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Dynamic properties of elasto-inertial turbulence (EIT)
are studied in a Taylor-Couette geometry. EIT is
a chaotic flow state that develops upon both non-
negligible inertia and viscoelasticity. A combination
of direct flow visualisation and torque measurement
allows to verify the earlier onset of EIT compared to
purely inertial instabilities (and inertial turbulence).
The scaling of the pseudo-Nusselt number with
inertia and elasticity is discussed here for the
first time. Variations in the friction coefficient,
temporal frequency spectra, and spatial power density
spectra highlight that EIT undergoes an intermediate
behavior before transitioning to its fully developed
chaotic state that requires both high inertia and
elasticity. During this transition the contribution of
secondary flows to the overall friction dynamics is
limited. This is expected to be of great interest in the
aim of achieving efficiency mixing at low drag and
low but finite Reynolds number.
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1. Introduction
The Taylor-Couette (TC) geometry consists in two concentric cylinders, with either one or both
cylinders rotating. Since the seminal work of Taylor [1], it has been extensively used by researchers
[2] thanks to its simplicity of use which allows to easily study flow instabilities. In the most
familiar case where only the inner cylinder is rotating and the outer cylinder is stationary, a
non-dimensional control parameter is the Reynolds number, which is defined as R= ρΩriδ/µ,
where µ, ρ, Ω are the dynamic viscosity, fluid density and the rotational speed of the inner
cylinder, respectively, and δ= ro − ri is the gap width, with ri and ro the inner and outer
radii. The geometry can be characterised by two non dimensional parameters: the aspect ratio
Γ = h/δ and radius ratio η= ri/ro, where h is length of the cylinder. Alternatively, the curvature
ratio κ= ri/δ can be used. The aforementioned parameters are known to have an influence on
stability, not only in Newtonian but also in non-Newtonian fluids. Indeed, the TC geometry is
also widely used in the study of complex fluids [3, 4], such as dilute polymer solutions [5, 6]
or suspensions of particles [7] among others. In particular, polymeric liquids flow which exhibit
viscoelastic behavior have been studied with great interest, due to the existence of sets of specific
flow regimes, and motivated by the ubiquity of viscoelasticity in daily life, industrial and natural
applications, such as biology, pharmaceutics, paints, among others [8].

The mechanism of instability in these fluids are different from those that occur in Newtonian
cases. In Newtonian fluids, the instability comes from the destabilizing effect of the centrifugal
force gradient (which comes from variations of kinetic momentum), and overcoming of it on the
stabilizing effect of viscous drag force. In such fluids, at low Reynolds number, a purely azimuthal
uniform shear flow develops, which is called circular Couette flow (CCF). It eventually becomes
unstable upon increasing R as explained above, and secondary flows appear as axisymmetric
counter-rotating vortices called Taylor vortex flow (TVF). Further increase of Reynolds number
creates non-axisymmetric sinusoidal axial oscillations called wavy Taylor vortex flow (WVF).
Eventually, additional wavelentghs appear and the flow transitions to turbulence [9, 10, 11, 12, 13].

In non-Newtonian, viscoelastic fluids, the mechanism of instability, and subsequently its flow
transition, is different. Polymers solutions are common viscoelastic fluids. Polymers are high
molecular weight molecules made of a large number of monomers connected with covalent
bonds, resulting in long linear, branched or network chains [14]). The arrangement (conformation)
of the polymer chain at the rest condition is in the way that have maximum conformational
entropy [15]. When the polymer coil is stretched, e.g because of an applied stress or deformation,
it tends to recover its lost maximum entropy energy and return to its equilibrium chain structure.
Due to this entropic tendency of polymers, elastic stresses are created in the chain which as a
result of the stress difference between the flow direction and the direction perpendicular to it
(direction of shear), which doesn’t exist in Newtonian fluids. In rotational flow such as Taylor-
Couette Flows (TCF), curved streamlines induce a hoop stress, balanced by an adverse pressure
gradient in the radial direction. A flow perturbation may cause a fluid particle to move towards
a region of enhanced stretching, enhancing the local hoop stress and destabilizing the flow [16].
Moreover, a part of the chain’s elastic deformation energy can be released elsewhere in the flow,
further promoting instability. The elastic behavior of polymer solutions thus highly depend on
deformation rates, and relaxation time of polymer chains. The degree of elastic response of a
fluid subjected to a shear rate γ̇ is quantified by the Weissenberg number Wi, defined in the
case of TCF as Wi= λeγ̇ with γ̇ =Ωri/δ the nominal shear rate in the gap. The elastic number
El is then defined by El = WiR = λe

λv
= λeµ

ρδ2
and represents the competition between inertial and

elastic effects, with λv = ρδ2/µ the viscous characteristic time. The resulting El depends only on
the geometrical parameters and the properties of the fluid (which may themselves be shear-rate
dependent, see below). El allows to classify fluids into 3 groups: weak (El< 10−2), moderate
(10−2 <El< 1) and strong elasticity (El> 1) [17, 18, 19]. Based on the elasticity level, various
instability and transition scenarios are observed. In the range of very low elasticity (i.e, El� 1)
the elastic effects are very weak compared to inertia effects and observed flow transition are
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comparable to the Newtonian case (CCF→TVF→WVF) as R increases [17, 20] with slightly
shifted critical conditionsRc because of presence of light amount of polymer.

At high values of elasticity, in the case of vanishing R, a purely elastic CCF-TVF transition
is observed [21]. Subsequently in the case of elevated Wi another transition will lead to a
chaotic regime called elastic turbulence [22, 23, 24], which exhibits turbulent like-characteristics
in absence of inertia. When neither R nor El can be neglected, we find ourselves in the domain
of elasto-inertial transitions. In particular, primary and secondary elasto-inertial instabilities
manifest themselves in non-axisymmetric flow states [18, 19, 25, 26, 27, 28]. An increase in inertia
(R) or elasticity (El) leads these pre-chaotic behaviors to transition to strongly unsteady states:
"disordered oscillations" (DO) [27], "defect mediated turbulence (DMT) [19], "spatio-temporal
intermittency" (STI) [29] or "merge-split transitions" (MST) [28], and all contribute to a gradual
transition to elasto-inertial turbulence (EIT) [6, 18, 28]. A summary of several flow transition
observed experimentally, as a function of geometrical parameter and viscoelastic fluid properties,
are listed in table 1.

The possibility of triggering such chaotic behavior opens extremely interesting perspectives
in terms of mixing and intensification of transfers at low R. While transition scenarios are now
relatively well identified in the literature, several questions remain to be tackled: what are the
characteristics of EIT in TCF? What is the dynamic behavior of these flows in terms of friction and
energy dissipation ? This work aims at addressing this last point in particular, by reporting for the
first time friction and spatio-temporal properties of TCF of constant viscosity polymer solutions
with shear-dependent viscoelasticity.

2. Materials and methods
Experiments were performed using aqueous Boger solutions of high molecular weight polymer
of partially hydrolysed polyacrylamide (HPAM, Mw = 15− 20× 106 g/mol). At first, a stock
aqueous polymer solution of 1000 ppm was prepared. Samples from this solution were then
dissolved in pure water and mixed in glycerol in order to obtain different concentrations c̃p of
25, 50, 100, 150, 200, 250, 300, 350 ppm with base solution similar to that of our previous study [7]:
41.8 % glycerol and 58.2% water (in volume) and 12.7% of salt (in mass). After preparation, the
aqueous solutions are left at rest for 24 h before performing any other manipulation.

Base fluid

Figure 1. (a) Shear viscosity as a function of shear rate for HPAM polymer solution at various concentrations. The

observed jump in viscosity at a concentration of 350 ppm (after 600 s−1) is related to an elastic instability in the rheometer.

(b) Measured first normal stress N1 of the solutions. A line with slope of 2 is plotted as a guide to the eye. (c) Relaxation

time obtained using our experimental methodology. Colour lines are fits to the experimental data.

Rheological behavior of all working fluids was characterized using a rotational rheometer
(Anton-Paar MCR 302) equipped with a cone-plane geometry (50 mm/1◦) with truncation gap of
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Study η Γ δ (mm) κ solution µp/µ El Rmax dR/dt∗ FTO
Present study 0.914 10 1.5 0.093 HPAM/W 0.075 0.05-0.1 200 <0.01 CCF-SVF-RSW-MWVF

/G/S 0.086-0.221 0.11-0.35 CCF-EIT
Lacassagne et. 0.77 21.56 6.26 0.289 PAAm/W/G 0.148 0.2263 200 0.33 CCF-TVF-RSW-EIT
al., (2020) [28]
Martinez-Arias & 0.909 30 5 0.1 PEO/PEG 0.083-0.325 0.06-0.17 160 <0.6 CCF-TVF-RSW-EIT
Peixinho (2017)[34] /W/IPA 0,78 0.71-1.09 84 CCF-RSW–EIT
Dutcher et. 0.912 60.7 6.69 0.096 PEO/W/G 2.82 0.1-0.21 200-250 0.68 CCF-TVF-RSW-EIT
al., (2013) [18]
Dutcher et. 0.912 60.7 6.69 0.096 PEO/W/G 0.3 0.00047 200-250 <0.68 CCF-TVF-WVF-...-TTV
al., (2011) [17] 0.93 0.0017 CCF-TVF-WVF-MWVF-WVF-MWF-CWV-WTV-MT

0.92 0.0054 CCF-TVF-WVF-MWVF-WVF-WTV / CWV
0.78 0.023 CCF-TVF-WVF-MWVF-WVF

Crumeyrolle et. 0.883 47 5.9 0.132 PEO/W 0 - 3.45 0.002-0.03 200 N/A CCF-TVF-WVF
al., (2005) [35] 5.32-12.4 0.07-0.5 CCF-RSW
Groisman et. 0.829 74 7 0.2 PAAm/W 0.82 0.025 N/A N/A CCF-TVF-WVF
al., (1998) [36] /saccharose 0.03-0.08 CCF-TVF-RSW-DO

0.09-0.15 CCF-DO
0.2-27 CCF-DO

Groisman et. 0.708 54 7.85 0.413 PAAm/W 0.008-0.25 0.1-0.15 N/A N/A CCF-TVF-RSW-DO
al., (1996) [27] /saccharose 0.15-0.22 CCF-TVF-DO

0.22-0.34 CCF-DO
Groisman et. 0.708 54 7.85 0.413 PAAm/W 0.78 0.023-0.033 N/A N/A CCF-RSW-DO
al., (1993) [37] /saccharose

Table 1. Some experimentally observed flow transition patterns in viscoelastic Boger fluids (constant viscosity µ assumed) with different fluid properties and geometrical parameters (rotating inner

cylinder and stationary outer cylinder). DO = Disordered Oscillations, FP = Flame Pattern, SVF = Spiral Vortex Flow, MWVF = Modulated Wavy Vortex Flow, MT = Modulated Turbulence, RSW =

Rotating Spiral Waves, TTV = Turbulent Taylor Vortices, CWV = Chaotic Wavy Vortex Flow. µp = µ− µs is the polymer contribution to the total viscosity. κ= δ/ri is the curvature ratio. W = Water, G

= Glycerol, PEO = Polyethylène Oxyde, PAAm = Polyacrylamide, PEG= Polyethylène Glycol, IPA = Isopropyl Alcohol. N/A = not available.
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θ= 0.104 mm at a constant temperature of 22◦C. In order to find the viscosity of samples, steady-
shear viscosity measurements were performed on a shear-rate interval of 0.01/s < γ̇ < 800/s.
Samples viscosity remained constant over this range of shear rates. The flow curves for all samples
are reported in figure 1. In order to evaluate the dynamic, shear rate dependent, relaxation times
λe, the protocol detailed by [30], based on normal force measurement, was used. It consisted of
several incremental steps during which constant shear rate was imposed. Subtracting the means
of two values of the first normal stress difference N1 for each step gives a way to resolve the
instrumental drift of the normal force and correctN1(γ̇) values. A second correction is performed
to remove the contribution of fluid inertia to the normal force given by the rheometer N1,tot,
such that N1 =N1,tot + 0.15ρΩ2R2 with Ω = tan (θ) γ̇ the angular velocity (the 0.15 prefactor
corresponds to inertial and secondary flow corrections and was proposed by [31]). N1 can be
expressed as a power-law function of the shear rate; N1 = Ψγ̇ε, where Ψ and ε are constants.
ε= 2 implies that the behavior follows the Oldroyd-B model [32]: N1 = 2(µ− µs)λeγ̇2, and
the viscosity µ is dominated by the Newtonian solvent contribution, µs. However, unlike the
Oldroyd-B model, the relaxation time here also follows a power law (shear-rate dependent)
function as λe = aγ̇b, where a and b are constants. As polymer concentration increases, b become
more negative which means that λe becomes more sensitive to shear rate. A summary of the
aforementioned coefficients is shown in table 2. This advanced viscoelasticity characterisation
protocol allows to account for the effective shear-dependency of λe, and thus El, in constant
viscosity fluids and thus increase the accuracy on the critical El values detection. As expected
from [33] the method performs better for higher polymer concentrations, with less noise on the
N1 and λe data. It here results in a poor fitting of λe data for the 25 ppm case only.

Coef. c̃p (ppm)
25 50 100 150 200 250 300 350

λe
a 0.057 0.205 0.265 0.367 0.42 0.48 0.52 0.59
b -0.1 -0.28 -0.3 -0.34 -0.35 -0.36 -0.37 -0.375

N1
Ψ 6.5e−5 1.8e−4 3.8e−4 8e−4 1.3e−3 1.5e−4 3.4e−3 3.9e−3

ε 1.9 1.8 1.75 1.7 1.65 1.65 1.55 1.55

Table 2. Rheological parameter of HPAM polymer solution derived by fitting an Oldroyd-B model in order to find relaxation

time, λe. The solutions follow the relation of λe = aγ̇b and N1 = Ψγ̇ε, where b and ε govern the viscoelastic behavior.

The TCF experiments were performed in a Taylor-Couette cell mounted on the same rheometer
as illustrated in figure 2. The geometrical parameters were: δ= 1.5 mm, η= 0.914 and Γ = 10.
In the present study, only ramp-up experiments were performed (slow acceleration of the inner
cylinder), combining torque measurements and visualisation using Iriodin particles (∼ 0.1% in
mass) and a light source, following a protocol detailed in our previous work [7]. The inner

cylinder acceleration rate was 0.0082< dR
dt∗ = ρ2riδ

3

µ2
dΩ
dt < 0.01, and the temperature was 22 (±

0.4) °C.

3. Results and discussion

(a) Torque measurements

Let T be the raw measured torque on the rheometer shaft and G= T /Tv = T /2πh
(
µ2/ρ

)
the

dimensionless torque. G is thus simply a non-dimensional version T , scaled by torque-scale Tv .
Figure 3 shows plots for G as a function of R (left) andWi (right) for all polymer solutions. The
discontinuity in G values indicates the onset of a secondary flow, as will be discussed in section
(b). It appears that G increases with both increasing R and increasing Wi, since the shear-rate
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Spotlight

EIT regime
 snap shot

h

ro

ri

Outer cylinder

Inner cylinder

Air circulation

HPAM solution

Shaft

Figure 2. Schematic of the Taylor-Couette apparatus mounted on the Anton-Paar MCR-102 rheometer with camera and

light position for visualisation. As shown in the figure, the upper end and lower end of the gap are a free surface and a

stationary wall, respectively.

Figure 3. Plots of G as a function ofR (left) andWi (right) for all polymer concentrations c̃p.

increases. However, the increase rate ofG after the discontinuity is reduced as c̃p increases, which
is a key feature of the drag dynamics of the unsteady flow state, as will be detailed in sections (c)
and (d).

(b) Transitions, flow states, and critical R
Flow maps diagram (space-R diagrams), for c̃p= 25, 100, 200, 350 ppm, coupled with plots of
Wi and of the effective (pseudo) Nusselt number, N as a function R is presented in Figure 4.
Wi increases with yet a decreasing slope (all the more decreasing that c̃p increases), due to the
shear-rate dependency of λe. N is defined as N = T /Tlam =G/Glam, with Glam = 2ηR/(1 +
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(a) 25 ppm

(c) 200 ppm

(b) 100 ppm

(d) 350 ppm

CCF

CCF CCF

CCF EIT

EITEIT

Figure 4. Space-R diagram (top), Nusselt-R (bottom plots, left axis) andWi-R (bottom plots, right axis) plots. The plots show the transitions from CCF to RSW (Rotating Spiral Waves) and TVF for

a concentration of (a) 25 ppm and from CCF to EIT for (b) 100 ppm (c) 200 ppm (d) 350 ppm.
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η)(1− η)2 the dimensionless torque for the laminar flow between infinitely long cylinders. N
allows to go further into the interpretation, compared to G, by scaling the (non-dimensional)
torque by its laminar value, which accounts for the geometry. It represents the dissipation rate
of kinetic energy [38] and the ability of the flow to convey momentum radially. Critical values
for all numbers (subscript .c) are found combining flow visualisation and torque measurement
(jump in N values [34]). Here, a CCF-EIT transition is observed for c̃p ≥ 50 ppm (corresponding
El50c = 0.13), as can be seen clearly in both flow map (changing alignment of Iriodin flakes from
purely azimuthal to random) andN −R diagram. This direct transition was previously observed
by [27].N related to CCF (R<Rc) is almost constant and is around one. This shows that the CCF
torque depends linearly on viscosity (and viscosity does not depend on the shear rate variation).
The abrupt change inN values clearly indicates the beginning of the EIT regime.

Figure 5 shows the Rc at which the CCF-EIT transition (or the primary transition, for the 25
ppm case) occurs as a function of c̃p. The side color bar indicates the corresponding Elc.Rc for the
25 ppm case is 134 or R25

c = 0.88R0
c , demonstrating that the CCF flow is destabilized compared

to the Newtonian case (base solvent of this polymer for which the transition occurs atR0
c = 150.8

in this setup [7]). Rc decreases as the polymer concentration or the elastic number increases. Up
to 150 ppm or El = 0.18, this reduction is very strong while for c̃p > 150 ppm or El > 0.18, it
becomes milder, which suggests that the presence effect of polymer after this concentration is less
effective. The lower value of Elc for direct CCF-EIT (El50c = 0.12) is here slightly lower than the
value of 0.22 reported by [27]. This minor discrepancy can be ascribed to the different relaxation
time estimation protocol used (ours accounting for shear-rate dependency) and to the variations
in geometrical parameters [39, 40].

Figure 5. Rc for the onset of EIT (or for the primary instability, in the 25 ppm case) as a function of the c̃p with marker

colours indicating Elc values at the onset of EIT

(c) Torque scaling in EIT
Figure 6 shows all curves for N − Ta at all polymer concentrations, essentially revisiting the raw
data from figure 3 but this time normalizing by laminar flow behaviour as allowed by the use of

N . Ta =
(1+η)6

(64η4)
R2 is proportional to R2 by a geometric constant. Both numbers can be equally

used to quantify flow inertia when the geometry is kept constant, but Ta is more frequently
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encountered in the literature for Taylor-Couette Nusselt scalings. The color map indicates the R-
dependent El value. At low Reynolds number, in the CCF state, allN are approximately constant,
as expected. The slight variation in Nusselt number values (around 1) is due to wall effects that
introduce an additional torque [41]. Increasing R, up to the instability limit, there is a slight
increase in the slope of N , as noted previously by [34] or [42]. Passing through the critical point,
an abrupt change in the value of N occurs. This jump intensifies with increasing c̃p. Increasing
the c̃p, the overall value of the Nusselt number increases.

Interestingly, after the onset of EIT and as c̃p increases, the global slope of the N -Ta curve in
the EIT regime gradually decreases, evolving to a Ta-independent Nusselt number region. This
evolution occurs faster as the concentration of polymer increases: the rate of change and slopes
are concentration dependent, but the asymptotic behaviour appears not to be.

This can be interpreted as follows. After the onset of EIT, secondary chaotic flows arise and
generate friction at the walls leading to a global increase in N . Increasing Ta orR, kinetic energy
is injected in the flow. It is either dissipated by wall friction, which translates into an increase
in N , or by elastic dissipation by the polymer chains, which is expected not to depend on R.
Increasing c̃p comes to promoting the second mechanism over the first, reduce the share of kinetic
energy dissipated by viscosity, and thus the increase in N . This last point can be examined from
another angle: by qualitatively observing the elastic threshold below which the transition to the
asymptotic behaviour is gradual (and not sharp), it can be infered that even after the onset of
EIT, the flow still requires a given amount of inertia and/or elasticity, i.e. a givenWi increase, for
elastic energy transfers to balance inertial ones.

Figure 6. N − Ta curve for all concentrations with El color bar that illustrates the evolution of the elastic number during

the change of Ta.

(d) Elasto-inertial drag coefficient
In order to compare the data with Newtonian (laminar or turbulent) experiments and references
[43], curves from figure 6 can be re-scaled to display the friction coefficientCMz

defined asCMz
∼

N/R [7], shown in figure 7.
In the Newtonian case, the onset of TVF is known to stop the CMz

∼R−1 decrease (see
dashed line in figure 7), and the onset of WVF to make CMz

decrease again with R. In TVF, the
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drag increases much faster than what is expected from laminar assumption, in WVF, it increases
faster (but not so much): TVF is very efficient in conveying momentum radially, WVF not that
much, since part of the energy is involved in axial motion. A drag measurement experiment was
conducted for a Newtonian fluid (water) and is reported figure 7, for a turbulent state (R� 1800).
The slope of CMz

is compared with Von Kármán gap theory [44]. The results show that our CMz

follows the 1/
√
CMz

= 3 ln(R
√
CMz

)− 2.7 corresponding to ∼R−1/3 against the work of [43].
Back to the viscoelastic case, for the higher El fluids, the onset of EIT leads to a sharp

increase in CMz
and N . Yet, after this sharp onset, N tends to a constant value (see figure 6),

and the friction coefficient asymptotically moves back to its "laminar" evolution, approximately
(∼R−1), as shown in figure 7. This suggests that the additional dissipation induced by the
polymer chains and additional radial momentum transport is not Reynolds-dependent. The R-
dependency on friction can be scaled by that of the laminar case, with no significantR-dependent
contribution of the viscoelastic secondary flows. This supports the very recent DNS (Direct
Numerical Simulation) of [45] suggesting that elasto-inertial TCF structures are not efficient in
radial momentum convection, which is why they tend to merge and split [28] or create defects
[19], thus helping transition to chaos. It is yet worth noting that the jump, i.e the additional
dissipative contribution of the polymer, is itself El-dependent: the jump is higher when the elastic
number increases. Between the jump and the asymptotic high El region, there is a transitional
behaviour which can be understood as the establishment period of EIT. This establishment period
displays a different slope, aboutR−2/3 for the 50 ppm case as illustrated on figure 7. For 25 ppm,
the constant CMz

on a narrow range shows the existence of intermediate regimes visually closer
to TVF (RSW for Rotating Spiral Waves, see [28]), and apparently also in terms of torque dynamics
(see [7]). Results also show that EIT is different from inertial turbulence modified by polymer for
which drag is reduced. It would be interesting to see what happens when R tends to values for
which inertial turbulence is expected, as done in [46] and confront with drag reduction theory.

0

6

Turb.

Figure 7. Friction coefficient CMz as a function of R for all polymer concentrations (curve labels). The color scale

represents El values and the dashed line the -1 slope characteristic of a laminar flow. Slopes for R−2/3 and R−1 are

illustrated by dotted lines and triangle, orange and red, respectively. In inset, an experiment for pure water in turbulent

flow state (full black line) is reported along with its ∼R−1/3 asymptotic trend and compared with the ∼R−1/4 trend

of [43]. The gray part of the curves correspond to points below the rheometer’s minimum torque capacity and should be

discarded.
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(e) Spatio-temporal analysis: frequency maps and spatial PSD
Following the protocol detailed in [7], frequency maps for c̃p = 25, 100, 200, 350 are shown in
figure 8. Those plots shows the temporal FFT spectra of the reflected light intensity signal, for
all R stacked vertically, the colorbar representing the intensity of the spectra (arbitrary units).
Frequency maps display no particular spectral signature in the CCF domain, beforeRc is reached,
other than that of the inner cylinder rotation frequency fcylinder and its harmonics [28, 47]. Such
ridges are still slightly visible for R>Rc, but the overall spectral signature changes, with a
broadband distribution of energy from large to small temporal scales, a signature of the chaotic
behaviour characteristic of EIT [18, 27, 28].

CCF CCF

CCF CCF

EIT

EITEIT

Figure 8. Frequency maps computed as [7] or [28], from the reflected light intensity signal, for all vertically stackedR. The

color scale represents the FFT intensity from weak (yellow/light) to strong (purple/dark) energy content. Instantaneous

change in intensity indicates the transition from CCF to EIT and the oblique dashed lines indicate the rotation frequency

of the inner cylinder. For 25 ppm the first instability is RSW which results in the appearance of discrete peaks that are no

longer seen in EIT.

Further analysis of the spectral behaviour of EIT can be made by computing spatial power
spectral density (PSD) of the intensity signal at constantRc and El. This is achieved by extracting
sets of n vertical lines In(z) at constantR on flow maps (e.g from figure 4), subtracting the average
intensity profile 〈I〉 (z) = 1

n

∑n
j=1 I

j(z) in order to define the intensity fluctuation (i′)n(z) =

In(z)− 〈I〉 (z), computing PSD((i′)n(z)) and averaging PSDs on n. Values are finally scaled by
the spatial (over z) average of 〈I〉 (z) called I0. One typically uses n= 50, a number for which
the convergence of spectra was deemed sufficient for the analysis that follows. PSD spectra for
all polymer concentrations atR/Rc ' 1.2 are reported in figure 9 a), and spectra for the 350 ppm
case at various R values in figure 9 b). An additional experiment was performed with water,
in order to reach R' 5100 and produce a flow map and PSD in the inertial turbulence regime
(inset of figure 9 a). For that curve, one would expect to capture a -5/3 slope if i) turbulence is
sufficiently developed and ii) the intensity fluctuation signal is in some way representative of the
radial velocity fluctuations, as suggested by [48]. It appears from the inset of 9 a) that the inertial
turbulence curve roughly follows the -5/3 trend at least at intermediate scales, which seems to
validate both arguments. When considering spectra for EIT, the -5/3 slope is not expected in low
R cases where inertial turbulence would not have been present. Different scaling exponents of
EIT in various flow configurations (channel flows, TC flows...) can be found in the literature, in a
range from -14/3 to -3, always steeper than the inertial case. The -3 slope has recently been put
forward by [49] in their study of viscoelastic polymer jets as a universal spectral behaviour of EIT,
after having been theoretically predicted by [50]. Recent numerical simulations by [45] have been
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able to retrieve this scaling in elasto-inertial TCF. This reference slope is also represented on figure
9 b).

Figure 9. Spatio-temporal dynamics: a) Spatial PSD spectra for all polymer concentrations atR/Rc = 1.2, with an inset

showing typical spectrum for inertial turbulence in water. b) Spatial PSD spectra for c̃p = 350 ppm at various R dotted

and dashed black lines in b) denote k−5/3 and k−3 slopes [49, 50], respectively. The dotted blue line in a) and b) is a

-7/3 slope fitting the experimental data.

It here appears that all curves for EIT fall short of -3 trends, but still display a somehow
universal slope with respect to polymer concentration (figure 9 a). An increase in Reynolds
number seems to consolidate this slope by increasing the k span over which it applies (figure 9 b).
The slope value is here around -7/3 (figure 9 a and b). It is worth mentioning that the visualisation
method probes the flow from the outside and not in the bulk, and may be subject to boundary
layer effects on the outer cylinder. So the value of the slope itself must be interpreted with care.
Figure 9 yet confirms key findings [49] namely that of an apparent universal spectral slope of
EIT, steeper than inertial turbulence. Additionally, our results suggest that EIT is intrinsically a
combination of elasticity and inertia, asR helps develop the slope when increased.

4. Conclusion
In this work, new characterisations of the dynamics of EIT in Taylor-Couette flow of polymer
solutions were presented. Combining flow visualisation and torque measurements allowed to
detect CCF-EIT transition and to describe key dynamic features of EIT in TCF. In particular the
scaling ofN with Ta and its dependency on fluid elasticity has been discussed. Two sub-domains
of EIT were reported: a transitional one for which energy dissipation is still dominated by inertia
and a fully developed one for which elastic energy transfer become dominant. Spectral analysis
support the idea of a chaotic developed EIT state for which PSD would exhibit a universal slope.
Developed EIT displays an asymptotic "laminar-like" scaling for the friction coefficient: the wall
friction is directly correlated to the base azimuthal flow and secondary flow structures do not
play a role in wall friction as their energy is dissipated elastically. This requires a sufficient level
of both elasticity and inertia, and is expected to be of great interest in the aim of achieving efficient
mixing at low drag and lowR.
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