

with LscLscLsc = CcCcCc
+AcAcAc and δscδscδsc = CcCcCc

+bcbcbc where

AcAcAc =

 [αc1 βc1 ][γγγc1m1
. . . γγγc1 mM

]
...

[αcwc
βcwc

][γγγcwcm1 . . . γγγcwc mM
]

 ,

bcbcbc =

 [αc1 βc1 ] δδδc1
...

[αcwc
βcwc

] δδδcwc

 ,

CcCcCc =


αc1 βc1 νc1

∂ρ(θc1 )

∂qqqc
...

...
...

αcwc
βcwc

νcwc

∂ρ(θcwc
)

∂qqqc

 ,

and

αcl = ρ(θcl) cos(θcl) +
∂ρ(θcl)

∂θcl
sin(θcl),

βcl = ρ(θcl) sin(θcl)−
∂ρ(θcl)

∂θcl
cos(θcl),

νcl = αcl(cos(θcl) + βclsin(θcl)),

qqqc = (ac0, a
c
1, b

c
1, ..., a

c
pc
, bcpc

).

The closed-loop control law to be applied by the robotic
manipulators is directly deduced from (18):

ẋxxm = −λLLL+
scscsc (sssc − sssc

∗)−LLL+
scscscδscδscδsc , (19)

III. SIMULATION RESULTS

In this section, the proposed controller is tested in simu-
lation for deforming a 2D object to a desired shape using
Fourier descriptors.

As already mentioned, the number of selected harmonics
influences the accuracy of the deformation task. In other
terms, it is crucial to choose an appropriate number of
harmonics for obtaining a correct approximation of an object
contour. For complex shapes, selecting a higher number of
harmonics will improve the accuracy of the approximation.
However, when the contour can be approximated using a
low number of harmonics all along its deformation, there
is no need to select a large number, since it will make
the system more and more under-actuated without providing
any significant information. Additionally, the desired shape
must be feasible. This can be obtained through simulation
by applying arbitrary motions on the chosen manipulated
points in order to deform the object. The resulting contour
can then be selected as the desired one since we are sure
that it is feasible.

The chosen 2D object is depicted in Fig. 2. It is repre-
sented using a MSM with 256 points, where the small red
points are the model points while the 6 larger red points
denote the manipulated points that have been uniformly
distributed around the object. Green points denote contour

points (wc = 32) and the white lines correspond to the
springs between the model points. The white points represent
the target points, which correspond to the green points
acquired after manually deforming the object to obtain a
feasible desired shape. The blue ones depict the desired
reconstructed contour using pc = 8 harmonics. The yellow
points on Fig. 2.b correspond to the reconstructed contour at
the end of the servo using the same number of 8 harmonics.
We can notice that the yellow points fit with the green and
blue ones and the green points align with the white points,
showing the success and the accuracy of the system using 8
harmonics.

The physical parameters of the object have been chosen
as follows. The mass of each point is mi = 0.35g. The
stiffness matrix KKKij depends on two constant values: KKKij =
diag(kx, ky) with kx = ky = 13N/m. The damping
has been chosen according to [1] as Dv = 2

√
mikx =

0.13Ns/m. Finally, we have selected λ = 0.9 as gain for
the control scheme.

(a) (b)

Fig. 2. Deformation of a planar object: (a) initial and desired configurations,
(b) final configuration (see text for explanations on color code).

Different simulations have been performed by selecting
a different number of harmonics (pc = 6, 8 and 10),
while the number of manipulated points is always the same
(M = 6). The purpose of testing these different numbers
of harmonics is to study their effects on the deformation
performance. The greater the number of harmonics, the better
the reconstruction of the contour. However, from a certain
amount of pc, the reconstruction is perfect and we no longer
need to increase it. To correctly reconstruct the contour of
the desired shape shown in Fig. 2, at least 6 harmonics
are needed. For that, we test pc = 6. Additionally, to
achieve a more accurate approximation, we also test two
larger numbers of harmonics, pc = 8 and 10. Moreover,
we also aim to evaluate the achievement of the task when
the system is under-actuated (here, we have 12 DOF while
kc = dim(sssc) = 2pc + 3).

The time evolution of the error norm ∥sssc − sssc
∗∥ for the

different number of harmonics is presented in Fig. 3. The
error norm converges exponentially to nearly zero when pc =
6, despite the system being under-actuated (green plot). For
the other cases (blue and black plots), a very small residual



remains at the convergence of the system.
Furthermore, the difference between the actual and desired

contour is shown in Fig. 4 for the different values of pc.
This difference has been computed using the Hausdorff
distance [15] by considering all contour points. We can notice
a nice exponential decrease of this error in all cases. After
convergence, the remaining error is less than 3% of the initial
error using 6 harmonics (green plot) while it is reduced to
less than 2% for pc = 8 and 10 (blue and black plots). Since
the residual of the Hausdorff distance is almost the same for
these two harmonics, using 8 harmonics is here sufficient to
achieve the task with high accuracy.

Fig. 3. Evolution of the error norm for different numbers of harmonics
and using 6 manipulated points.

Fig. 4. Evolution of the Hausdorff distance between the actual and desired
contours for different numbers of harmonics and using 6 manipulated points.

IV. REAL EXPERIMENTS

A. Setup & Implementation

Our experimental setup consists of two 6-DOF robotic
arms from ADEPT (M = 2), a Viper 850 and a Viper
650. Two rigid sticks are attached to the robots, used as
tools for the deformation process. These sticks are in contact
with the deformable object and the contact points are used
as the manipulated points of the soft object. The visual
perception of the object is performed with a remote RGB-D
Intel Realsense-D435 camera. It acquires around 3.105 3D
points at 30 frames per second (fps).

A simulator has been developed in C++ to simulate the
deformable object model and update its point positions at
a frequency of 600 Hz, i.e., dt = 1.66 ms. The velocities
computed by the control scheme (14) are initially expressed
in the camera frame since the data are measured in this

frame. Thanks to a classical hand-eye calibration (the camera
is fixed in the workspace), these velocities are then ex-
pressed in their respective end-effector frame and applied
to the manipulated points. The control law is executed at
the same frequency as the camera, which is 30 Hz, i.e.,
∆t = 33.33 ms. The overall setup is shown in Fig. 5.

Fig. 5. 1: Viper 650. 2: Viper 850. 3: RGB-D camera. 4: Soft object. 5:
Rigid sticks attached to Viper850 and Viper650.

The chosen object is an ellipsoid ball shown in Fig. 6. Its
MSM parameters are approximated as presented in [1]. More
precisely, we set KKKij = diag(30, 10, 30) N.m−1,∀i ∈ N ,
j ∈ νννi and Dv = 0.35 N.s.m−1. Since both the model and
its parameters are coarse, a drift may appear between the
real dynamical behavior of the object and its model. To get
rid of this drift, the object is segmented and tracked each
time a new image is acquired using the BGSLibrary [16].
The object surface points xxxo consist of two components: one
that is in contact with the table, and the other xxxs ⊂ xxxo that
is observable from the camera. For every surface point of
the model with coordinates xxxsi , its corresponding point p̂ppsi
on the real object surface is obtained thanks to an iterative
closest point (ICP) procedure [1], [17]. A drift is detected
when these two point clouds are no longer overlapping.
Finally, for compensating this drift, external forces fcfcfcsi =
KKKij(p̂pp

si − xxxsi) are set in (1) for all the observable surface
points (see Section II-A) so that all points in the model
are deformed to comply with these constraints, as proposed
in [1]. As a result, this correction phase brings the model
very close to the real object and we use the former for
the calculation of the features sss given in (5). We selected
p = 1 and q = 3 harmonics in sss since this choice enables
to correctly represent the object without being excessively
under-actuated (k = 24 while 6 DOF are available with
M = 2 manipulated points).

B. Experimental results

Two experiments are described in this paper to validate
our approach, while additional results are presented in the ac-
companying video. The convergence is considered achieved
as soon as the error ∥sss−sss∗∥ reaches 5% of its initial value.



For the first experiment, Fig. 6(a) shows the object at its
initial configuration while Fig. 6(b) displays the object after
convergence to its desired configuration. Fig. 7 displays a

(a) (b)

Fig. 6. First experiment: initial (a) and final (b) images acquired by the
RGB-D camera.

3D representation of the object surface points observed from
two different viewpoints (initial configuration in red, final
and desired configurations respectively in green and blue).

(a)

(b)

Fig. 7. First experiment: 3D visualization from 2 different viewpoints of
the object surface points (initial positions in red, final positions in green,
and desired positions in blue).

The second experiment involves a more complex defor-
mation, as can be seen on Figs. 8 and 9.

(a) (b)

Fig. 8. Second experiment: initial and final images acquired by the RGB-D
camera.

(a)

(b)

Fig. 9. 3D visualization from 2 different viewpoints for the second
experiment.

For both experiments, the time evolution of the error norm
∥sss − sss∗∥ is shown in Fig. 10, while Fig. 11 presents the
evolution of the Hausdorff distance between the current and
desired surface points.

The correct achievement of the deformation task is directly
visible from Figs. 7 and 9 where we can note that the final
shapes (in green) are well superposed on the desired ones
(in blue) despite the displacements and deformations to be
achieved. For both medium and large deformations, we can



Fig. 10. Evolution of ∥sss − sss∗∥ (first experiment in red, second one in
green).

Fig. 11. Evolution of the Hausdorff distance between the current and
desired object surface points (first experiment in red, second one in green).

see that the features error and Hausdorff distance converge
to less than 5% of their initial value in few seconds while
we recall that the system is under-actuated. The decreasing is
more erratic in the case of the large deformation, which is not
surprising for this difficult case. Notice that the initial errors
are smaller in this case just because the rigid displacement
is smaller. Finally, these results confirm that the selected
harmonics were adequate for approximating the object shape
and performing the required deformations.

V. CONCLUSION

In this paper, a new physics-based control scheme was in-
troduced for shaping soft objects into desired configurations
using a RGB-D camera and multiple manipulated points.
The shape of the object, whether it is planar or volumetric,
is represented by a selected number of Fourier coefficients
approximating respectively its surface or contour. The rela-
tionship between the variation of these parameters and the
motion of the robotic manipulators was established using a
coarse mass-spring model. This relation allowed us to design
the controller that contains a feedback and a feed-forward
term. To get rid of the model approximation, a tracking
step was performed to cancel the difference between this
model and the observed shapes. The proposed approach was
evaluated through simulations and real experiments, yielding
promising results without the need for special markers or
textures. In contrast to existing methods that were limited to
servo only the 2D contour of planar or volumetric objects, the
proposed approach allows deforming the complete shape of
the object by considering its entire surface. As future work,

we aim to explore alternative methods of parameterization
to represent soft object shapes.
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