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Abstract

We obtain conditions, which when fulfilled, permit to transform the coordinates

of a dynamical system into pairs of canonical ones i.e. conjugate with respect to a

Hamiltonian. These conditions, restricted to the class of coordinate transformations

which act on each coordinate independently, are greatly simplified. However, they

are surprisingly successful in defining canonical coordinates and an associated Hamil-

tonian for several test examples. So, a method is proposed to exploit these simple

transformations in a systematic manner.

1 Introduction

A Hamiltonian dynamical system has specific properties, which can be taken advantage

of in its study1. General, N -dimensional, Poisson brackets permit to obtain generalized

Hamiltonians3. However, quantization of the latter can be ambiguous4. Here, we will take

the term “Hamiltonian” in the restricted sense of a function giving Hamilton equations

for pairs of conjugate canonical coordinates. Such canonical Hamiltonian systems can be

quantized by replacing Poisson brackets by commutators2.
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Darboux’s theorem or its generalization5 insures that locally there always exists a canon-

ical representation of a Hamiltonian in the generalized sense. In this work, we aim at finding

directly this canonical representation. It is well-known that it is not possible to change the

canonical or non-canonical nature of a dynamical system with a linear transformation of the

coordinates. In this work, we show how it is feasible with a non-linear but simple one, by

just writing equalities6, that must be satisfied according to Schwartz theorem after transfor-

mation. The method is applied succesfully to several classical models, in spite of the quite

severe restriction we make, that the transformations act on each coordinate independently.

As straightforward and simple as the method might be, we have not found such proposal

in the literature. For example, the Lotka-Volterra model in 2-dimension has been exten-

sively studied and the Hamiltonian we obtain with our approach is known7,8. However,

the systematic derivation of an Hamiltonian by defining an appropriate generalized Poisson

bracket9 or by time rescaling10, give different Hamiltonian functions as there is no change

of the dynamical system coordinates. Volterra’s own construction preserves the canonical

Poisson bracket, but introduce extra-variables, and the Hamiltonian he obtained, though

formally close to ours, gives more complicated Hamilton-Jacobi equations11,12. In addition,

it appears that our transformed coordinates can be of physical interest for the description

of the system. So, we propose an algorithm based on Schwartz theorem equalities, to deal

with general systems, which searches for, (at least,) a subset of coordinates amenable to be

turned into canonically conjugate ones for a Hamiltonian.

The article is organized as follows: First we present the method in two-dimension and

illustrate its application on two case examples. Then, we generalize it to any finite dimension,

and apply it to the Kermack-McKendrick model, before concluding.
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2 Transformation of a dynamical system in R2

2.1 Theory

We consider a dynamical system in 2 real coordinates in an open set U ⊆ R2, defined by

a mapping f : U −→ R2, that is to say, f = (f1, f2), ∀i ∈ {1, 2} fi : U −→ R is smooth

enough (often considered to be C∞, however this is not necessay for our purpose, it may also

depends upon the time variable, but we will omit this too), and, ẋi = fi(x1, x2).

We look for a diffeomorphism h : U 7−→ R2, whose components h1 and h2 define two new

coordinates,

q = h1(x1, x2) (1)

p = h2(x1, x2). (2)

which we would like to be canonically conjugate for some Hamiltonian function, H,

q̇ =
∂H

∂p
, (3)

ṗ = −∂H
∂q

. (4)

We denote the inverse mapping h−1 by g = (g1, g2),

x1 = g1(q, p) , (5)

x2 = g2(q, p) . (6)

The local inversion theorem6 insures that for (x1, x2) = g(q, p) such that (q, p) ∈ h(U), we
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have the relation between the differentials: Dh(x1, x2) = [Dg(q, p)]−1, so that:

∂h1(x1, x2)

∂x1
=

∂g2

∂p

∂g1

∂q
∂g2

∂p
− ∂g1

∂p
∂g2

∂q

, (7)

∂h1(x1, x2)

∂x2
=

−∂g1

∂p

∂g1

∂q
∂g2

∂p
− ∂g1

∂p
∂g2

∂q

, (8)

∂h2(x1, x2)

∂x1
=

−∂g2

∂q

∂g1

∂q
∂g2

∂p
− ∂g1

∂p
∂g2

∂q

, (9)

∂h2(x1, x2)

∂x2
=

∂g1

∂q

∂g1

∂q
∂g2

∂p
− ∂g1

∂p
∂g2

∂q

. (10)

Injecting expressions (1) and (2) in Eq.(3) and using the chain rule, we obtain

∂H

∂p
=

∂h1(x1, x2)

∂x1
ẋ1 +

∂h1(x1, x2)

∂x2
ẋ2

=
∂h1(x1, x2)

∂x1
f1(g1(q, p), g2(q, p)) +

∂h1(x1, x2)

∂x2
f2(g1(q, p), g2(q, p)) , (11)

and similarly, using Eq.(4),

−∂H
∂q

=
∂h2(x1, x2)

∂x1
f1(g1(q, p), g2(q, p)) +

∂h2(x1, x2)

∂x2
f2(g1(q, p), g2(q, p)) . (12)

Substituting Eqs.(7)-(10) into Eqs. (11) and (12), we obtain the Hamilton equations,

∂H

∂p
=

f1(g1(q, p), g2(q, p)) · ∂g2

∂p
− ∂g1

∂p
· f2(g1(q, p), g2(q, p))

∂g1

∂q
∂g2

∂p
− ∂g1

∂p
∂g2

∂q

, (13)

−∂H
∂q

=

∂g1

∂q
· f2(g1(q, p), g2(q, p))− f1(g1(q, p), g2(q, p)) · ∂g2

∂q

∂g1

∂q
∂g2

∂p
− ∂g1

∂p
∂g2

∂q

. (14)

We can either (i) integrate one of these equation and insert the expression obtained for H

into the other one, (assuming that g is of class C2, so that h is also C2)6, to derive a relation

between f1, f2, and g (or more conveniently h), or, (ii) (assuming that, in addition, the
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fi’s have first partial derivatives and H second partial derivatives), we can use Schwartz’s

theorem6 for the same purpose. Noting ī = 2 if i = 1 and ī = 1 if i = 2, and using the inverse

of Eqs.(7)-(10), we obtain, in the original coordinates, the following necessary condition:

∑
i∈{1,2}

∂fi
∂xi

+ fi ·
∂2hi

∂x2
i

∂hī

∂xī
− ∂2hi

∂x1∂x2

∂hī

∂xi
− ∂2hī

∂x2
i

∂hi

∂xī
+ ∂2hī

∂x1∂x2

∂hi

∂xi

∂h1

∂x1

∂h2

∂x2
− ∂h1

∂x2

∂h2

∂x1

= 0 . (15)

The condition is only necessary, because Schwartz’s theorem only asserts that, if a differential

form is exact, then it is closed i.e. satisfies Eq.(15). The condition will be sufficient if the

open set U is simply connected according to Poincaré lemma. We remark at this stage that,

if the hi’s are linear, their second partial derivatives cancel out and we are left with the first

term within the sum over i. That is to say, we retrieve the condition for the differential form

to be closed in its original coordinates:

∂f1(x1, x2)

∂x1
+
∂f2(x1, x2)

∂x2
= 0 . (16)

Conversely, when this is not zero but condition (15) is fulfilled, then, necessarily, the second

terms within the sum over i are not all zero. In particular, if we manage to find some h1,

h2 such that, for each i ∈ {1, 2}, the second term cancels the first one within the sum, the

differential form will be closed.

To go further with this, we may consider the expansion of the hi(x1, x2)’s on a set of

product functions: hi(x1, x2) =
∑
j1,j2

λj1,j2i χj1(x1)χj2(x2), each factor belonging, for example,

to a fixed Hilbertian basis set (χj(x))j. We can limit the set of coefficients λj1,j2i to deal

with, by truncating this expansion. We may look for one-term expansions of the form

hi(x1, x2) = ψ1
i (x1)ψ

2
i (x2) and solve Eq.(15) for the four functions ψ1

1, ψ2
1, ψ1

2, ψ2
2. Hereafter,

we make the even more drastic assumption that each coordinate is transformed independently

of the others, that is to say, hi only depends upon xi, so that ∂hi

xī
= 0. This simplifies greatly
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the general equations, (13) and (14), which now become,

∂H

∂p
=

f1(g1(q), g2(p))

g′1(q)
, (17)

−∂H
∂q

=
f2(g1(q), g2(p))

g′2(p)
, (18)

as well as Eq.(15),

∂f1(x1, x2)

∂x1
+
h′′1(x1)

h′1(x1)
· f1(x1, x2) +

∂f2(x1, x2)

∂x2
+
h′′2(x2)

h′2(x2)
· f2(x1, x2) = 0 . (19)

In the next sections, we will apply the necessary condition (19) to two different cases and

show its practicality to determine the freely adjustable functions h1 and h2.

2.2 Volterra’s model as a test example

The first example appearing in Ref.13, of a dynamical system that is non-canonical in its

original coordinates, is Volterra’s model of sharks and sardines11:

ẋ1 = a x1 − b x1x2 , (20)

ẋ2 = −c x2 + d x1x2, (21)

with a, b, c, d ∈ R+∗. In these variables, assuming that ẋ1 = ± ∂H
∂x2

and ẋ2 = ∓ ∂H
∂x1

, Schwartz’s

theorem applied to H, would not be satisfied since (a− bx2) 6= ±(c− dx1).

Eq.(19) gives the condition:

(a− b x2)
(

1 +
h′′1(x1)

h′1(x1)
· x1
)

+ (−c + d x1)

(
1 +

h′′2(x2)

h′2(x2)
· x2
)

= 0 . (22)
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The condition will be clearly fulfilled if,

h′′1(x1)

h′1(x1)
= − 1

x1
,

h′′2(x2)

h′2(x2)
= − 1

x2
.

These are easy to integrate, recognizing logarithmic derivatives on both sides,

ln(h′1(x1)) = ln(
1

x1
) + c1 ,

ln(h′2(x2)) = ln(
1

x2
) + c2 .

Choosing c1 = c2 = 0, and integrating a second time with zero as integration constants, we

finally define the new variables in the following way:

q = h1(x1) = ln(x1) , (23)

p = h2(x2) = ln(x2) , (24)

that is to say,

x1 = exp(q) , (25)

x2 = exp(p) . (26)

The canonical Hamiltonian is obtained from Hamilton’s equations (17) and (18),

HV olterra = a · p− b · exp(p) + c · q − d · exp(q) . (27)

Not surprisingly for such a popular model, Hamiltonian’s forms are already known7–9,12,14–18.

However, the derivation of Eq.(27) is particularly straightforward with our approach. The

number of coordinates is still two, unlike in Volterra’s work12,18. These coordinates are con-
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jugate for the canonical Poisson bracket, unlike in9,10,15 where a generalized Poisson bracket

is used or appear from a time coordinate rescaling. The new coordinates are physically rel-

evant: the original ones would evolve exponentially, if they were not coupled, so, it makes

sense to describe the system on a logarithmic scale. This is what is achieved thanks to the

new coordinates.

2.3 A classical system derived from a forced, two-level, quantum

model

Consider the following dynamical system derived from a forced, two-level, quantum model19:

ẋ1 = − sin(x2) , (28)

ẋ2 = B − cot(x1) cos(x2), (29)

where x1 and x2 are two real dynamical coordinates, and B a constant. This system is not

canonical, for, suppose there exists H such that ẋ1 = ± ∂H
∂x2

and ẋ2 = ∓ ∂H
∂x1

, the right hand

sides of Eqs. (28) and (29) being differentiable, we can search for an H that is derivable

twice. Then, Schwartz’s theorem permits to conclude at the non-existence of such H, since

∂ sin(x2)
∂x1

= 0 and ∂B−cot(x1) cos(x2)
∂x2

= cot(x1) sin(x2) 6= 0.

Equation (15) applied to this system gives,

(
cot(x1)−

h′′1(x1)

h′1(x1)

)
sin(x2) + (B − cot(x1) cos(x2))

h′′2(x2)

h′2(x2)
= 0 . (30)

This can be satisfied by taking h2 linear, and
h′′

1 (x1)

h′
1(x1)

= cot(x1). We recognize again logarithmic

derivatives and integrate, this gives ln(h′1(x1)) = ln(sin(x1)) + c. The simplest choice of

integration constants leads to h2(x2) = x2 and h1(x1) = cos(x1). Therefore, we define the
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new coordinates as

q = cos(x1) (31)

p = x2, , (32)

and the dynamical system becomes:

q̇ =
√

1− q2 sin(p) (33)

ṗ = B − q√
1− q2

cos(p). (34)

We easily verify that Eqs. (33) and (34) are the Hamilton-jacobi equations for the Hamilto-

nian,

H = −Bq −
√

1− q2 cos(p) . (35)

3 Generalization to a dynamical system in RN

3.1 Theory

We now consider a dynamical system in N real coordinates:

∀i ∈ {1, · · · , N} ẋi = fi(x1, · · · , xN) . (36)

If N is odd, one can always add an extra dummy coordinate, which is constant and whose

initial value is zero. So, without loss of generality, we can assumeN even: N = 2n, and search

for a canonical Hamiltonian H, and a transformation of the initial variables, x1, . . . , x2n into
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two sets {q1, · · · , qn}, {p1, · · · , pn}, such that:

∀i ∈ {1, · · · , n}, q̇i =
∂H

∂pi
(37)

ṗi = −∂H
∂qi

. (38)

The general equations (13), (14) and (15) can easily be generalized to a diffeomorphism

h(x1, · · · , x2n), if the 2n coordinates are partitionned into pairs {xi1 , xi2}, and if h acts

on each pair independently of the others, that is to say, if for each pair (i1, i2), it has a

corresponding pair of components hj1 and hj2 , which only depend upon the two coordinates

xi1 and xi2 . Then, without loss of generality, the coordinates and the components can be

reordered, so that

∀i ∈ {1, · · · , n}, qi = h2i−1(x2i−1, x2i) (39)

pi = h2i(x2i−1, x2i) . (40)

A fortiori, if each hi only depends upon xi, Eqs. (17), (18) and (19) can be generalized.

This will give as many necessary conditions of the form (19) to be satisfied simultaneously,

as the number of canonically conjugate disjoint pairs to be found. An example is given in

the next section.

3.2 Kermack-McKendrick’s model

The Kermack-McKendrick’s model is a dynamical system for 3 real coordinates of the form,

ẋ1 = −rx1x2 (41)

ẋ2 = +rx1x2 − ax2 (42)

ẋ3 = +ax2 , (43)
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with a, r ∈ R+∗, to which we add a dummy one:

ẋ4 = 0 with x4(0) = 0 . (44)

We easily calculate:

∂f1(x1, · · · , x4)
∂x1

+
d ln(h′1(x1))

dx1
· f1(x1, · · · , x4) = −rx2

(
1 +

d ln(h′1(x1)

dx1
· x1
)

(45)

∂f2(x1, · · · , x4)
∂x2

+
d ln(h′2(x2))

dx2
· f2(x1, · · · , x4) = (rx1 − a)

(
1 +

d ln(h′2(x2)

dx2
· x2
)

(46)

∂f3(x1, · · · , x4)
∂x3

+
d ln(h′3(x3))

dx3
· f3(x1, · · · , x4) = ax2

d ln(h′3(x3)

dx3
(47)

∂f4(x1, · · · , x4)
∂x4

+
d ln(h′4(x4))

dx4
· f4(x1, · · · , x4) = 0. (48)

These four quantities cancel out independently, if one takes: h1(x1) = ln(x1), h2(x2) =

ln(x2), h3(x3) = x3, h4(x4) = x4, then, any two pairs can be canonically conjugate. Choosing

q1 = h1(x1), p1 = h2(x2), q2 = h3(x3), p2 = h4(x4) and integrating the Hamilton equations we

obtain the Hamiltonian, HKermack−McKendrick = −r exp q1+aq1+(ap2−r) exp p1, which gives

the correct equations, given that, solving the Hamilton’s equations, p2 = x4 = x4(0) = 0.

4 Concluding remarks

Since, it is possible that not all but only a subset of coordinates fulfills the necessary con-

ditions imposed by the Schwartz equalities, we propose the following method to detect one

or more pairs of variables amenable to be transformed into conjugate canonical variables

following a canonical Hamiltonian dynamics.

(i) Calculate ∀i ∈ {1, · · · , N} the fi-dependent part of ∂fi(x1,··· ,xN )
∂xi

+
d ln(h′

i(xi))

dxi
·fi(x1, · · · , xN)

(ii) For all i < N , and j > i, try to find hi and hj such that Eq. (19) is satisfied for the pair

(i, j). In case of success, add pair (i, j) to a set, C, of potentially conjugate pairs.

(iii) Choose a maximal subset of disjoint pairs of C, and transform the associated variables
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using the corresponding h functions.

Following such a path, it is possible to transform the three non-canonical systems consid-

ered in this work, namely a classical system derived from a forced two-level quantum model,

Volterra’s model and Kermack-McKendrick’s model into canonical ones, in a very simple

and straightforward fashion.

There is a lot of freedom in the choice of the two one-variable functions, h1 and h2, to

fulfill constraint (19). So, we can expect that a large class of dynamical systems should

be convertible into canonical ones, even within the severe restriction that the variables be

transformed independently of each others.

Of course, not all dynamical systems are supposed to be amenable to our treatment. In

particular, one could think of non-conservative systems, such as the damped pendulum,

ẋ1 = x2 , (49)

ẋ2 = −ω2 sin(x1)− µ x2. (50)

or the harmonic oscillator with friction (which is just its linearized version obtained by

substituting x1 to sin(x1)). However, in these particular cases, and in fact, for any system

with a force deriving from a potential f(x1) = −dV (x1)
dx1

with a damping term of the form

−µ(t)ẋ1,

ẋ1 = x2 , (51)

ẋ2 = −dV (x1)

dx1
− µ(t) x2, (52)

one can easily extend our method by using time-dependent transformations.

More explicitly, one retrieves the original, non-autonomous, non conservative, dynamical

system by applying canonical Eqs. (3) and (4) to the conjugate coordinates q, p and the
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Hamiltonian H defined by the following equations:

q = h1(x1) = x1 , (53)

p = h2(x2) = exp

(∫ t

0

µ(t′)dt′
)
x2, (54)

H =
exp

(
−
∫ t

0
µ(t′)dt′

)
2

p2 + exp

(∫ t

0

µ(t′)dt′
)
V (q). (55)

So, in fact, the applicability of our proposed method goes beyond what common belief would

assume.
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