Non linear transformations of non-Hamiltonian dynamical systems into Hamiltonian ones

Patrick Cassam-Chenaï

To cite this version:

Patrick Cassam-Chenaï. Non linear transformations of non-Hamiltonian dynamical systems into Hamiltonian ones. 2023. hal-04215419v2

HAL Id: hal-04215419
 https://hal.science/hal-04215419v2

Preprint submitted on 18 Jan 2024 (v2), last revised 19 Feb 2024 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Non linear transformations of non-Hamiltonian dynamical systems into Hamiltonian ones

Patrick Cassam-Chenaï*
Université Côte d'Azur, LJAD, UMR 7351, 06100 Nice, France
E-mail: cassam@unice.fr

Abstract

We obtain necessary conditions for coordinate transformations to turn a dynamical system into a Hamiltonian one in canonical coordinates. These equations, restricted to the class of coordinate transformations which act on each coordinate independently, are greatly simplified. However, they are surprisingly successful in defining canonical coordinates and an associated Hamiltonian for several test examples. So, a method is proposed to exploit these simple transformations in a systematic manner.

1 Introduction

A Hamiltonian dynamical system has specific properties, which can be taken advantage of in its study ${ }^{11}$. Moreover, Hamiltonian system can be quantized by replacing Poisson brackets by commutators ${ }^{[2]}$. So, it is advantageous to turn a non-Hamiltonian dynamical system, lacking these properties, into a Hamiltonian one, when possible.

We take the term "Hamiltonian" in the sense of a function giving Hamilton equations for pairs of conjugate canonical coordinates. General, N-dimensional, Poisson brackets are
interesting to obtain generalized Hamiltonians ${ }^{3}$, however, their quantization can be ambiguous ${ }^{44}$. In addition, Darboux's theorem or its generalization ${ }^{55}$ insures that locally there always exists a canonical representation of such generalized Hamiltonian. So, in this work, we aim at finding directly this canonical representation.

It is well-known that it is not possible to change the Hamiltonian or non-Hamiltonian nature of a dynamical system with a linear transformation of the coordinates. In this work, we show how it is feasible with a non-linear but simple one, by just writing equalities ${ }^{6}$, that must be satisfied according to Schwartz theorem after transformation. The method is applied succesfully to several classical models, in spite of the quite severe restriction we make, that the transformations act on each coordinate independently.

As straightforward and simple as the method might be, we have not found such proposal in the literature. For example, the Lotka-Volterra model in 2-dimension has been extensively studied and the Hamiltonian we obtain with our approach is known ${ }^{[7] 8}$. However, the systematic derivation of an Hamiltonian by defining an appropriate generalized Poisson bracket ${ }^{[9]}$ or by time rescaling ${ }^{100}$, give different Hamiltonian functions as there is no change of the dynamical system coordinates. Volterra's own construction preserves the canonical Poisson bracket, but introduce extra-variables, and the Hamiltonian he obtained, though formally close to ours, gives more complicated Hamilton-Jacobi equations ${ }^{[1112]}$. In addition, it appears that our transformed coordinates can be of physical interest for the description of the system. So, we propose an algorithm based on Schwartz theorem equalities, to deal with general systems, which searches for, (at least,) a subset of coordinates amenable to be turned into canonically conjugate ones for a Hamiltonian.

The article is organized has follows: First we present the method in two-dimension and illustrate its application on two case examples. Then, we generalize it to any finite dimension, and apply it to the Kermack-McKendrick model, before concluding.

2 Transformation of a dynamical system in \mathbb{R}^{2}

2.1 Theory

We consider a dynamical system in 2 real coordinates in an open set $U \subseteq \mathbb{R}^{2}$, defined by a mapping $f: U \longrightarrow \mathbb{R}^{2}$, that is to say, $f=\left(f_{1}, f_{2}\right), \forall i \in\{1,2\} f_{i}: U \longrightarrow \mathbb{R}$ is smooth enough (often considered to be C^{∞}, however this is not necessay for our purpose, it may also depends upon the time variable, but we will omit this too), and, $\dot{x}_{i}=f_{i}\left(x_{1}, x_{2}\right)$.

We look for a diffeomorphism $h: U \longmapsto \mathbb{R}^{2}$, whose components h_{1} and h_{2} define two new coordinates,

$$
\begin{align*}
q & =h_{1}\left(x_{1}, x_{2}\right) \tag{1}\\
p & =h_{2}\left(x_{1}, x_{2}\right) \tag{2}
\end{align*}
$$

which we would like to be canonically conjugate for some Hamiltonian function, H,

$$
\begin{align*}
\dot{q} & =\frac{\partial H}{\partial p} \tag{3}\\
\dot{p} & =-\frac{\partial H}{\partial q} \tag{4}
\end{align*}
$$

We denote the inverse mapping h^{-1} by $g=\left(g_{1}, g_{2}\right)$,

$$
\begin{align*}
& x_{1}=g_{1}(q, p) \tag{5}\\
& x_{2}=g_{2}(q, p) \tag{6}
\end{align*}
$$

The local inversion theorem ${ }^{[6}$ insures that for $\left(x_{1}, x_{2}\right)=g(q, p)$ such that $(q, p) \in h(U)$, we
have the relation between the differentials: $\operatorname{Dh}\left(x_{1}, x_{2}\right)=[D g(q, p)]^{-1}$, so that:

$$
\begin{align*}
& \frac{\partial h_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=\frac{\frac{\partial g_{2}}{\partial p}}{\frac{\partial g_{1}}{\partial q} \frac{\partial g_{2}}{\partial p}-\frac{\partial g_{1}}{\partial p} \frac{\partial g_{2}}{\partial q}}, \tag{7}\\
& \frac{\partial h_{1}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=\frac{-\frac{\partial g_{1}}{\partial p}}{\frac{\partial g_{1}}{\partial q} \frac{\partial g_{2}}{\partial p}-\frac{\partial g_{1}}{\partial p} \frac{\partial g_{2}}{\partial q}}, \tag{8}\\
& \frac{\partial h_{2}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=\frac{-\frac{\partial g_{2}}{\partial q}}{\frac{\partial g_{1}}{\partial q} \frac{\partial g_{2}}{\partial p}-\frac{\partial g_{1}}{\partial p} \frac{\partial g_{2}}{\partial q}}, \tag{9}\\
& \frac{\partial h_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=\frac{\frac{\partial g_{1}}{\partial q}}{\frac{\partial g_{1}}{\partial q} \frac{\partial g_{2}}{\partial p}-\frac{\partial g_{1}}{\partial p} \frac{\partial g_{2}}{\partial q}} . \tag{10}
\end{align*}
$$

Injecting expressions (1) and (2) in Eq.(3) and using the chain rule, we obtain

$$
\begin{align*}
\frac{\partial H}{\partial p} & =\frac{\partial h_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}} \dot{x}_{1}+\frac{\partial h_{1}\left(x_{1}, x_{2}\right)}{\partial x_{2}} \dot{x}_{2} \\
& =\frac{\partial h_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}} f_{1}\left(g_{1}(q, p), g_{2}(q, p)\right)+\frac{\partial h_{1}\left(x_{1}, x_{2}\right)}{\partial x_{2}} f_{2}\left(g_{1}(q, p), g_{2}(q, p)\right) \tag{11}
\end{align*}
$$

and similarly, using Eq.(4),

$$
\begin{equation*}
-\frac{\partial H}{\partial q}=\frac{\partial h_{2}\left(x_{1}, x_{2}\right)}{\partial x_{1}} f_{1}\left(g_{1}(q, p), g_{2}(q, p)\right)+\frac{\partial h_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}} f_{2}\left(g_{1}(q, p), g_{2}(q, p)\right) \tag{12}
\end{equation*}
$$

Substituting Eqs.(7)-(10) into Eqs. (11) and (12), we obtain the Hamilton equations,

$$
\begin{align*}
\frac{\partial H}{\partial p} & =\frac{f_{1}\left(g_{1}(q, p), g_{2}(q, p)\right) \cdot \frac{\partial g_{2}}{\partial p}-\frac{\partial g_{1}}{\partial p} \cdot f_{2}\left(g_{1}(q, p), g_{2}(q, p)\right)}{\frac{\partial g_{1}}{\partial q} \frac{\partial g_{2}}{\partial p}-\frac{\partial g_{1}}{\partial p} \frac{\partial g_{2}}{\partial q}}, \tag{13}\\
-\frac{\partial H}{\partial q} & =\frac{\frac{\partial g_{1}}{\partial q} \cdot f_{2}\left(g_{1}(q, p), g_{2}(q, p)\right)-f_{1}\left(g_{1}(q, p), g_{2}(q, p)\right) \cdot \frac{\partial g_{2}}{\partial q}}{\frac{\partial g_{1}}{\partial q} \frac{\partial g_{2}}{\partial p}-\frac{\partial g_{1}}{\partial p} \frac{\partial g_{2}}{\partial q}} . \tag{14}
\end{align*}
$$

We can either (i) integrate one of these equation and insert the expression obtained for H into the other one, (assuming that g is of class C^{2}, so that h is also $\left.C^{2}\right)^{6}$, to derive a relation between f_{1}, f_{2}, and g (or more conveniently h), or, (ii) (assuming that, in addition, the
f_{i} 's have first partial derivatives and H second partial derivatives), we can use Schwartz's theorem ${ }^{66}$ for the same purpose. Noting $\bar{i}=2$ if $i=1$ and $\bar{i}=1$ if $i=2$, and using the inverse of Eqs. (7)-(10), we obtain, in the original coordinates, the following necessary condition:

$$
\begin{equation*}
\sum_{i \in\{1,2\}} \frac{\partial f_{i}}{\partial x_{i}}+f_{i} \cdot \frac{\frac{\partial^{2} h_{i}}{\partial x_{i}^{2}} \frac{\partial h_{\bar{i}}}{\partial x_{\bar{i}}}-\frac{\partial^{2} h_{i}}{\partial x_{1} \partial x_{2}} \frac{\partial h_{\bar{i}}}{\partial x_{i}}-\frac{\partial^{2} h_{\bar{i}}}{\partial x_{i}^{2}} \frac{\partial h_{i}}{\partial x_{i}}+\frac{\partial^{2} h_{\bar{i}}}{\partial x_{1} \partial x_{2}} \frac{\partial h_{i}}{\partial x_{i}}}{\frac{\partial h_{1}}{\partial x_{1}} \frac{\partial h_{2}}{\partial x_{2}}-\frac{\partial h_{1}}{\partial x_{2}} \frac{\partial h_{2}}{\partial x_{1}}}=0 \tag{15}
\end{equation*}
$$

We remark at this stage that, if the h_{i} 's are linear, their second partial derivatives cancel out and we are left with the first term within the sum over i. That is to say, we retrieve the condition for the system to be Hamiltonian in its original coordinates:

$$
\begin{equation*}
\frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}}+\frac{\partial f_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=0 . \tag{16}
\end{equation*}
$$

Conversely, when this is not zero but condition (15) is fulfilled, then, necessarily, the second terms within the sum over i are not all zero. In particular, if we manage to find some h_{1}, h_{2} such that, for each $i \in\{1,2\}$, the second term cancels the first one within the sum, the system will be Hamiltonian.

To go further with this, we may consider the expansion of the $h_{i}\left(x_{1}, x_{2}\right)$'s on a set of product functions: $h_{i}\left(x_{1}, x_{2}\right)=\sum_{j_{1}, j_{2}} \lambda_{i}^{j_{1}, j_{2}} \chi_{j_{1}}\left(x_{1}\right) \chi_{j_{2}}\left(x_{2}\right)$, each factor belonging, for example, to a fixed Hilbertian basis set $\left(\chi_{j}(x)\right)_{j}$. We can limit the set of coefficients $\lambda_{i}^{j_{1}, j_{2}}$ to deal with, by truncating this expansion. We may look for one-term expansions of the form $h_{i}\left(x_{1}, x_{2}\right)=\psi_{i}^{1}\left(x_{1}\right) \psi_{i}^{2}\left(x_{2}\right)$ and solve Eq. (15) for the four functions $\psi_{1}^{1}, \psi_{1}^{2}, \psi_{2}^{1}, \psi_{2}^{2}$. Hereafter, we make the even more drastic assumption that each coordinate is transformed independently of the others, that is to say, h_{i} only depends upon x_{i}, so that $\frac{\partial h_{i}}{x_{\bar{i}}}=0$. This simplifies greatly the general equations, (13) and (14), which now become,

$$
\begin{equation*}
\frac{\partial H}{\partial p}=\frac{f_{1}\left(g_{1}(q), g_{2}(p)\right)}{g_{1}^{\prime}(q)}, \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{\partial H}{\partial q}=\frac{f_{2}\left(g_{1}(q), g_{2}(p)\right)}{g_{2}^{\prime}(p)} \tag{18}
\end{equation*}
$$

as well as Eq. (15),

$$
\begin{equation*}
\frac{\partial f_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}}+\frac{h_{1}^{\prime \prime}\left(x_{1}\right)}{h_{1}^{\prime}\left(x_{1}\right)} \cdot f_{1}\left(x_{1}, x_{2}\right)+\frac{\partial f_{2}\left(x_{1}, x_{2}\right)}{\partial x_{2}}+\frac{h_{2}^{\prime \prime}\left(x_{2}\right)}{h_{2}^{\prime}\left(x_{2}\right)} \cdot f_{2}\left(x_{1}, x_{2}\right)=0 . \tag{19}
\end{equation*}
$$

In the next sections, we will apply the necessary condition (19) to two different cases and show its practicality to determine the freely adjustable functions h_{1} and h_{2}.

2.2 Volterra's model as a test example

The first example of a dynamical system that is non-Hamiltonian in its original coordinates appearing in Ref. ${ }^{[14}$, is Volterra's model of sharks and sardines ${ }^{\sqrt{111}}$:

$$
\begin{align*}
& \dot{x}_{1}=a x_{1}-b x_{1} x_{2} \tag{20}\\
& \dot{x}_{2}=-c x_{2}+d x_{1} x_{2}, \tag{21}
\end{align*}
$$

with $a, b, c, d \in \mathbb{R}^{+*}$. In these variables, assuming that $\dot{x}_{1}= \pm \frac{\partial H}{\partial x_{2}}$ and $\dot{x}_{2}=\mp \frac{\partial H}{\partial x_{1}}$, Schwartz's theorem applied to H, would not be satisfied since $\left(a-b x_{2}\right) \neq \pm\left(c-d x_{1}\right)$.

Eq.(19) gives the condition:

$$
\begin{equation*}
\left(a-b x_{2}\right)\left(1+\frac{h_{1}^{\prime \prime}\left(x_{1}\right)}{h_{1}^{\prime}\left(x_{1}\right)} \cdot x_{1}\right)+\left(-c+d x_{1}\right)\left(1+\frac{h_{2}^{\prime \prime}\left(x_{2}\right)}{h_{2}^{\prime}\left(x_{2}\right)} \cdot x_{2}\right)=0 \tag{22}
\end{equation*}
$$

This leads to the conditions,

$$
\begin{aligned}
& \frac{h_{1}^{\prime \prime}\left(x_{1}\right)}{h_{1}^{\prime}\left(x_{1}\right)}=-\frac{1}{x_{1}} \\
& \frac{h_{2}^{\prime \prime}\left(x_{2}\right)}{h_{2}^{\prime}\left(x_{2}\right)}=-\frac{1}{x_{2}}
\end{aligned}
$$

These are easy to integrate, recognizing logarithmic derivatives on both sides,

$$
\begin{aligned}
\ln \left(h_{1}^{\prime}\left(x_{1}\right)\right) & =\ln \left(\frac{1}{x_{1}}\right)+c_{1} \\
\ln \left(h_{2}^{\prime}\left(x_{2}\right)\right) & =\ln \left(\frac{1}{x_{2}}\right)+c_{2}
\end{aligned}
$$

Choosing $c_{1}=c_{2}=0$, and integrating a second time with zero as integration constants, we finally define the new variables in the following way:

$$
\begin{align*}
& q=h_{1}\left(x_{1}\right)=\ln \left(x_{1}\right), \tag{23}\\
& p=h_{2}\left(x_{2}\right)=\ln \left(x_{2}\right), \tag{24}
\end{align*}
$$

that is to say,

$$
\begin{align*}
& x_{1}=\exp (q), \tag{25}\\
& x_{2}=\exp (p) \tag{26}
\end{align*}
$$

The Hamiltonian is obtained from Hamilton's equations (17) and (18),

$$
\begin{equation*}
H_{\text {Volterra }}=a p-b \exp (p)+c q-d \exp (q) . \tag{27}
\end{equation*}
$$

Not surprisingly for such a popular model, Hamiltonian's forms are already known ${ }^{[7 / 912 \mid 15 / 19}$. However, the derivation of Eq. (27) is particularly straightforward with our approach. The number of coordinates is still two, unlike in Volterra's work ${ }^{12199}$. These coordinates are conjugate for the canonical Poisson bracket, unlike in ${ }^{910116}$ where a generalized Poisson bracket is used or appear from a time coordinate rescaling. The new coordinates are physically relevant: the original ones would evolve exponentially, if they were not coupled, so, it makes sense to describe the system on a logarithmic scale. This is what is achieved thanks to the new coordinates.

2.3 A Forced Two-level Quantum System

Consider the following dynamical system derived from a forced, two-level, quantum, model system ${ }^{[13:}$

$$
\begin{align*}
& \dot{x}_{1}=-\sin \left(x_{2}\right) \tag{28}\\
& \dot{x}_{2}=B-\cot \left(x_{1}\right) \cos \left(x_{2}\right) \tag{29}
\end{align*}
$$

where x_{1} and x_{2} are two real dynamical coordinates, and B a constant. This system is not Hamiltonian, for, suppose there exists H such that $\dot{x}_{1}= \pm \frac{\partial H}{\partial x_{2}}$ and $\dot{x}_{2}=\mp \frac{\partial H}{\partial x_{1}}$, the right hand sides of Eqs. (28) and (29) being differentiable, we can search for an H that is derivable twice. Then, Schwartz's theorem permits to conclude at the non-existence of such H, since $\frac{\partial \sin \left(x_{2}\right)}{\partial x_{1}}=0$ and $\frac{\partial B-\cot \left(x_{1}\right) \cos \left(x_{2}\right)}{\partial x_{2}}=\cot \left(x_{1}\right) \sin \left(x_{2}\right) \neq 0$.

Equation (15) applied to this system gives,

$$
\begin{equation*}
\left(\cot \left(x_{1}\right)-\frac{h_{1}^{\prime \prime}\left(x_{1}\right)}{h_{1}^{\prime}\left(x_{1}\right)}\right) \sin \left(x_{2}\right)+\left(B-\cot \left(x_{1}\right) \cos \left(x_{2}\right)\right) \frac{h_{2}^{\prime \prime}\left(x_{2}\right)}{h_{2}^{\prime}\left(x_{2}\right)}=0 . \tag{30}
\end{equation*}
$$

This can be satisfied by taking h_{2} linear, and $\frac{h_{1}^{\prime \prime}\left(x_{1}\right)}{h_{1}^{\prime}\left(x_{1}\right)}=\cot \left(x_{1}\right)$. We recognize again logarithmic derivatives and integrate, this gives $\ln \left(h_{1}^{\prime}\left(x_{1}\right)\right)=\ln \left(\sin \left(x_{1}\right)\right)+c$. The simplest choice of integration constants leads to $h_{2}\left(x_{2}\right)=x_{2}$ and $h_{1}\left(x_{1}\right)=\cos \left(x_{1}\right)$. Therefore, we define the new coordinates as

$$
\begin{align*}
q & =\cos \left(x_{1}\right) \tag{31}\\
p & =x_{2}, \tag{32}
\end{align*}
$$

and the dynamical system becomes:

$$
\begin{align*}
\dot{q} & =\sqrt{1-q^{2}} \sin (p) \tag{33}\\
\dot{p} & =B-\frac{q}{\sqrt{1-q^{2}}} \cos (p) \tag{34}
\end{align*}
$$

We easily verify that Eqs. (33) and (34) are the Hamilton-jacobi equations for the Hamiltonian,

$$
\begin{equation*}
H=-B q-\sqrt{1-q^{2}} \cos (p) . \tag{35}
\end{equation*}
$$

3 Generalization to a dynamical system in \mathbb{R}^{N}

3.1 Theory

We now consider a dynamical system in N real coordinates:

$$
\begin{equation*}
\forall i \in\{1, \cdots, N\} \quad \dot{x}_{i}=f_{i}\left(x_{1}, \cdots, x_{N}\right) . \tag{36}
\end{equation*}
$$

If N is odd, one can always add an extra dummy coordinate, which is constant and whose initial value is zero. So, without loss of generality, we can assume N even: $N=2 n$, and search for a Hamiltonian H, and a transformation of the initial variables, $x_{1}, \ldots, x_{2 n}$ into two sets $\left\{q_{1}, \cdots, q_{n}\right\},\left\{p_{1}, \cdots, p_{n}\right\}$, such that:

$$
\begin{align*}
\forall i \in\{1, \cdots, n\}, \quad \dot{q}_{i} & =\frac{\partial H}{\partial p_{i}} \tag{37}\\
\dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}} \tag{38}
\end{align*}
$$

The general equations (13), (14) and (15) can easily be generalized to a diffeomorphism $h\left(x_{1}, \cdots, x_{2 n}\right)$, if the $2 n$ coordinates are partitionned into pairs $\left\{x_{i_{1}}, x_{i_{2}}\right\}$, and if h acts on each pair independently of the others, that is to say, if for each pair $\left(i_{1}, i_{2}\right)$, it has a
corresponding pair of components $h_{j_{1}}$ and $h_{j_{2}}$, which only depend upon the two coordinates $x_{i_{1}}$ and $x_{i_{2}}$. Then, without loss of generality, the coordinates and the components can be reordered, so that

$$
\begin{align*}
\forall i \in\{1, \cdots, n\}, \quad q_{i} & =h_{2 i-1}\left(x_{2 i-1}, x_{2 i}\right) \tag{39}\\
p_{i} & =h_{2 i}\left(x_{2 i-1}, x_{2 i}\right) \tag{40}
\end{align*}
$$

A fortiori, if each h_{i} only depends upon x_{i}, Eqs. (17), (18) and (19) can be generalized. This will give as many necessary conditions of the form (19) to be satisfied simultaneously, as the number of canonically conjugate disjoint pairs to be found. An example is given in the next section.

3.2 Kermack-McKendrick's model

The Kermack-McKendrick's model is a dynamical system for 3 real coordinates of the form,

$$
\begin{align*}
& \dot{x}_{1}=-r x_{1} x_{2} \tag{41}\\
& \dot{x}_{2}=+r x_{1} x_{2}-a x_{2} \tag{42}\\
& \dot{x}_{3}=+a x_{2}, \tag{43}
\end{align*}
$$

with $a, r \in \mathbb{R}^{+*}$, to which we add a dummy one:

$$
\begin{equation*}
\dot{x}_{4}=0 \quad \text { with } \quad x_{4}(0)=0 . \tag{44}
\end{equation*}
$$

We easily calculate:

$$
\begin{align*}
& \frac{\partial f_{1}\left(x_{1}, \cdots, x_{4}\right)}{\partial x_{1}}+\frac{d \ln \left(h_{1}^{\prime}\left(x_{1}\right)\right)}{d x_{1}} \cdot f_{1}\left(x_{1}, \cdots, x_{4}\right)=-r x_{2}\left(1+\frac{d \ln \left(h_{1}^{\prime}\left(x_{1}\right)\right.}{d x_{1}} \cdot x_{1}\right) \tag{45}\\
& \frac{\partial f_{2}\left(x_{1}, \cdots, x_{4}\right)}{\partial x_{2}}+\frac{d \ln \left(h_{2}^{\prime}\left(x_{2}\right)\right)}{d x_{2}} \cdot f_{2}\left(x_{1}, \cdots, x_{4}\right)=\left(r x_{1}-a\right)\left(1+\frac{d \ln \left(h_{2}^{\prime}\left(x_{2}\right)\right.}{d x_{2}} \cdot x_{2}\right) \tag{46}\\
& \frac{\partial f_{3}\left(x_{1}, \cdots, x_{4}\right)}{\partial x_{3}}+\frac{d \ln \left(h_{3}^{\prime}\left(x_{3}\right)\right)}{d x_{3}} \cdot f_{3}\left(x_{1}, \cdots, x_{4}\right)=a x_{2} \frac{d \ln \left(h_{3}^{\prime}\left(x_{3}\right)\right.}{d x_{3}} \tag{47}\\
& \frac{\partial f_{4}\left(x_{1}, \cdots, x_{4}\right)}{\partial x_{4}}+\frac{d \ln \left(h_{4}^{\prime}\left(x_{4}\right)\right)}{d x_{4}} \cdot f_{4}\left(x_{1}, \cdots, x_{4}\right)=0 . \tag{48}
\end{align*}
$$

These four quantities cancel out independently, if one takes: $h_{1}\left(x_{1}\right)=\ln \left(x_{1}\right), h_{2}\left(x_{2}\right)=$ $\ln \left(x_{2}\right), h_{3}\left(x_{3}\right)=x_{3}, h_{4}\left(x_{4}\right)=x_{4}$, then, any two pairs can be canonically conjugate. Choosing $q_{1}=h_{1}\left(x_{1}\right), p_{1}=h_{2}\left(x_{2}\right), q_{2}=h_{3}\left(x_{3}\right), p_{2}=h_{4}\left(x_{4}\right)$ and integrating the Hamilton equations we obtain the Hamiltonian $H_{\text {Kermack-McKendrick }}=-r \exp q_{1}+a q_{1}+\left(a p_{2}-r\right) \exp p_{1}$, which gives the correct equations, given that, solving the Hamilton's equations, $p_{2}=x_{4}=x_{4}(0)=0$.

4 Concluding remarks

Since, it is possible that not all but only a subset of coordinates fulfills the necessary conditions imposed by the Schwartz equalities, in conclusion, we propose the following method to detect one or more pairs of variables amenable to be transformed into conjugate canonical variables following a Hamiltonian dynamics.
(i) Calculate $\forall i \in\{1, \cdots, N\}$ the f_{i}-dependent part of $\frac{\partial f_{i}\left(x_{1}, \cdots, x_{N}\right)}{\partial x_{i}}+\frac{d \ln \left(h_{i}^{\prime}\left(x_{i}\right)\right)}{d x_{i}} \cdot f_{i}\left(x_{1}, \cdots, x_{N}\right)$
(ii) For all $i<N$, and $j>i$, try to find h_{i} and h_{j} such that Eq. (19) is satisfied for the pair (i, j). In case of success, add pair (i, j) to a set, \mathcal{C}, of conjugate pairs.
(iii) Choose a maximal subset of disjoint pairs of \mathcal{C}, and transform the associated variables using the corresponding h functions.

Following such a path, it is possible to transform the three non-Hamiltonian systems considered in this work, namely a forced two-level quantum model, Volterra's model and Kermack-McKendrick's model into Hamiltonian ones, in a very simple and straightforward
fashion.
There is a lot of freedom in the choice of the two one-variable functions, h_{1} and h_{2}, to fulfill the constraint (19). So, we can expect that a large class of dynamical systems should be amenable to be converted into Hamiltonian systems, even within the severe restriction that the variables be transformed independently of each others.

Of course, not all dynamical systems are supposed to be amenable to our treatment. In particular, one can think of non-conservative systems, such as the damped pendulum,

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \tag{49}\\
& \dot{x}_{2}=-\omega^{2} \sin \left(x_{1}\right)-\mu x_{2} . \tag{50}
\end{align*}
$$

or the harmonic oscillator with friction (which is just its linearized version obtained by substituting x_{1} to $\left.\sin \left(x_{1}\right)\right)$. However, in these particular cases, and in fact, for any system with a force deriving from a potential $f\left(x_{1}\right)=-\frac{d V\left(x_{1}\right)}{d x_{1}}$ with a damping term of the form $-\mu(t) \dot{x}_{1}$,

$$
\begin{align*}
\dot{x}_{1} & =x_{2} \tag{51}\\
\dot{x}_{2} & =-\frac{d V\left(x_{1}\right)}{d x_{1}}-\mu(t) x_{2} \tag{52}
\end{align*}
$$

one can easily extend our method by using time-dependent transformations. More explicitly, setting:

$$
\begin{align*}
q & =h_{1}\left(x_{1}\right)=x_{1} \tag{53}\\
p & =h_{2}\left(x_{2}\right)=\exp \left(\int_{0}^{t} \mu\left(t^{\prime}\right) d t^{\prime}\right) x_{2} \tag{54}\\
H & =\frac{\exp \left(-\int_{0}^{t} \mu\left(t^{\prime}\right) d t^{\prime}\right)}{2} p^{2}+\exp \left(\int_{0}^{t} \mu\left(t^{\prime}\right) d t^{\prime}\right) V(q) \tag{55}
\end{align*}
$$

one retrieves the original dynamical system with canonical Eqs. (3) and (4).

Acknowledgements

The Hamiltonian of the forced, two-level, quantum system was brought to our attention by Prof. Gilbert Reinisch. We acknowledge fruitful discussions with Profs. Zhiyan Zhao and Didier Clamond from Université Côte d'Azur.

References

(1) R. Mackay, J. D. Meiss, Hamiltonian dynamical systems : A reprint selection compiled and introduced, (Adam Hilger ed., Bristol Philadelphia, 1987).
(2) P. A. M. Dirac,, Can. J. Math. 2, 129 (1950).
(3) P. J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, New York, 1986).
(4) C. C. Yan, Nuovo Cimento 107, 1239 (1992).
(5) A. Weinstein, J. Differential Geometry 18, 523 (1983).
(6) A. Avez, Differential calculus, (J. Wiley, New York, 1986).
(7) Y. Kerner, Phys. Rev. Lett. A151, 401 (1990).
(8) P.E. Strizhak, Chem. Phys. Lett. 197, 243 (1992).
(9) Y. Nutku, Phys. Rev. Lett. A145, 27 (1990).
(10) L. Cairó, M. R. Feix, J. Phys. A25, L1287 (1992).
(11) V. Volterra, Leçons sur la Théorie Mathématique de la Lutte pour vie (Gauthier Villars, Paris, 1931).
(12) P. Duarte, R. L. Fernandes, W. M. Oliva, J. Differential Equations 149, 143 (1998).
(13) G. Reinisch, Physica D 119, 239 (1998).
(14) J.-R. Chazottes, M. Monticelli, Differential Equations - An invitation through embedded visual interactive digital experiments, (generative e-book, CNRS ed. 2016), https://www.generative-ebooks.com/ebooks/-Differential-Equations-.html
(15) P. Glansdorff, I. Prigogine, Thermodynamic theory of structure, stability and fluctuations (Wiley-Interscience, New York, 1971).
(16) M. Plank, J. Math. Phys. 36, 3520 (1995).
(17) L. Cairó, M. R. Feix, J. Math. Phys. 37, 3644-3645 (1996).
(18) B. Hernández-Bermejo, V. Fairén, J. Math. Phys. 39, 6162 (1998).
(19) S. Baigent, in Dynamical and Complex Systems (LTCC Advanced Mathematics Series: Volume 5, S. Bullett, T. Fearn and F. Smith, World Scientific (Europe), 2017), chap.5.

