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Collecting and leveraging data with good coverage properties plays a crucial role in different aspects of reinforcement learning (RL), including reward-free exploration and offline learning. However, the notion of "good coverage" really depends on the application at hand, as data suitable for one context may not be so for another. In this paper, we formalize the problem of active coverage in episodic Markov decision processes (MDPs), where the goal is to interact with the environment so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any desired coverage property, making it applicable to any problem that involves online exploration. Our main contribution is an instance-dependent lower bound on the sample complexity of active coverage and a simple game-theoretic algorithm, COVGAME, that nearly matches it. We then show that COVGAME can be used as a building block to solve different PAC RL tasks. In particular, we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample complexity that, in certain MDPs which are "easy to explore", is lower than the minimax one. By further coupling this exploration algorithm with a new technique to do implicit eliminations in policy space, we obtain a computationally-efficient algorithm for best-policy identification whose instance-dependent sample complexity scales with gaps between policy values.

Introduction

The quality of the available data, whether it is actively gathered through online interactions with the environment or provided as a fixed offline dataset, plays a fundamental role in characterizing the performance of any reinforcement learning (RL, Sutton and Barto, 2018) agent. An important concept to quantify such quality is coverage, a property measuring the extent to which data spreads across the state-action space. The notion of coverage, through the so-called concentrability coefficients, is ubiquitous in the vast literature on offline RL (e.g., [START_REF] Munos | Error bounds for approximate policy iteration[END_REF][START_REF] Munos | Finite-time bounds for fitted value iteration[END_REF][START_REF] Amir-Massoud Farahmand | Regularized fitted q-iteration for planning in continuous-space markovian decision problems[END_REF][START_REF] Amir-Massoud Farahmand | Error propagation for approximate policy and value iteration[END_REF][START_REF] Chen | Information-theoretic considerations in batch reinforcement learning[END_REF]Xie andJiang, 2020, 2021;[START_REF] Jin | Is pessimism provably efficient for offline rl?[END_REF][START_REF] Foster | Offline reinforcement learning: Fundamental barriers for value function approximation[END_REF]. Intuitively, the better data covers the state space, the better performance one can expect from an offline RL method. Recently, [START_REF] Xie | The role of coverage in online reinforcement learning[END_REF] showed that a similar phenomenon also occurs in online RL: the sole existence of a good covering data distribution implies sample-efficient online RL with non-linear function approximation, even if such a distribution is unknown and inaccessible by the agent.

While these works treat coverage as a property of some given data or environment, a large body of literature focuses on actively collecting good covering data. This falls under the umbrella of reward-free exploration (RFE, [START_REF] Jin | Reward-free exploration for reinforcement learning[END_REF], a setting where the agent interacts with an unknown environment without any reward feedback. The objective is typically to collect sufficient data to enable the computation of a near-optimal policy for any reward function provided at downstream, e.g., by planning on top of an estimated model of the environment or by running any off-the-shelf offline RL method. Many provably-efficient algorithms exist for this problem that mostly differ in their exploration strategy. Some try to gather a minimum number of samples from each reachable state [START_REF] Jin | Reward-free exploration for reinforcement learning[END_REF]Zhang et al., 2021b), while others adaptively optimize a reward function proportional to their uncertainty over the environment [START_REF] Kaufmann | Adaptive reward-free exploration[END_REF][START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF] or more simply a zero reward [START_REF] Chen | On the statistical efficiency of reward-free exploration in non-linear rl[END_REF]. All these approaches provably guarantee that the collected data is sufficient to learn any reward function provided at test time. Another popular technique is to seek data distributions that maximize the entropy over the state-space [START_REF] Hazan | Provably efficient maximum entropy exploration[END_REF][START_REF] Chi | Exploration-exploitation trade-off in reinforcement learning on online markov decision processes with global concave rewards[END_REF][START_REF] Zahavy | Reward is enough for convex mdps[END_REF][START_REF] Mutti | The importance of non-markovianity in maximum state entropy exploration[END_REF]. Finally, there is a long recent line of empirical works focusing on RFE, where the problem is often called unsupervised RL (e.g., [START_REF] Laskin | Urlb: Unsupervised reinforcement learning benchmark[END_REF][START_REF] Eysenbach | Diversity is all you need: Learning skills without a reward function[END_REF][START_REF] Burda | Exploration by random network distillation[END_REF][START_REF] Yarats | Reinforcement learning with prototypical representations[END_REF].

The RFE literature mostly focuses on collecting data with the specific properties needed for the task under consideration (e.g., achieving zero-shot RL at test time). Motivated by the crucial role of coverage in RL, in this paper we treat the problem at a higher level of generality. We formulate and study the problem of active coverage in episodic MDPs, where the goal is to interact online with the environment so as to collect data that satisfies some given coverage constraints. Following [START_REF] Tarbouriech | A provably efficient sample collection strategy for reinforcement learning[END_REF] who considered a similar problem in reset-free MDPs, we formalize such constraints as a set of sampling requirements that the learner must fulfill during learning. This gives our framework a high flexibility, as one can require different notions of coverage simply by changing the sampling requirements. Moreover, the applications are numerous, as any active coverage algorithm yields an exploration strategy that can be readily plugged in to tackle different problems. In our specific case, we shall see how to apply it to design PAC algorithms for both RFE and best-policy identification (BPI, Fiechter, 1994;[START_REF] Dann | Sample complexity of episodic fixed-horizon reinforcement learning[END_REF][START_REF] Dann | Policy certificates: Towards accountable reinforcement learning[END_REF]Wagenmaker et al., 2022;Wagenmaker and Jamieson, 2022;[START_REF] Tirinzoni | Near instance-optimal pac reinforcement learning for deterministic mdps[END_REF][START_REF] Tirinzoni | Optimistic PAC reinforcement learning: the instance-dependent view[END_REF].

Contributions First, we derive an instance-dependent complexity measure for the active coverage problem as a lower bound on the number of episodes that any algorithm must play in order to fulfill the sampling requirements on an MDP. We show interesting connections with existing coverage measures, especially the concentrability coefficients used in offline RL (e.g., [START_REF] Munos | Error bounds for approximate policy iteration[END_REF].

Then, we propose COVGAME, a novel approach for active coverage. COVGAME is based on a simple game-theoretic view of the problem, where an RL agent tries to optimize a sequence of rewards produced by an adversary that constantly challenges it to reach uncovered states. We show that the sample complexity of COVGAME scales with our complexity measure plus some lower order learning cost, hence making our approach near-optimal.

Finally, we show how active coverage can be readily applied to get PAC algorithms with instancedependent sample complexity for both RFE and BPI. In particular, we show that an almost plugand-play version of COVGAME solves RFE using a number of samples scaling with our instancedependent coverage complexity, i.e., adapting to the complexity for navigating the underlying MDP. We show that this sample complexity can be smaller than the minimax one [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF]Zhang et al., 2021b), a perhaps surprising result given the worst-case nature of the problem (i.e., the agent aims at optimizing for all possible rewards). For BPI, we show how COVGAME can be sequentially applied to estimate the value function of all policies, while gradually focusing on poli-cies with better performance. Notably, we obtain an instance-dependent sample complexity scaling with policy gaps [START_REF] Tirinzoni | A fully problem-dependent regret lower bound for finite-horizon mdps[END_REF][START_REF] Dann | Beyond value-function gaps: Improved instance-dependent regret bounds for episodic reinforcement learning[END_REF] which is in line with the recent results of Wagenmaker and Jamieson (2022) and [START_REF] Tirinzoni | Near instance-optimal pac reinforcement learning for deterministic mdps[END_REF] (the latter for the special case of deterministic MDPs). A key advantage is that our algorithm, as opposed to the one of Wagenmaker and Jamieson (2022), is computationally-efficient and does not need to enumerate all policies to perform explicit eliminations. This is obtained thanks to a novel scheme which instead sequentially constrains the set of state-action distributions corresponding to high-return and well-covered policies, a technique that we believe to be of broader interest. An important technical tool for both RFE and BPI is a novel concentration inequality for value functions (see Appendix D).

Active Coverage and its Complexity

We suppose that the learner interacts with an environment modeled as a tabular finite-horizon Markov decision process (MDP) M := (S, A, {p h } h∈[H] , s 1 , H), where S is a finite set of S states, A is a finite set of A actions, p h : S × A → P(S) 1 denotes the transition function at stage h ∈ [H], s 1 ∈ S is the initial state, and H is the horizon. The interaction with M proceeds through episodes of length H. In each episode, starting from the initial state s 1 ∈ S, at each stage h ∈ [H], the learner takes an action a h ∈ A based on the current state s h ∈ S and it observes a stochastic transition to a new state s h+1 ∼ p h (s h , a h ). We denote by p h (s ′ |s, a) the probability that the new state is s ′ when selecting action a in state s at step h of the episode.

The actions are chosen by a (possibly stochastic) policy π = {π h } h∈[H] , i.e., a sequence of mappings π h : S → P(A), where π h (a|s) denotes the probability that the learner takes action a in state s at stage h. With some abuse of notation, we shall use π h : S → A to denote a deterministic policy, where π h (s) directly returns the action taken in state s at stage h. We denote by Π S (resp. Π D ) the set of all stochastic (resp. deterministic policies).

Denoting by P π (resp. E π ) the probability (resp. expectation) operator induced by the execution of a policy π ∈ Π S for an episode on M, we define, for each (h, s, a), p π h (s, a) := P π (s h = s, a h = a) and p π h (s) := P π (s h = s). We let Ω := {p π : π ∈ Π S } denote the set of all valid stateaction distributions. It is well known (e.g., [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] that any distribution ρ ∈ Ω satisfies ρ h ∈ P(S × A) for all h and a ρ h (s, a) = s ′ ,a ′ ρ h-1 (s ′ , a ′ )p h-1 (s|s ′ , a ′ ) for all s, a and h > 1. We make the following assumption to ensure that the whole state-space can be navigated.

Assumption 1 (Reachability) Each state s ∈ S is reachable at any stage h ∈ {2, . . . , H} by some policy, i.e., max π∈Π S p π h (s) > 0.

Reachability conditions like Assumption 1 are standard in prior work. In non-episodic reset-free MDPs (e.g., [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF], the MDP is often required to be communicating to ensure learnability, i.e., any two states are reachable from each other by some policy. Assumption 1 is the analogous for episodic MDPs, where we only need reachability from the initial state. In episodic MDPs, reachability conditions have been used in different settings, including model-free learning [START_REF] Modi | Model-free representation learning and exploration in low-rank mdps[END_REF] and reward-free exploration [START_REF] Zanette | Provably efficient reward-agnostic navigation with linear value iteration[END_REF].

Notation Throughout the paper, we shall use 1 X to denote an indicator function over some set X , i.e., 1 X (h, s, a) := 1{(h, s, a) ∈ X } for all h, s, a. We shall hide X whenever X = [H] × S × A.

Learning problem

The learner interacts with an MDP M with unknown transition probabilities in order to fulfill some given sampling requirements. In particular, it is given a target function c : [H] × S × A → R, where c h (s, a) denotes the minimum number of samples that must be gathered from (s, a) at stage h. In each episode of interaction t ∈ N * , the learner plays a policy π t and observes a corresponding trajectory {(s t h , a t h )} h∈ [H] . Let n t h (s, a) := t j=1 1(s j h = s, a j h = a) denote the number of times (s, a) has been visited at stage h up to episode t. The goal is to minimize the number of episodes required to collect at least c h (s, a) samples from each h, s, a with high probability.

Definition 1 (δ-correct c-coverage algorithm) Fix δ ∈ (0, 1) and a target function c. An algorithm is called δ-correct c-coverage if, with probability at least 1 -δ, it stops after interacting with M for τ episodes and returns a dataset of transitions with visitation counts guaranteeing ∀(h, s, a), n τ h (s, a) ≥ c h (s, a).

Examples While the definition of the active coverage problem gives complete freedom in choosing the target function c, for our applications we shall mostly be interested in two specific instances. In uniform coverage, we have c h (s, a) = N 1 ((h, s, a) ∈ X ) for some given set X and N ∈ N. Intuitively, this requires collecting at least N samples from each state-action-stage triplet in X , and the name suggests that the learner should explore X as uniformly as possible. Possible applications include estimating the transition model uniformly well across the state-action space [START_REF] Tarbouriech | Active model estimation in markov decision processes[END_REF] and discovering sparse rewards. In our applications to PAC RL, we will further explore the benefits of performing proportional coverage, which corresponds to setting c h (s, a) = N max π p π h (s, a)1 ((h, s, a) ∈ X )2 . This requires collecting a number of samples from each (h, s, a) ∈ X that scales proportionally to its reachability.

The complexity of active coverage

Minimizing the sample complexity required to solve the active coverage problem requires the learner to properly plan how to distribute its exploration throughout the state-action space, hence accounting for the complex interplay between the MDP dynamics p and the target function c. The following theorem gives a precise characterization of the complexity of this problem.

Theorem 2 For any target function c and δ ∈ (0, 1), the stopping time τ of any δ-correct ccoverage algorithm satisfies

E[τ ] ≥ (1 -δ)φ ⋆ (c), where φ ⋆ (c) = inf ρ∈Ω max (s,a,h)∈X c h (s, a) ρ h (s, a)
,

with X := {(h, s, a) : c h (s, a) > 0}.
The quantity φ ⋆ (c) of Theorem 2 provides an instance-dependent complexity measure for the active coverage problem. In particular, it depends on both the MDP M through the set of valid state-action distributions Ω and on the target function c. It can be interpreted as follows. Imagine that a learner repeatedly plays a policy which induces a state-action distribution ρ ∈ Ω. Then, for any (h, s, a), the quantity 1/ρ h (s, a) is roughly the expected number of episodes the learner takes to collect a single sample from (h, s, a). This implies that max (s,a,h)∈X s,a) is roughly the expected number of episodes needed to satisfy the sampling requirements across all (h, s, a) when playing distribution ω. Then, the complexity measure is intuitively the minimum of this quantity across all possible stateaction distributions. In other words, any distribution ρ ⋆ attaining the minimum in φ ⋆ (c) denotes an optimal c-coverage distribution, i.e., generating data from ρ ⋆ provably minimizes the time to satisfy all sampling requirements, in expectation.

c h (s,a) ρ h (
We remark that the lower bound of Theorem 2 holds for any δ-correct algorithm, even for an oracle that knows the transition probabilities. In general, we do not believe it to be exactly matchable since (i) any algorithm must work with sample counts rather the expectations, (ii) the transition probabilities are unknown. However, φ ⋆ (c) will appear as the leading order terms in our sample complexity, while these learning costs will be absorbed into lower order terms.

Links to existing measures of coverage

In Appendix B, we show that φ ⋆ (c) can be reformulated as a stochastic minimum flow, a generalization of the minimum flow for directed acyclic graphs (DAGs), as used by [START_REF] Tirinzoni | Near instance-optimal pac reinforcement learning for deterministic mdps[END_REF] in deterministic MDPs, to stochastic environments. In this reformulation, φ ⋆ (c) is written as a linear program seeking the minimal allocation of visits to each (h, s, a) (i.e., a flow) that satisfies the sampling requirements while complying with the MDP dynamics.

In Appendix A, we prove that the complexity φ ⋆ (c) satisfies the following inequalities

max h s,a c h (s, a) ❶ ≤ φ ⋆ (c) ≤ h inf ρ∈Ω max s,a c h (s, a) ρ h (s, a) ❷ ≤ h,s,a c h (s, a) max π p π h (s, a) ❸ . (1) 
Interestingly, each of these terms relates to a complexity measure that appeared in previous works. Term ❶ is the complexity for covering a tree-based deterministic MDP [START_REF] Tirinzoni | Near instance-optimal pac reinforcement learning for deterministic mdps[END_REF], perhaps the easiest MDP topology to navigate. As φ ⋆ (c) reduces to the complexity of [START_REF] Tirinzoni | Near instance-optimal pac reinforcement learning for deterministic mdps[END_REF] in deterministic MDPs, we attain the equality φ ⋆ (c) = ❶ in this specific tree structure.

For a specific choice of c, ❷ can be shown to be exactly the "gap visitation" complexity measure introduced by Wagenmaker et al. (2022) for BPI. As a component of their BPI algorithm MOCA, Wagenmaker et al. (2022) introduced Learn2Explore, a strategy that learns policies to reach all states in the MDP. While it may be possible to adapt Learn2Explore for our active coverage problem, one limitation is that it learns how to reach each layer independently, and this is reflected on the fact that ❷ is only a loose upper bound (up to a factor H larger) to the optimal complexity φ ⋆ (c). Finally, ❸ can be related to the sample complexity for active coverage obtained by the GOSPRL algorithm of [START_REF] Tarbouriech | A provably efficient sample collection strategy for reinforcement learning[END_REF] 3 . It can be interpreted as the complexity for learning how to reach each h, s, a independently, which makes it an even looser upper bound to φ ⋆ (c).

Concentrability and coverability

A definition of concentrability coefficient for data distribution ρ is C conc (ρ) := max s,a,h maxπ p π h (s,a) ρ h (s,a)
. This plays a fundamental role in characterizing the efficiency of offline RL methods (see, e.g., [START_REF] Chen | Information-theoretic considerations in batch reinforcement learning[END_REF][START_REF] Xie | The role of coverage in online reinforcement learning[END_REF] and references therein). It is easy to see that φ ⋆ (c) = inf ρ∈Ω C conc (ρ) for the target function c of proportional Algorithm 1 COVGAME 1: Input: Target function c h (s, a), RL algorithm A Π , online learning algorithm A λ , confidence parameter δ ∈ (0, 1).

2:

Let X 0 := X and

X k := {(h, s, a) : c h (s, a) > c + min 2 k } for all k ∈ N * 3:
Initialize counts n 0 h (s, a) = 0 for all h, s, a 4:

Reset A λ on P(X ), set λ 1 h (s, a) ← 1((h, s, a) ∈ X )/|X | for all h, s, a

5:

Initialize k 1 ← 0 6:

for t = 1, 2, . . . do

7:

Get π t from A Π given reward function λ t and confidence 1 -δ/2 8:

Generate a trajectory {(s t h , a t h )} h∈[H] using policy π t and update counts n t 9:

if n t h (s, a) ≥ c h (s, a) for all h, s, a then stop and return all sampled trajectories 10:

Update

k t+1 ← max{j ∈ N : n t h (s, a) ≥ c h (s, a) ∀(h, s, a) ∈ X \ X j } 11: if k t+1 ̸ = k t then 12: Reset A λ on P(X k t+1 ), set λ t+1 h (s, a) ← 1((h, s, a) ∈ X k t+1 )/|X k t+1 | for all h, s, a 13: else 14: Feed A λ with loss ℓ t (λ) = (h,s,a)∈X k t λ h (s, a)1(s t h = s, a t h = a), get weight λ t+1
coverage. That is, our coverage complexity is equivalent to the minimum concentrability coefficient achievable by any distribution generated by some stochastic policy. Under a similar perspective, [START_REF] Xie | The role of coverage in online reinforcement learning[END_REF] introduced the coverability coefficient

C cov := inf ρ 1 ,...,ρ H ∈P(X ×A) max s,a,h maxπ p π h (s,a) ρ h (s,a)
to characterize to what extent the best data distribution covers all policies. Noting that the infimum is taken across all probability distributions rather than valid state-action distributions, the optimal data distribution in C cov may not be attained by the execution of any stochastic policy. This means that C cov is not a valid complexity measure for active coverage in general, and it reduces exactly to ❶ for proportional coverage (see their Lemma 3), i.e., to a loose lower bound on φ ⋆ (c).

Active Coverage by Solving Games

We propose COVGAME (Algorithm 1), which adopts a game-based perspective inspired by the bandit literature [START_REF] Degenne | Non-asymptotic pure exploration by solving games[END_REF]. We first observe that the complexity φ ⋆ (c) can be interpreted as a zero-sum game between a learner trying to produce the best sampling distribution ρ ∈ Ω and an adversary trying to challenge it with the tuple (h, s, a) whose sampling requirement is the hardest to meet under ρ. COVGAME does not directly solve the game in the definition of φ ⋆ (c) but rather an equivalent formulation which simplifies learning. Thanks to the minmax theorem, we can write

1 φ ⋆ (c) = sup ρ∈Ω min (s,a,h)∈X ρ h (s, a) c h (s, a) = sup ρ∈Ω inf λ∈P(X ) (h,s,a)∈X λ h (s, a) ρ h (s, a) c h (s, a) = inf λ∈P(X ) max π∈Π D (h,s,a)∈X p π h (s, a) λ h (s, a) c h (s, a) ,
where in the last equation we used that the inner maximization is a standard RL problem with reward function given by λ h (s,a) c h (s,a) 1 ((h, s, a) ∈ X ) and its optimum is known to be attained by a deterministic policy (e.g., [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF].

COVGAME solves a variant of this minmax game that does not involve the target function c directly. The idea is to cluster the state-action pairs in X based on their sampling requirement. To this end, we define the sequence of sets {X k } k∈N as X 0 := X and X k := {(h, s, a) : c h (s, a) > c + min 2 k } for all k ∈ N * , where c + min = min (h,s,a)∈X c h (s, a) ∨ 1. At each round t ∈ N * , COVGAME tries to solve the game inf λ∈P(X k t ) max π∈Π D h,s,a p π h (s, a)λ h (s, a), where k t is the largest index such that all state-action pairs in X \ X kt = {(h, s, a) ∈ X : c h (s, a) ≤ c + min 2 kt } have been already covered. Intuitively, COVGAME progressively focuses on covering state-action pairs with larger sampling requirement, while ignoring those that have already been covered. The main advantage over solving the initial formulation of φ ⋆ (c) is two-fold. First, the learner is allowed to play only deterministic policies, each being the solution to an RL problem. Second, in the sequence of games that we consider, the objective function is independent of the scale of c, which avoids undesired dependencies (e.g., on the inverse of the minimum value of c) when the target function is unbalanced.

COVGAME approximately solves the sequence of games above by leveraging two online learning algorithms, A λ and A Π . The one for the adversary (A λ ) can be any method for online convex optimization on the simplex with linear losses. The one for the learner (A Π ) can be any regret minimizer for RL that handles reward functions changing at each round (but observed at the beginning of the round). A simple approach like UCBVI [START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF] can be adapted to this purpose.

The final intuition behind COVGAME is quite simple: at each round t, the adversary produces a reward function λ t supported over X kt (the current set to be covered) and the learner tries to find a good policy for maximizing it. This encourages the learner to visit uncovered state-action pairs, eventually meeting the sampling requirements.

In order to analyze the sample complexity of COVGAME, we make the following assumption on the adopted online learning algorithms, which will be satisfied by our specific instance.

Assumption 2 (First-order regret) There exists a non-decreasing function R λ (T ) such that, if A λ is instantiated on P(X k ) for some k on a sequence of linear losses {ℓ t } t≥1 bounded in [0, 1],

∀T ∈ N * , T t=1 ℓ t (λ t ) -min λ∈∆ X k T t=1 ℓ t (λ) ≤ R λ (T ) T t=1 ℓ t (λ t ) + R λ (

T ).

(2)

There exists a non-decreasing function R Π δ (T ) such that, if A Π is run with confidence 1 -δ on a sequence of rewards {λ t } t≥1 with λ t ∈ P(X ) for all t, with probability 1 -δ, for all T ∈ N * ,

T t=1 V ⋆ 1 s 1 ; λ t - T t=1 V πt 1 s 1 ; λ t ≤ R Π δ (T ) T t=1 V π t 1 (s 1 ; λ t ) + R Π δ (T ), (3) 
where

V π 1 (s 1 ; λ) := h,s,a p π h (s, a)λ h (s, a) and V ⋆ 1 (s 1 ; λ) := max π V π 1 (s 1 ; λ).
Theorem 3 (Sample complexity of COVGAME) Under Assumption 1 and 2, with probability at least 1 -δ, COVGAME satisfies n τ h (s, a) ≥ c h (s, a) for all h, s, a and its stopping time τ satisfies τ ≤ 64mφ ⋆ (c) + T 1 , with m := ⌈log 2 (c max /c + min )⌉ ∨ 1, c max := max h,s,a c h (s, a) and

T 1 = inf T ∈ N * : T 2 ≥ mφ ⋆ (1 X ) 3R Π δ/2 (T ) + 12R λ (T ) + 24 log(4T /δ) + 1 .
While we require both learners to have first-order regret bounds (i.e., depending on the sum of observed losses), standard O( √ T ) bounds can also be used at the cost of a larger second-order term T 1 in Theorem 3, from T 1 = O(φ ⋆ (1 X )) as in our instantiation to T 1 = O(φ ⋆ (1 X ) 2 ). The key step in our proof is to show that first-order regret implies convergence to the value φ ⋆ (c) of the game at a rate O(1/T ) instead of the slower O(1/ √ T ) achieved with O( √ T ) regret. As φ ⋆ (1 X ) depends on the inverse visitation probabilities (see Theorem 2), this φ ⋆ (1 X ) versus φ ⋆ (1 X ) 2 improvement will be crucial to avoid undesired scaling with these quantities in our applications to PAC RL.

Our instantiation

For A λ we propose to use the weighted majority forecaster (WMF, [START_REF] Littlestone | The weighted majority algorithm[END_REF] with variance-dependent learning rate for which, for any sequence of losses bounded in [0, 1], we have by Theorem 5 of [START_REF] Cesa-Bianchi | Improved second-order bounds for prediction with expert advice[END_REF] that Assumption 2 is satisfied with R λ (T ) = 16 log(SAH).

(4)

For A Π we propose to use a variant of UCBVI [START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF]) that can cope with varying reward functions. The idea is that, since the reward function λ t is revealed to A Π at the beginning of round t, we can build an upper confidence bound Q t-1 h (s, a; λ t ) to the optimal action-value function Q ⋆ h (s, a; λ t ) by estimating the transition probabilities with the data collected up to round t -1. Then, we play π t h (s) = arg max a Q t-1 h (s, a; λ t ), the greedy policy w.r.t. Q t-1 h . We build the UCBs by leveraging the same "monotonic value propagation" trick from Zhang et al. (2021c) and prove that Assumption 2 is satisfied with

R Π δ (T ) = 65536SAH 2 (log(2SAH/δ) + 6S) log(T + 1) 2 . ( 5 
)
See Appendix C for details. Notably, we manage to prove a similar first-order regret bound as the one derived by [START_REF] Jin | Reward-free exploration for reinforcement learning[END_REF] for EULER (Zanette and Brunskill, 2019b) with a remarkably simple analysis, without using any correction factor in the bonuses, and with improved dependences on H (from H 4 to H 2 ) and δ (from log(1/δ) 3 to log(1/δ)). As compared to the minimax regret rate [START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF], our resulting bound in (3) features a dependence on S instead of √ S in its leading-order term. This is the cost of handling changing rewards, which prevents us from building tight UCBs as commonly done for a fixed reward function. Instead, we build UCBs that hold for all rewards simultaneously using techniques from reward-free exploration [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF], a setting where an extra dependence on S is unavoidable in the worst case [START_REF] Jin | Reward-free exploration for reinforcement learning[END_REF]. Timevarying rewards, albeit under a weaker notion of regret, have also been studied in an adversarial setting in which the reward λ t is not revealed prior to round t [START_REF] Rosenberg | Online convex optimization in adversarial markov decision processes[END_REF].

Corollary 4 (Sample complexity of COVGAME with WMF and UCBVI) With probability at least 1 -δ, the stopping time of COVGAME with WMF and UCBVI is bounded by

τ ≤ 64mφ ⋆ (c) + O(mφ ⋆ (1 X )SAH 2 (log(1/δ) + S)),
where m = ⌈log 2 (c max /c + min )⌉∨1 and O hides poly-logarithmic factors in S, A, H, φ ⋆ (1 X ), log(1/δ).

The second term in the bound above can be interpreted as the cost incurred for learning the optimal coverage complexity φ ⋆ (c) under unknown transition probabilities p. Still, this learning cost depends at most logarithmically on the total sampling requirement ∥c∥ 1 = h,s,a c h (s, a). This implies that, for large ∥c∥ 1 , this cost becomes negligible as compared to the first term and τ ≤ O(φ ⋆ (c)), which matches the lower bound of Theorem 2 up to constant and logarithmic terms. We observe that if p is known, by replacing UCBVI with the computation of the optimal policy w.r.t. to λ t , for which R Π δ/2 (T ) = 0, we get a smaller additive cost O(mφ ⋆ (1 X ) log(SAH) log(1/δ)) which is only due to the randomness in the collection of trajectories.

Comparison with prior work

While inspired by an original game perspective which is crucial in our analysis, the actual algorithmic approach of COVGAME has a similar flavor as existing algorithms for different exploration tasks: it runs a regret minimizer on different reward functions enforcing the visitation of uncovered states. Using WMF as the λ-learner, the reward function in round t is

λ t+1 h (s, a) = exp -ξ t-it n t h (s, a) -n it h (s, a) 1 ((h, s, a) ∈ X kt ) (h ′ ,s ′ ,a ′ )∈X k t exp -ξ t-it n t h ′ (s ′ , a ′ ) -n it h ′ (s ′ , a ′ )
, where i t is the last restart of WMF that happened before t and ξ t is the variance-dependent learning rate defined by [START_REF] Cesa-Bianchi | Improved second-order bounds for prediction with expert advice[END_REF]. Our reward function is related to the number of prior visits and smoothly evolves over time, which is in contrasts with most prior approaches that rely on rewards of the form r Y h (s, a) = 1((h, s, a) ∈ Y) for some set Y, For example, GOSPRL translated to our episodic setting would use r t+1 h (s, a) = 1 n t h (s, a) < c t h (s, a) . The Learn2Explore strategy (Wagenmaker et al., 2022) uses a subroutine to visit N times some of the state-action pairs in Y: it runs EULER (Zanette and Brunskill, 2019a) on r Y and restarts the algorithm with a reward function with reduced support whenever some new state-action pair has reached N visits. Several algorithms for RFE [START_REF] Jin | Reward-free exploration for reinforcement learning[END_REF]Zhang et al., 2021a) also collect data using regret minimizers on top of indicator-based rewards. In Appendix B.3, we further discuss the connections between COVGAME and Frank-Wolfe approaches used in the convex RL literature.

Applications to PAC RL

A strategy for RFE should collect a dataset of trajectories from which it is possible to compute a near-optimal policy for any reward function. To be robust to any possible reward in the test phase, we intuitively need to gather sufficient samples everywhere in the MDP, which we propose to do explicitly by relying on COVGAME with proportional coverage (Section 4.1). By adding some ingredients to this exploration strategy, we further obtain a new algorithm for BPI (Section 4.2).

Proportional Coverage Exploration (PCE)

Algorithm 2 takes as input two parameters ε, δ and returns an estimate of the transition probabilities p that, with probability 1 -δ, yields an ε-optimal policy for any reward function bounded in [0, 1]. The choice of proportional coverage is motivated by a novel ellipsoid-shaped confidence region for the value functions of all policies under any reward. Let p t denote the maximum likelihood estimator of p after observing t episodes. For any reward function r, let V π 1 (s 1 ; r) := h,s,a p π h (s, a)r h (s, a) be the expected return of π, and V π,t 1 (s 1 ; r) be the same on the empirical MDP with transitions p t . if Hβ RF (t k , δ/3)2 4-k ≤ ε then stop and return p k 13: end for Theorem 27 in Appendix D gives that, with probability 1 -δ, jointly over all episodes t,

∀r ∈ [0, 1] SAH , ∀π ∈ Π D , V π 1 (s 1 ; r) -V π,t 1 (s 1 ; r) ≤ β RF (t, δ) (h,s,a)∈Xε p π h (s, a) 2 n t h (s, a) + ε 4 , (6) 
where

β RF (t, δ) ∝ H 2 log(1/δ) + SH 3 log(A(1 + t)
) and X ε is a subset of triplets that are not too hard to reach: X ε ⊆ {(h, s, a) : max π p π h (s, a) ≥ ε 4SH 2 }. If we gather c h (s, a) = O(Hβ RF (t, δ) sup π p π h (s, a)/ε 2 ) visits from every (h, s, a) ∈ X ε , then the estimation error of V π 1 (s 1 ; r) for any π and r is below ε/2, which is sufficient to solve RFE [START_REF] Jin | Reward-free exploration for reinforcement learning[END_REF]). Yet as the visitation probabilities are unknown, neither X ε nor c h (s, a) can actually be computed. To solve this issue, we rely on an initialization phase based on the ESTIMATEREACHABIL-ITY subroutine (line 2 of Algorithm 2), described in Appendix G. This procedure, that is similar to the initialization phase in MOCA (Wagenmaker et al., 2022), outputs for each (h, s) an interval [W h (s), W h (s)] to which max π p π h (s) belongs with high probability using a low-order number of episodes of O(S 3 AH 4 /ε). The lower confidence bound is then used to build a set X that satisfies the requirements for X ε and the upper bound is used to define the target function that is given as input to COVGAME in phase k of the algorithm: c k h (s, a) := 2 k W h (s)1 (h, s, a) ∈ X . We remark that PCE is computationally-efficient as it inherits the complexity of COVGAME and ESTIMATEREACHABILITY, which both require to solve one dynamic program in every round to compute the optimistic policy used by UCBVI. We now present its theoretical properties.

Theorem 5 Let p be the estimate of the transition probabilities that PCE outputs. For any reward function r, let πr be an optimal policy in the MDP ( p, r). Then,

P ∀r ∈ [0, 1] SAH , |V πr 1 (s 1 ; r) -V ⋆ 1 (s 1 ; r)| ≤ ε ≥ 1 -δ.
Furthermore, with probability at least 1 -δ, the total sample complexity of PCE satisfies

τ ≤ O H 3 log(1/δ) + SH 4 φ ⋆ sup π p π h (s)1(sup π p π h (s) ≥ ε 32SH 2 ) ε 2 h,s,a + S 3 A 2 H 5 (log(1/δ) + S) ε ,
where O hides poly-logarithmic factors in S, A, H, ε and log(1/δ).

Perhaps the most interesting feature of this bound is that in the regime of small ε and small δ, the leading term is

H 3 log(1/δ)φ ⋆ [sup π p π h (s)1(sup π p π h (s) ≥ ε/(32SH 2
))] h,s,a /ε 2 , which can be much smaller than the (SAH 3 /ε 2 ) log(1/δ) minimax rate [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF]. First, using the inequality (1), this term is always smaller than |{(h, s) : sup π p π h (s) ≥ ε/(32SH 2 )}|AH 3 log(1/δ), which can be better than minimax in MDPs with many states that are hard to reach. Other examples of MDPs for which PCE is better than minimax in the small ε, δ regime are given in Appendix E.7. For any α ∈ [0, 1), we notably propose a family of MDPs satisfying φ ⋆ [sup π p π h (s)] h,s,a = O(S α AH), leading to an asymptotic sample complexity of order S α AH 4 /ε 2 log(1/δ). These examples suggest that, while RFE is by essence a worst-case problem, there is still hope to adapt to the "explorability" of the MDP. Beyond this asymptotic regime, a worst-case bound can be directly extracted from Theorem 5 for any ε, δ by using that the

φ ⋆ term is at most SAH/ε 2 , τ = O SAH 4 ε 2 log(1/δ) + S 2 AH 5 ε 2 + S 3 A 2 H 5 ε (log(1/δ) + S) ,
which is minimax optimal up to an H 2 factor and low-order terms scaling in 1/ε.

Remark 6 (Reachability) Thanks to its initialization phase, PCE can be used even when Assumption 1 is violated. All triplets that have zero probability to be reached are filtered out from the set X , and COVGAME always targets reachable states.

PRINCIPLE: PRoportIoNal Coverage with Implicit PoLicy Elimination

Our second use-case of COVGAME yields PRINCIPLE, an algorithm for BPI. Given an unknown reward distribution {ν h (s, a)} h,s,a with support in [0, 1] and mean {r h (s, a)} h,s,a , an (ε, δ)-PAC algorithm for BPI outputs a policy π such that

P V π 1 (s 1 ; r) ≥ V ⋆ 1 (s 1 ; r) -ε ≥ 1 -δ.
In the PCE algorithm, we sought to achieve good proportional coverage w.r.t. the set of all policies, i.e., by requiring that n k h (s, a) ≥ 2 k sup π∈Π D p π h (s, a) for all h, s, a, k. This is due to the "worst-case" nature of RFE, where any policy can be potentially optimal for some reward function at test time. On the contrary, the mean-reward r is fixed in BPI, a property that we can leverage to perform more adaptive exploration. A natural idea, which led to tight theoretical guarantees in recent works [START_REF] Tirinzoni | Near instance-optimal pac reinforcement learning for deterministic mdps[END_REF]Wagenmaker and Jamieson, 2022), is to eliminate policies as soon as we are confident enough that they are sub-optimal, so that the algorithm can adapt its exploration to focus on policies of higher value. Unfortunately, while [START_REF] Tirinzoni | Near instance-optimal pac reinforcement learning for deterministic mdps[END_REF] managed to achieve so in a computationally-efficient manner for deterministic MDPs, the approach of Wagenmaker and Jamieson (2022) needs to enumerate all policies to do the same in stochastic environments, hence yielding an exponential time-memory algorithm. Our method, PRINCIPLE, achieves the same while remaining computationally efficient. Due to space constraints, we report its full pseudo-code in Appendix F.2, while here we highlight its core technique.

Implicit policy elimination

The key idea is to replace explicit policy eliminations by sequentially constraining the set of state-action distributions corresponding to high-reward policies. In particular, PRINCIPLE maintains, at each phase k, a high-probability lower bound V k 1 on the optimal expected return V ⋆ 1 (s 1 ; r) computed as

V k 1 := sup ρ∈Ω( p k ), max h,s,a ρ h (s,a)/n k h (s,a)≤2 -k h,s,a ρ h (s, a) r k h (s, a) -2 2-k Hβ bpi (t k , δ/3),
where β bpi (t, δ) ∝ H 2 log(1/δ) + SAH 3 log log(t) and Ω( p k ) is the set of valid visitation probabilities in the empirical MDP with transition kernel p k . As common, V k 1 is computed by subtracting a confidence interval to the maximum expected return estimated on the empirical MDP defined by ( p k , r k ). A notable exception is that we focus only on state-action distributions that are well-covered by the current data. Then, PRINCIPLE defines a set of "active" state-action distributions as

Ω k := ρ ∈ Ω( p k ) : h,s,a ρ h (s, a) r k h (s, a) ≥ V k 1 , max h,s,a ρ h (s, a)/n k h (s, a) ≤ 2 -k .
Intuitively, ρ is active at phase k if (1) it is a valid state-action distribution in the empirical MDP with transition probabilities p k , (2) it induces an estimated expected return h,s,a ρ h (s, a) r k h (s, a) larger than V k 1 , and (3) it is well-covered by the current data. Then, as compared to PCE, PRINCIPLE simply replaces the quantity sup π∈Π D p π h (s, a) in the target function used for COVGAME at phase k with sup ρ∈Ω k-1 ρ h (s, a), i.e., it restricts the exploration to active state-action distributions. In our analysis, we show that, with high probability, state-action distributions corresponding to optimal policies are never eliminated from Ω k and V k 1 gradually approaches V ⋆ 1 (s 1 ; r) from below. That is, Ω k is dynamically pruned to contain only distributions corresponding to higher returns, hence achieving implicit eliminations of sub-optimal policies.

Computational complexity The computations of V k

1 and sup ρ∈Ω k-1 ρ h (s, a) amount to solving standard constrained MDPs, which can be done by linear programming (e.g., [START_REF] Efroni | Exploration-exploitation in constrained mdps[END_REF]. Moreover, PRINCIPLE does not store the set Ω k but only its associated constraints, whose number is linear in SAH. This implies that PRINCIPLE requires polynomial (in SAH) time and memory.

Theoretical guarantees We prove that PRINCIPLE enjoys an instance-dependent complexity that scales with policy gaps and visitation probabilities.

Theorem 7 PRINCIPLE is (ε, δ)-PAC for BPI and, with probability 1-δ, it has sample complexity

τ ≤ O (H 3 log(1/δ) + SAH 4 ) φ ⋆ sup π∈Π p π h (s, a) max(ε, ∆(π)) 2 h,s,a + φ ⋆ (1) ε + φ ⋆ (1) , where ∆(π) := V ⋆ 1 (s 1 ; r) -V π 1 (s 1 ; r)
denotes the policy gap of π, 1 denotes a function equal to 1 for all h, s, a, and O hides poly-logarithmic factors in S, A, H, ε, log(1/δ) and φ ⋆ (1).

Comparison with prior work Besides PRINCIPLE, there exist mostly two BPI algorithms with instance-dependent guarantees for MDPs with stochastic transitions: MOCA (Wagenmaker et al., 2022) and PEDEL (Wagenmaker and Jamieson, 2022). In the small (ε, δ) regime, the leading term in the sample complexity of these three algorithms is of the form Alg(M, ε) log(1/δ). We carefully compare these terms in Appendix F.3. Notably, while PRINCIPLE(M, ε) and PEDEL(M, ε) are both expressed with policy gaps, MOCA(M, ε) depends on the value gaps

V ⋆ h (s) -Q ⋆ h (s, a).
In general, value gaps are known to be worse than policy gaps [START_REF] Dann | Beyond value-function gaps: Improved instance-dependent regret bounds for episodic reinforcement learning[END_REF][START_REF] Tirinzoni | A fully problem-dependent regret lower bound for finite-horizon mdps[END_REF] and, while there is no clear ordering between PRINCIPLE and MOCA (just like PEDEL and MOCA, see Wagenmaker and Jamieson ( 2022)), we can exhibit instances in which the complexity of the former has a better scaling than that of the latter.

Lemma 8 For any ∆ ∈ (0, 1], there exists an MDP M where

MOCA(M, ε) = Ω H 5 SA ε 2 while PRINCIPLE(M, ε) = O H 4 SA ε∆ + H 4 log(S) log(A) ε 2 .
On the other hand, PEDEL directly minimizes the confidence interval ( 6) over all (active) policies, an objective that is always upper bounded by the complexity of proportional coverage:

min ρ∈Ω max π∈Π D s,a p π h (s, a) 2 ρ h (s, a) ≤ min ρ∈Ω max h,s,a sup π p π h (s, a) ρ h (s, a)
.

We prove in Appendix F.3 that the complexity of PEDEL is indeed smaller (up to H factors) than that of PRINCIPLE. However, this objective may be intractable in general due to the maximization over all deterministic policies. On the other hand, proportional coverage is sufficient (though less statistically-efficient) to estimate the value of all policies and can be done in polynomial time.

Besides optimistic algorithms whose sample complexity features policy gaps but with an extra suboptimal scaling in the minimal visitation probability [START_REF] Tirinzoni | Optimistic PAC reinforcement learning: the instance-dependent view[END_REF], this makes PRINCIPLE the first computationally efficient BPI algorithm whose sample complexity scales with policy gaps.

Conclusion

We proposed COVGAME, a simple algorithm that adaptively collects episodes in an MDP to explicitly gather a required number of samples c h (s, a) from each triplet (h, s, a). We proved that its sample complexity scales with a new notion of optimal coverage φ ⋆ (c), which is an instance-dependent lower bound on the sample complexity of any adaptive coverage algorithm. We then illustrated the use of COVGAME as a building block for PAC reinforcement learning algorithms. By relying on (an optimistic variant of) proportional coverage, we proposed an algorithm for reward-free exploration with an instance-dependent sample complexity bound. Further combining proportional coverage with an implicit policy elimination scheme, we obtained the first computationally efficient algorithm for best policy identification whose sample complexity scales with policy gaps. To assess the quality of these approaches, in future work we will investigate instance-dependent lower bounds on the sample complexity of PAC RL algorithms, that are currently missing in the literature. In this appendix, we present an equivalent linear programming formulation of the optimal coverage problem of Section 2.2 that we call stochastic minimum flow. It is a direct extension to stochastic MDPs of the minimum flows for directed acyclic graphs employed by [START_REF] Tirinzoni | Near instance-optimal pac reinforcement learning for deterministic mdps[END_REF] in deterministic MDPs.

A.1. Stochastic minimum flows

We define a flow as a non-negative function η :

S × A × [H] → [0, ∞) such that a∈A η h (s, a) = s ′ ∈S a ′ ∈A p h-1 (s|s ′ , a ′ )η h-1 (s ′ , a ′ ) ∀s ∈ S, h > 1, η 1 (s, a) = 0 ∀s ∈ S \ {s 1 }, a ∈ A.
That is, a flow η is an allocation of visits to each state-action-stage triplet which satisfies the navigation constraints of the MDP. Note that the second constraint ensures that flow can only be created in the initial state s 1 . The value of η is the total amount of flow leaving the initial state, i.e.,

φ(η) := a∈A η 1 (s 1 , a). Let c : S × A × [H] → [0, ∞) be a non-negative target function. We say that a flow η is feasible for c if η h (s, a) ≥ c h (s, a) ∀h ∈ [H], s ∈ S, a ∈ A.
The stochastic minimum flow problem consists in finding a feasible flow of minimum value. It can be clearly solved as a linear program,

minimize η∈R SAH a∈A η 1 (s 1 , a), subject to a∈A η h (s, a) = s ′ ∈S a ′ ∈A p h-1 (s|s ′ , a ′ )η h-1 (s ′ , a ′ ) ∀s ∈ S, h > 1, η 1 (s, a) = 0 ∀s ∈ S \ {s 1 }, a ∈ A, η h (s, a) ≥ c h (s, a) ∀h ∈ [H], s ∈ S, a ∈ A. (7) 
We now prove that the optimal value of ( 7) is equal to φ ⋆ (c), the optimal coverage complexity introduced in Section 2.2.

Lemma 9 If there exists a feasible flow for the target function c, the optimal value of (7) is

φ ⋆ (c) = min ρ∈Ω max h,s,a c h (s, a) ρ h (s, a) .
Proof Let us start from the linear programming formulation (7) and perform the change of variables ρ h (s, a) ← η h (s,a)

Z and Z ← s ′ ∈S a ′ ∈A η h (s ′ , a ′ ) for all h, s, a. Note that Z is the value of the original flow η (and thus it does not depend on the stage), while ρ h (s, a) is a probability distribution over the state-action space for each h ∈ [H]. We obtain the following optimization problem (no longer a linear program due to the presence of a bilinear constraint):

minimize Z≥0,ρ∈R SAH Z, subject to a∈A ρ h (s, a) = s ′ ∈S a ′ ∈A p h-1 (s|s ′ , a ′ )ρ h-1 (s ′ , a ′ ) ∀s ∈ S, h > 1, ρ 1 (s, a) = 0 ∀s ∈ S \ {s 1 }, a ∈ A, s∈S a∈A ρ h (s, a) = 1 ∀h ∈ [H], ρ h (s, a) ≥ 0 ∀h ∈ [H], s ∈ S, a ∈ A, Z ≥ c h (s, a) ρ h (s, a) ∀h ∈ [H], s ∈ S, a ∈ A.
The optimal solution for Z is clearly a) , while the first four constraints define exactly the set of valid state-action distributions Ω. This proves the statement.

Z = max h,s,a c h (s,a) ρ h (s,
Lemma 10 For any α, β ≥ 0 and target functions c 1 , c 2 , φ ⋆ (αc 1 + βc 2 ) ≤ αφ ⋆ (c 1 ) + βφ ⋆ (c 2 ).

Proof Clearly, φ ⋆ (αc 1 ) = αφ ⋆ (c 1 ) by definition for any α ≥ 0, c 1 . From the LP formulation, we note that if η ⋆ 1 (resp. η ⋆ 2 ) is an optimal flow for c 1 (resp. c 2 ), then η ⋆ 1 + η ⋆ 2 is a feasible flow for c 1 + c 2 . This implies that φ ⋆ (c 1 + c 2 ) ≤ φ ⋆ (c 1 ) + φ ⋆ (c 2 ) for any c 1 , c 2 , which proves the statement.

A.2. Executing a minimum flow

Suppose we computed a solution η ⋆ h (s, a) to the stochastic minimum flow problem (7), or equivalently a solution ρ ⋆ h (s, a) to the coverage complexity φ ⋆ (c). What policy should we execute in the MDP to realize the flow? The answer comes easily from standard MDP theory [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]: it is enough to execute a stochastic policy

π h (a|s) = η ⋆ h (s, a) b∈A η ⋆ h (s, b) = ρ ⋆ h (s, a) b∈A ρ ⋆ h (s, b) ∀h, s, a. (8) 
It is then easy to prove that π realizes the the optimal distribution ρ ⋆ h (s, a).

Proposition 11 Let π be the policy defined in (8), then, for each h, s, a,

p π h (s, a) = η ⋆ h (s, a) s ′ ∈S a ′ ∈A η ⋆ h (s ′ , a ′ ) = ρ ⋆ h (s, a).
Proof This is a well-known result (e.g., [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]. For completeness, let us prove it by induction. Note that ρ ⋆ is the normalization of η ⋆ by definition. Clearly, the statement holds at h = 1 since, for all actions a ∈ A,

p π 1 (s 1 , a) = π 1 (a|s 1 ) = ρ ⋆ 1 (s 1 , a) b ρ ⋆ 1 (s 1 , b) = ρ ⋆ 1 (s 1 , a),
and p π 1 (s, a) = ρ ⋆ 1 (s, a) = 0 for all other states. Suppose the statement holds at h -1 ≥ 1. Then,

p π h (s, a) = s ′ ∈S a ′ ∈A p π h-1 (s ′ , a ′ ) =ρ ⋆ h-1 (s ′ ,a ′ ) p h-1 (s|s ′ , a ′ )π h (a|s) = s ′ ∈S a ′ ∈A ρ ⋆ h-1 (s ′ , a ′ )p h-1 (s|s ′ , a ′ ) = b∈A ρ ⋆ h (s,b) ρ ⋆ h (s, a) b∈A ρ ⋆ h (s, b) = ρ ⋆ h (s, a).
Note that the denominator in the expression of

p π h (s, a) is equal to φ ⋆ (c) for any h ∈ [H]. Thus, we have p π h (s, a) = η ⋆ h (s, a)/φ ⋆ (c). If we execute π for t = ⌈φ ⋆ (c)⌉ episodes, we have that E[n t h (s, a)] = ⌈φ ⋆ (c)⌉ φ ⋆ (c) η ⋆ h (s, a) ≥ η ⋆ h (s, a) ≥ c h (s, a) ∀h, s, a.
Hence, we realize the flow in expectation.

A.3. Bounding the minimum flow

We are interested in upper and lower bounding the value of the stochastic minimum flow φ ⋆ (c) as a function of c. We start by deriving some simple (probably loose) bounds.

Lemma 12 Suppose there exists a feasible flow for the target function c. Then,

max h∈[H] s∈S a∈A c h (s, a) ≤ φ ⋆ (c) ≤ h∈[H] s∈S a∈A c h (s, a) max π p π h (s, a)
.

Proof The proof of the lower bound is trivial by noting that the value of any flow η can be written as φ(η) = s∈S a∈A η h (s, a) for all h ∈ [H] and that any optimal flow satisfies η ⋆ h (s, a) ≥ c h (s, a) for all h, s, a. Let us prove the upper bound.

Let us define w h (s, a) := c h (s,a) max π∈Π p π h (s,a) , with the convention that w h (s, a) = 0 if c h (s, a) = 0 regardless of the value of the denominator. Note that, if max π∈Π p π h (s, a) = 0, then (s, a, h) is unreachable and it must be that c h (s, a) = 0 since we assumed the minimum flow problem to be feasible. For any reachable (s, a, h), let π s,a,h ∈ arg max π∈Π p π h (s, a). For any unreachable (s, a, h), let π s,a,h be an arbitrary deterministic policy. Let us define the following mixed stateaction distribution:

∀h, s, a : ph (s, a) := l∈[H] s ′ ∈S a ′ ∈A w l (s ′ , a ′ ) Z p π s ′ ,a ′ ,l h (s, a),
where

Z := l∈[H] s ′ ∈S a ′ ∈A w l (s ′ , a ′ ).
Since this is a convex combination of state-action distributions of deterministic policies (i.e., of {π s,a,h } s,a ), p ∈ Ω [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]. Then,

φ ⋆ (c) = min ρ∈Ω max h,s,a c h (s, a) ρ h (s, a) ≤ max h,s,a c h (s, a) ph (s, a) ≤ Z max h,s,a c h (s, a) w h (s, a)p π s,a,h h (s, a) = h∈[H] s∈S a∈A c h (s, a) max π p π h (s, a)
.

Lemma 13 Suppose there exists a feasible flow for the lower bound function c. Then,

φ ⋆ (c) ≤ h∈[H] inf π∈Π S max s∈S 1 p π h (s) a∈A c h (s, a). Proof Fix any h ∈ [H]. Note that min ρ∈Ω max s,a c h (s, a) ρ h (s, a) = min ρ∈Ω max s 1 ρ h (s) min π∈P(A) c h (s, a) π(a) = min ρ∈Ω max s a∈A c h (s, a) ρ h (s) .
Now let ρ h denote any solution to this optimization problem and define the mixed distribution

ρ := H l=1 Z l Z ρ l , where Z l := min ρ∈Ω max s a∈A c l (s,a) ρ l (s)
and Z := H l=1 Z l . Then, ρ ∈ Ω and thus 

φ ⋆ (c) ≤ max h,s,a c h (s, a) ρh (s, a) ≤ max h Z Z h max s,a c h (s, a) ρ h h (s, a) = max h Z Z h min ρ∈Ω max s,a c h (s, a) ρ h (s, a) = h∈[H]

A.4. Proof of Theorem 2

Define the coverage event

E cov = ∀(h, s, a) ∈ X , n τ h (s, a) ≥ c h (s, a)
. We have that for any δ-correct algorithm P E cov ≥ 1 -δ. Therefore, for any triplet (h, s, a) ∈ X , we have that

E[n τ h (s, a)] ≥ E[n τ h (s, a)1 (E cov )] ≥ c h (s, a)P E cov ≥ (1 -δ)c h (s, a). (9) 
Now consider the function η h (s, a) := E[n τ h (s, a)] for all h, s, a. We know that η satisfies the navigation constraints, hence it is a valid flow (see Appendix A). Moreover it satisfies the constraint (9). By definition of stochastic minimum flow, this means that

E[τ ] = a∈A E[n τ h (s 1 , a)] = φ(η) ≥ φ ⋆ [(1 -δ)c h (s, a)] h,s,a = (1 -δ)φ ⋆ (c),
where in the last line we used that for any constant α, φ

⋆ (αc) = αφ ⋆ (c). ■ Appendix B. CovGame B.1. Proof of Theorem 3
Note that, at the beginning of any round t ≥ 1, the learner A λ works over the simplex P(X kt ), hence λ t ∈ P(X kt ). Let m denote the number of times k t changes value through the execution of the algorithm, that is m = |{t ≤ τ : k t ̸ = k t+1 }|. Moreover, let τ 0 := 1 and, for i ∈ [m], let τ i be the round at the beginning of which k t has changed for the i-th time (i.e., k τ i ̸ = k τ i -1 ). Note that, for any i ≥ 0 and t ∈ {τ i , . . . , τ i+1 -1}, k t = k τ i . We start by bounding m.

Lemma 14 It holds that m ≤ ⌈log 2 (c max /c + min )⌉ ∨ 1. Moreover, for any i ∈ {0, . . . , m -1}, we have min (h,s,a)∈X kτ i n

τ i+1 -1 h (s, a) ≤ c + min 2 kτ i +2 .
Proof By definition of the update rule, we have that k t+1 ≥ k t for all t ≥ 1. Now take any time t in which k t has changed value m times. Since k 1 ≥ 0, this means that k t ≥ m. By definition of k t , we know that n t-1 h (s, a) ≥ c h (s, a) for all (h, s, a) ∈ X \ X j for some j ≥ m. However, if m ≥ ⌈log 2 (c max /c + min )⌉ ∨ 1, X j = ∅ and thus the algorithm must have stopped. This prove that m ≤ ⌈log 2 (c max /c + min )⌉ ∨ 1. To prove the second statement, we note that for any i < m, we have

k τ i+1 -1 = k τ i and n τ i+1 -2 h (s, a) ≥ c h (s, a) for all (h, s, a) ∈ X \ X kτ i .
Moreover, there must be some (h, s, a) ∈ X \ X kτ i +1 such that n τ i+1 -2 h (s, a) < c h (s, a). Indeed, if this was not the case, we would have an update of k at the end of round τ i+1 -2 instead of τ i+1 -1. Since all the triplets in X kτ i have been covered, the uncovered triplet must be in

X kτ i ∩ X \ X kτ i +1 = X kτ i \ X kτ i +1 . By definition, all (h, s, a) ∈ X kτ i \ X kτ i +1 satisfy c h (s, a) ≤ c + min 2 kτ i +1 . Hence, min (h,s,a)∈X kτ i n τ i+1 -1 h (s, a) ≤ min (h,s,a)∈X kτ i n τ i+1 -2 h (s, a) + 1 < c + min 2 kτ i +1 + 1 ≤ c + min 2 kτ i +2
where we use that c + min ≥ 1.

Lemma 15 Under Assumption 1 and 2, with probability at least 1 -δ, for any i ∈ {0, . . . , m -1}, min

(h,s,a)∈X kτ i n τ i+1 -1 h (s, a) ≥ 1 8 i j=0 τ j+1 -τ j φ ⋆ (1 X kτ j ) - 3 8 R Π δ (τ i+1 ) - 3 2 i j=0 R λ (τ j+1 -τ j ) -3 log(4τ i+1 /δ). min (h,s,a)∈X kτ i n τ i+1 -1 h (s, a) ≥ 1 8 τ i+1 -τ i φ ⋆ (1 X kτ i ) - 3 8 R Π δ (τ i+1 ) - Proof Take any i ∈ {0, . . . , m -1}. Note that min (h,s,a)∈X kτ i n τ i+1 -1 h (s, a) = min (h,s,a)∈X kτ i τ i+1 -1 t=1 1 s t h = s, a t h = a (definition of counts) = min (h,s,a)∈X kτ i i j=0 τ j+1 -1 t=τ j 1 s t h = s, a t h = a (definition of {τ j } j≥0 ) ≥ i j=0 min (h,s,a)∈X kτ j τ j+1 -1 t=τ j 1 s t h = s, a t h = a (X kτ i ⊆ X kτ j for all j ≤ i) = i j=0 min λ∈P(X kτ j ) (h,s,a)∈X kτ j λ h (s, a) τ j+1 -1 t=τ j 1 s t h = s, a t h = a = i j=0 min λ∈P(X kτ j ) τ j+1 -1 t=τ j ℓ t (λ). (definition of ℓ t (λ))
For each j, by the regret bound of the λ player (Assumption 2),

min λ∈P(X kτ j ) τ j+1 -1 t=τ j ℓ t (λ) ≥ τ j+1 -1 t=τ j ℓ t (λ t ) -R λ (τ j+1 -τ j ) τ j+1 -1 t=τ j ℓ t (λ t ) -R λ (τ j+1 -τ j ) ≥ 1 2 τ j+1 -1 t=τ j ℓ t (λ t ) - 3 2 R λ (τ j+1 -τ j ),
where in the last step we used the AM-GM inequality √ xy ≤ x+y 2 for x, y ≥ 0. Summing over j,

min (h,s,a)∈X kτ i n τ i+1 -1 h (s, a) ≥ 1 2 τ i+1 -1 t=1 ℓ t (λ t ) - 3 2 i j=0 R λ (τ j+1 -τ j ). (10) 
Let us now bound

τ i+1 -1 t=1 ℓ t (λ t ). Note that ℓ t (λ t ) = h,s,a λ t h (s, a)1 s t h = s, a t h = a
for all for all t ∈ {τ j , . . . , τ j+1 -1} since λ t is equal to zero outside X kτ j . Then,

τ i+1 -1 t=1 ℓ t (λ t ) = τ i+1 -1 t=1 h,s,a λ t h (s, a) 1 s t h = s, a t h = a ± p π t h (s, a) = τ i+1 -1 t=1 V πt 1 s 1 ; λ t + τ i+1 -1 t=1 h,s,a λ t h (s, a) 1 s t h = s, a t h = a -p π t h (s, a) :=M τ i+1 -1
.

Since both λ t and π t are F t-1 -measurable, M τ i+1 -1 is a martingale with differences bounded by 1 in absolute value. Therefore, by Freedman's inequality (e.g., Lemma 26 of Papini et al. ( 2021)), with probability at least 1 -δ/2,

∀T ≥ 1, |M T | ≤ T t=1 V t × 4 log(4T /δ) + 4 log(4T /δ) ≤ T t=1 V πt 1 (s 1 ; λ t ) × 4 log(4T /δ) + 4 log(4T /δ),
where we defined ℓ t (λ t ) and using the AM-GM inequality √ xy ≤ x+y 2 for x, y ≥ 0,

V t := Var[ h,s,a λ t h (s, a)1 s t h = s, a t h = a | F t-1 ] and used the simple bound V t ≤ E[ h,s,a λ t h (s, a)1 s t h = s, a t h = a | F t-1 ] = V πt 1 s 1 ; λ t ,
τ i+1 -1 t=1 ℓ t (λ t ) ≥ τ i+1 -1 t=1 V πt 1 s 1 ; λ t - τ i+1 -1 t=1 V πt 1 (s 1 ; λ t ) × 4 log(4τ i+1 /δ) -4 log(4τ i+1 /δ) ≥ 1 2 τ i+1 -1 t=1 V πt 1 s 1 ; λ t -6 log(4τ i+1 /δ).
We finally bound T t=1 V πt 1 s 1 ; λ t for any T . For all T ≥ 1, with probability at least 1 -δ/2 from Assumption 2,

T t=1 V πt 1 s 1 ; λ t ≥ T t=1 V ⋆ 1 s 1 ; λ t -R Π δ (T ) T t=1 V ⋆ 1 (s 1 ; λ t ) -R Π δ (T ).
Applying once again the AM-GM inequality yields

T t=1 V πt 1 s 1 ; λ t ≥ 1 2 T t=1 V ⋆ 1 s 1 ; λ t - 3 2 R Π δ (T ) = 1 2 T t=1 sup ρ∈Ω h,s,a ρ h (s, a)λ t h (s, a) - 3 2 R Π δ (T ).
Now note that, since λ t is supported on X kτ j for any t ∈ {τ j , . . . , τ j+1 -1},

τ i+1 -1 t=1 sup ρ∈Ω h,s,a ρ h (s, a)λ t h (s, a) = i j=0 τ j+1 -1 t=τ j sup ρ∈Ω h,s,a ρ h (s, a)λ t h (s, a) ≥ i j=0 τ j+1 -1 t=τ j sup ρ∈Ω min (h,s,a)∈X kτ j ρ h (s, a) = i j=0 τ j+1 -τ j φ ⋆ (1 X kτ j ) .
Plugging everything together proves the first statement. The second result can be proved analogously by simply using i j=0 min λ∈P(X kτ j )

τ j+1 -1 t=τ j ℓ t (λ) ≥ min λ∈P(X kτ i ) τ i+1 -1 t=τ i ℓ t (λ) in the
first series of inequalities and continuing with the same steps. This yields a single dependence on R λ (τ i+1 -τ i ), which can be upper bounded by the stated R λ (τ i+1 ) by monotonicity of R λ .

We are now ready to prove Theorem 3 Proof [Proof of Theorem 3] Let m be the number of times k t has changed throughout the execution of the algorithm. Note that, in the round τ in which the algorithm stops the last change must occur, thus τ m = τ + 1, and k τ +1 is set to any value such that X k τ +1 = ∅. Then,

τ = τ m -1 = m-1 i=0 (τ i+1 -τ i ) .
By combining Lemma 14 with Lemma 15 and rearranging, with probability at least 1 -δ, for any i ∈ {0, . . . , m -1},

τ i+1 -τ i ≤ 8φ ⋆ (1 X kτ i )c + min 2 kτ i +2 + 8φ ⋆ (1 X kτ i ) 3 8 R Π δ (τ i+1 ) + 3 2 R λ (τ i+1 ) + 3 log(4τ i+1 /δ) ≤ 8φ ⋆ (1 X kτ i )c + min 2 kτ i +2 + φ ⋆ (1 X ) 3R Π δ (τ m ) + 12R λ (τ m ) + 24 log(4τ m /δ) ,
where the second inequality is due to

X k ⊆ X for all k ∈ N and τ i+1 ≤ τ m for i ≤ m -1. Then, τ m ≤ 8 m-1 i=0 c + min φ ⋆ (1 X kτ i )2 kτ i +2 + mφ ⋆ (1 X ) 3R Π δ (τ m ) + 12R λ (τ m ) + 24 log(4τ m /δ) + 1.
The first term can be bounded by

8 m-1 i=0 c + min φ ⋆ (1 X kτ i )2 kτ i +2 = 8 m-1 i=0 c + min 2 kτ i +2 min ρ∈Ω max s,a,h 1((h, s, a) ∈ X kτ i ) ρ h (s, a) ≤ 32 m-1 i=0 c + min 2 kτ i min ρ∈Ω max s,a,h 1(c + min 2 kτ i < c h (s, a)) ρ h (s, a) ≤ 32 m-1 i=0 min ρ∈Ω max s,a,h c h (s, a) ρ h (s, a) = 32mφ ⋆ (c).
Plugging this into the bound on τ m , we obtain the inequality,

τ m ≤ 32mφ ⋆ (c) + mφ ⋆ (1 X ) 3R Π δ (τ m ) + 12R λ (τ m ) + 24 log(4τ m /δ) + 1.
Thus, for τ m ≥ T 1 , we get that the sample complexity is bounded by τ ≤ 64mφ ⋆ (c). Thus, we conclude that τ ≤ τ m ≤ max{T 1 , 64mφ ⋆ (c)} ≤ 64mφ ⋆ (c) + T 1 . The proof is concluded by using Lemma 14 to bound m.

B.2. Proof of Corollary 4

We need to bound T 1 from Theorem 3 when using WMF and UCBVI. By definition of T 1 in Theorem 3,

T 1 -1 2 ≤ mφ ⋆ (1 X ) 3R Π δ (T 1 ) + 12R λ (T 1 ) + 24 log(4T 1 /δ) + 1.
Recall that, by ( 4) and ( 5),

R λ (T ) = 16 log(SAH) + 1 R Π δ (T ) = 65536SAH 2 (log(2SAH/δ) + 6S) log(T + 1) 2 .
For T ≥ 3 and assuming SAH ≥ 2 (otherwise the result is trivial), it is easy to see that R λ (T ) ≤ R Π δ (T ) and 24 log(4T /δ) ≤ R Π δ (T ). Theorefore, for some numerical constant c 1 ,

T 1 ≤ c 1 mφ ⋆ (1 X )SAH 2 (log(2SAH/δ) + 6S) log(T 1 + 1) 2 .
Solving the inequality in T 1 yields the stated bound. ■

B.3. Links with concave-utility reinforcement learning

The (inverse) complexity term φ ⋆ (c) that we seek to approximate with COVGAME can be expressed as the maximization of a concave function of the visitation probabilities:

1 φ ⋆ (c) = max ρ∈Ω f c (ρ) where f c (ρ) = min (h,s,a)∈X ρ h (s, a) c h (s, a) .
Computing the maximizer without the knowledge of the MDP falls in the framework of concave utility reinforcement learning (or convex reinforcement learning when we instead minimize a convex function [START_REF] Zahavy | Reward is enough for convex mdps[END_REF]) which has attracted a lot of interest recently [START_REF] Hazan | Provably efficient maximum entropy exploration[END_REF][START_REF] Zhang | Variational policy gradient method for reinforcement learning with general utilities[END_REF][START_REF] Geist | Concave utility reinforcement learning: The mean-field game viewpoint[END_REF]. Several authors proposed the use of a Frank-Wolfe approach, when the function f to maximize is smooth (which is not the case for f c ). Indeed, it was observed that in the Frank-Wolfe update the computation of

arg max ρ∈Ω ρ ⊤ ∇f (ρ) = arg max ρ∈Ω h,s,a ρ h (s, a)(∇f (ρ)) h,s,a
can be interpreted as solving the MDP when the reward function is r h (s, a) = (∇f (ρ)) h,s,a . Different authors proposed to combine Frank-Wolfe with regret minimizers to cope for the unknown MDP (Cheung, 2019; [START_REF] Zahavy | Reward is enough for convex mdps[END_REF]. For example Wagenmaker and Jamieson (2022) propose a generic algorithm for smooth experimental design in linear MDPs (which generalizes max ρ∈Ω f (ρ) to optimizing over possible covariance matrices) which runs a regret minimizer for a long time on a reward function given by the gradient of the objective. To tackle non-smooth objective, they further propose to use a log-sum-exp smoothening trick. Interestingly, each phase of COVGAME may be interpreted as doing a Frank-Wolfe update on a sequence of smoothening of an objective of the form g(ρ) = min (h,s,a)∈X k ρ h (s, a), where the regret minimizer is further never restarted. Indeed, introducing

g η (ρ) = 1 η log   (h,s,a)∈X e ηρ h (s,a)   ,
we have s,a) (h ′ ,s ′ ,a ′ )∈X e ηρ h ′ (s ′ ,a ′ ) and the reward λ t h (s, a) used by COVGAME when X k is the set to be covered and the last restart occured at time t k can be written

(∇g η (ρ)) h,s,a = e ηρ h (
λ t h (s, a) = ∇g η t-t k (n t h (s, a) -n t k h (s, a)) h,s,a = ∇g ηt   (n t h (s, a) -n t k h (s, a) t -t k h,s,a  
where η t = ξ t-t k is the (time-varying) smoothening parameter, with ξ t the variance-dependent learning rate defined by [START_REF] Cesa-Bianchi | Improved second-order bounds for prediction with expert advice[END_REF].

Appendix C. UCBVI with Changing Rewards

In this appendix, we study the following regret minimization setting with changing rewards. At the beginning of each episode t ≥ 1, the learner receives a known reward function r t h (s, a). The learner does not know the transition probabilities p and its goal is to minimize the regret

T t=1 V ⋆ 1 (s 1 ; r t ) -V π t 1 (s 1 ; r t ) , where V π 1 (s 1 ; r) := h,s,a p π h (s, a)r h (s, a) and V ⋆ 1 (s 1 ; r) := max π V π 1 (s 1 ; r).
We make the following assumption on the sequence of rewards.

Assumption 3 For all t ≥ 1, r t h (s, a) ∈ [0, 1] for all h, s, a, and h,s,a r t h (s, a) ≤ 1.

Note that this implies that H h=1 r h (s h , a h ) ∈ [0, 1] for any trajectory {(s h , a h )} h∈[H] almost surely.

C.1. Algorithm

We study a variant of the UCBVI algorithm [START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF] adapted to this setting. For any h < H, we define recursively upper confidence bounds over optimal value functions for any reward r as

Q t h (s, a; r) = r h (s, a) + P t h,s,a V t h+1 (r) + B t h (s, a; r) ∧ 1, where Q t H (s, a; r) = r H (s, a), V t h+1 (s; r) := max a Q t h (s, a; r), and 
B t h (s, a; r) := max      8V( P t h,s,a , V t h+1 (r))β(n t h (s, a), δ) n t h (s, a) , 8β(n t h (s, a), δ) n t h (s, a)      .
Note that this bonus is infinite for n t h (s, a) = 0. As we will only evaluate these quantities in the rewards observed at the corresponding round, we shall abbreviate

Q t h (s, a) := Q t h (s, a; r t+1 ), V t h (s) := V t h (s; r t+1
), and B t h (s, a) := B t h (s, a; r t+1 ) for all t ∈ N. UCBVI plays at each episode

π t h (s) ∈ arg max a Q t-1 h (s, a),
which is thus greedy w.r.t. the optimistic value function for reward r t .

C.2. Analysis

The analysis follows the one of EULER (Zanette and Brunskill, 2019b) and uses several technical results from [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF] and Zhang et al. (2021c). Let us define the event

E := ∀t ∈ N, h, s, a : KL( p t h (s, a), p h (s, a)) ≤ β(n t h (s, a), δ) n t h (s, a)
, where β(n, δ) := log(2SAH/δ) + S log(8e(n + 1)). Moreover, let

G := ∀t ∈ N, h, s, a : n t h (s, a) ≥ 1 2 n t h (s, a) -β cnt (δ) ,
where β cnt (δ) := log(2SAH/δ) and n t h (s, a) = t j=1 p π j h (s, a). Lemma 16 (Bernstein-like bound) Under event E, for all h, s, a, t and value function V s.t. V h (s) ∈ [0, 1] for all h, s,

|(P h,s,a -P t h,s,a )V h+1 | ≤ 2V( P t h,s,a , V h+1 )β(n t h (s, a), δ) n t h (s, a) + 2β(n t h (s, a), δ) 3n t h (s, a) ≤ max      8V( P t h,s,a , V h+1 )β(n t h (s, a), δ) n t h (s, a) , 4β(n t h (s, a), δ) 3n t h (s, a)      .
Proof This is immediate by combining the definition of E with Lemma 10 of Ménard et al. ( 2021) and x + y ≤ 2 max{x, y}.

Lemma 17 (Optimism) Under event E, Q t h (s, a; r) ≥ Q ⋆ h (s, a; r) for all t, h, s, a and any reward r satisfying Assumption 3.

Proof By definition, Q t H (s, a; r) = Q ⋆ H (s, a; r) = r H (s, a). Thus, the statement holds at stage H. Now suppose it holds at stage h + 1 for h ∈ [H -1]. This implies that V t h+1 (s; r) ≥ V ⋆ h+1 (s; r) for all s. Then,

r h (s, a) + P t h,s,a V t h+1 (r) + B t h (s, a; r) = r h (s, a) + P t h,s,a V t h+1 (r) + max      8V( P t h,s,a , V t h+1 (r))β(n t h (s, a), δ) n t h (s, a) , 8β(n t h (s, a), δ) n t h (s, a)      ≥ r h (s, a) + P t h,s,a V ⋆ h+1 (s; r) + max      8V( P t h,s,a , V ⋆ h+1 (r))β(n t h (s, a), δ) n t h (s, a) , 8β(n t h (s, a), δ) n t h (s, a)      ≥ r h (s, a) + P h,s,a V ⋆ h+1 (s; r) = Q ⋆ h (s, a; r)
, where the first inequality uses the inductive hypothesis together with the monotonicity property in Lemma 14 of Zhang et al. (2021c), while the second inequality uses Lemma 16. The fact that Q ⋆ h (s, a; r) ∈ [0, 1] for any h, s, a and r satisfying Assumption 3 concludes the proof.

Lemma 18 (Variance concentration) Under event E, for any t, h, s, a, any reward r satisfying Assumption 3, and any value function V s.t. V h (s) ∈ [0, 1] for all h, s,

V( P t h,s,a , V t h+1 (r)) ≤ 4V(P h,s,a , V h+1 ) + 4P h,s,a |V t h+1 (r) -V h+1 | + 4 β(n t h (s, a), δ) n t h (s, a)
.

Proof By combining Lemma 11 and 12 of [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF] together with the definition of E,

V( P t h,s,a , V t h+1 (r)) ≤ 2V(P h,s,a , V t h+1 (r)) + 4 β(n t h (s, a), δ) n t h (s, a) ≤ 4V(P h,s,a , V h+1 ) + 4P h,s,a |V t h+1 (r) -V h+1 | + 4 β(n t h (s, a), δ) n t h (s, a)
.

Theorem 19 Under the assumptions above, with probability 1 -δ, for any T ∈ N, the regret of UCBVI for changing rewards is bounded by

T t=1 V ⋆ 1 (s 1 ; r t ) -V π t 1 (s 1 ; r t ) ≤ 5140SAH 2 L T,δ + 256 SAHL T,δ T t=1 V π t 1 (s 1 ; r t ),
whee L T,δ := (log(2SAH/δ) + 6S) log(T + 1) 2 .

Proof Note that P(E, G) ≥ 1 -δ by Lemma 3 of [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF] and a union bound. We shall thus carry out the proof conditioned on E and G holding. Fix any T ∈ N. We start from the same regret decomposition as in the proof of Theorem 2 of Zanette and Brunskill (2019b). First, by Lemma 17,

T t=1 V ⋆ 1 (s 1 ; r t ) -V π t 1 (s 1 ; r t ) ≤ T t=1 V t-1 1 (s 1 ) -V π t 1 (s 1 ; r t ) . (11) 
For any t, h, s, a,

Q t-1 h (s, a) -Q π t h (s, a; r t ) ≤ P t h,s,a V t-1 h+1 + B t-1 h (s, a) ∧ 1 -P h,s,a V π t h+1 (r t ) ≤ P h,s,a V t-1 h+1 + |( P t h,s,a -P h,s,a )V t-1 h+1 | + B t-1 h (s, a) ∧ 1 -P h,s,a V π t h+1 (r t ) ≤ P h,s,a V t-1 h+1 + 2B t-1 h (s, a) ∧ 1 -P h,s,a V π t h+1 (r t ),
where the last step uses Lemma 16 and the fact that values are all in [0, 1]. Theorefore,

V t-1 h (s) -V π t h (s; r t ) = Q t-1 h (s, π t h (s)) -Q π t h (s, π t h (s); r t ) ≤ P h,s,π t h (s) V t-1 h+1 -V π t h+1 (r t ) + 2B t-1 h (s, π t h (s)) ∧ 1. ( 12 
)
Enrolling this reasoning, we thus obtain

V t-1 1 (s 1 ) -V π t 1 (s 1 ; r t ) ≤ 2 h,s,a p π t h (s, a) B t-1 h (s, a) ∧ 1 (13) = 2 (h,s,a)∈Zt p π t h (s, a) B t-1 h (s, a) ∧ 1 + 2 (h,s,a) / ∈Zt p π t h (s, a) B t-1 h (s, a) ∧ 1 ,
where Z t := {(h, s, a) :

n t-1 h (s, a) ≥ 4β cnt (δ)}. Recall that n t-1 h (s, a) := t-1 i=1 p π i h (s, a). Let W T := 2 T t=1 h,s,a p π t h (s, a) B t-1 h (s, a) ∧ 1 .
Summing the previous inequality over all time steps and using Lemma 20,

W T ≤ 2 T t=1 (h,s,a)∈Zt p π t h (s, a) B t-1 h (s, a) ∧ 1 ① +10SAHβ cnt (δ). (14) 
Now recall that B t-1 h (s, a) depends on V( P t-1 h,s,a , V t-1 h+1 ). By Lemma 18, for any t, s, a, h,

V( P t-1 h,s,a , V t-1 h+1 ) ≤ 4V(P h,s,a , V π t h+1 (r t )) + 4P h,s,a |V t-1 h+1 -V π t h+1 (r t )| + 4 β(n t-1 h (s, a), δ) n t-1 h (s, a)
.

Plugging this into the definition of B t-1 h (s, a) and using

√ x + y ≤ √ x + √ y, B t-1 h (s, a) ≤ 32V(P h,s,a , V π t h+1 (r t ))β(n t-1 h (s, a), δ) n t-1 h (s, a) + 32P h,s,a |V t-1 h+1 -V π t h+1 (r t )|β(n t-1 h (s, a), δ) n t-1 h (s, a) + 16β(n t-1 h (s, a), δ) n t-1 h (s, a)
.

Back into ① and using that β(x, δ) ≥ 1 for all x ≥ 0, we get

① ≤ T t=1 (h,s,a)∈Zt p π t h (s, a) 32V(P h,s,a , V π t h+1 (r t ))β(n t-1 h (s, a), δ) n t-1 h (s, a) ∨ 1 ② + T t=1 (h,s,a)∈Zt p π t h (s, a) 32P h,s,a |V t-1 h+1 -V π t h+1 (r t )|β(n t-1 h (s, a), δ) n t-1 h (s, a) ∨ 1 ③ + 16 T t=1 (h,s,a)∈Zt p π t h (s, a) β(n t-1 h (s, a), δ) n t-1 h (s, a) ∨ 1 ④
We bound these terms separately. By Lemma 21 and monotonicity of β(•, δ), ④ ≤ 16SAH log(T + 1)β(T, δ).

By Cauchy-Schwartz inequality and the bound on ④, ② ≤ 32 T t=1 (h,s,a)∈Zt

p π t h (s, a)V(P h,s,a , V π t h+1 (r t )) T t=1 (h,s,a)∈Zt p π t h (s, a) β(n t-1 h (s, a), δ) n t-1 h (s, a) ∨ 1 = 32 T t=1 (h,s,a)∈Zt p π t h (s, a)V(P h,s,a , V π t h+1 (r t )) × ④ ≤ 32 SAH log(T + 1)β(T, δ) T t=1 (h,s,a)∈Zt p π t h (s, a)V(P h,s,a , V π t h+1 (r t )) ≤ 64 SAH log(T + 1)β(T, δ) T t=1 V π t 1 (s 1 ; r t ),
where the last inequality uses Lemma 22. It only remains to bound ③. By Cauchy-Schwartz inequality and the bound on ④,

③ ≤ 32 T t=1 (h,s,a)∈Zt p π t h (s, a)P h,s,a |V t-1 h+1 -V π t h+1 (r t )| T t=1 (h,s,a)∈Zt p π t h (s, a) β(n t-1 h (s, a), δ) n t-1 h (s, a) ∨ 1 = 32 T t=1 (h,s,a)∈Zt p π t h (s, a)P h,s,a |V t-1 h+1 -V π t h+1 (r t )| × ④ ≤ 32 SAH log(T + 1)β(T, δ) T t=1 (h,s,a)∈Zt p π t h (s, a)P h,s,a |V t-1 h+1 -V π t h+1 (r t )| ≤ 32 SAH 2 log(T + 1)β(T, δ) 2 T t=1 h,s,a p π t h (s, a) B t-1 h (s, a) ∧ 1 =W T ,
where the last inequality uses Lemma 23 together with

|V t-1 h+1 (s) -V π t h+1 (s; r t )| = V t-1 h+1 (s) - V π t
h+1 (s; r t ) for any s (due to optimism). Plugging the bounds on ②,③,④ into ① in ( 14),

W T ≤ 64 SAH 2 log(T + 1)β(T, δ)W T + 128 SAH log(T + 1)β(T, δ) T t=1 V π t 1 (s 1 ; r t ) + 512SAH log(T + 1)β(T, δ) + 10SAHβ cnt (δ).
The sum of the last two terms can be bounded by 522SAH log(T + 1)β(T, δ) since β cnt (δ) ≤ β(T, δ). Solving the quadratic inequality in √ W T , we get

W T ≤ 4096SAH 2 log(T + 1)β(T, δ) + 256 SAH log(T + 1)β(T, δ) T t=1 V π t 1 (s 1 ; r t ) + 1044SAH log(T + 1)β(T, δ).
Finally, note that W T bounds the regret by ( 11) and ( 13). The proof is concluded by using that β(T, δ) ≤ (log(2SAH/δ) + 6S) log(T + 1) to simplify the expression.

Lemma 20 For any T ≥ 1, T t=1 (h,s,a) / ∈Zt p π t h (s, a) ≤ 5SAHβ cnt (δ).

Proof By definition of Z t and since p π t h (s, a) ≤ 1,

T t=1 (h,s,a) / ∈Zt p π t h (s, a) = h,s,a T t=1 p π t h (s, a)1 n t-1 h (s, a) < 4β cnt (δ) ≤ SAH(4β cnt (δ) + 1).
The result is proved by noting that 1 ≤ β cnt (δ).

Lemma 21 Under event G, for any T ≥ 1, T t=1 (h,s,a)∈Zt p π t h (s, a)

1 n t-1 h (s, a) ∨ 1 ≤ 16SAH log(T + 1).
Proof By definition of G and Z t , if (h, s, a) ∈ Z t then n t-1 h (s, a) ≥ n t-1 h (s, a)/4. Then, T t=1 (h,s,a)∈Zt p π t h (s, a)

1 n t-1 h (s, a) ∨ 1 ≤ 4 T t=1 h,s,a p π t h (s, a) 1 n t-1 h (s, a) ∨ 1 = 4 h,s,a T t=1 n t h (s, a) -n t-1 h (s, a) n t-1 h (s, a) ∨ 1 ≤ 16SAH log(T + 1),
where the last inequality uses Lemma 9 of [START_REF] Ménard | Fast active learning for pure exploration in reinforcement learning[END_REF].

Lemma 22 For any T ≥ 1,

T t=1 h,s,a p π t h (s, a)V(P h,s,a , V π t h+1 (r t )) ≤ 4 T t=1 V π t 1 (s 1 ; r t ).
Proof Starting from the well-known variance decomposition lemma (see, e.g., Lemma 7 of Ménard et al. ( 2021)) and following with the same bounds as in the proof of Lemma 3.4 of Jin et al. ( 2020), h,s,a

p π t h (s, a)V(P h,s,a , V π t h+1 (r t )) = E π t   H h=1 r t h (s h , a h ) -V π t 1 (s 1 ; r t ) 2   ≤ 2E π t   H h=1 r t h (s h , a h ) 2   + 2V π t 1 (s 1 ; r t ) 2 ≤ 2E π t H h=1 r t h (s h , a h ) + 2V π t 1 (s 1 ; r t ) = 4V π t 1 (s 1 ; r t )
where the first inequality uses (x + y) 2 ≤ 2x 2 + 2y 2 and the second one uses Assumption 3.

Lemma 23 Under event E, for any t, h,s,a

p π t h (s, a)P h,s,a (V t-1 h+1 -V π t h+1 (r t )) ≤ 2H h,s,a p π t h (s, a) B t-1 h (s, a) ∧ 1 . Proof Since s,a p π t h (s, a)p h (s ′ |s, a) = p π t h+1 (s ′ ) for any s ′ , h,s,a p π t h (s, a)P h,s,a (V t-1 h+1 -V π t h+1 (r t )) = H h=2 s p π t h (s)(V t-1 h (s) -V π t h (s; r t )) ≤ H h=2 s p π t h (s)P h,s,π t h (s) V t-1 h+1 -V π t h+1 (r t ) + H h=2 s p π t h (s)2B t-1 h (s, π t h (s)) ∧ 1 ≤ H h,s p π t h (s)2B t-1 h (s, π t h (s)) ∧ 1,
where the first inequality uses the decomposition in ( 12) while the second one applies this reasoning recursively.

Appendix D. Concentration of Value Functions

In this appendix, we derive the concentration bounds on value functions needed for our PAC RL algorithms. We shall assume that rewards lie in [0, 1] almost surely.

D.1. General results

Lemma be a collection of bounded functions. With probability at least 1 -δ, for any t ≥ t 0 := inf{t :

n t h (s, a) ≥ 1, ∀(h, s, a) ∈ Z}, (h,s,a)∈Z n t h (s, a) ( p t h (s, a) -p h (s, a)) T V h+1 2 ≤ 4H 2 log(1/δ) + 2ZH 2 log(1 + t).
Proof We start by building a suitable stochastic process to apply Theorem 1 of Abbasi 

[Y t ] h,s,a = t j=1 1 s j h = s, a j h = a V h+1 (s j h+1 ) -p h (s j h , a j h ) T V h+1 = n t h (s, a)( p t h (s, a) -p h (s, a)) T V h+1 . Let D t := t j=1 H h=1 X t h (X t h ) T = diag([n t h (s, a)] (h,s,a)∈Z )
. Theorem 1 of Abbasi-Yadkori et al. ( 2011) combined with Equation 20.9 from Lattimore and Szepesvari (2019) yield that

P ∀t ≥ 1, Y t 2 (I+Dt) -1 ≤ 2H 2 log(1/δ) + ZH 2 log(1 + t/Z) ≥ 1 -δ.
Since n t h (s, a) ≥ 1 for any t ≥ t 0 and (h, s, a) ∈ Z, following Corollary 3 in [START_REF] Réda | Dealing with misspecification in fixedconfidence linear top-m identification[END_REF],

D t = diag [n t h (s, a)] (h,s,a)∈Z ⪰ (I + D t )/2, which implies Y t 2 D -1 t ≤ 2 Y t 2 (I+Dt) -1 for any t ≥ t 0 .
Plugging this into the probability above and using that Y t 2 D -1 t is exactly the left-hand side of the statement concludes the proof.

Lemma 25 [Concentration of p T V for all V ] Let Z ⊆ [H] × S × A, Z := |Z|, and V := {V : S → [0, H]} be the set of all bounded functions mapping S into [0, H]. With probability at least 1 -δ, for any functions {V h ∈ V} H+1 h=2 and t ≥ t 0 := inf{t :

n t h (s, a) ≥ 1, ∀(h, s, a) ∈ Z}, (h,s,a)∈Z n t h (s, a) ( p t h (s, a) -p h (s, a)) T V h+1 2 ≤ 4H 2 log(1/δ) + 12(SH + Z)H 2 log(1 + t).
Proof Let Y t (V 2 , . . . , V H+1 ) := (h,s,a)∈Z n t h (s, a) ( p t h (s, a) -p h (s, a)) T V h+1 2 denote the quantity to be bounded for fixed functions V h ∈ V for all 2 ≤ h ≤ H + 1. 

{V h ∈ V t } H+1
h=2 , using x 2 -y 2 = (x + y)(x -y) and abbreviating p h (s, a) and p t h (s, a) respectively as p h,s,a and p t h,s,a ,

Y t (V 2 , . . . , V H+1 ) -Y t (V 2 , . . . , V H+1 ) = (h,s,a)∈Z n t h (s, a)( p t h,s,a -p h,s,a ) T (V h+1 + V h+1 )( p t h,s,a -p h,s,a ) T (V h+1 -V h+1 ) ≤ 2H (h,s,a)∈Z n t h (s, a) ( p t h,s,a -p h,s,a ) T (V h+1 -V h+1 ) ≤ 4Ht∥V h+1 -V h+1 ∥ ∞ .
Therefore,

min {V h ∈Vt} H+1 h=2 Y t (V 2 , . . . , V H+1 ) -Y t (V 2 , . . . , V H+1 ) ≤ 4Hξ t t. ( 15 
)
Now let α t := 4H 2 log(1/δ t ) + 2ZH 2 log(1 + t) + 4Hξ t t for a sequence {δ t } t of values in (0, 1) to be defined. We have

P ∃t ≥ t 0 , {V h ∈ V} H+1 h=2 : Y t (V 2 , . . . , V H+1 ) ≥ α t ≤ P ∃t ≥ t 0 , {V h ∈ V t } H+1 h=2 : Y t (V 2 , . . . , V H+1 ) ≥ α t -4Hξ t t ≤ ∞ t=t 0 {V h ∈Vt} H+1 h=2 P Y t (V 2 , . . . , V H+1 ) ≥ 4H 2 log(1/δ t ) + 2ZH 2 log(1 + t) ≤ ∞ t=t 0 {V h ∈Vt} H+1 h=2 δ t = ∞ t=t 0 δ t ⌊H/ξ t ⌋ SH ,
where the first inequality uses ( 15), the second one uses a union bound and the definition of α t , the third one uses Lemma 24, and the equality uses the sizes of the two sets in the sums. Setting

ξ t = H/t and δ t = δ 2t SH+2 , ∞ t=t 0 δ t ⌊H/ξ t ⌋ SH ≤ δ 2 ∞ t=t 0 1 t 2 ≤ δ.
Finally, with these choices we have

α t = 4H 2 log(1/δ) + 4H 2 log(2) + 4H 2 log(t SH+2 ) + 2ZH 2 log(1 + t) + 4H 2 ≤ 4H 2 log(1/δ) + 4H 2 log(2) + 12SH 3 log(t) + 2ZH 2 log(1 + t) + 4H 2 ≤ 4H 2 log(1/δ) + 12SH 3 log(t) + 12ZH 2 log(1 + t).
This implies the statement.

Lemma 26 [Concentration of r] Let Z ⊆ [H] × S × A and Z := |Z|. With probability at least 1 -δ, for any t ≥ t 0 := inf{t :

n t h (s, a) ≥ 1, ∀(h, s, a) ∈ Z}, (h,s,a)∈Z n t h (s, a) r t h (s, a) -r h (s, a) 2 ≤ 4 log(1/δ) + 2Z log(1 + t).
Proof Following the proof of Lemma 24, we build a suitable stochastic process to apply Theorem 1 of [START_REF] Abbasi-Yadkori | Improved algorithms for linear stochastic bandits[END_REF]. We define F t,h , X t h , Y t , D t exactly as in the proof of Lemma 24, while we redefine η t h := r t h -r h (s t h , a t h ), with r t h the random reward sample observed at stage h of episode t. Since rewards lie in [0, 1] almost surely, η t h is zero-mean and 1-subgaussian conditionally on F t,h . Moreover, it is easy to see that, for all (h, s, a) ∈ Z,

[Y t ] h,s,a = n t h (s, a)( r t h (s, a) -r h (s, a)).
Theorem 1 of Abbasi-Yadkori et al. ( 2011) combined with Equation 20.9 from Lattimore and Szepesvari (2019) yield that

P ∀t ≥ 1, Y t 2 (I+Dt) -1 ≤ 2 log(1/δ) + Z log(1 + t/Z) ≥ 1 -δ.
We can then conclude exactly as in Lemma 24 by showing that Y t 2 D -1 t ≤ 2 Y t 2 (I+Dt) -1 for any t ≥ t 0 , which implies the statement.

D.2. Concentration results for RFE

For reward-free exploration, it is sufficient to concentrate the values of all deterministic policies. Our concentration result stated below features the threshold function

β RF (t, δ) := 4H 2 log(1/δ) + 24SH 3 log(A(1 + t)).
Theorem 27 Let Z ⊆ [H]×S ×A and Z := |Z|. Suppose that, for some ε 0 > 0, max π p π h (s, a) ≤ ε 0 for all (h, s, a) / ∈ Z. With probability at least 1 -δ, for any t ≥ t 0 := inf{t :

n t h (s, a) ≥ 1, ∀(h, s, a) ∈ Z}, π ∈ Π D , and reward function r ∈ [0, 1] SAH , h,s,a p π,t h (s, a) -p π h (s, a) r h (s, a) ≤ β RF (t, δ) (h,s,a)∈Z p π h (s, a) 2 n t h (s, a) + (SH -Z π )Hε 0 ,
where

Z π := |Z ∩ {(h, s, π h (s)) : h ∈ [H], s ∈ S}|.
Proof Fix any reward r and deterministic policy π. Let V π h and V π,t h denote the value functions of π under (p, r) and ( p t , r), respectively. By Lemma 29 and the assumption on the set Z, h,s,a

p π,t h (s, a) -p π h (s, a) r h (s, a) ≤ h,s,a p π h (s, a) ( p t h (s, a) -p h (s, a)) T V π,t h+1 ≤ (h,s,a)∈Z p π h (s, a) ( p t h (s, a) -p h (s, a)) T V π,t h+1 + (SH -Z π )Hε 0 .
By applying Lemma 25 on the set Z π = Z ∩ {(h, s, π h (s)) : h ∈ [H], s ∈ S}, whose cardinality is at most SH, and union bounding over all A SH deterministic policies, with probability at least 1 -δ, the following holds for all t ≥ t 0 , π ∈ Π D , and value functions bounded in [0, H]:

(h,s,π h (s))∈Z n t h (s, π h (s)) ( p t h (s, π h (s)) -p h (s, π h (s))) T V h+1 2 ≤ β RF (t, δ).
Thus, by Lemma 30,

(h,s,a)∈Z p π h (s, a) ( p t h (s, a) -p h (s, a)) T V π,t h+1 = (s,π h (s),h)∈Z p π h (s) ( p t h (s, π h (s)) -p h (s, π h (s))) T V π,t h+1 ≤ sup u∈R SH , (s,π h (s),h)∈Z n t h (s,π h (s))u 2 s,h ≤β RF (t,δ) (s,π h (s),h)∈Z p π h (s)u s,h = β RF (t, δ) (h,s,a)∈Z p π h (s, a) 2 n t h (s, a)
.

D.3. Concentration results for BPI

For BPI, we need concentration bounds on V π,t 1 -V π 1 that hold uniformly across all time steps and stochastic policies. Here V π,t 1 := h,s,a p π,t h (s, a) r t h (s, a), where r t h (s, a) is the MLE of r h (s, a) and p π,t h (s, a) is an estimator of p π h (s, a) computed from the MLEs { p h (s ′ |s, a)} h,s,a,s ′ of the transition probabilities. To this end, we shall define the thresholds

β r (t, δ) := 4 log(2/δ) + 2SAH log(1 + t), β p (t, δ) := 4H 2 log(2/δ) + 24SAH 3 log(1 + t), β bpi (t, δ) := 16H 2 log(2/δ) + 96SAH 3 log(1 + t).
Compared to β RF (t, δ), we note that β bpi (t, δ) features larger multiplicative constants but also a dependency in A instead of log(A) in its second term which comes from the need to concentrate the values of all stochastic policies.

Theorem 28 With probability at least 1 -δ, for any t ≥ t 0 := inf{t : n t h (s, a) ≥ 1, ∀(h, s, a)} and π ∈ Π S , the following holds:

V π,t 1 -V π 1 ≤ β bpi (t, δ) min h,s,a p π h (s, a) 2 n t h (s, a) , h,s,a p π,t h (s, a) 2 n t h (s, a)
.

Moreover, for any r ∈ [0, 1] SAH , h,s,a p π,t h (s, a) -p π h (s, a) r h (s, a) ≤ β p (t, δ) h,s,a p π h (s, a) 2 n t h (s, a)
.

Proof Fix any stochastic policy π. By Lemma 29,

V π,t 1 -V π 1 ≤ h,s,a p π h (s, a) r t h (s, a) -r h (s, a) + h,s,a p π h (s, a) ( p t h (s, a) -p h (s, a)) T V π,t h+1 .
By applying Lemma 26 and Lemma 25 for the set Z = {(h, s, a) : h ∈ [H], s ∈ S, a ∈ A}, which is of cardinality SAH, with probability at least 1 -δ, the following hold for all t ≥ t 0 and for all value functions

(V h ) h∈[H] supported in [0, H]: h,s,a n t h (s, a) r t h (s, a) -r h (s, a) 2 ≤ β r (t, δ), h,s,a n t h (s, a) ( p t h (s, a) -p h (s, a)) T V π,t h+1 2 ≤ β p (t, δ). ( 16 
)
Thus, by Lemma 30, optimizing over the deviations as in the proof of Lemma 27,

V π,t 1 -V π 1 ≤ β r (t, δ) h,s,a p π h (s, a) 2 n t h (s, a) + β p (t, δ) h,s,a p π h (s, a) 2 n t h (s, a)
.

Using that β r (t, δ) ≤ β p (t, δ) and noting that β bpi (t, δ) = 4β p (t, δ) proves the first statement with the first term in the minimum only. To prove it with the second term as well, it is enough to use Lemma 29 with the roles of the two value functions swapped and repeat the same steps as above.

To prove the second statement, we proceed as in the proof of Theorem 27 and write h,s,a

p π,t h (s, a) -p π h (s, a) r h (s, a) ≤ h,s,a p π h (s, a) ( p t h (s, a) -p h (s, a)) T V π,t h+1 ≤ sup u∈R SH , h,s,a n t h (s,a)u 2 h,s,a ≤β p (t,δ) h,s,a p π h (s, a)u h,s,a = β p (t, δ) h,s,a p π h (s, a) 2 n t h (s, a)
, where we used Lemma 30 and together with inequality (16).

D.4. Auxiliary results

Lemma 29 (Lemma E.15 of Dann et al. ( 2017)) Consider two MDPs with transitions p, p and rewards r, r, respectively. Let V π h , V π h denote the value function of a (possibly stochastic) policy π in these two MDPs. Then, for any s, h,

V π h (s) -V π h (s) = E π H ℓ=h r ℓ (s ℓ , a ℓ ) -r ℓ (s ℓ , a ℓ ) + p ℓ (s ℓ , a ℓ ) -p ℓ (s ℓ , a ℓ ) T V π ℓ+1 s h = s .
Lemma 30 Let n ∈ N, p, b ∈ R n with b having strictly positive entries, and c ∈ R ≥0 . Then,

sup x∈R n : n i=1 b i x 2 i ≤c n i=1 p i x i = c n i=1 p 2 i b i .
Proof Let v be the value of the optimization program. Then we know that

-v = inf x∈R n : n i=1 b i x 2 i ≤c - n i=1 p i x i . (17) 
The Lagrangian of the quadratic program above writes as

L(x, λ) = - n i=1 p i x i + λ n i=1 b i x 2 i -c ,
where λ ≥ 0. The KKT conditions then yield that the optimal solution satisfies that

∀i ∈ [|1, n|], x i = - p i 2λb i n i=1 b i x 2 i = c
Solving this system yields that the optimal Lagrange multiplier λ =

c n i=1 p 2 i b i which implies that the value of (17) is -c n i=1 p 2 i b i .

Appendix E. Analysis of PCE

To simplify the presentation of the algorithm and the analysis, we index the counts as well as the empirical estimates of transitions and rewards by their phase number. Hence, for each triplet (h, s, a), n k h (s, a) and p k h (.|s, a) will refer to the number of visits and the empirical transition kernel respectively after t k episodes, i.e. at the end of the k-th phase. Finally, for a dataset of episodes D, n h (s, a; D) denotes the number of visits of (h, s, a) in the episodes stored in D.

E.1. Good event

We introduce the following events

E vis := The set built using ESTIMATEREACHABILITY (h, s); ε 4SH 2 , δ 3SH
for all (h, s)

satisfies (h, s) : sup π p π h (s) ≥ ε 4SH 2 ⊆ X ⊆ (h, s) : sup π p π h (s) ≥ ε 32SH 2 and ∀(h, s) ∈ X , sup π p π h (s) ≤ W h (s) ≤ 36 sup π p π h (s) , E RF p := ∀k ∈ N ⋆ , ∀π ∈ Π D , ∀r ∈ [0, 1] SAH , s,a,h p π,k h (s, a) -p π h (s, a) r h (s, a) ≤ β RF (t k , δ/3) (s,a,h)∈ X p π h (s, a) 2 n k h (s, a) + ε 4 , E cov := ∀k ∈ N, CovGame run with inputs (c k , δ/6(k + 1) 2 ) terminates after at most 64m k φ ⋆ (c k ) + O m k φ ⋆ (1 X )SAH 2 (log(6(k + 1) 2 /δ) + S) episodes and returns a dataset D k such that for all (h, s, a) ∈ X , n h (s, a; D k ) ≥ c k h (s, a) ,
where m k = log 2 max s,a,h c k h (s,a) min s,a,h c k h (s,a)∨1 ∨ 1 and β RF is defined in appendix D.2. Then our good event is defined as the intersection

E RF good := E vis ∩ E RF p ∩ E cov .
Lemma 31 We have that P M (E RF good ) ≥ 1 -δ.

Proof Let E denote the complementary event of E. We start by the following decomposition

P M (E RF good ) ≤ P M (E vis ) + P M (E cov ) + P M (E RF p ∩ E vis ∩ E cov ).
Now we bound each term separately. First observe that applying Theorem 51 with parameter ε 0 = ε/4SH 2 yields P M (E vis ) ≤ δ/3. Second, using Corollary 4 we have

P M (E cov ) ≤ ∞ k=0 P M (CovGame with inputs (c k , δ/6(k + 1) 2 ) fails) ≤ ∞ k=0 δ 6(k + 1) 2 = δπ 2 36 ≤ δ/3. Next, note that by design of PCE n 0 h (s, a) = n h (s, a; D 0 ) and c 0 = 1 X so that E cov ⊂ ∀(h, s, a) ∈ X , n 0 h (s, a) ≥ 1 . Therefore we have P M (E RF p ∩ E vis ∩ E cov ) ≤ P M E RF p , (h, s) : sup π p π h (s) ≥ ε 4SH 2 ⊆ X , ∀(h, s, a) ∈ X n 0 h (s, a) ≥ 1 = P M (h, s) : sup π p π h (s) ≥ ε 4SH 2 ⊆ X , ∃k ≥ 0 ∃π ∈ Π D ∃r ∈ [0, 1] SAH : s,a,h p π,k h (s, a) -p π h (s, a) r h (s, a) > β RF (t k , δ/3) (s,a,h)∈ X p π h (s, a) 2 n k h (s, a) + ε 4 (a) ≤ P M (h, s) : sup π p π h (s) ≥ ε 4SH 2 ⊆ X , ∃t ≥ t 0 ∃π ∈ Π D ∃r ∈ [0, 1] SAH : s,a,h p π,t h (s, a) -p π h (s, a) r h (s, a) > β RF (t, δ/3) (s,a,h)∈ X p π h (s, a) 2 n t h (s, a) + ε 4 (b) ≤ δ/3,
where in (a) we introduced t 0 = inf{t ≥ 1 : n t h (s, a) ≥ 1, ∀(h, s, a) ∈ X } and switched back to indexing counts and estimates by the episode number (instead of the phase) in order to apply Theorem 27 in (b) with Z = {(h, s, a) : (h, s) ∈ X } and ε 0 = ε/4SH 2 . Combining the four inequalities above yields the desired result.

E.2. Low concentrability / Good coverage of all policies

The next lemma shows that PCE achieves proportional coverage.

Lemma 32 Under the good event, for all phases k ≥ 0, we have that

n k h (s, a) ≥ 2 k sup π p π h (s, a) ∀(h, s, a) ∈ X .
Proof First of all, note that for any triplet (h, s, a) ∈ X , sup π p π h (s, a) is always attained by some deterministic policy. Therefore, it is sufficient to prove that, given a fixed deterministic policy

π ∈ Π D , ∀k ≥ 0, ∀(h, s, a) ∈ X , n k h (s, a) ≥ 2 k p π h (s, a) .
We do this by induction over k. For k = 0 the result is trivial since, under the good event, we have that for all (h, s, a) ∈ X , n 0 h (s, a) ≥ c 0 h (s, a) = 1 ≥ 2 0 p π h (s, a). Now suppose that the property holds for phase k. Then under the good event we know that for all (h, s, a), n k+1 h (s, a) -

n k h (s, a) = n h (s, a, D k+1 ) ≥ c k+1 h (s, a)
. Plugging the definition of c k+1 (Line 9 of Algorithm 2) we get that for any (h, s, a) ∈ X ,

n k+1 h (s, a) ≥ c k+1 h (s, a) = 2 k+1 W h (s) ≥ 2 k+1 sup π p π h (s) = 2 k+1 sup π p π h (s, a), (18) 
where the second inequality uses the event E vis .

E.3. Correctness

Lemma 33 Let p be the estimate of the transition probabilities that PCE outputs. For any reward function r, let πr be an optimal policy in the MDP ( p, r). Then

P ∀r ∈ [0, 1] SAH , V πr 1 (s 1 ; r) ≥ V ⋆ 1 (s 1 ; r) -ε ≥ 1 -δ.
In other words, PCE is (ε, δ)-PAC for reward-free exploration.

Proof Assume that PCE stops as phase k and let p k denote the empirical transition estimates that it returns. Fix any reward function r = [r h (s, a)] h,s,a ∈ [0, 1] SAH and let π ∈ arg max π∈Π D ( p π,k ) ⊤ r be the policy obtained when planning for reward function r under the transition model p k . Further define π ⋆ ∈ arg max π∈Π D (p π ) ⊤ r, V ⋆ 1 := (p π ⋆ ) ⊤ r, and V π 1 := (p π ) ⊤ r. Note that both π and π ⋆ are deterministic. Therefore under the good event E RF good we have

V π 1 = (p π ) ⊤ r (a) ≥ ( p π,k ) ⊤ r -β RF (t k , δ/3) (s,a,h)∈ X p π h (s, a) 2 n k h (s, a) - ε 4 (b) ≥ ( p π ⋆ ,k ) ⊤ r -β RF (t k , δ/3) (s,a,h)∈ X p π h (s, a) 2 n k h (s, a) - ε 4 (c) ≥ (p π ⋆ ) ⊤ r -β RF (t k , δ/3) (s,a,h)∈ X p π ⋆ h (s, a) 2 n k h (s, a) -β RF (t k , δ/3) (s,a,h)∈ X p π h (s, a) 2 n k h (s, a) - ε 2 (d) ≥ V ⋆ 1 -2 Hβ RF (t k , δ/3)2 -k - ε 2 (e) ≥ V ⋆ 1 -ε,
where (a) and (c) use the good event E RF p for policies π and π ⋆ respectively, (b) uses the definition of π, (d) uses Lemma 32 and (e) uses the stopping condition of PCE (Line 10 in Algorithm ??). Note that the inequality above holds, under the good event E good , jointly for all reward functions r. Since P M (E good ) ≥ 1 -δ, we have just proved that PCE is (ε, δ)-PAC for reward-free exploration.

E.4. Upper bound on the number of phases

Lemma 34 Define the index of the final phase of PCE, κ f := inf k ∈ N + : Hβ RF (t k , δ/3)2 4-k ≤ ε . Further let τ denote the number of episodes played by the algorithm. Then under the good event, it holds that κ f < ∞ and

2 κ f ≤ 32Hβ RF (τ, δ/3) ε 2 .
Proof First we prove that κ f is finite. Under the good event we have

t k = k j=0 d j ≤ k j=0 64m j φ ⋆ (c j ) + O m j φ ⋆ (1 X )SAH 2 (log(6(j + 1) 2 /δ) + S) ,
where we recall that m j = log 2 max s,a,h c j h (s,a) min s,a,h c j h (s,a)∨1

∨ 1. Now using the fact that c j h (s, a) ≤ 2 j 1((h, s, a) ∈ X ) for j ≥ 0 we deduce that m 0 = 1 and m j ≤ j ∀j ≥ 1 so that

t k ≤ k j=0 8(j + 1)2 j φ ⋆ (1 X ) + O (j + 1)φ ⋆ (1 X )SAH 2 (log(4(j + 1) 2 /δ) + S) = O k→∞ k 2 2 k . ( 19 
)
Now recall that the threshold β RF was defined in Appendix D as

β RF (t, δ) = 4H 2 log(1/δ) + 24SH 3 log(A(1 + t)) (20) 
Combining ( 19) and (20) gives that

β RF (t k , δ/3) = o k→∞ 2 k . Therefore κ f = inf k ∈ N + : Hβ RF (t k , δ/3)2 4-k ≤ ε is indeed finite.
The proof of the second statement is straightforward by noting that κ f -1 does not satisfy the stopping condition (Line 12 in Algorithm 2) and using the (crude) upper bound t κ f -1 ≤ τ .

E.5. Upper bound on the phase length

Lemma 35 Let k ≥ 1 be such that PCE did not stop before phase k. Under the good event, the number of episodes played by PCE during phase k satisfies

d k ≤ c 1 kHβ RF (τ, δ/3)φ ⋆ sup π p π h (s)1 sup π p π h (s) ≥ ε 32SH 2 ε 2 h,s,a + O k S 3 A 2 H 5 (log(6(k + 1) 2 /δ) + S) ε ,
where c 1 = 73728. Furthermore, the duration of the initial phase is upper bounded as

d 0 ≤ O S 3 A 2 H 5 (log(6/δ) + S) ε .
Proof Using the good event and the definition of c k we write

d k ≤ 64m k φ ⋆ 2 k W h (s)1 (h, s, a) ∈ X h,s,a + O m k φ ⋆ (1 X )SAH 2 (log(6(k + 1) 2 /δ) + S) (a) ≤ 64kφ ⋆ 2 k W h (s)1 (h, s, a) ∈ X h,s,a + O kφ ⋆ (1 X )SAH 2 (log(6(k + 1) 2 /δ) + S) , (21) 
where (a) uses that m k = log 2 max s,a,h c k h (s,a) min s,a,h c k h (s,a)∨1 ∨ 1 ≤ k. Now by definition of the good event we have that for any triplet (h, s, a) ∈ X , W h (s) ≤ 36 sup π p π h (s). Therefore

φ ⋆ 2 k W h (s)1 (h, s, a) ∈ X h,s,a (a) 
≤ φ ⋆ 36 × 2 k sup π p π h (s)1 (h, s, a) ∈ X h,s,a (b) 
≤ φ ⋆ 1152Hβ RF (τ, δ/3) sup π p π h (s)1 (h, s, a) ∈ X ε 2 h,s,a (c) ≤ 1152Hβ RF (τ, δ/3)φ ⋆ sup π p π h (s)1 sup π p π h (s) ≥ ε 32SH 2 ε 2 h,s,a , (22) 
where (a) uses that φ

⋆ (c) ≤ φ ⋆ (c ′ ) if ∀(h, s, a) c h (s, a) ≤ c ′ h (s, a), (b 
) uses Lemma 34 and the fact that k ≤ κ f since PCE did not stop before phase k and (c) uses Lemma 10 and the fact that X ⊆ (h, s, a) : sup π p π h (s) ≥ ε 32SH 2 on the good event. Using again this last property yields

φ ⋆ (1 X )≤ h,s,a 1 (h, s, a) ∈ X sup π p π h (s, a) = (h,s,a)∈ X 1 sup π p π h (s) ≤ 32H 3 S 2 A ε , (23) 
where the first inequality uses Lemma 12. Combining ( 21), ( 22) and ( 23) proves the statement for k ≥ 1. Now it remains to upper bound the duration of the burn-in phase. To that end, we write that by definition of the good event

d 0 ≤ 64m 0 φ ⋆ (1 X ) + O φ ⋆ (1 X )SAH 2 (log(6/δ) + S) ,
where

m 0 = log 2 max s,a,h c 0 h (s,a) min s,a,h c 0 h (s,a)∨1 ∨ 1 = 1. Therefore d 0 ≤ O φ ⋆ (1 X )SAH 2 (log(6/δ) + S) ≤ O S 3 A 2 H 5 (log(6/δ) + S) ε ,
where the last inequality uses ( 23).

E.6. Total sample complexity

Theorem 36 With probability at least 1 -δ, the total sample complexity of PCE satisfies

τ ≤ O H 3 log(1/δ) + SH 4 φ ⋆ sup π p π h (s)1 sup π p π h (s) ≥ ε 32SH 2 ε 2 h,s,a + S 3 A 2 H 5 (log(1/δ) + S) ε ,
where O hides poly-logarithmic factors in S, A, H, ε and log(1/δ).

Proof Denoting by T vis the number of episodes used by the ESTIMATEREACHABILITY sub-routine in line 2 of the algorithm, we write

τ = T vis + κ f k=0 d k ≤ T vis + O S 3 A 2 H 5 (log(6/δ) + S) ε + κ f k=1 c 1 kHβ RF (τ, δ/3)φ ⋆ sup π p π h (s, a)1 sup π p π h (s) ≥ ε 32SH 2 ε 2 h,s,a + O k S 3 A 2 H 5 (log(6(k + 1) 2 /δ) + S) ε ≤ T vis + c 1 κ 2 f Hβ RF (τ, δ/3)φ ⋆ sup π p π h (s)1 sup π p π h (s) ≥ ε 32SH 2 ε 2 h,s,a + O κ 2 f S 3 A 2 H 5 (log(6(κ f + 1) 2 /δ) + S) ε , (24) 
where we used Lemma 35 to upper bound (d k ) k≥0 . From Theorem 51, we know that T vis is deterministic and satisfies

T vis = O S 3 AH 4 log SAH δ + S ε = O κ 2 f S 3 A 2 H 5 (log(6(κ f + 1) 2 /δ) + S) ε . (25) 
Combining inequalities ( 24) and ( 25) with the definition of the threshold β RF (t, δ) = 4H 2 log(1/δ)+ 24SH 3 log(A(1 + t)) we get

τ ≤ c 1 κ 2 f Hβ RF (τ, δ/3)φ ⋆ sup π p π h (s)1 sup π p π h (s) ≥ ε 32SH 2 ε 2 h,s,a + O κ 2 f S 3 A 2 H 5 (log(6(κ f + 1) 2 /δ) + S) ε ≤ c 2 κ 2 f H 3 log(1/δ) + SH 4 log(A(1 + τ )) φ ⋆ sup π p π h (s)1 sup π p π h (s) ≥ ε 32SH 2 ε 2 h,s,a + O κ 2 f S 3 A 2 H 5 (log(6(κ f + 1) 2 /δ) + S) ε , (26) 
where c 2 = 24c 1 On the other hand, thanks to Lemma 34 and the definition of the threshold β RF we have that

κ f ≤ log 2 128H 3 log(1/δ) + 768SH 4 log(A(1 + τ )) ε 2 (27)
Combining ( 26) with ( 27) and solving for τ we get that

τ ≤ O H 3 log(1/δ) + SH 4 φ ⋆ sup π p π h (s)1 sup π p π h (s) ≥ ε 32SH 2 ε 2 h,s,a + S 3 A 2 H 5 (log(1/δ) + S) ε ,
where O hides poly-logarithmic factors in S, A, H, ε and log(1/δ).

E.7. Benign instances for PCE

In this section we propose some MDP instances in which the quantity

C(PCE, ε) := φ ⋆ ([sup π p π h (s, a)] h,s,a )H 3 /ε 2 , ( 28 
)
which is (an upper bound on) the leading term in the small (δ, ε) regime in our sample complexity bound for PCE, can be smaller than the minimax rate SAH 3 /ε 2 .

E.7.1. DISGUISED CONTEXTUAL BANDITS

Lemma 37 Suppose that M is a "disguised" contextual bandit, i.e., ∀(h, s, a, s ′ ), p h (s ′ |s, a) = p h (s ′ |s).

Then C(PCE, ε) = AH 3 /ε 2 .

Proof In this case for any (h, s) and any policy π, p π h (s) = p h (s) is independent of the policy. Thanks to Lemma 9 we have

φ ⋆ ([sup π p π h (s, a)] h,s,a ) = inf π exp ∈Π S max s,a,h sup π p π h (s, a) p π exp h (s, a) = inf π exp ∈Π S max s,a,h p h (s) sup π π h (a|s) p h (s)π exp h (a|s) = inf π exp ∈Π S max s,h 1 min a π exp h (a|s) = A,
where the last equality is because (min a π exp h (a|s)) -1 ≥ A and the infimum over Π S is achieved by the uniform policy. E.7.2. ERGODIC MDPS Let α, β ∈ (0, 1) such that α > β. Further define the set of probability vectors such that

P α,β = q ∈ R S + : S i=1 q i = 1, max i q i ≤ S α-1 , min i q i ≥ 1 -S β-1 S -1 .
Note that such set is never empty since the vector (S β-1 , 1-S β-1 S-1 , . . . , 1-S β-1 S-1 ) always satisfies the inequalities in its definition. We define the class of MDPs M erg such that their transition kernel satisfies ∀(h, s, a), p h (.|s, a) ∈ P α,β .

Lemma 38 Assume that M ∈ M erg , then C(PCE, ε) ≤ S α AH 4 /ε 2 . Remark 39 Note that the "ergodicity" of MDPs in M erg can be as small as one wishes: by taking the limit β → 1, the constraint min s ′ p h (s ′ |s, a) ≥ 1-S β-1 S-1 becomes vacuous so the MDP can be non-ergodic. In that regime, α = 1 and we recover the minimax sample complexity (up to an H factor) SAH 3 /ε 2 .

Proof First of all we note that ∀π ∈ Π ∀s ∈ S, p π h (s) =

s ′ ∈S p π h-1 (s)p h (s|s ′ , π h-1 (s ′ )) ≤ s ′ ∈S p π h-1 (s)S α-1 = S α-1 . ( 29 
)
Similarly

∀π ∈ Π ∀s ∈ S, p π h (s) ≥ 1 -S β-1 S -1 . ( 30 
)
Now using Lemma 13 we have that

φ ⋆ ([sup π p π h (s, a)] h,s,a ) ≤ H h=1 inf π exp ∈Π S max s 1 p π exp h (s) a sup π p π h (s, a) = H h=1 inf π exp ∈Π S max s A sup π p π h (s) p π exp h (s) = A H h=1 inf π exp ∈Π S max s sup π p π h (s) p π exp h (s) :=C h , (31) 
Now fix h ∈ [H] and denote by π s any policy in arg max π∈Π p π h (s). Further define the stochastic policy π such that

p π = s ′ ∈S p π s S .
Using (30) we have that

∀s ∈ S, p π h (s) = s ′ ∈S p π s ′ h (s) S ≥ sup π∈Π p π h (s) + (S -1) 1-S β-1 S-1 S = sup π∈Π p π h (s) + 1 -S β-1 S . (32) 
Therefore Compute the lower confidence bound

C h = inf π exp ∈Π S max s sup π p π h (s) p π exp h (s) ≤ max s sup π p π h (s) p π h (s) (a) ≤ max s S sup π p π h (s) sup π∈Π p π h (s) + 1 -S β-1 = max s S 1 + 1-S β-1 sup π p π h (s) (b) ≤ max s S 1 + S 1-α (1 -S β-1 ) = S 1 + S 1-α -S β-α ≤ S α
V k 1 := sup ρ∈Ω( p k ), max h,s,a ρ h (s,a)/n k h (s,a)≤2 -k ρ ⊤ r k -2 2-k Hβ bpi (t k , δ/2) 18:
Update the set of active state-action distributions

Ω k ← ρ ∈ Ω( p k ) : ρ ⊤ r k ≥ V k 1 and max h,s,a ρ h (s, a)/n k h (s, a) ≤ 2 -k 19: if 2 2-k Hβ bpi (t k , δ/2) ≤ ε then 20:
Compute any ρ ⋆ ∈ arg max ρ∈Ω k ρ ⊤ r k and extract the corresponding policy π 21:

return π

22:

end if 23: end for

F.2. Analysis of PRINCIPLE

To simplify the presentation of the algorithm and the analysis, we index the counts as well as the empirical estimates of transitions and rewards by their phase number. Hence, for each triplet (h, s, a), n k h (s, a), p k h (.|s, a) and r k h (s, a) will refer to the number of visits, the empirical transition kernel and the empirical mean reward respectively after t k episodes, i.e. at the end of the k-th phase. For a transition kernel p, we define the corresponding set of state-action distributions as end if 12: end for Ω( p) = p π : π ∈ Π S . Finally, for a dataset of episodes D, n h (s, a; D) denotes the number of visits of (h, s, a) in the episodes stored in D.

F.2.1. GOOD EVENT

We introduce the following events 

E bpi := ∀k ∈ N ⋆ , ∀π ∈ Π S , V π,k 1 -V π 1 ≤ β bpi (t k , δ/2)
) ≥ c k h (s, a) ,
where

m k = log 2 max s,a,h c k h (s,a) min s,a,h c k h (s,a)∨1 ∨ 1 and β bpi (t, δ) = 16H 2 log(2/δ) + 96SAH 3 log(1 + t) is defined in Appendix D.
Then our good event is defined as the intersection

E good := E bpi ∩ E cov .
Lemma 40 We have that P M (E good ) ≥ 1 -δ.

Proof Let E denote the complementary event of E. We start by the following decomposition

P M (E good ) ≤ P M (E cov ) + P M (E bpi ∩ E cov ).
Now we bound each term separately. First observe that using Corollary 4 we have

P M (E cov ) ≤ ∞ k=0 P M (CovGame with inputs (c k , δ/4(k + 1) 2 ) fails) ≤ ∞ k=0 δ 4(k + 1) 2 = δπ 2 24 ≤ δ/2.
Next, note that by design of PRINCIPLE n 0 h (s, a) = n h (s, a; D 0 ) and c 0 = 1 so that E cov ⊂ ∀(h, s, a), n 0 h (s, a) ≥ 1 . Therefore we have

P M (E bpi ∩ E cov ) ≤ P M E bpi and ∀(h, s, a) n 0 h (s, a) ≥ 1 ≤δ/2,
where we applied Theorem 28 and used the fact that β p (t, δ) ≤ β bpi (t, δ). Combining the two inequalities above yields the desired result.

F.2.2. LOW CONCENTRABILITY / GOOD COVERAGE OF OPTIMAL POLICIES

Lemma 41 Under the good event, for all k ≥ 1 such that PRINCIPLE did not stop before phase k, it holds that n h (s, a, D k ) ≥ c k h (s, a) for all (h, s, a) and d k ≤ SAH2 k .

Proof Fix k ≥ 1 such that PRINCIPLE did not stop before phase k. By definition of the good event we know that at the end of CovGame, n h (s, a; D k ) ≥ c k h (s, a) for all (h, s, a). Now we distinguish two cases. If T k ≤ SAH2 k : then the result follows immediately since in this case, by design of PRINCIPLE (line 13 in Algorithm 3), D k = D k and d k = T k . If T k > SAH2 k : the first statement is a direct consequence of the stopping condition of PRUNE-DATASET run with parameters ( D k , c k ) (lines 7-8 in Algorithm 4). Now for the second statement, observe that each new episode e added by PRUNEDATASET to D k increments the dataset-count of at least one triplet (h, s, a) that is not yet covered, i.e. n h (s, a; D k ) < c k h (s, a). By the pigeon-hole principle it takes at most h,s,a c k h (s, a) episodes to ensure that n h (s, a, D k ) ≥ c k h (s, a) for all (h, s, a). Therefore

d k ≤ h,s,a c k h (s, a) ≤ SAH2 k ,
where we used that c k h (s, a) ≤ 2 k due to the clipping.

The next lemma shows that the set of active state-action distributions always contains the distributions induced by optimal policies. Lemma 42 Under the good event, for all optimal policies π ⋆ ∈ Π ⋆ and all phases k ≥ 0, we have that

p π ⋆ ,k ∈ Ω k and n k h (s, a) ≥ 2 k p π ⋆ h (s, a) ∀(h, s, a).
Proof We fix an optimal policy π ⋆ and prove the statement by induction. For k = 0, the fact that p π ⋆ ,0 ∈ Ω 0 is trivial since Ω 0 = Ω( p 0 ) consists of all possible state-action distributions induced in the MDP whose transition kernel is p 0 . Furthermore, under the good event we have that, for all (h, s, a), n 0 h (s, a) ≥ c 0 h (s, a) = 1 ≥ 2 0 max p π ⋆ h (s, a), p π ⋆ ,0 h (s, a) . Now suppose that the property holds for phase k. Then we know that for any (h, s, a)

p π ⋆ ,k+1 h (s, a) -p π ⋆ ,k h (s, a) ≤ p π ⋆ ,k+1 h (s, a) -p π ⋆ h (s, a) + p π ⋆ h (s, a) -p π ⋆ ,k h (s, a) (a) ≤ β bpi (t k+1 , δ/2) s,a,h p π ⋆ h (s, a) 2 n k+1 h (s, a) + β bpi (t k , δ/2) s,a,h p π ⋆ h (s, a) 2 n k h (s, a) (b) ≤ 2 β bpi (t k+1 , δ/2) s,a,h p π ⋆ h (s, a) 2 n k h (s, a) (c) ≤ 2 β bpi (t k+1 , δ/2)H2 -k = 2 β bpi (t k + d k+1 , δ/2)H2 -k (d) ≤ 2 β bpi (t k + SAH2 k+1 , δ/2)H2 -k , (33) 
where (a) uses the event E bpi for the reward r ℓ (s ′ , a ′ ) = 1 (ℓ, s ′ , a ′ ) = (h, s, a) , (b) uses the facts that t → β(t, δ) is non-decreasing and n k+1 h (s, a) ≥ n k h (s, a), (c) uses the induction hypothesis which yields that n k h (s, a) ≥ 2 k p π ⋆ h (s, a) and (d) uses Lemma 41. Similarly we have that

p π ⋆ h (s, a) -p π ⋆ ,k h (s, a) ≤ β bpi (t k + SAH2 k+1 , δ/2)H2 -k (34) 
Now thanks to Lemma 41, we know that for all (h, s, a), n k+1 h (s, a) -n k h (s, a) = n h (s, a, D k+1 ) ≥ c k+1 h (s, a). Plugging the definition of c k+1 (Line 8 of Algorithm 3) we get that,

n k+1 h (s, a) ≥ 2 k+1 min sup ρ∈Ω k ρ h (s, a) + 2 Hβ bpi (t k + SAH2 k+1 , δ/2)2 -k , 1 (a) ≥ 2 k+1 min p π ⋆ ,k h (s, a) + 2 Hβ bpi (t k + SAH2 k+1 , δ/2)2 -k , 1 (b) ≥ 2 k+1 max p π ⋆ ,k+1 h (s, a), p π ⋆ h (s, a) , (35) 
where (a) uses that, by the induction hypothesis, p π ⋆ ,k ∈ Ω k and (b) uses (33) along with (34). In particular we have proved that max h,s,a p π ⋆ ,k+1 h (s, a)/n k+1 h (s, a) ≤ 2 -(k+1) . Now it remains to show that ( p π ⋆ ,k+1 ) ⊤ r k+1 ≥ V k+1

1 . Let us consider ρ achieving the supremum in the definition of

V k+1 1 , i.e. ρ ∈ arg max ρ∈Ω( p k+1 ), max h,s,a ρ h (s,a)/n k+1 h (s,a)≤2 -(k+1) ρ ⊤ r k+1 ,
and let π be a policy corresponding to ρ4 . Then we have that

( p π ⋆ ,k+1 ) ⊤ r k+1 (a) ≥ V ⋆ 1 -β bpi (t k+1 , δ/2) s,a,h p π ⋆ h (s, a) 2 n k+1 h (s, a) ≥ V π 1 -β bpi (t k+1 , δ/2) s,a,h p π ⋆ h (s, a) 2 n k+1 h (s, a) (b) ≥ ρ ⊤ r k+1 -β bpi (t k+1 , δ/2) s,a,h ρ h (s, a) 2 n k+1 h (s, a) -β bpi (t k+1 , δ/2) s,a,h p π ⋆ h (s, a) 2 n k+1 h (s, a) (c) ≥ ρ ⊤ r k+1 -2 2 -(k+1) Hβ bpi (t k+1 , δ/2) = V k+1 1 (36)
where (a) uses the event E bpi for policy π ⋆ , (b) uses the same event combined with the fact that ρ = p π,k+1 , and (c) uses ( 35) and the fact that by definition of ρ, max h,s,a k+1) . Now combining ( 35) with (36) gives that p π ⋆ ,k+1 ∈ Ω k+1 . This finishes the proof.

ρ h (s, a)/n k+1 h (s, a) ≤ 2 -(

F.2.3. CORRECTNESS

Lemma 43 Under the good event, if PRINCIPLE stops then the recommended policy satisfies

V π 1 ≥ V ⋆ 1 -ε.
Proof Suppose that PRINCIPLE stops at phase k ≥ 1. Let π ⋆ be any optimal policy and recall the definition ρ ⋆ = arg max ρ∈Ω k ρ ⊤ r k with ties broken arbitrarily. We have that

V π 1 (a) ≥ ( ρ ⋆ ) ⊤ r k -β bpi (t k , δ/2) s,a,h ρ ⋆ h (s, a) 2 n k h (s, a) (b) ≥ ( p π ⋆ ,k ) ⊤ r k -β bpi (t k , δ/2) s,a,h ρ ⋆ h (s, a) 2 n k h (s, a) (c) ≥ V ⋆ 1 -β bpi (t k , δ/2) s,a,h p π ⋆ ,k h (s, a) 2 n k h (s, a) -β bpi (t k , δ/2) s,a,h ρ ⋆ h (s, a) 2 n k h (s, a) (d) ≥ V ⋆ 1 -2 2 -k Hβ bpi (t k , δ/2) (e) ≥ V ⋆ 1 -ε,
where (a) uses the event E bpi for policy π and the fact that ρ ⋆ = p π,k , (b) uses the definition of ρ ⋆ and the fact that, by Lemma 42, p π ⋆ ,k ∈ Ω k , (c) uses the event E bpi for the policy π ⋆ , and (d) uses that for all ρ ∈ Ω k , max h,s,a ρ h (s, a)/n k h (s, a) ≤ 2 -k and (e) uses the stopping condition of PRINCIPLE (Line 20 of Algorithm 3).

F.2.4. UPPER BOUND ON THE NUMBER OF PHASES

Lemma 44 Define the index of the final phase of PRINCIPLE, κ f := inf k ∈ N + : 2 2-k Hβ bpi (t k , δ/2) ≤ ε . Further let τ denote the number of episodes played by the algorithm. Then under the good event, it holds that κ f < ∞ and

2 κ f ≤ 8Hβ bpi (τ, δ/2) ε 2 .
Proof To prove that κ f is finite we write

t k = k j=0 d j ≤ d 0 + SAH k j=1 2 j ≤ O φ ⋆ (1)SAH 2 log(4/δ) + S + SAH2 k+1 , (37) 
where we have used the coverage event E cov and Lemma 41 to upper bound d 0 and (d k ) 1≤j≤k respectively. This means that t k = O k→∞ 2 k . Now recall that

β bpi (t, δ) := 16H 2 log(1/δ) + 96SAH 3 log(1 + t). (38) 
Combining ( 37) and (38) gives that

β bpi (t k , δ/2) = o k→∞ 2 k . Therefore κ f = inf k ∈ N + : 2 2-k Hβ bpi (t k , δ/2) ≤ ε is indeed finite.
The proof of the second statement is straightforward by noting that κ f -1 does not satisfy the stopping condition (Line 12 in Algorithm 3) and using the (crude) upper bound t κ f -1 ≤ τ .

Lemma 45 (UPPER BOUND ON PHASES WHERE A SUBOPTIMAL POLICY IS ACTIVE) Let π be any suboptimal policy and k such that PRINCIPLE did not stop at phase k and p π,k ∈ Ω k . Further let τ denote the number of episodes played by the algorithm. Then under the good event, we have the inequality

2 k ≤ 16Hβ bpi (τ, δ/2) max(ε, ∆(π)) 2 ,
where ∆(π) := V ⋆ 1 (s 1 ; r) -V π 1 (s 1 ; r) denotes the policy gap of π.

Proof Let π ⋆ be any optimal policy. Then we have

V ⋆ 1 -β bpi (t k , δ/2) s,a,h p π ⋆ ,k h (s, a) 2 n k h (s, a) (a) ≤ ( p π ⋆ ,k ) ⊤ r k (b) ≤ sup ρ∈Ω( p k ), max h,s,a ρ h (s,a)/n k h (s,a)≤2 -k ρ ⊤ r k = V ⋆,k 1 + 2 2-k Hβ bpi (t k , δ/2) (c) ≤ ( p π,k ) ⊤ r k + 2 2-k Hβ bpi (t k , δ/2) (d) ≤ V π 1 + β bpi (t k , δ/2) s,a,h p π,k h (s, a) 2 n k h (s, a) + 2 2-k Hβ bpi (t k , δ/2),
where (a) uses the event E bpi for π ⋆ , (b) uses the definition of Ω k along with Lemma 42 which gives that p π ⋆ ,k ∈ Ω k , (c) uses our assumption that p π,k ∈ Ω k and (d) uses the event E bpi for policy π.

Rewriting the inequality above we get that

∆(π) = V ⋆ 1 -V π 1 ≤ β bpi (t k , δ/2) s,a,h p π ⋆ ,k h (s, a) 2 n k h (s, a) + β bpi (t k , δ/2) s,a,h p π,k h (s, a) 2 n k h (s, a) + 2 2-k Hβ bpi (t k , δ/2) ≤ 2 2 -k Hβ bpi (t k , δ/2) + 2 2-k Hβ bpi (t k , δ/2) = 4 2 -k Hβ bpi (t k , δ/2), (39) 
where the last inequality uses the fact that p π ⋆ ,k ∈ Ω k by Lemma 42 and that p π,k ∈ Ω k by assumption. Therefore, using a crude bound t k ≤ τ we get that

2 k ≤ 16Hβ bpi (τ, δ/2) ∆(π) 2 .
Combining the result above with Lemma 44 and the fact that k ≤ κ f yields the final result.

F.2.5. UPPER BOUND ON THE PHASE LENGTH

Lemma 46 Let T k denote the number of episodes played by PRINCIPLE during phase k ≥ 1.

Then we have

T k ≤ 256Hβ bpi (τ, δ/2)kφ ⋆ sup π∈Π p π h (s, a) max(ε, ∆(π)) 2 h,s,a + 48k Hβ bpi (t k-1 + SAH2 k-1 , δ/2)2 k φ ⋆ (1) + O kφ ⋆ (1)SAH 2 log(4(k + 1) 2 /δ) + S .
Proof Define m k = log 2 max s,a,h c k h (s,a) min s,a,h c k h (s,a)∨1 ∨ 1. Under the good event we have

T k ≤ 64m k φ ⋆ (c k ) + O m k φ ⋆ (1)SAH 2 log(4(k + 1) 2 /δ) + S ≤64kφ ⋆ (c k ) + O kφ ⋆ (1)SAH 2 log(4(k + 1) 2 /δ) + S , (40) 
where the last inequality uses the fact that for all (h, s, a), c k h (s, a) ≤ 2 k . Now we simplify the expression of φ ⋆ (c k ) as follows

φ ⋆ (c k ) = φ ⋆ 2 k min sup ρ∈Ω k-1 ρ h (s, a) + 2 Hβ bpi (t k-1 + SAH2 k-1 , δ/2)2 1-k , 1 h,s,a ≤ φ ⋆ sup π∈Π S : p π,k-1 ∈Ω k-1 2 k p π,k-1 h (s, a) + 2 Hβ bpi (t k-1 + SAH2 k-1 , δ/2)2 k+1 h,s,a , (41) 
where we have used that φ

⋆ (c) ≤ φ ⋆ (c ′ ) if ∀(h, s, a) c h (s, a) ≤ c ′ h (s, a). Now fix a policy π in the set {π ∈ Π S : p π,k-1 ∈ Ω k-1 }. Using the event E bpi for the rewards r ℓ (s ′ , a ′ ) = 1 (ℓ, s ′ , a ′ ) = (h, s, a)
we have that for all (h, s, a)

2 k p π,k-1 h (s, a) ≤ 2 k p π h (s, a) + 2 k β bpi (t k-1 , δ/2) s ′ ,a ′ ,ℓ p π,k-1 ℓ (s ′ , a ′ ) 2 n k-1 ℓ (s ′ , a ′ ) (a) ≤ 2 k p π h (s, a) + 2 k β bpi (t k-1 , δ/2)H2 1-k ≤ 2 k p π h (s, a) + Hβ bpi (t k-1 + SAH2 k-1 , δ/2)2 k+1 (b) ≤ 32Hβ bpi (τ, δ/2)p π h (s, a) max(ε, ∆(π)) 2 + Hβ bpi (t k-1 + SAH2 k-1 , δ/2)2 k+1 ,
where (a) uses that max

s ′ ,a ′ ,ℓ p π,k-1 ℓ (s ′ ,a ′ ) n k-1 ℓ (s ′ ,a ′ ) ≤ 2 1-k since p π,k-1 ∈ Ω k-1
and (b) uses Lemma 45. Plugging the inequality above into (41) we get that

φ ⋆ (c k ) ≤ φ ⋆ sup π∈Π S 32Hβ bpi (τ, δ/2)p π h (s, a) max(ε, ∆(π)) 2 + 3 Hβ bpi (t k-1 + SAH2 k-1 , δ/2)2 k+1 h,s,a ≤ 32Hβ bpi (τ, δ/2)φ ⋆ sup π∈Π S p π h (s, a) max(ε, ∆(π)) 2 h,s,a + 3 Hβ bpi (t k-1 + SAH2 k-1 , δ/2)2 k+1 φ ⋆ (1), (42) 
where we used Lemma 10 in the last step. Combining ( 40) and ( 42) finishes the proof.

F.2.6. TOTAL SAMPLE COMPLEXITY

Theorem 47 With probability at least 1 -δ, the total sample complexity of PRINCIPLE satisfies

τ ≤ O (H 3 log(1/δ) + SAH 4 ) φ ⋆ sup π∈Π p π h (s, a) max(ε, ∆(π)) 2 h,s,a + φ ⋆ (1) ε + φ ⋆ (1) ,
where O hides poly-logarithmic factors in S, A, H, ε, log(1/δ) and φ ⋆ (1) and ∆(π) := V ⋆ 1 (s 1 ; r)-V π 1 (s 1 ; r) denotes the policy gap of π.

Proof We write

τ = κ f k=0 T k ≤ O φ ⋆ (1) 2 SAH 2 log(4/δ) + S + κ f k=1 T k ≤ κ f k=1 256Hβ bpi (τ, δ/2)kφ ⋆ sup π∈Π p π h (s, a) max(ε, ∆(π)) 2 h,s,a :=A + κ f k=1 48k Hβ bpi (t k-1 + SAH2 k-1 , δ/2)2 k φ ⋆ (1) :=B + O κ f k=1 kφ ⋆ (1)SAH 2 log(4(k + 1) 2 /δ) + S :=C
, where we have used Lemma 46. Now we bound each term separately. First note that

A ≤ 256Hβ bpi (τ, δ/2)φ ⋆ sup π∈Π p π h (s, a) max(ε, ∆(π)) 2 h,s,a κ 2 f (a) ≤ 256Hβ bpi (τ, δ/2)φ ⋆ sup π∈Π p π h (s, a) max(ε, ∆(π)) 2 h,s,a log 2 2 8Hβ bpi (τ, δ/2)/ε 2 (b) ≤ O [H 3 log(1/δ) + SAH 4 log(1 + τ )]φ ⋆ sup π∈Π p π h (s, a) max(ε, ∆(π)) 2 h,s,a log 2 2 8Hβ bpi (τ, δ/2)/ε 2 ,
where (a) uses Lemma 44 and (b) uses the definition of β bpi . Similarly

B ≤ 48 Hβ bpi (τ + SAH2 κ f -1 , δ/2)2 κ f φ ⋆ (1)κ 2 f (a) ≤ 48 4H 2 β bpi (τ + SAH2 κ f -1 , δ/2)β bpi (τ, δ/2) ε 2 φ ⋆ (1) log 2 2 8Hβ bpi (τ, δ/2)/ε 2 ≤ 48H ε β bpi (τ + SAH2 κ f -1 , δ/2)φ ⋆ (1) log 2 2 8Hβ bpi (τ, δ/2)/ε 2 (b) ≤ O φ ⋆ (1) ε H 3 log(1/δ) + SAH 4 log 1 + τ + 4SAH 2 β bpi (τ, δ/2) ε 2 log 2 2 8Hβ bpi (τ, δ/2)/ε 2 ,
where (a) and (b) use Lemma 44. Finally

C ≤ O φ ⋆ (1)SAH 2 log(4(κ f + 1) 2 /δ) + S κ 2 f ≤ O φ ⋆ (1)SAH 2 log 4 log 2 2 8Hβ bpi (τ, δ/2)/ε 2 δ + S log 2 2 8Hβ bpi (τ, δ/2)/ε 2 ,
where we have used Lemma 44 again. Combining the three inequalities with the definition of β bpi we get that

τ ≤ O (H 3 log(1/δ) + SAH 4 ) φ ⋆ sup π∈Π p π h (s, a) max(ε, ∆(π)) 2 h,s,a + φ ⋆ (1) ε + φ ⋆ (1)
× polylog(τ, S, A, H, φ ⋆ (1), ε, log(1/δ)) .

Solving for τ yields τ ≤ O (H 3 log(1/δ) + SAH 4 ) φ ⋆ sup π∈Π p π h (s, a) max(ε, ∆(π)) 2 h,s,a

+ φ ⋆ (1) ε + φ ⋆ (1) ,
where O hides poly-logarithmic factors in S, A, H, ε, log(1/δ) and φ ⋆ (1).

Remark 48 (Reachability) While for the PCE algorithm we were able to reduce the sample complexity by ignoring states that are hard to reach (which also allows using PCE when Assumption 1 is violated), we did not manage to propose a similar improvement for PRINCIPLE. This is because in reward-free exploration it is sufficient to guarantee that the true confidence intervals that depend on the visitation probabilities under the true MDP are small, i.e., β RF (t k , δ) (h,s,a)

p π h (s,a) 2 n k h (s,a) ≤ 2 k . This allows us to filter out all (h, s, a) for which sup π p π h (s, a) ≤ O(ε/SH 2 ), by arguing that their contribution to the true confidence interval is negligible. In contrast, the analysis of PRINCIPLE crucially relies on concentrating the values of policies by minimizing their empirical confidence intervals, i.e., β bpi (t k , δ) (h,s,a) p π,k h (s,a) 2 n k h (s,a) ≤ 2 k . We do not see a straightforward way to ignore the contribution of hard-to-reach states to these empirical confidence intervals.

F.3. Comparison with other BPI-algorithms

In this section we compare PRINCIPLE with other algorithms for Best-Policy Identification algorithms that enjoy problem-dependent guarantees, namely PEDEL (Wagenmaker and Jamieson, 2022) and MOCA (Wagenmaker et al., 2022). Recalling that ∆(π) = V ⋆ 1 (s 1 ) -V π 1 (s 1 ) denotes the policy gap of π, we first note that by Theorem 7, the leading term in the sample complexity of PRINCIPLE in the small (ε, δ) regime is PRINCIPLE(M, ε) log We will now compare this term with the leading terms in the sample complexities of PEDEL and MOCA respectively, in the same asymptotic regime. Therefore the leading term PEDEL's complexity in the small (ε, δ) regime is PEDEL(M, ε) log(1/δ). The next lemma shows that, up to H factors, this rate is always better than the complexity measure achieved by PRINCIPLE. Therefore we see that MOCA(M, ε) log(1/δ) is the dominating term in the sample complexity of MOCA in the regime of small ε and small δ. On the other hand, as stated earlier, the leading term in PRINCIPLE's complexity in that regime is PRINCIPLE(M, ε) log(1/δ). Therefore we compare MOCA(M, ε) with PRINCIPLE(M, ε) to assess which algorithm is better in this regime. where we used that p π h (s, a) ≤ π 1 (a 2 |s 1 ) (since the only path to reach (h, s, a) is by playing action a 2 at s 1 ) and that max(a, b) ≥ (a + b)/2. Now, by the performance-difference lemma we have

∆(π) = h,s,a p π h (s, a)[V ⋆ h (s) -Q ⋆ h (s, a)] ≥ p π 1 (s 1 , a 2 )[V ⋆ 1 (s 1 ) -Q ⋆ 1 (s 1 , a 2 )] = π 1 (a 2 |s 1 )∆.
Plugging this back into (44), we get sup π∈Π S p π h (s, a) max(ε, ∆(π)) 2 ≤ sup 

Appendix G. Estimating State Reachability

Let A Π be a regret minimizer that has a small regret for a (fixed) reward function r. If we set this reward function to r (h,s) h ′ (s ′ , a ′ ) = 1((s ′ = s, h ′ = h)) for a target pair (h, s) intuitively the regret minimizer will visit as much as possible state s in step h and the total reward collected by the algorithm, n t h (s) = a∈A n t h (s, a), will be close to t × W h (s), where the maximum visitation probability W h (s) = max π p π h (s) is actually the optimal value function in the MDP with reward function r (h,s) . The empirical number of visitations can thus be used to estimate the unknown visitation probability.

This idea is already at the heart of the initialization phase of the MOCA algorithm, which relies on repeatedly running the Euler algorithm. We propose a slightly simpler version below, that doesn't need any restart and relies on a generic algorithm A Π satisfying some first-order regret bound scaling with a quantity R Π δ (T ), as specified in the following theorem. ESTIMATEREACH-ABILITY ((h, s); ε 0 , δ) outputs a valid confidence interval [W h (s), W h (s)] on the value of W h (s), which can be further used to eliminate all (h, s) whose maximum visitation probability is (slightly) smaller than a target ε 0 .

Algorithm 5 ESTIMATEREACHABILITY ((h, s); ε 0 , δ) 1: Input: Step h, state s, threshold ε 0 > 0, failure probability δ ∈ (0, 1), regret minimizer A Π 2: Output: An interval [W h (s), W h (s)] 3: Compute T = T (ε 0 , δ) = inf T ∈ N : 4R Π δ/2 (T ) + 6 log 4 δ ≤ ε 0 4 T 4: Collect T episodes {(s t 1 , a t 1 , . . . , s t H , a t H )} t≤T using A Π with reward r h ′ (s ′ , a ′ ) = 1((s ′ = s, h ′ = h)) and confidence 1 -δ/2 5: Let n T h (s) = T t=1 1(s t h = s) be the number of visits of (h, s) 6: Define W h (s) = n T h (s)

2T -ε 0 16 ∨ 0 and W h (s) = 2n T h (s) T

+ ε 0 4 ∧ 1
Theorem 51 Assume that, for all (h, s), when A Π is run for the reward function r = r (h,s) and confidence 1 -δ up to some horizon T ∈ N, with probability larger than 1 -δ,

T t=1 V ⋆ 1 (s 1 ; r) - T t=1 V π t 1 (s 1 ; r) ≤ R Π δ (T )T V ⋆ (s 1 ; r) + R Π δ (T ). ( 46 
)
For all (h, s), let [W h (s), W h (s)] be the output of ESTIMATEREACHABILITY (h, s; ε 0 , δ/(SH)) and define X = (h, s) : W h (s) ≥ ε 0 8 .

With probability 1 -δ, the following holds:

• For all (h, s), W h (s) ∈ W h (s), W h (s)

• {(h, s) : W h (s) ≥ ε 0 } ⊆ X ⊆ (h, s) : W h (s) ≥ ε 0

8

• For all (h, s) ∈ X , W h (s) ≤ 36W h (s).

Moreover, the (deterministic) sample complexity necessary to construct X is

T ε 0 (δ) := SH × inf T ∈ N ⋆ : T ∈ N : 4R Π δ/(2SH) (T ) + 6 log 4 δ ≤ ε 0 4 T .
In particular, using UCBVI as the regret minimizer, we have

T ε 0 (δ) = O S 2 AH 2 (log( SAH δ )+S) ε 0
.

Proof Let T = T (ε 0 , δ) be the (deterministic) number of episodes of ESTIMATEREACHABILITY ((h, s); ε 0 , δ), which satisfies

4R Π δ/2 (T ) + 6 log 4 δ ≤ αε 0 T for α := 1 4 . ( 47 
)
The analysis relies on the first-order bound on the regret of A Π assumed in (46) and on a tight control of the martingale

M T = T t=1
1(s t h = s) -p πt h (s)

  l (s, a) ρ l (s) .

  24 [Concentration of p T V ] Let Z ⊆ [H]×S×A, Z := |Z|, and {V h : S → [0, H]} h∈[H+1]

  , where (a) uses (32) and (b) uses(29).Combining (31) with the previous inequality yields that φ ⋆ ([sup π p π h (s, a)] h,s,a ) ≤ S α AH.Appendix F. PRINCIPLE and its AnalysisF.1. Pseudo-code of PRINCIPLE The pseudo code of PRINCIPLE is detailed in Algorithm 3. Algorithm 3 PRINCIPLE (PRoportIoNal Coverage with Implicit PoLicy Elimination) 1: Input: Precision ε, Confidence δ, set of reachable states S 2: Output: A policy π that is ε-optimal w.p larger than 1 -δ 3: Define target function c 0 h (s, a) = 1 for all (h, s, a) 4: Execute COVGAME c 0 , δ/4 to get dataset D 0 and number of episodes d 0 // BURN-IN PHASE 5: Initialize episode count t 0 ← d 0 and statistics n 0 h (s, a), r 0 h (s, a), p 0 h (.|s, a) using D 0 6: Initialize the set of active distributions Ω 0← Ω( p 0 ) 7: for k = 1, . . . do sup ρ∈Ω k-1 ρ h (s, a) + 2 Hβ bpi (t k-1 + SAH2 k , δ/2)2 1-k , 1 for all (h,s, a) 10: Execute COVGAME c k , δ/4(k + 1) 2 to get dataset D k and number of episodes T k 11: if T k > SAH2 k then 12: Run PRUNEDATASET( D k , c k ) to get effective dataset D k and effective phase length d k 13: else 14: Set d k ← T k and D k ← D k effective episode count t k ← t k-1 + d k and statistics n k h (s, a), rk h (s, a), p k h (.|s, a) using D k // STATE-ACTION-DISTRIBUTION ELIMINATION 17:

  Input: Target counts c, Dataset D such that n h (s, a; D) ≥ c h (s, a) for all (h, s, a) 2: Output: A dataset D of d ≤ SAH2 k episodes satisfying n h (s, a; D) ≥ c h (s, a) for all (h, s, a) 3: Initialize dataset D ← ∅, episode number d ← 0 and dataset-counts n h (s, a; D) ← 0 for all (h, s, a) 4: for episode e = (s e ℓ , a e ℓ , R e ℓ ) 1≤ℓ≤H in D do 5:

F

  .3.1. COMPARISON WITH PEDEL Define the minimum policy gap ∆ min (Π D ) := min π̸ =π ⋆ ∆(π), if the optimal policy π ⋆ is unique 0, otherwise. Then instantiating Theorem 1 from Wagenmaker and Jamieson (2022) for our setting of tabular MDPs (i.e. with d = SAH and Π = Π D ), we see that the sample complexity achieved by PEDEL satisfies τ ≤ O PEDEL(M, ε)(log(1/δ) + SH) + poly(SAH, log(1/ε), log(1/δ))where PEDEL(M, ε) := H 4 a) 2 /ρ h (s, a) max(ε, ∆(π), ∆ min (Π D )) 2 .

Lemma 49 ≤=

 49 For any MDP M, it holds that PEDEL(M, ε) ≤ H 2 PRINCIPLE(M, ε).Proof Fix any h ∈ [H], ρ ∈ Ω, π ∈ Π D . Then we have Therefore for all h ∈ [H], using that Π D ⊂ Π S we have min a) 2 /ρ h (s, a) max(ε, ∆(π), ∆ min (Π D )) 2 ≤ min a)/ρ h (s, a) max(ε, ∆(π), ∆ min (Π D )) a)/ρ h (s, a) max(ε, ∆(π), ∆ min (Π D )) a) ρ h (s, a) max(ε, ∆(π)) 2 a) 2 /ρ h (s, a) max(ε, ∆(π), ∆ min (Π D )) 2 H 2 PRINCIPLE(M, ε).

F

  h, s, a) : ∆ h (s, a) ≤ 3ε/W h (s) ε 2 ,where W h (s) := sup π p π h (s) is the reachability of (h, s) and∆ h (s, a) := min b̸ =a V ⋆ h (s) -Q ⋆ h (s, b) if a is the unique optimal action at (h, s), V ⋆ h (s) -Q ⋆ h (s,a) otherwise is the value gap of (h, s, a). Theorem 1 together with Proposition 2 of Wagenmaker et al. (2022) yield that the stopping time of MOCA satisfies τ ≤ O MOCA(M, ε) log(1/δ) + poly SAH, log(1/ε), log(1/δ) ε .

Lemma 50 ProofFigure 1 :

 501 Figure1: MDP instance with large policy gaps and small value gaps.

  For triplets (h, s, a) outside of M 2 (i.e. either at s 1 or in the sub-MDP M 1 ) we use the crude boundsup π∈Π S p π h (s, a) max(ε, ∆(π)) 2 ≤ sup π∈Π S p π h (s, a) max(ε, ∆(π)) 2 (1 ((h, s, a) ∈ M 2 ) + 1 ((h, s, a) / ∈ M 2 )) a) max(ε, ∆(π)) 2 1 ((h, s, a) ∈ M 2 ) a) max(ε, ∆(π)) 2 1 ((h, s, a) / ∈ M 2 ) h,s,a   ≤ H 3 φ ⋆ 1 ((h, s, a) ∈ M 2 ) ε∆ h,s,a + H 3 φ ⋆ 1 ((h, s, a) / ∈ M 2 ) sup π∈Π S p π h (s,uses the sub-linearity of the flow from Lemma 10, (b) uses the bound on φ ⋆ from Lemma 12 and (c) uses that the sub-MDP M 2 has deterministic transitions. Combining (43) and (45) finishes the proof.
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  -Yadkori et al. (2011). Let F t,h denote the filtration up to stage h of round t. For any h ∈ [H], t ≥ 1, the random variable η t h := V h+1 (s t h+1 ) -p h (s t h , a t h ) T V h+1 is zero-mean and H 2 -subgaussian conditionally on F t,h due to the boundedness of the functions {V h } h∈[H] .

	Let X t h be a Z-dimensional vector h ) ∈ Z, and zero at all other positions. Note h , a t h ) if (h, s t h , a t containing a value 1 at position (h, s t that X t h is F t,h -measurable, while η t h is F t,h+1 -measurable. Let Y t := t j=1 H h=1 X t h η t h . For all
	(h, s, a) ∈ Z, we have

  min CovGame run with inputs (c k , δ/4(k + 1) 2 ) terminates after at most64m k φ ⋆ (c k ) + O m k φ ⋆ (1)SAH 2 (log(4(k + 1) 2 /δ) + S)episodes and returns a dataset D k such that for all (h, s, a), n h (s, a; D k

					s,a,h	p π h (s, a) 2 n k h (s, a)	,	s,a,h	p π,k h (s, a) 2 n k h (s, a)
	and	s,a,h	p π,k h (s, a) -p π h (s, a) r h (s, a) ≤ β bpi (t k , δ/2)	s,a,h	p π h (s, a) 2 n k h (s, a)	for all r ∈ [0, 1] SAH ,
	E					

cov := ∀k ∈ N,

To cope with unknown transitions, we will use an upper bound of p π h (s, a) in the definition of proportional coverage.

Since Tarbouriech et al. (2021) consider reset-free MDPs, their complexity actually scales as s,a Ds,ac(s, a), where Ds,a is the minimum expected time to reach s, a from any state. In episodic MDPs, the minimum expected number of episodes to reach some (h, s, a) is exactly 1/ maxπ p π h (s, a), hence yielding ❸.

R λ (τ i+1 ) -3 log(4τ i+1 /δ).

i.e. π is the policy obtained by renormalization of ρ.
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where p π h (s) = p π h (s, π(s)) is the probability to reach s under policy π. Observing that the increment of this martingale is bounded in [-1, 1] and that its variance is upper bounded by W h (s), we can use Bernstein's inequality to get that

Remarking that the regret of A Π for the reward function r = r (h,s) can be written

and that n T h (s) ≤ T W h (s) + M T , we obtain that with probability larger than 1 -δ, the following two inequalities hold:

Using the AM-GM inequality above, this first yields

where f (T, δ) := 4R δ/2 (T ) + 16 3 log 4 δ and g(δ) := 7 6 log 4 δ . Observing that g(δ) ≤ 1 4 f (T, δ) and f (T, δ) ≤ αε 0 T by inequality (47), we get

which also implies

As the output of ESTIMATEREACHABILITY ((h, s); ε 0 , δ) can be written

and we get that with probability larger than 1 -δ:

1. For any value of W h (s),

is the output of ESTIMATEREACHABILITY ((h, s); ε, δ/SH) and

we deduce that, with probability 1 -δ:

4 ε 0 , ε 0 we have by 3. that

Plugging the value α = 1/4 yields W h (s) ≤ 36W h (s) in both cases.

To get an upper bound on the number of episodes used by an instance of ESTIMATEREACHA-BILITY, we need to find a T that satisfies

For UCBVI, Theorem 19 yields R δ (T ) = 256 2 SAH log 2SAH δ + 6S log 2 (T + 1). Using the bound log 2 (x) ≤ 4 √ x we get a first crude upper bound on T by solving a quadratic equation which gives the final scaling by plugging back this crude bound in (48).