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Introduction

Polycystine radiolaria are one of the oldest known Rhizarian lineages, with a fossil record stretching back to the Early Cambrian [START_REF] Obut | Lower Cambrian Rardiolaria from the Gorny Altai (southern West Siberia)[END_REF][START_REF] Pouille | Lower Cambrian (Botomian) polycystine Radiolaria from the Altai Mountains (southern Siberia, Russia)[END_REF] and is thus of much interest for a number of evolutionary studies (e.g., [START_REF] Danelian | Patterns of biotic change in Middle Jurassic to Early Cretaceous Tethyan radiolarian[END_REF][START_REF] Danelian | Reconstructing Upper Cretaceous (Cenomanian) paleoenvironments in Armenia based on Radiolaria and benthic Foraminifera; implications for the geodynamic evolution of the Tethyan realm in the Lesser Caucasus: Palaeogeography[END_REF], Renaudie and Lazarus, 2003[START_REF] Tetard | Biodiversity patterns of Silurian Radiolaria[END_REF].

Since the early stages of the Deep Sea Drilling Program, the Cenozoic record of polycystine radiolaria has allowed us to establish their evolutionary and biostratigraphic significance, especially based on representatives of the Eocene genus Podocyrtis. [START_REF] Sanfilippo | Post-Eocene "Closed" Theoperid Radiolarians[END_REF][START_REF] Riedel | Cenozoic Radiolaria from the western tropical Pacific, Leg 7[END_REF][START_REF] Moore | Mid-Tertiary Evolution of the Radiolarian Genus Calocycletta[END_REF][START_REF] Riedel | Stratigraphy and Evolution of Tropical Cenozoic Radiolarians[END_REF]. Calibrated initially to the magnetostratigraphic time scale [START_REF] Sanfilippo | Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables[END_REF], the middle Eocene tropical radiolarian zones are now tied to orbital chronology (Meunier and Danelian, 20222), which provides the highest resolution of temporal control possible today and allows to define biostratigraphic events more accurately. Indeed, many of the middle Eocene biozones are based on the evolution of the various lineages of the genus Podocyrtis, which often relate to gradual anagenetic changes in phenotypes, as documented in several evolutionary lineages since the early 1970s (Sanfilippo andRiedel 1970, 1992;[START_REF] Riedel | Cenozoic Radiolaria from the western tropical Pacific, Leg 7[END_REF].

For example, the bases of biozones RP14 and RP15 are defined based on anagenetic phenotypic changes between the morphospecies P. sinuosa -P. mitra and P. mitra -P. chalara, respectively.

The Podocyrtis (Lampterium) lineage ends with the marked morphological transition of Podocyrtis chalara to P. goetheana. Interestingly, the first occurrence of P. goetheana defines the base of biozone RP16 [START_REF] Sanfilippo | Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables[END_REF]; an anagenetic transition was reported, but intermediate forms were never documented in detail. The absence of such a documentation has implications for our understanding of evolutionary changes in this Podocyrtis lineage, but as intermediate forms are poorly understood it also affects the recognition of the base of RP16. Here we examine the well-preserved radiolarian material of ODP Sites 1259 and 1260 from Demerara Rise (equatorial Atlantic Ocean), which present an exceptionally expanded Eocene sedimentary sequence. As such, this material offers an exceptional opportunity to study the morphological transitional forms between P. chalara and P. goetheana.

Within the abovementioned context, the principal aim of our study is to document morphological variation in the anagenetic sequence of P. chalara to P. goetheana with two different but complementary approaches to test the performance of various machine learning algorithms based on neural networks. To reach this objective, we first quantified morphological variation in the anagenetic transition between P. chalara and P. goetheana with traditional morphometrics, i.e., linear measurements, pore counts and associated ratios in the framework of qualitatively recognized morphological entities. This quantification of shape follows previous attempts to assess morphological changes in the Podocyrtis (Lampterium) lineage (Sanfilippo and Riedel, 1990;[START_REF] Rohlf | Size and Shape (Book Reviews[END_REF][START_REF] Danelian | Morphometric Analysis of Two Eocene Related Radiolarian Species of the Podocyrtis (Lampterium) Lineage[END_REF][START_REF] Watanabe | Changes in morphological parameters of the radiolarian Lampterium lineage from the middle Eocene in the tropical Pacific[END_REF]. Using this morphometric framework of measurement data and a priori morphospecies assignments, we examined how well linear discriminant analysis allows to distinguish morphospecies as a baseline to test the performance of machine learning with neural networks.

Testing the capabilities of neural network approaches based on image recognition is a daunting task, because during the past couple of years, a variety of techniques involving Artificial Neural Networks (ANNs) have been developed and improved. Convolutional Neural Networks (CNNs) have been specifically designed for analysis of visual data, and are now commonly used for image recognition, warranting detailed examinations of their performance in morphological classification, and, therewith, as a tool to inform, and potentially reach more objective taxonomic decisions. Indeed, CNNs are becoming well-integrated in various micropaleontological studies for automatic image recognition (i.e., [START_REF] Mitra | Automated species-level identification of planktic foraminifera using convolutional neural networks, with comparison to human performance[END_REF][START_REF] Hsiang | Endless Forams: >34,000 modern planktonic foraminiferal images for taxonomic training and automated species recognition using convolutional neural networks[END_REF][START_REF] Marchant | Automated analysis of foraminifera fossil records by image classification using a convolutional neural network[END_REF][START_REF] Dollfus | Fat neural network for recognition of position-normalized objects[END_REF][START_REF] Beaufort | Automatic recognition of coccoliths by dynamical neural networks[END_REF][START_REF] Bourel | Automated recognition by multiple convolutional neural networks of modern, fossil, intact and damaged pollen grains[END_REF][START_REF] Itaki | Innovative microfossil (radiolarian) analysis using a system for automated image collection and AI-based classification of species[END_REF][START_REF] Renaudie | Accuracy of a neural net classification of closely-related species of microfossils from a sparse dataset of unedited images[END_REF][START_REF] Tetard | Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow[END_REF]. Regarding Eocene radiolaria, a recent study by [START_REF] Carlsson | Artificial intelligence applied to the classification of eight middle Eocene species of the genus Podocyrtis (polycystine radiolaria)[END_REF] applied a CNN to eight well-delimited morphospecies of the genus Podocyrtis, and documented the potential of this method under the simplified scenario when no morphological intermediates are present.

Spiking Neural Networks (SNNs) present another type of neural network, which in addition to neuronal and synaptic states, they also incorporate a time component; this is why such networks can more closely mimic natural neural networks [START_REF] Maass | Networks of spiking neurons: The third generation of neural network models[END_REF]. SNNs have wide applicability, including modeling of natural systems such as the central nervous system of biological organisms, as well as for image analysis. Traditionally, SNNs were less accurate than other neural networks, but in recent years their performance has significantly improved; they are more appropriate to process spatio-temporal data, and they may use computational resources more effectively (Tavanaej et al., 2019). As such, an evaluation of SNNs in image recognition and biological classification seems warranted.

In this paper, we expand on previous work by [START_REF] Carlsson | Artificial intelligence applied to the classification of eight middle Eocene species of the genus Podocyrtis (polycystine radiolaria)[END_REF] with CNNs by aiming to classify stacked and segmented images of the entire spectrum of morphological variation found between P. chalara and P. goetheana. As mentioned, we used morphometrics to document shape variability, which we subjected together with a priori morphospecies assignments to LDA as a baseline to study the classification performance for image-based neural networks using a CNN, a Spike-timing-dependent plasticity (STDP)-based SNN and a SuperSpike-based SNN. This examination allows us to evaluate the use of imaging data and neural networks for automated classification in a complex case study with intermediate shapes. If the neural networks perform well, we would expect correct classification for each morphogroup. Additionally, the results should reflect those of the LDA analysis, if the morphometric documentation of shape variation is representative of the four morphospecies.

Alternatively, neural networks may show differences compared to LDA. These distinctions could arise if neural networks fail to perform well, possibly due to unsuccessful training with the existing data. In opposite to that, the neural networks may perform better than LDA if the data supporting LDA lacks crucial shape information necessary for distinguishing between morphogroups based on the images. As such, we expect our study to shed light into future opportunities for automated biological classification of polycystine radiolaria and the use of neural networks in developing more objective taxonomic decisions.

Analyzed morphological groups

Plate 1 displays the entire range of morphological variability observed between P. chalara and P. goetheana. As linear discriminant analysis and the supervised learning of neural networks are based on a priori group assignments, we were required to assign this continuum of variation to a number of morphological groups. Based on extensive qualitative assessments and to challenge the employed classification algorithms we recognized four distinct morphological groups for the purpose of the current study, without currently being concerned by the paleobiological/evolutionary status of each group. These morphogroups are briefly presented below.

Podocyrtis chalara Riedel and Sanfilippo

Pl. 1, fig. A, B 1970 Podocyrtis (Lampterium) chalara Riedel and Sanfilippo, p. 535, pl. 12, figs. 2, 3. 1971 Podocyrtis (Lampterium) chalara Riedel and Sanfilippo: Moore,p. 743,pl. 3,figs. 5,[START_REF] Lever | Principal component analysis[END_REF].

Materials and methods

Sediment samples

The material analyzed in this study consists of radiolaria obtained from an expanded middle Eocene siliceous chalk sequence drilled at ODP Sites 1259 and 1260 (Leg 207, Demerara Rise), located in the equatorial region of the Atlantic Ocean, 380 km offshore Suriname (Erbacher et al., 2004;[START_REF] Danelian | Preliminary results on Cretaceous-Tertiary tropical Atlantic pelagic sedimentation (Demerara Rise[END_REF]. The middle Eocene sequence is particularly thick at Sites 1259 and 1260 and contains siliceous microfossils (radiolarians, diatoms) of an excellent state of preservation [START_REF] Danelian | The record of mid Cretaceous oceanic anoxic events from the Ionian zone of southern Albania[END_REF][START_REF] Renaudie | Siliceous phytoplankton response to a Middle Eocene warming event recorded in the tropical Atlantic (Demerara Rise, ODP Site 1260A)[END_REF]Meunier andDanelian, 2022, 2023). The part of the limestone sequence from Site 1260 that is studied here is dated by orbito-chronology [START_REF] Westerhold | Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the chron C19r event: Missing link found in the tropical western Atlantic: Orbital Pacing of Eocene Climate: Geochemistry[END_REF]. More specifically, our samples span the interval between 41.24 Ma and 39.84 Ma. Site 1259 is dated via bio-and magneto-stratigraphy and was sampled in the interval between ~39.05 and 37.70 Ma.

Slide preparation

A combined total of 15 samples from both sites were chosen and prepared for microscopic observation using techniques described by Sanfilippo et al. (1985). A small quantity (~2 cm³) of unprocessed sediment was collected from each sample and dried overnight at 50°C to eliminate any residual water. After being weighed, sediment samples were soaked for 2 hours in a 500 mL polypropylene beaker containing 30 mL of 30 % hydrochloric acid (HCl), to dissolve their carbonate content and concentrate siliceous microfossils. A few mL of HCl were added at the end to confirm the end of the reaction. The residues resulting from the acid treatment was then washed by adding ~200 mL of distilled water. After 2 hours of decantation, excess water was carefully removed using a pipette.

Residues were subsequently soaked for 2 hours in 30 mL of 10 % hydrogen peroxide (H 2 O 2 ) to remove organic matter, and subsequently washed through a 63 µm sieve using distilled water. The > 63 µm fraction was then exposed to ultrasonic waves for 10 min, then passed again through the 63 µm sieve, and finally left to dry overnight at 50°C. For each sample, ~2 g of dried residue was carefully spread on top of a slide covered with several drops of Norland Optical Adhesive 61, then topped with a coverslip and sealed by two minutes of exposure to UV light.

Microscopy and image processing

The resulting slides were analyzed with a Zeiss AXIO Images A2 microscope under transmitted light at ×10 and ×20 magnifications. All specimens recognized qualitatively as P. chalara, Podocyrtis sp. cf. P. chalara, Podocyrtis sp. cf. P. goetheana or P. goetheana were manually photographed using the mounted Axiocam ERc5s with Zen 3.5 (blue edition) software. For each specimen, a batch of 5-10 photographs were taken at different focal points to obtain a series of images, which were stacked afterwards using Helicon Focus 7.7.0 (HeliconSoft) to create a composite picture entirely in focus. The stacked images were subsequently retouched with Paint3D to facilitate their automated segmentation. This last procedure was performed with the ImageJ BioVoxxel plugin [START_REF] Brocher | biovoxxel/BioVoxxel-Toolbox[END_REF] and the AutoRadio_Segmenter plugin developed for ImageJ / Fiji [START_REF] Tetard | Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow[END_REF].

Morphometric analyses

As we aimed to subject specimens to discriminant analysis based on morphometric measurements, it was essential that the documented morphological variables would adequately capture shape variations present in between the four morphogroups. We first designed a set of variables that would allow to compare with the variables used by [START_REF] Watanabe | Changes in morphological parameters of the radiolarian Lampterium lineage from the middle Eocene in the tropical Pacific[END_REF] on the specimens of the Lampterium lineage from the Pacific Ocean. A subset of seven of these variables was retained and supplemented with six newly proposed variables to result in a set of thirteen morphological variables that document well the morphological variation between the four morphogroups (Figure 1). The seven morphological variables proposed by [START_REF] Watanabe | Changes in morphological parameters of the radiolarian Lampterium lineage from the middle Eocene in the tropical Pacific[END_REF] 1. Five additional variables related to pore counts and ratios are not illustrated. Abbreviations: W1: maximum width of the cephalis; W2: maximum width of the thorax; W3: maximum width of the abdomen; H1: maximum height of the cephalis without the apical horn; H2: maximum height of the thorax; H3: maximum height of the abdomen; TL: total length or height of the specimen without the apical horn; LP2: maximum length of the second abdominal pore. S1 in Supplementary materials) were directly performed on a dataset of 214 photographs/specimens from samples 1260A-6R-1W, 58-60 cm, 1260A-6R-4W, 68-70 cm, 1260A-6R-5W, 15-17 cm and 1260A-6R-5W, 87-89 cm, outlined in Table 1, using the image processing and analysis software ImageJ [START_REF] Schneider | NIH Image to ImageJ: 25 years of image analysis[END_REF]. All of these data were tabulated and then imported in the statistical environment R (v. 4.1.3; R Core Team 2022) for subsequent LDA using the packages MASS (v. 7.3-60; Ripley et al., 2013) and vegan (v. 2.6-4;[START_REF] Oksanen | Package 'vegan[END_REF]. This analysis is a constrained ordination procedure that uses a linear combination of coefficients to maximize the distance between a priori defined groups, while minimizing the distance within each group [START_REF] Venables | Random and Mixed Effects[END_REF]. As morphometric variables were expressed in both metric units and as ratios, the LDA was performed on data that were transformed to have the mean at zero-and one-unit standard deviation (z transformation). After subjecting the whole dataset to LDA we performed cross-validation by 100 replicates of randomly assigning 80 % of the data to a training dataset and the remainder to a testing set to evaluate the classification success of the LDA. 

Quantifications of these variables (Table

Artificial Neural Networks

Artificial Neural Networks or simply neural networks are machine learning algorithms designed to simulate the decision-making processes of the human brain by analyzing and exploiting patterns in data [START_REF] Yang | Artificial Neural Networks[END_REF]. Prior to analysis, the data given to a network is split into two parts, one for training and one for testing, usually in a 80 to 20 ratio.

The first set of data is used to train the neural network, so that to enable it to learn recognizing features and patterns present in the data, whereas the second set of data is used to test the performance of the network to classify cases based on the previously trained capabilities of recognition.

A type of ANNs that has been specifically designed to analyze visual data are CNNs, commonly used for image recognition. They are designed to analyze visual data by considering the color values of each pixel and by identifying patterns within images [START_REF] Hijazi | Using Convolutional Neural Networks for Image Recognition: Cadence[END_REF]. CNNs utilize a process known as convolution. Convolution can be described as a linear operation to decompose the input image by sliding small windows known as filters or kernels over the input image to construct layers that each obtain certain features. The convolutional layers in a CNN modify gradually the image parameters, such as weights or bias, to learn and recognize specific patterns or objects in the images. By adjusting these parameters through training, the network aims to correctly classify the output given a particular input. When a CNN has multiple layers, typically more than three, the procedure is referred to as deep learning, as each layer enables the recognition of more and more advanced features in an image. As mentioned, SNNs consider additionally the time factor, alike biological neurons, which use discrete spikes to compute and transmit information, instead of characterizing neurons by a single, static continuous-valued activation.

The hyperparameters (i.e. weights) of the neural network analyzed in this study were chosen randomly; more specifically a value between -1 and 1 was chosen for the VGG16 and SuperSpike-based networks, while a value network between 0 and 1 was chosen for the STDP-based network neural. We analyzed two sets of stacked and segmented images. The first set contained images with a priori assignments to the four morphogroups represented in section 2; for the second set assignments were altered based on the results of LDA. In each case, we performed ten runs per type of neural network used, with 20 epochs for each network, except for the STDP-based network that was run with 100 epochs. An epoch simply means how many passes it goes through the training set and updates parameters based on each pass. The following neural networks were used to perform runs:

-Visual Geometry Group 16 (VGG16). This 16-layer deep CNN was used for its simplicity. For our analyses, we use transfer learning, meaning that the first 15 layers were already pre-trained based on a large-scale image dataset from ImageNet, and we only trained the last layer specifically using our data and PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library: 33 rd NeurIPS[END_REF]. More information about VGG16 is provided by [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition: ICLR[END_REF].

-STDP-based Spiking Neural Network (STDP-Network). This network contains convolutional and pooling layers that learn the features from the data using a Spike Timing Dependent Plasticity (STDP), a learning algorithm inspired by natural neurons. STDP adapts the synaptic connections between the neurons based on the timing of the spikes to transmit information [START_REF] Masquelier | Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity[END_REF]) in an unsupervised way, i.e., without a priori group assignments. This SNN is then combined with a Support Vector Machine (SVM) for classification in the STDP-based network using the a priori group assignments [START_REF] Cortes | Support-vector networks: Machine Learning[END_REF]. To train the STDP-Network, we used the CSNN-simulator [START_REF] Falez | Improving Spiking Neural Networks Trained with Spike Timing Dependent Plasticity for Image Recognition[END_REF].

-SuperSpike-based Spiking Neural Network (SuperSpike-Network). This SNN is trained using a nonlinear voltage-based three-factor learning rule capable of training multilayer networks called the SuperSpike (Zenke and Ganguli, 2018), which is a supervised global learning rule similar to deep learning. We used the Norse simulator for our analyses [START_REF] Pehle | Norse -A deep learning library for spiking neural networks (0.0.5)[END_REF].

All the neural network simulations were conducted on the cluster "grouille" of the Grid'5000 test bed [START_REF] Balouek | Adding virtualization capabilities to the Grid'5000 testbed[END_REF] using two Nvidia A100-PCIE-40GB GPUs, an AMD EPYC 7452 32 core CPU (Zen 2, 2 CPUs/node), and 128GB of RAM. For each type of neural network, we averaged the assignment accuracies obtained over the ten replicate runs to gain robust insight into performance.

The training of the neural networks are expected to be better when a large, data-rich training set is used. Because our two analyzed datasets (Tables 2 and3) are composed of 428 and 514 original images, respectively, we considered it necessary to augment the data available for ANN training. Therefore, we performed the following data augmentation procedures:

─ Rotate the images by a randomized angle between -15 and 15 degrees and keep all copies.

─ Randomly choose images that would be flipped from left to right and keep both copies.

─ Rescale random images with values between 1 and 1.3 (with 1 being the default scale value).

The total number of images in each dataset was enhanced to >1000 images via data augmentation. 2). The first axis of the LDA mainly represents size variations of the second row of abdominal pores. The morphological variables that contribute the most to discriminate the morphogroups on the first LDA axis correspond to the maximum length of the second abdominal pore (LP2), and the maximum length of the second pore of the abdomen/maximum height of the abdomen (R1). Upon considering three morphogroups achieved by lumping P. chalara and Podocyrtis sp. cf.

P. chalara, the LDA ordination is highly similar to that obtained in the four-group analysis, with all variation represented on the first two axes (~92.87 % on axis 1; Figure S1).

Classification results improved substantially, with 94.5 ± 3.1 % of correctly identified specimens in the three-group LDA (Table S2). Misclassification mainly occurred between P.

goetheana and Podocyrtis sp. cf. P. goetheana, occasionally also between P. chalara and Podocyrtis sp. cf. P. goetheana, but never between P. chalara and P. goetheana. 5, which resulted to an identification accuracy of 54.4 ± 1.7 % (Figure 3).These results indicate that, although the network was able to partially identify the differences between the general morphologies of P. chalara + Podocyrtis sp. cf. P. chalara versus those of P. goetheana + Podocyrtis sp. cf. P. goetheana, it was not able to accurately distinguish all four morphogroups from each other. 

Classification using the three morphogroups supported by LDA

Subsequently, we trained neural networks using a dataset with a priori assignment to the three morphogroups that were recognized by LDA, i.e., P. chalara + Podocyrtis sp. cf. P.

chalara Podocyrtis sp. cf. P. goetheana and P. goetheana. For these analyses we compared the performance of a VGG16 CNN, a STDP-based SNN and a SuperSpike-based SNN using the 3_classes dataset (Table 3). The resulting assignment results and average network accuracies (Figure 4) indicate that, under our specified conditions, all neural networks are able to accurately assign specimens to their correct class when three predefined classes are used in combination with a large dataset of images. However, we observed substantial 

Discussion

In this study, we examined the morphological variability in Eocene Podocyrtis belonging to the anagenetic sequence that starts with P. chalara and ends with P. goetheana.

Specifically, we examined and compared the performance of two analytical approaches in assigning individuals to a priori defined morphogroups that were constructed from qualitative observations, i.e., P. chalara, Podocyrtis sp. cf. P. chalara, Podocyrtis cf. P. goetheana and P. goetheana. The first approach involved LDA based on morphometric data, whereas the second was a neural network approach based on automatic image recognition. Both methods gave very similar results, which indicates that both morphometrics and image analysis evaluated shape differences in a highly similar way, suggesting that the results obtained with these two different methods are robust.

Comparing LDA and neural network approaches, assignment performances were comparatively low when four morphogroups were considered in the morphological transition from P. chalara to P. goetheana. The scatterplot of the LDA (Figure 2), indicated a large morphospace overlap between P. chalara and Podocyrtis sp. cf. P. chalara, revealing that the qualitatively observed 'differences' were either not sampled in our datasets or that these differences are part of a larger spectrum of morphological variation and not informative to distinguish morphogroups. mainly our CNN can accurately and quickly, assign specimens to the three pre-defined classes using a large dataset. Whereas the CNN performed highly similarly to LDA, both SNNs we used here performed less well, as had been documented for other tasks before (Tavanaej et al., 2019). Runs with the STDP-based SNN ran to completion fastest and given that the accuracy was only slightly reduced compared to LDA and VGG16, this approach may be preferred for datasets that require a very long runtime with similar CNNs. The accuracy of the SuperSpikebased SNN was significantly reduced compared to all the other classification methods that we used. Further work is required to determine the cause of this underperformance, but the lower accuracy for the SuperSpikeSuperSpike-based SNN is possibly due to the network size, as we used only using eight layers in our case compared to 16 layers in VGG-16.

As for the performance evaluation of the neural network approach, it is noteworthy that images were obtained manually for the purpose of our study, but advances in image technology now allow that much of the image acquisition and preparation procedures (photographing, stacking and segmentation) to be automated by the use of automatic microscopes and modification of the AutoRadio_Segmenter plugin's code [START_REF] Marchant | Automated analysis of foraminifera fossil records by image classification using a convolutional neural network[END_REF][START_REF] Tetard | Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow[END_REF]. Using these automated procedures would facilitate the scalability of the entire analysis with larger datasets. If such automated procedures were to be used, constructing image datasets may potentially become more time-efficient than the various procedures that are required to develop a morphometric dataset. Another advantage of using neural network is their quick run time (Table 5.), although both accuracy and run time would increase upon using larger image datasets. Furthermore, standardizing the rotation and orientation of specimens is essential in morphometric studies; however, this requirement can be relaxed for neural networks, as in our case re-rotating and re-orienting were used in the data augmentation process to enlarge input datasets.

In our study, we evaluated assignment accuracy of LDA and machine learning with neural networks based on a priori group assignments; however, in the future, it would be useful to examine morphological variation without considering such assignments, e.g., by using other ordination techniques and/or by using unsupervised machine learning techniques.

These methods could help in attempts to evaluate whether the three retained morphogroups represent natural entities, although based on fossil evidence only such assessments are very difficult. We refrain from such analyses here, as we believe these would be best conducted with a larger set of material that ideally would cover the total geographic range and the total stratigraphic interval covered by P. chalara, Podocyrtis sp. cf. P. goetheana and P.

goetheana.

Future work could also be focused on trying to evaluate the capacity of VGG16 to accurately differentiate between the P. chalara and Podocyrtis sp. cf. P. chalara specimens, with an altered set of images. Indeed, the weighted activation heatmap (Grad-CAM) (Servaraju et al., 2017) generated from the runs with the 3-class dataset showed that the analytical focus of the network was centered around the thoracic and abdominal walls of the specimens (Figure S22 in Supplementary material). One could try to develop a dataset including several unstacked and non-segmented images per specimen, each one with a focus on specific morphological features. This would allow some images to contain as much detail as possible on abdominal features, whereas others would focus on other regions (e.g. the thorax) and include blurred features of the outer walls and backside of the abdomen. We hypothesize that these manipulations could force the network to focus its recognition capabilities on a larger set of morphological features. If this hypothesis would be correct, it would also facilitate the data acquisition process by eliminating the need to stack and segment the images themselves. Alternatively, it is possible that providing more fragmented information to neural networks would hamper an efficient learning process, with negative consequences on the accuracy of the following predictions, somewhat similar to what we observed in the VGG16 evaluation based on the 4-class dataset.

Conclusion

The aim of our work was to study the morphological variability in the anagenetic sequence of P. chalara to P. goetheana and to evaluate the performance of recognizing and classifying four a priori identified morphogroups with various machine learning algorithms based on neural networks that use image data as direct input in comparison to linear discriminant analysis using morphometric data. Our results demonstrate that LDA and neural networks provide very similar outcomes, indicating robust performances. With both approaches we encountered difficulties distinguishing P. chalara and Podocyrtis sp. cf. P. chalara,

suggesting that the qualitative basis on which these morphogroups were recognized is to be revised. For both approaches, assignment probabilities drastically increased for the scenario where three morphogroups were recognized, lumping P. chalara and Podocyrtis sp. cf. P. 

Figure 1 .

 1 Figure 1. Schematic representation of the eight skeletal variables measured for all specimens outlined in Table

Figure 2 .

 2 Figure 2. Scatter plot of the two first axes of the Linear Discriminant Analysis (LDA) conducted on the 13variables that constituted the morphometric data using four a priori identified morphogroups (indicated in the legend; ellipses correspond to the 95 % confidence intervals for each morphogroup). Abbreviations: W1: maximum width of the cephalis without the apical horn; W2: maximum width of the thorax; W3: maximum width of the abdomen; H1: maximum height of the cephalis; H2: maximum height of the thorax; H3: maximum height of the abdomen; TL: total length or height of the specimen without the apical horn; LP2: maximum length

Figure 3 .

 3 Figure 3. Example of a confusion matrix obtained from random single run -Analysis of 4_classes dataset with VGG16. Correct assignments were reached in 54.40 % of the cases. The color scale indicates the number of specimens.

  differences in the speed to conclude analyses; thus the STDP-based SNN was the fastest (around 6 minutes) due to the use of the local learning rule for training and one spike per image per neuron principale. Moreover, VGG16 came second with a time of around 17 minutes due to the size of the network and the use of transfer learning and training of only the last layer. Last came the SuperSpike-based SNN with approximately 23 minutes per run because all layers of the network were trained from scratch during the training phase at the start of each run using a global learning rule.

Figure 4 .

 4 Figure 4. Examples of confusion matrices obtained from random single runs -Analyses of 3_classes dataset with VGG16, STDP-based SNN and SuperSpike-based SNN. Correct assignments were reached in 92.60 %, 90.40 % and 84.42 % of the cases in VGG16, STDP-based SNN and SuperSpike-based SNN, respectively. The color scale indicates the number of specimens.

  

Table 1 .

 1 Number of specimens analyzed per morphogroup and per sampled core interval.

						Total number of
	Samples	P. chalara	Podocyrtis sp. cf. P. chalara	Podocyrtis sp. cf. P. goetheana	P. goetheana	measured specimens per
						sample
	1260A 6R 1W 58-60cm	0	0	2	29	31
	1260A 6R 4W 68-70cm	18	19	37	0	74
	1260A 6R 5W 15-17cm	19	12	7	0	38
	1260A 6R 5W 87-89 cm	34	9	28	0	71

Table 2 .

 2 List of images included (prior to augmentation) in each of the classes for the four-class dataset used for analysis withVGG16with.

	Samples	P. chalara	Podocyrtis sp. cf. P. chalara	Podocyrtis sp. cf. P. goetheana	P. goetheana	Total number of analyzed specimens per sample
	1260A 6R 4W 68-70cm	0	19	34	3	56
	1260A 6R 4W 119-121cm	0	13	2	1	16
	1260A 6R 5W 15-17cm	0	12	7	0	19
	1260A 6R 5W 63-65cm	22	9	15	0	46
	1260A 6R 5W 87-89 cm	33	12	18	14	77
	1260A 6R 6W 20-22 cm	12	18	9	0	39
	1260A 6R 6W 57-59 cm	19	14	2	0	35
	1260A 7R 1W 22-24 cm	24	15	0	0	39
	1260A 7R 1W 69-71 cm	33	11	0	0	44

Table 3 .

 3 List of images included (prior to augmentation) in each of the classes for the three class three dataset used for analysis with VGG16, STDP-based SNN and SuperSpike-based SNN. P. chalara and vice versa, resulting overall in 73.5 ± 6.1 % (mean ± sd) correct assignments (Table4). These two latter morphogroups overlap completely on the LDA plot, whereas P. Podocyrtis sp. cf. P. goetheana and P. goetheana are relatively well-separated from P. chalara and Podocyrtis sp. cf. P. chalara, although they share limited overlap with each other (Figure

						Total number of
		Samples	P. chalara + Podocyrtis sp. cf. P. chalara	Podocyrtis sp. cf. P. goetheana	P. goetheana	analyzed specimens per
						sample
		1259A 17R 1W 54-56cm	0	0	1	1
		1259A 18R 1W 53-55cm	0	0	41
		1259A 18R 2W 53-55cm	0	0	36
		1260A 6R 1W 58-60cm	0	1	26
		1260A 6R 4W 68-70cm	19	29	0
		1260A 6R 4W 119-121cm	13	2	1
		1260A 6R 5W 15-17cm	12	5	0
		1260A 6R 5W 63-65cm	31	15	0
		1260A 6R 5W 87-89cm	43	28	0
		1260A 6R 6W 20-22cm	29	8	0
		1260A 6R 6W 57-59cm	34	2	0
		1260A 7R 1W 22-24cm	39	0	0
		1260A 7R 1W 69-71cm	44	0	0
		1260A 7R 1W 121-123cm	42	0	0
		1260A 7R 2W 19-21cm	13	0	0
		TOTAL	319	90	105	514
	383				
	384	4. Results			
	385	4.1. Morphometrics and linear discriminant analysis	
	386	The LDA performed on the matrix of our 13 morphometric variables, i.e., measurements, pore
		counts and ratios, represented >99 % of the variation on the first two axes and clustered

387

Podocyrtis goetheana and Podocyrtis sp. cf. P. goetheana successfully (Fig.

2

).

388

Comparatively, specimens belonging to P. chalara were regularly confused with Podocyrtis 20 sp. cf.

Table 4 .

 4 Average confusion matrix of the Podocyrtis morphotypes based on linear discriminant analysis (LDA) performed on the matrix of our 13 morphometric variables (.,i.e., measurements, pore counts and ratios).

	LDA results 4-group					
	scenario						
							P_goe_
	P_sp_cf_P_cha_&	P_cha_&_P_	P_cha_&_P_	P_goe_&_P_	P_goe_&_P_	&_P_ch	total_c
	_P_sp_cf_P_goe	sp_cf_P_cha	sp_cf_P_goe	sp_cf_P_cha	sp_cf_P_goe	a	orrect
	res_						
	mea							0.7351
	n	0.011162791 0.204651163 0.001627907	0	0.04744186	0	16279
	res_s							0.0612
	d	0.013819733 0.059589621 0.005963544	0 0.024717954	0	97375
	4.2. Artificial neural networks				
	4.2.1. Classification using the four morphogroups		
	First, we trained neural networks on the dataset of 428 images attributed to the four

morphogroups (Table

2

4_classes dataset) using a CNN with a VGG16 architecture. Prior to the training and testing phases, images were manually grouped into four distinct classes (one class per morphogroup). The analysis was run ten times with the pre-processing parameters outlined in Table

Table 5 .

 5 Summary of the tests performed on the 4_classes and 3_classes datasets using VGG16, STDP-based SNN and SuperSpike-based SNN. Accuracy values are averaged from the results of the respective 10 test runs and indicated as the mean ± one standard deviation.

	Dataset	Architecture	Test runs	Number of Epochs	Data pre-processing	Simulation time h:m:s	Accuracy ( %) ± std mean ± std
	4_classes	VGG16	10	20	Image resize to (224, 224) px	0:31:46	54.40 ± 1.74
		VGG16	10	20	Image resize to (224, 224) px	0:17:37	92.60 ± 0.77
	3_classes	STDP-Network	10	100	Image resize to (128, 128) px & On-Off filter	0:05:4343	90.40 ± 0.4949
		SuperSpike-Network	10	20	Image resize to (128, 128) px	0:23:26	84.42 ± 1.36

  Given the similarity of LDA and neural networks, based on different datasets, the second hypothesis is more likely; it appears that P. chalara and Podocyrtis sp. cf. P. chalara represent a single highly variable morphogroup. Morphospace overlap is also observed in the LDA between Podocyrtis sp. cf. P. goetheana and P.goetheana, but it is much more limited than between P. chalara and Podocyrtis sp. cf. P. chalara. Finally, Podocyrtis sp. cf. P. goetheana also overlaps with P. chalara and Podocyrtis sp. cf. P. chalara in morphospace occupation, however this overlap is small. The analyses conducted with the machine learning approach on four morphogroups confirm the results of LDA, as VGG16 had significant difficulties in differentiating specimens of P. chalara from Podocyrtis sp. cf. P. chalara and vice-versa using stacked and segmented images, when all four morphogroup classes were pre-defined. This was also the case for some specimens of

	Podocyrtis sp. cf. P. goetheana and P. goetheana, which all resulted in an inferior
	performance of VGG16 compared to that of the LDA for the scenario with four
	morphogroups,, i.e., 54.4 ± 1.7 % versus 73.5 ± 6.1 %, respectively.
	When P. chalara and Podocyrtis sp. cf. P. chalara are lumped in the same morphogroup,
	resulting in a three-group configuration, assignment probabilities improved strongly both for
	LDA and neural networks. On average 94.5 ± 3.1 % of assignments were correct with LDA,
	whereas 92.6 ± 0.8 %, 90.4 ± 0.5 % and 84.4 ± 1.4 % of the assignments were correct for
	VGG16, STDP-based SNN and SuperSpike-based SNN, respectively. Neural networks,

  and P. goetheana. Further studies with more comprehensive sampling are required to document the likelihood of Podocyrtis sp. cf. P. goetheana representing a separate natural entity, which additionally has implications for the position of bioevent RP16. However, our results indicate that the morphometric data that we used for LDA samples the morphological variability in the anagenetic sequence of P. chalara to P. goetheana in a comprehensive way.Secondly, neural network approaches were able to correctly assign most specimens, and therewith to accurately distinguish the three morphogroups directly from specimen images.These results indicate that VGG16, STDP-based SNNs, and even SuperSpike-based SNNs are capable of recognizing morphological variation in images and thus of reliably distinguishing radiolarian morphogroups, which could fascilitate identification and help with reaching more objective taxonomic decisions. Furthermore, neural network approaches can be combined with automated image acquisition and preparation procedures (photographing, stacking and segmentation) that enable the creation of much larger image databases in a time-efficient manner. Analyses based on neural network architecture could thus take a fraction of the time that would be required for a trained taxonomist/(paleo)biologist to create and analyze quantitative morphometric datasets. In conclusion, neural network approaches based on images of (paleo)biological specimens may provide promising opportunities to guide more objective taxonomic decisions. 0ca47d6/https://archive.softwareheritage.org/browse/directory/cc7d8ef1505299a208adcde597 a98d90b0ca47d6/[START_REF] Elbez | Code for: Morphometrics and machine learning discrimination of the middle Eocene radiolarian species Podocyrtis chalara, P. goetheana and their morphological intermediates[END_REF].

chalara, and thus retaining P. chalara + Podocyrtis sp. cf. P. chalara, Podocyrtis sp. cf. P. goetheana
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