
HAL Id: hal-04215322
https://hal.science/hal-04215322

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Morphometrics and machine learning discrimination of
the middle Eocene radiolarian species Podocyrtis

chalara, Podocyrtis goetheana and their morphological
intermediates

Francisco Pinto, Veronica Carlsson, Mathias Meunier, Bert Van Bocxlaer,
Hammouda Elbez, Marie Cueille, Pierre Boulet, Taniel Danelian

To cite this version:
Francisco Pinto, Veronica Carlsson, Mathias Meunier, Bert Van Bocxlaer, Hammouda Elbez, et al..
Morphometrics and machine learning discrimination of the middle Eocene radiolarian species Podocyr-
tis chalara, Podocyrtis goetheana and their morphological intermediates. Marine Micropaleontology,
In press, pp.102293. �10.1016/j.marmicro.2023.102293�. �hal-04215322�

https://hal.science/hal-04215322
https://hal.archives-ouvertes.fr


 

1 
 

Morphometrics and machine learning discrimination of the middle Eocene radiolarian 1 

species Podocyrtis chalara, Podocyrtis goetheana and their morphological intermediates 2 

 3 

Francisco Pinto
1
, Veronica Carlsson

1, 2 
*, Mathias Meunier

1
, Bert Van Bocxlaer

1
, Hammouda 4 

Elbez
2
, Marie Cueille

1
, Pierre Boulet

2
 and Taniel Danelian

1
 5 

1
Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France. 6 

2
Univ. Lille, CNRS, CRIStAL – Centre de Recherche en Informatique Signal et Automatique 7 

de Lille, UMR 9189, F-59000 Lille, France. 8 

 9 

*corresponding author: veronica.carlsson@univ-lille.fr 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 



 

2 
 

Abstract 22 

We present various approaches to distinguish the middle Eocene species Podocyrtis 23 

chalara and Podocyrtis goetheana, which are end members of a trajectory of phenotypic 24 

change, and their intermediate morphogroups. We constructed a set of thirteen traditional 25 

morphological variables to classify the entire morphological variability encompassed by the 26 

two morphospecies and their intermediates Podocyrtis sp. cf. P. chalara and Podocyrtis sp. 27 

cf. P. goetheana. We used two methods of classification, namely Linear Discriminant 28 

Analysis (LDA) and machine learning using artificial neural networks. LDA performed on the 29 

morphometric data reveals a good discrimination for P. chalara, P. goetheana and Podocyrtis 30 

sp. cf. P. goetheana, but not for Podocyrtis sp. cf. P. chalara. We used three approaches of 31 

machine learning based on different neural networks: Convolutional Neural Networks 32 

(CNNs) and two Spiking Neural Networks (SNNs). Each of these neural networks was trained 33 

based on classified images of the two morphospecies and their morphological intermediates, 34 

thus constituting a different set of input data than the morphometric dataset for LDA. The 35 

neural network approaches identified the same three morphospecies recognized by LDA from 36 

a dataset of traditional measurements, i.e. P. chalara, P. goetheana and Podocyrtis sp. cf. P. 37 

goetheana, with up to 92 % accuracy. Our results highlight the great potential and promising 38 

perspectives of machine learning and neural networks in the application of image-based 39 

object recognition for morphological classification, which may also contribute to more 40 

objective taxonomic decisions.  41 

Keywords 42 

Morphometrics; Artificial Intelligence; Convolutional Neural Networks; Spiking Neural 43 

Networks; Radiolarians; Automated identification 44 

 45 
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1. Introduction 46 

Polycystine radiolaria are one of the oldest known Rhizarian lineages, with a fossil 47 

record stretching back to the Early Cambrian (Obut and Iwata, 2000; Pouille et al., 2011) and 48 

is thus of much interest for a number of evolutionary studies (e.g., Danelian and Johnson, 49 

2001, Danelian et al., 2014, Renaudie and Lazarus, 2003, Tetard et al., 2017). 50 

Since the early stages of the Deep Sea Drilling Program, the Cenozoic record of 51 

polycystine radiolaria has allowed us to establish their evolutionary and biostratigraphic 52 

significance, especially based on representatives of the Eocene genus Podocyrtis. (Sanfilippo 53 

and Riedel, 1970; Riedel, 1971; Moore, 1972; Riedel and Sanfilippo, 1978).  Calibrated 54 

initially to the magnetostratigraphic time scale (Sanfilippo and Nigrini, 1998), the middle 55 

Eocene tropical radiolarian zones are now tied to orbital chronology (Meunier and Danelian, 56 

20222), which provides the highest resolution of temporal control possible today and allows 57 

to define biostratigraphic events more accurately. Indeed, many of the middle Eocene 58 

biozones are based on the evolution of the various lineages of the genus Podocyrtis, which 59 

often relate to gradual anagenetic changes in phenotypes, as documented in several 60 

evolutionary lineages since the early 1970s (Sanfilippo and Riedel 1970, 1992; Riedel, 1971). 61 

For example, the bases of biozones RP14 and RP15 are defined based on anagenetic 62 

phenotypic changes between the morphospecies P. sinuosa - P. mitra and P. mitra - P. 63 

chalara, respectively. 64 

The Podocyrtis (Lampterium) lineage ends with the marked morphological transition 65 

of Podocyrtis chalara to P. goetheana. Interestingly, the first occurrence of P. goetheana 66 

defines the base of biozone RP16 (Sanfilippo and Nigrini, 1998); an anagenetic transition was 67 

reported, but intermediate forms were never documented in detail. The absence of such a 68 

documentation has implications for our understanding of evolutionary changes in this 69 

Podocyrtis lineage, but as intermediate forms are poorly understood it also affects the 70 
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recognition of the base of RP16. Here we examine the well-preserved radiolarian material of 71 

ODP Sites 1259 and 1260 from Demerara Rise (equatorial Atlantic Ocean), which present an 72 

exceptionally expanded Eocene sedimentary sequence. As such, this material offers an 73 

exceptional opportunity to study the morphological transitional forms between P. chalara and 74 

P. goetheana. 75 

 Within the abovementioned context, the principal aim of our study is to document 76 

morphological variation in the anagenetic sequence of P. chalara to P. goetheana with two 77 

different but complementary approaches to test the performance of various machine learning 78 

algorithms based on neural networks. To reach this objective, we first quantified 79 

morphological variation in the anagenetic transition between P. chalara and P. goetheana 80 

with traditional morphometrics, i.e., linear measurements, pore counts and associated ratios in 81 

the framework of qualitatively recognized morphological entities. This quantification of shape 82 

follows previous attempts to assess morphological changes in the Podocyrtis (Lampterium) 83 

lineage (Sanfilippo and Riedel, 1990; Rohlf and Bookstein, 1991; Danelian and Macleod, 84 

2019; Watanabe et al., 2022). Using this morphometric framework of measurement data and a 85 

priori morphospecies assignments, we examined how well linear discriminant analysis allows 86 

to distinguish morphospecies as a baseline to test the performance of machine learning with 87 

neural networks. 88 

 Testing the capabilities of neural network approaches based on image recognition is a 89 

daunting task, because during the past couple of years, a variety of techniques involving 90 

Artificial Neural Networks (ANNs) have been developed and improved. Convolutional 91 

Neural Networks (CNNs) have been specifically designed for analysis of visual data, and are 92 

now commonly used for image recognition, warranting detailed examinations of their 93 

performance in morphological classification, and, therewith, as a tool to inform, and 94 

potentially reach more objective taxonomic decisions. Indeed, CNNs are becoming well-95 
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integrated in various micropaleontological studies for automatic image recognition (i.e., Mitra 96 

et al., 2019, Hsiang et al., 2019; Marchant et al., 2020; Dollfus and Beaufort, 1999; Beaufort 97 

and Dollfus, 2004; Bourel et al., 2020; Itaki et al., 2020; Renaudie et al., 2018; Tetard et al., 98 

2020). Regarding Eocene radiolaria, a recent study by Carlsson et al. (2022) applied a CNN to 99 

eight well-delimited morphospecies of the genus Podocyrtis, and documented the potential of 100 

this method under the simplified scenario when no morphological intermediates are present. 101 

Spiking Neural Networks (SNNs) present another type of neural network, which in addition to 102 

neuronal and synaptic states, they also incorporate a time component; this is why such 103 

networks can more closely mimic natural neural networks (Maass, 1997). SNNs have wide 104 

applicability, including modeling of natural systems such as the central nervous system of 105 

biological organisms, as well as for image analysis. Traditionally, SNNs were less accurate 106 

than other neural networks, but in recent years their performance has significantly improved; 107 

they are more appropriate to process spatio-temporal data, and they may use computational 108 

resources more effectively (Tavanaej et al., 2019). As such, an evaluation of SNNs in image 109 

recognition and biological classification seems warranted. 110 

In this paper, we expand on previous work by Carlsson et al (2022) with CNNs by 111 

aiming to classify stacked and segmented images of the entire spectrum of morphological 112 

variation found between P. chalara and P. goetheana. As mentioned, we used morphometrics 113 

to document shape variability, which we subjected together with a priori morphospecies 114 

assignments to LDA as a baseline to study the classification performance for image-based 115 

neural networks using a CNN, a Spike-timing-dependent plasticity (STDP)-based SNN and a 116 

SuperSpike-based SNN. This examination allows us to evaluate the use of imaging data and 117 

neural networks for automated classification in a complex case study with intermediate 118 

shapes. If the neural networks perform well, we would expect correct classification for each 119 

morphogroup. Additionally, the results should reflect those of the LDA analysis, if the 120 
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morphometric documentation of shape variation is representative of the four morphospecies. 121 

Alternatively, neural networks may show differences compared to LDA. These distinctions 122 

could arise if neural networks fail to perform well, possibly due to unsuccessful training with 123 

the existing data. In opposite to that, the neural networks may perform better than LDA if the 124 

data supporting LDA lacks crucial shape information necessary for distinguishing between 125 

morphogroups based on the images. As such, we expect our study to shed light into future 126 

opportunities for automated biological classification of polycystine radiolaria and the use of 127 

neural networks in developing more objective taxonomic decisions.  128 

 129 

2. Analyzed morphological groups  130 

Plate 1 displays the entire range of morphological variability observed between P. chalara 131 

and P. goetheana. As linear discriminant analysis and the supervised learning of neural 132 

networks are based on a priori group assignments, we were required to assign this continuum 133 

of variation to a number of morphological groups. Based on extensive qualitative assessments 134 

and to challenge the employed classification algorithms we recognized four distinct 135 

morphological groups for the purpose of the current study, without currently being concerned 136 

by the paleobiological/evolutionary status of each group. These morphogroups are briefly 137 

presented below.  138 

 139 

Podocyrtis chalara Riedel and Sanfilippo 140 

Pl. 1, fig. A, B 141 

1970 Podocyrtis (Lampterium) chalara Riedel and Sanfilippo, p. 535, pl. 12, figs. 2, 3. 142 

1971 Podocyrtis (Lampterium) chalara Riedel and Sanfilippo: Moore, p. 743, pl. 3, figs. 5, 143 

6. 144 
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1972 Lampterium chalara Riedel and Sanfilippo: Petrushevskaya and Kozlova, p. 543, pl. 145 

32, fig. 12. 146 

1978 Podocyrtis (Lampterium) chalara (Riedel and Sanfilippo): Riedel and Sanfilippo, p. 147 

71, pl. 8, fig. 3, text-fig. 3. 148 

2012 Podocyrtis (Lampterium) chalara Riedel and Sanfilippo: Kamikuri, p. 103, pl. 3, figs. 149 

2a, 2b. 150 

2012 Podocyrtis (Lampterium) chalara Riedel and Sanfilippo: Moore and Kamikuri, p. 9, 151 

pl. P7, fig. 8. 152 

 153 

Distinguishing characters: We include here forms displaying twelve or less vertically well-154 

aligned, subangular abdominal pores of similar size per horizontal row, illustrating the classic 155 

morphology of P. chalara. Specimens of this morphogroup display less than thirteen pores on 156 

the circumference of the abdomen.  157 

 158 

 Podocyrtis sp. cf. P. chalara Riedel and Sanfilippo 159 

Pl. 1, fig. C, D 160 

1972 Lampterium sp. G: Petrushevskaya and Kozlova, pl. 32, fig. 10. 161 

1972 Lampterium sp. aff. L. goetheana: Petrushevskaya and Kozlova, pl. 32, fig. 13. 162 

2022 Podocyrtis (Lampterium) chalara Riedel and Sanfilippo: Meunier and Danelian, p. 21, 163 

pl. 2.4. 164 

 165 

Distinguishing characters: This morphogroup includes specimens that have a similar outline 166 

and appearance as P. chalara, but they display vertically misaligned subangular abdominal 167 

pores of different size. Specimens of this morphogroup may display vertical rows of pores 168 

that are shifted to the right or left compared to the rows of pores above and below, giving a 169 
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twisted appearance for the rows of pores developed on the abdomen, with result a 170 

honeycomb-like pore pattern. These shifts may be so extensive that the arrangement of pores 171 

on the abdomen becomes chaotic, preventing the possibility to trace any apparent abdominal 172 

rows or vertical alignment. 173 

 174 

 Podocyrtis sp. cf. P. goetheana (Haeckel) 175 

Pl. 1, figs. E - L 176 

2006 Podocyrtis (Lampterium) chalara Riedel and Sanfilippo: Funakawa et al., p. 29, pl. 177 

P9, figs. 11a, 11b. 178 

 179 

Distinguishing characters: This morphogroup is mainly characterized by an increase in total 180 

size, but with a significant reduction in the number of abdominal pores compared to both 181 

variants of P. chalara. It differs from P. goetheana in that the bars of the second row of 182 

abdominal pores are thicker and not always elongated, nor parallel to each other, as the 183 

formation of the honeycomb-like pattern of pores becomes more apparent. This morphogroup 184 

displays a high degree of morphological variability. 185 

 186 

Podocyrtis goetheana (Haeckel) 187 

Pl. 1, figs. M - O 188 

1887 Cycladophora goetheana Haeckel, p. 1376, pl. 65, fig. 5. 189 

1970 Podocyrtis (Lampterium) goetheana (Haeckel): Riedel and Sanfilippo, p. 535. 190 

1971 Podocyrtis (Lampterium) goetheana (Haeckel): Moore, p. 743, pl. 3, figs. 7, 8. 191 

1972 Lampterium sp. aff. L. goetheana Petrushevskaya and Kozlova, pl. 32, fig. 14. 192 



 

9 
 

2005 Podocyrtis (Lampterium) goetheana (Haeckel): Nigrini et al., p. 45, pl. P5, figs. 11, 193 

12. 194 

2006 Podocyrtis (Lampterium) goetheana (Haeckel): Funakawa et al., p. 29, pl. P9, figs. 195 

12a, 12b. 196 

2012 Podocyrtis (Lampterium) goetheana (Haeckel): Kamikuri, p. 103, pl. 3, fig. 1. 197 

2012 Podocyrtis (Lampterium) goetheana (Haeckel): Moore and Kamikuri, p. 9, pl. P7, fig. 198 

9. 199 

2022 Podocyrtis (Lampterium) goetheana (Haeckel): Meunier and Danelian, p. 21, pl. 2.5. 200 

 201 

Distinguishing characters: This group includes only forms that display elongated straight bars 202 

formed at the level of the second horizontal row of pores on the abdomen. This feature is 203 

typical for P. goetheana as originally described, and, as mentioned above, the first occurrence 204 

of typical P. goetheana defines the base of the RP16 Zone. 205 

 206 

Plate 1. Composite light micrographs of Podocyrtis radiolaria from ODP Site 1260, processed and scaled in 207 

ImageJ. (A) and (B) Podocyrtis chalara, samples: ODP 1260A-6R-5W, 63-65 cm and ODP 1260A-6R-5W, 20-208 

22 cm; (C) and (D) Podocyrtis sp. cf. P. chalara, samples: ODP 1260A-6R-4W, 68-70 cm and ODP 1260A-6R-209 

5W, 20-22 cm; (E) to (L) Podocyrtis sp. cf. P. goetheana, samples: ODP 1260A-6R-4W, 68-70 cm; ODP 210 

1260A-6R-5W, 15-17 cm and ODP 1260A-6R-5W, 87-89 cm; (M) to (O) Podocyrtis goetheana, sample: ODP 211 

1260A-6R-1W, 58-60 cm.  212 
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 213 

  214 
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3. Materials and methods  215 

3.1. Sediment samples 216 

The material analyzed in this study consists of radiolaria obtained from an expanded 217 

middle Eocene siliceous chalk sequence drilled at ODP Sites 1259 and 1260 (Leg 207, 218 

Demerara Rise), located in the equatorial region of the Atlantic Ocean, 380 km offshore 219 

Suriname (Erbacher et al., 2004; Danelian et al., 2005). The middle Eocene sequence is 220 

particularly thick at Sites 1259 and 1260 and contains siliceous microfossils (radiolarians, 221 

diatoms) of an excellent state of preservation (Danelian et al., 2007; Renaudie et al., 2010; 222 

Meunier and Danelian, 2022, 2023). The part of the limestone sequence from Site 1260 that is 223 

studied here is dated by orbito-chronology (Westerhold and Röhl, 2013). More specifically, 224 

our samples span the interval between 41.24 Ma and 39.84 Ma. Site 1259 is dated via bio- and 225 

magneto-stratigraphy and was sampled in the interval between ~39.05 and 37.70 Ma. 226 

 227 

3.2. Slide preparation 228 

A combined total of 15 samples from both sites were chosen and prepared for 229 

microscopic observation using techniques described by Sanfilippo et al. (1985). A small 230 

quantity (~2 cm³) of unprocessed sediment was collected from each sample and dried 231 

overnight at 50°C to eliminate any residual water. After being weighed, sediment samples 232 

were soaked for 2 hours in a 500 mL polypropylene beaker containing 30 mL of 30 % 233 

hydrochloric acid (HCl), to dissolve their carbonate content and concentrate siliceous 234 

microfossils. A few mL of HCl were added at the end to confirm the end of the reaction. The 235 

residues resulting from the acid treatment was then washed by adding ~200 mL of distilled 236 

water. After 2 hours of decantation, excess water was carefully removed using a pipette. 237 

Residues were subsequently soaked for 2 hours in 30 mL of 10 % hydrogen peroxide (H2O2) 238 
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to remove organic matter, and subsequently washed through a 63 µm sieve using distilled 239 

water. The > 63 µm fraction was then exposed to ultrasonic waves for 10 min, then passed 240 

again through the 63 µm sieve, and finally left to dry overnight at 50°C. For each sample, ~2 241 

g of dried residue was carefully spread on top of a slide covered with several drops of Norland 242 

Optical Adhesive 61, then topped with a coverslip and sealed by two minutes of exposure to 243 

UV light.  244 

  245 

3.3. Microscopy and image processing       246 

The resulting slides were analyzed with a Zeiss AXIO Images A2 microscope under 247 

transmitted light at ×10 and ×20 magnifications. All specimens recognized qualitatively as P. 248 

chalara, Podocyrtis sp. cf. P. chalara, Podocyrtis sp. cf. P. goetheana or P. goetheana were 249 

manually photographed using the mounted Axiocam ERc5s with Zen 3.5 (blue edition) 250 

software. For each specimen, a batch of 5-10 photographs were taken at different focal points 251 

to obtain a series of images, which were stacked afterwards using Helicon Focus 7.7.0 252 

(HeliconSoft) to create a composite picture entirely in focus. The stacked images were 253 

subsequently retouched with Paint3D to facilitate their automated segmentation. This last 254 

procedure was performed with the ImageJ BioVoxxel plugin (Brocher, 2022) and the 255 

AutoRadio_Segmenter plugin developed for ImageJ / Fiji (Tetard et al., 2020). 256 

 257 

3.4. Morphometric analyses 258 

As we aimed to subject specimens to discriminant analysis based on morphometric 259 

measurements, it was essential that the documented morphological variables would 260 

adequately capture shape variations present in between the four morphogroups. We first 261 

designed a set of variables that would allow to compare with the variables used by Watanabe 262 
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et al. (2022) on the specimens of the Lampterium lineage from the Pacific Ocean. A subset of 263 

seven of these variables was retained and supplemented with six newly proposed variables to 264 

result in a set of thirteen morphological variables that document well the morphological 265 

variation between the four morphogroups (Figure 1). The seven morphological variables 266 

proposed by Watanabe et al. (2022) are: 267 

- W1: Maximal width of the cephalis 268 

- W2: Maximal width of the thorax  269 

- W3: Maximal width of the abdomen 270 

- H1: Maximal height of the cephalis 271 

- H2: Maximal height of the thorax  272 

- H3: Maximal height of the abdomen 273 

- TL: Total length or height of the specimen 274 

and our six additional variables are:  275 

- LP2: Maximum length of the second abdominal pore along along the axis used to 276 

measure H3 (with the first pore being the one closest to the thorax-abdomen border)  277 

- NPV: Number of abdominal pores aligned vertically along the axis used to measure 278 

H3 (on the front-facing side of the skeleton)  279 

- NPH: Number of abdominal pores aligned horizontally behind the axis of W3 (on the 280 

front-facing side of the skeleton)  281 

- R1: Maximum length of the second pore of the abdomen / H3 282 

- R2: Number of abdominal pores aligned vertically behind the axis of H3 / H3 283 

- R3: Number of abdominal pores aligned horizontally behind the axis of W3 / W3 284 

 285 
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 286 

Figure 1. Schematic representation of the eight skeletal variables measured for all specimens outlined in Table 287 

1. Five additional variables related to pore counts and ratios are not illustrated. Abbreviations: W1: maximum 288 

width of the cephalis; W2: maximum width of the thorax; W3: maximum width of the abdomen; H1: maximum 289 

height of the cephalis without the apical horn; H2: maximum height of the thorax; H3: maximum height of the 290 

abdomen; TL: total length or height of the specimen without the apical horn; LP2: maximum length of the 291 

second abdominal pore. 292 

 293 

Quantifications of these variables (Table S1 in Supplementary materials) were directly 294 

performed on a dataset of 214 photographs/specimens from samples 1260A-6R-1W, 58-60 295 

cm, 1260A-6R-4W, 68-70 cm, 1260A-6R-5W, 15-17 cm and 1260A-6R-5W, 87-89 cm, 296 

outlined in Table 1, using the image processing and analysis software ImageJ (Schneider et 297 

al., 2012). All of these data were tabulated and then imported in the statistical environment R 298 

(v. 4.1.3; R Core Team 2022) for subsequent LDA using the packages MASS (v. 7.3-60; 299 

Ripley et al., 2013) and vegan (v. 2.6-4; Oksanen et al., 2013). This analysis is a constrained 300 
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ordination procedure that uses a linear combination of coefficients to maximize the distance 301 

between a priori defined groups, while minimizing the distance within each group (Venables 302 

and Ripley, 2002). As morphometric variables were expressed in both metric units and as 303 

ratios, the LDA was performed on data that were transformed to have the mean at zero- and 304 

one-unit standard deviation (z transformation). After subjecting the whole dataset to LDA we 305 

performed cross-validation by 100 replicates of randomly assigning 80 % of the data to a 306 

training dataset and the remainder to a testing set to evaluate the classification success of the 307 

LDA. 308 

 309 

Table 1. Number of specimens analyzed per morphogroup and per sampled core interval.  310 

   

Samples P. chalara 
 Podocyrtis sp. 

cf. P. chalara 

 Podocyrtis sp. 

cf. P. goetheana 
P. goetheana 

Total number of 

measured 

specimens per 

sample 

1260A 6R 1W 58-60cm  0 0 2 29 31 

1260A 6R 4W 68-70cm  18 19 37 0 74 

1260A 6R 5W 15-17cm  19 12 7 0 38 

1260A 6R 5W 87-89 cm 34 9 28 0 71 

 311 

 312 

3.55. Artificial Neural Networks  313 

Artificial Neural Networks or simply neural networks are machine learning algorithms 314 

designed to simulate the decision-making processes of the human brain by analyzing and 315 

exploiting patterns in data (Yang and Yang, 2014). Prior to analysis, the data given to a 316 

network is split into two parts, one for training and one for testing, usually in a 80 to 20 ratio. 317 

The first set of data is used to train the neural network, so that to enable it to learn recognizing 318 
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features and patterns present in the data, whereas the second set of data is used to test the 319 

performance of the network to classify cases based on the previously trained capabilities of 320 

recognition. 321 

A type of ANNs that has been specifically designed to analyze visual data are CNNs, 322 

commonly used for image recognition. They are designed to analyze visual data by 323 

considering the color values of each pixel and by identifying patterns within images (Hijazi et 324 

al., 2015). CNNs utilize a process known as convolution. Convolution can be described as a 325 

linear operation to decompose the input image by sliding small windows known as filters or 326 

kernels over the input image to construct layers that each obtain certain features. The 327 

convolutional layers in a CNN modify gradually the image parameters, such as weights or 328 

bias, to learn and recognize specific patterns or objects in the images. By adjusting these 329 

parameters through training, the network aims to correctly classify the output given a 330 

particular input. When a CNN has multiple layers, typically more than three, the procedure is 331 

referred to as deep learning, as each layer enables the recognition of more and more advanced 332 

features in an image. As mentioned, SNNs consider additionally the time factor, alike 333 

biological neurons, which use discrete spikes to compute and transmit information, instead of 334 

characterizing neurons by a single, static continuous-valued activation. 335 

The hyperparameters (i.e. weights) of the neural network analyzed in this study were 336 

chosen randomly; more specifically a value between -1 and 1 was chosen for the VGG16 and 337 

SuperSpike-based networks, while a value network between 0 and 1 was chosen for the 338 

STDP-based network neural. We analyzed two sets of stacked and segmented images. The 339 

first set contained images with a priori assignments to the four morphogroups represented in 340 

section 2; for the second set assignments were altered based on the results of LDA. In each 341 

case, we performed ten runs per type of neural network used, with 20 epochs for each 342 

network, except for the STDP-based network that was run with 100 epochs. An epoch simply 343 
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means how many passes it goes through the training set and updates parameters based on each 344 

pass. The following neural networks were used to perform runs:  345 

-  Visual Geometry Group 16 (VGG16). This 16-layer deep CNN was used for its 346 

simplicity. For our analyses, we use transfer learning, meaning that the first 15 layers 347 

were already pre-trained based on a large-scale image dataset from ImageNet, and we 348 

only trained the last layer specifically using our data and PyTorch (Paszke et al., 349 

2019). More information about VGG16 is provided by Simonyan and Zisserman 350 

(2015). 351 

-  STDP-based Spiking Neural Network (STDP-Network). This network contains 352 

convolutional and pooling layers that learn the features from the data using a Spike 353 

Timing Dependent Plasticity (STDP), a learning algorithm inspired by natural 354 

neurons. STDP adapts the synaptic connections between the neurons based on the 355 

timing of the spikes to transmit information (Masquelier and Thorpe, 2007) in an 356 

unsupervised way, i.e., without a priori group assignments. This SNN is then 357 

combined with a Support Vector Machine (SVM) for classification in the STDP-based 358 

network using the a priori group assignments (Cortes and Vapnik, 1995). To train the 359 

STDP-Network, we used the CSNN-simulator (Falez, 2019). 360 

- SuperSpike-based Spiking Neural Network (SuperSpike-Network). This SNN is 361 

trained using a nonlinear voltage-based three-factor learning rule capable of training 362 

multilayer networks called the SuperSpike (Zenke and Ganguli, 2018), which is a 363 

supervised global learning rule similar to deep learning. We used the Norse simulator 364 

for our analyses (Pehle and Pedersen, 2021). 365 

 366 

All the neural network simulations were conducted on the cluster “grouille” of the Grid’5000 367 

test bed (Balouek et al., 2013) using two Nvidia A100-PCIE-40GB GPUs, an AMD EPYC 368 
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7452 32 core CPU (Zen 2, 2 CPUs/node), and 128GB of RAM. For each type of neural 369 

network, we averaged the assignment accuracies obtained over the ten replicate runs to gain 370 

robust insight into performance.  371 

The training of the neural networks are expected to be better when a large, data-rich training 372 

set is used. Because our two analyzed datasets (Tables 2 and 3) are composed of 428 and 514 373 

original images, respectively, we considered it necessary to augment the data available for 374 

ANN training. Therefore, we performed the following data augmentation procedures: 375 

─ Rotate the images by a randomized angle between -15 and 15 degrees and keep all copies. 376 

─ Randomly choose images that would be flipped from left to right and keep both copies. 377 

─ Rescale random images with values between 1 and 1.3 (with 1 being the default scale 378 

value). 379 

The total number of images in each dataset was enhanced to >1000 images via data 380 

augmentation.  381 

 382 

 
Table 2. List of images included (prior to augmentation) in each of the classes for the four- class dataset used 

for analysis withVGG16with. 

      

Samples 
P. 

chalara 

Podocyrtis 

sp. cf. P. 

chalara 

Podocyrtis sp. cf. 

P. goetheana 
P. goetheana 

Total number of 

analyzed 

specimens per 

sample 

1260A 6R 4W 68-70cm 0 19 34 3 56 

1260A 6R 4W 119-

121cm 
0 13 2 1 16 

1260A 6R 5W 15-17cm 0 12 7 0 19 

1260A 6R 5W 63-65cm 22 9 15 0 46 

1260A 6R 5W 87-89 cm 33 12 18 14 77 

1260A 6R 6W 20-22 cm 12 18 9 0 39 

1260A 6R 6W 57-59 cm 19 14 2 0 35 

1260A 7R 1W 22-24 cm 24 15 0 0 39 

1260A 7R 1W 69-71 cm 33 11 0 0 44 
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1260A 7R 1W 121-123 

cm 
31 11 0 0 42 

1260A 7R 2W 19-21 cm 0 13 0 0 13 

1260A 8R 3W 65-67cm 0 1 0 0 1 

TOTAL 174 148 87 18 427 

 

 

Table 3. List of images included (prior to augmentation) in each of the classes for the three class three 

dataset used for analysis with VGG16, STDP- based SNN and SuperSpike-based SNN. 

Samples 
P. chalara + Podocyrtis 

sp. cf. P. chalara  

 Podocyrtis sp. 

cf. P. goetheana 
P. goetheana 

Total number of 

analyzed 

specimens per 

sample 

1259A 17R 1W 54-56cm 0 0 1 1 

1259A 18R 1W 53-55cm  0 0 41 41 

1259A 18R 2W 53-55cm  0 0 36 36 

1260A 6R 1W 58-60cm  0 1 26 27 

1260A 6R 4W 68-70cm  19 29 0 48 

1260A 6R 4W 119-

121cm 
13 2 1 16 

1260A 6R 5W 15-17cm  12 5 0 17 

1260A 6R 5W 63-65cm 31 15 0 46 

1260A 6R 5W 87-89cm 43 28 0 71 

1260A 6R 6W 20-22cm 29 8 0 37 

1260A 6R 6W 57-59cm 34 2 0 36 

1260A 7R 1W 22-24cm 39 0 0 39 

1260A 7R 1W 69-71cm 44 0 0 44 

1260A 7R 1W 121-

123cm 
42 0 0 42 

1260A 7R 2W 19-21cm 13 0 0 13 

TOTAL 319 90 105 514 

  

 383 

4. Results 384 

4.1. Morphometrics and linear discriminant analysis 385 

The LDA performed on the matrix of our 13 morphometric variables, i.e., measurements, pore 386 

counts and ratios, represented >99 % of the variation on the first two axes and clustered 387 

Podocyrtis goetheana and Podocyrtis sp. cf. P. goetheana successfully (Fig. 2). 388 

Comparatively, specimens belonging to P. chalara were regularly confused with Podocyrtis 389 
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sp. cf. P. chalara and vice versa, resulting overall in 73.5 ± 6.1 % (mean ± sd) correct 390 

assignments (Table 4). These two latter morphogroups overlap completely on the LDA plot, 391 

whereas P. Podocyrtis sp. cf. P. goetheana and P. goetheana are relatively well-separated 392 

from P. chalara and Podocyrtis sp. cf. P. chalara, although they share limited overlap with 393 

each other (Figure 2). The first axis of the LDA mainly represents size variations of the 394 

second row of abdominal pores. The morphological variables that contribute the most to 395 

discriminate the morphogroups on the first LDA axis correspond to the maximum length of 396 

the second abdominal pore (LP2), and the maximum length of the second pore of the 397 

abdomen/maximum height of the abdomen (R1).  398 

 399 

Figure 2. Scatter plot of the two first axes of the Linear Discriminant Analysis (LDA) conducted on the 13 400 

variables that constituted the morphometric data using four a priori identified morphogroups (indicated in the 401 

legend; ellipses correspond to the 95 % confidence intervals for each morphogroup). Abbreviations: W1: 402 

maximum width of the cephalis without the apical horn; W2: maximum width of the thorax; W3: maximum 403 

width of the abdomen; H1: maximum height of the cephalis; H2: maximum height of the thorax; H3: maximum 404 

height of the abdomen; TL: total length or height of the specimen without the apical horn; LP2: maximum length 405 
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of the second abdominal pore; NPV: number of abdominal pores aligned vertically; NPH: number of abdominal 406 

pores aligned horizontally; R1: maximum length of the second pore of the abdomen/H3; R2: number of 407 

abdominal pores aligned vertically/H3; R3: number of abdominal pores aligned horizontally/W3. 408 

 409 

Upon considering three morphogroups achieved by lumping P. chalara and Podocyrtis sp. cf. 410 

P. chalara, the LDA ordination is highly similar to that obtained in the four-group analysis, 411 

with all variation represented on the first two axes (~92.87 % on axis 1; Figure S1). 412 

Classification results improved substantially, with 94.5 ± 3.1 % of correctly identified 413 

specimens in the three-group LDA (Table S2). Misclassification mainly occurred between P. 414 

goetheana and Podocyrtis sp. cf. P. goetheana, occasionally also between P. chalara and 415 

Podocyrtis sp. cf. P. goetheana, but never between P. chalara and P. goetheana. 416 

Table 4. Average confusion matrix of the Podocyrtis morphotypes based on linear discriminant analysis (LDA) 417 

performed on the matrix of our 13 morphometric variables (.,i.e., measurements, pore counts and ratios).  418 

LDA results 4-group 

scenario 

      

  

P_sp_cf_P_cha_&

_P_sp_cf_P_goe 

P_cha_&_P_

sp_cf_P_cha 

P_cha_&_P_

sp_cf_P_goe 

P_goe_&_P_

sp_cf_P_cha 

P_goe_&_P_

sp_cf_P_goe 

P_goe_

&_P_ch

a 

total_c

orrect 

res_

mea

n 0.011162791 0.204651163 0.001627907 0 0.04744186 0 
0.7351

16279 

res_s

d 0.013819733 0.059589621 0.005963544 0 0.024717954 0 
0.0612

97375 

 419 

 420 

4.2. Artificial neural networks 421 

4.2.1. Classification using the four morphogroups  422 

First, we trained neural networks on the dataset of 428 images attributed to the four 423 

morphogroups (Table 2 4_classes dataset) using a CNN with a VGG16 architecture. Prior to 424 

the training and testing phases, images were manually grouped into four distinct classes (one 425 
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class per morphogroup). The analysis was run ten times with the pre-processing parameters 426 

outlined in Table 5, which resulted to an identification accuracy of 54.4 ± 1.7 % (Figure 427 

3).These results indicate that, although the network was able to partially identify the 428 

differences between the general morphologies of P. chalara + Podocyrtis sp. cf. P. chalara 429 

versus those of P. goetheana + Podocyrtis sp. cf. P. goetheana, it was not able to accurately 430 

distinguish all four morphogroups from each other.  431 

 432 

Table 5. Summary of the tests performed on the 4_classes and 3_classes datasets using VGG16, STDP-based 433 

SNN and SuperSpike-based SNN. Accuracy values are averaged from the results of the respective 10 test runs 434 

and indicated as the mean ± one standard deviation. 435 

Dataset Architecture 
Test 

runs 

Number  

of 

Epochs 

Data pre-processing 
Simulation time 

h:m:s 

Accuracy ( %) ± std 

mean ± std 

4_classes VGG16 10 20 
Image resize to (224, 
224) px 

0:31:46 54.40 ± 1.74 

3_classes 

VGG16 10 20 
Image resize to (224, 

224) px 
0:17:37 92.60 ± 0.77 

STDP-Network 10 100 
Image resize to (128, 

128) px & On-Off filter  
0:05:4343 90.40 ± 0.4949 

SuperSpike-
Network 

10 20 
Image resize to (128, 
128) px  

0:23:26 84.42 ± 1.36 
 

 436 
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 437 

Figure 3. Example of a confusion matrix obtained from random single run – Analysis of 4_classes dataset with 438 

VGG16. Correct assignments were reached in 54.40 % of the cases. The color scale indicates the number of 439 

specimens. 440 

 441 

 4.2.2. Classification using the three morphogroups supported by LDA  442 

Subsequently, we trained neural networks using a dataset with a priori assignment to 443 

the three morphogroups that were recognized by LDA, i.e., P. chalara + Podocyrtis sp. cf. P. 444 

chalara Podocyrtis sp. cf. P. goetheana and P. goetheana. For these analyses we compared 445 

the performance of a VGG16 CNN, a STDP-based SNN and a SuperSpike-based SNN using 446 

the 3_classes dataset (Table 3). The resulting assignment results and average network 447 
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accuracies (Figure 4) indicate that, under our specified conditions, all neural networks are 448 

able to accurately assign specimens to their correct class when three predefined classes are 449 

used in combination with a large dataset of images. However, we observed substantial 450 

differences in the speed to conclude analyses; thus the STDP-based SNN was the fastest 451 

(around 6 minutes) due to the use of the local learning rule for training and one spike per 452 

image per neuron principale. Moreover, VGG16 came second with a time of around 17 453 

minutes due to the size of the network and the use of transfer learning and training of only the 454 

last layer. Last came the SuperSpike-based SNN with approximately 23 minutes per run 455 

because all layers of the network were trained from scratch during the training phase at the 456 

start of each run using a global learning rule.  457 

 458 
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 459 

Figure 4. Examples of confusion matrices obtained from random single runs – Analyses of 3_classes dataset 460 

with VGG16, STDP-based SNN and SuperSpike-based SNN. Correct assignments were reached in 92.60 %, 461 

90.40 % and 84.42 % of the cases in VGG16, STDP-based SNN and SuperSpike-based SNN, respectively. The 462 

color scale indicates the number of specimens. 463 

 464 

  465 
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5. Discussion 466 

 In this study, we examined the morphological variability in Eocene Podocyrtis 467 

belonging to the anagenetic sequence that starts with P. chalara and ends with P. goetheana. 468 

Specifically, we examined and compared the performance of two analytical approaches in 469 

assigning individuals to a priori defined morphogroups that were constructed from qualitative 470 

observations, i.e., P. chalara, Podocyrtis sp. cf. P. chalara, Podocyrtis cf. P. goetheana and 471 

P. goetheana. The first approach involved LDA based on morphometric data, whereas the 472 

second was a neural network approach based on automatic image recognition. Both methods 473 

gave very similar results, which indicates that both morphometrics and image analysis 474 

evaluated shape differences in a highly similar way, suggesting that the results obtained with 475 

these two different methods are robust. 476 

Comparing LDA and neural network approaches, assignment performances were 477 

comparatively low when four morphogroups were considered in the morphological transition 478 

from P. chalara to P. goetheana. The scatterplot of the LDA (Figure 2), indicated a large 479 

morphospace overlap between P. chalara and Podocyrtis sp. cf. P. chalara, revealing that the 480 

qualitatively observed ‘differences’ were either not sampled in our datasets or that these 481 

differences are part of a larger spectrum of morphological variation and not informative to 482 

distinguish morphogroups. Given the similarity of LDA and neural networks, based on 483 

different datasets, the second hypothesis is more likely; it appears that P. chalara and 484 

Podocyrtis sp. cf. P. chalara represent a single highly variable morphogroup. Morphospace 485 

overlap is also observed in the LDA between Podocyrtis sp. cf. P. goetheana and P. 486 

goetheana, but it is much more limited than between P. chalara and Podocyrtis sp. cf. P. 487 

chalara. Finally, Podocyrtis sp. cf. P. goetheana also overlaps with P. chalara and Podocyrtis 488 

sp. cf. P. chalara in morphospace occupation, however this overlap is small. The analyses 489 

conducted with the machine learning approach on four morphogroups confirm the results of 490 
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LDA, as VGG16 had significant difficulties in differentiating specimens of P. chalara from 491 

Podocyrtis sp. cf. P. chalara and vice-versa using stacked and segmented images, when all 492 

four morphogroup classes were pre-defined. This was also the case for some specimens of 493 

Podocyrtis sp. cf. P. goetheana and P. goetheana, which all resulted in an inferior 494 

performance of VGG16 compared to that of the LDA for the scenario with four 495 

morphogroups,, i.e., 54.4 ± 1.7 % versus 73.5 ± 6.1 %, respectively.  496 

When P. chalara and Podocyrtis sp. cf. P. chalara are lumped in the same morphogroup, 497 

resulting in a three-group configuration, assignment probabilities improved strongly both for 498 

LDA and neural networks. On average 94.5 ± 3.1 % of assignments were correct with LDA, 499 

whereas 92.6 ± 0.8 %, 90.4 ± 0.5 % and 84.4 ± 1.4 % of the assignments were correct for 500 

VGG16, STDP-based SNN and SuperSpike-based SNN, respectively. Neural networks, 501 

mainly our CNN can accurately and quickly, assign specimens to the three pre-defined classes 502 

using a large dataset. Whereas the CNN performed highly similarly to LDA, both SNNs we 503 

used here performed less well, as had been documented for other tasks before (Tavanaej et al., 504 

2019). Runs with the STDP-based SNN ran to completion fastest and given that the accuracy 505 

was only slightly reduced compared to LDA and VGG16, this approach may be preferred for 506 

datasets that require a very long runtime with similar CNNs. The accuracy of the SuperSpike-507 

based SNN was significantly reduced compared to all the other classification methods that we 508 

used. Further work is required to determine the cause of this underperformance, but the lower 509 

accuracy for the SuperSpikeSuperSpike-based SNN is possibly due to the network size, as we 510 

used only using eight layers in our case compared to 16 layers in VGG-16. 511 

As for the performance evaluation of the neural network approach, it is noteworthy 512 

that images were obtained manually for the purpose of our study, but advances in image 513 

technology now allow that much of the image acquisition and preparation procedures 514 

(photographing, stacking and segmentation) to be automated by the use of automatic 515 
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microscopes and modification of the AutoRadio_Segmenter plugin’s code (Marchant et al., 516 

2020; Tetard et al., 2020). Using these automated procedures would facilitate the scalability 517 

of the entire analysis with larger datasets. If such automated procedures were to be used, 518 

constructing image datasets may potentially become more time-efficient than the various 519 

procedures that are required to develop a morphometric dataset. Another advantage of using 520 

neural network is their quick run time (Table 5.), although both accuracy and run time would 521 

increase upon using larger image datasets. Furthermore, standardizing the rotation and 522 

orientation of specimens is essential in morphometric studies; however, this requirement can 523 

be relaxed for neural networks, as in our case re-rotating and re-orienting were used in the 524 

data augmentation process to enlarge input datasets.  525 

In our study, we evaluated assignment accuracy of LDA and machine learning with 526 

neural networks based on a priori group assignments; however, in the future, it would be 527 

useful to examine morphological variation without considering such assignments, e.g., by 528 

using other ordination techniques and/or by using unsupervised machine learning techniques. 529 

These methods could help in attempts to evaluate whether the three retained morphogroups 530 

represent natural entities, although based on fossil evidence only such assessments are very 531 

difficult. We refrain from such analyses here, as we believe these would be best conducted 532 

with a larger set of material that ideally would cover the total geographic range and the total 533 

stratigraphic interval covered by P. chalara, Podocyrtis sp. cf. P. goetheana and P. 534 

goetheana.  535 

Future work could also be focused on trying to evaluate the capacity of VGG16 to 536 

accurately differentiate between the P. chalara and Podocyrtis sp. cf. P. chalara specimens, 537 

with an altered set of images. Indeed, the weighted activation heatmap (Grad-CAM) 538 

(Servaraju et al., 2017) generated from the runs with the 3-class dataset showed that the 539 

analytical focus of the network was centered around the thoracic and abdominal walls of the 540 
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specimens (Figure S22 in Supplementary material). One could try to develop a dataset 541 

including several unstacked and non-segmented images per specimen, each one with a focus 542 

on specific morphological features. This would allow some images to contain as much detail 543 

as possible on abdominal features, whereas others would focus on other regions (e.g. the 544 

thorax) and include blurred features of the outer walls and backside of the abdomen. We 545 

hypothesize that these manipulations could force the network to focus its recognition 546 

capabilities on a larger set of morphological features. If this hypothesis would be correct, it 547 

would also facilitate the data acquisition process by eliminating the need to stack and segment 548 

the images themselves. Alternatively, it is possible that providing more fragmented 549 

information to neural networks would hamper an efficient learning process, with negative 550 

consequences on the accuracy of the following predictions, somewhat similar to what we 551 

observed in the VGG16 evaluation based on the 4-class dataset. 552 

 553 

6. Conclusion 554 

The aim of our work was to study the morphological variability in the anagenetic sequence of 555 

P. chalara to P. goetheana and to evaluate the performance of recognizing and classifying 556 

four a priori identified morphogroups with various machine learning algorithms based on 557 

neural networks that use image data as direct input in comparison to linear discriminant 558 

analysis using morphometric data. Our results demonstrate that LDA and neural networks 559 

provide very similar outcomes, indicating robust performances. With both approaches we 560 

encountered difficulties distinguishing P. chalara and Podocyrtis sp. cf. P. chalara, 561 

suggesting that the qualitative basis on which these morphogroups were recognized is to be 562 

revised. For both approaches, assignment probabilities drastically increased for the scenario 563 

where three morphogroups were recognized, lumping P. chalara and Podocyrtis sp. cf. P. 564 

chalara, and thus retaining P. chalara + Podocyrtis sp. cf. P. chalara, Podocyrtis sp. cf. P. 565 
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goetheana and P. goetheana. Further studies with more comprehensive sampling are required 566 

to document the likelihood of Podocyrtis sp. cf. P. goetheana representing a separate natural 567 

entity, which additionally has implications for the position of bioevent RP16. However, our 568 

results indicate that the morphometric data that we used for LDA samples the morphological 569 

variability in the anagenetic sequence of P. chalara to P. goetheana in a comprehensive way. 570 

Secondly, neural network approaches were able to correctly assign most specimens, and 571 

therewith to accurately distinguish the three morphogroups directly from specimen images. 572 

These results indicate that VGG16, STDP-based SNNs, and even SuperSpike-based SNNs are 573 

capable of recognizing morphological variation in images and thus of reliably distinguishing 574 

radiolarian morphogroups, which could fascilitate identification and help with reaching more 575 

objective taxonomic decisions. Furthermore, neural network approaches can be combined 576 

with automated image acquisition and preparation procedures (photographing, stacking and 577 

segmentation) that enable the creation of much larger image databases in a time-efficient 578 

manner. Analyses based on neural network architecture could thus take a fraction of the time 579 

that would be required for a trained taxonomist/(paleo)biologist to create and analyze 580 

quantitative morphometric datasets. In conclusion, neural network approaches based on 581 

images of (paleo)biological specimens may provide promising opportunities to guide more 582 

objective taxonomic decisions. 583 

 584 

Data availability 585 

Microscopic slides are prepared and stored at UMR 8198 – Evo-Eco-Paleo of the University 586 

of Lille, France. The datasets (https://doi.org/10.57745/8KBOFP, Pinto et al. 2023) have been 587 

archived in the repository of the University of Lille at Recherche Data Gouv. The codes are 588 

available at 589 

https://archive.softwareheritage.org/browse/directory/cc7d8ef1505299a208adcde597a98d90b590 

https://archive.softwareheritage.org/browse/directory/cc7d8ef1505299a208adcde597a98d90b0ca47d6/
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0ca47d6/https://archive.softwareheritage.org/browse/directory/cc7d8ef1505299a208adcde597591 

a98d90b0ca47d6/ (Elbez, 2023). 592 
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