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 and Hermon and Peres (2018). Our proof builds upon the 'regularization trick' recently introduced by the last two authors.

Introduction

Functional inequalities constitute a powerful set of tools for the study of the concentration of measure phenomenon [START_REF] Ledoux | Concentration of measure and logarithmic Sobolev inequalities[END_REF][START_REF] Ledoux | The concentration of measure phenomenon[END_REF]. On a conceptual level, those inequalities relate certain statistics of a measure (such as the variance and entropy) to the Dirichlet form of a Markov process that preserves the measure. Besides concentration, those inequalities are intimately connected to the rate of convergence to equilibrium of the considered Markov process. Perhaps the most popular functional inequalities are the Poincaré Inequality (PI) and the log-Sobolev Inequality (LSI), which were initially studied in the continuous setting. On discrete spaces, a variant called the Modified log-Sobolev Inequality (MLSI) has been put forward and exploited due to its connection with the entropic exponential ergodicity of the underlying semi-group. Informally, it is a standard fact (see for example [START_REF] Sergey | Modified logarithmic Sobolev inequalities in discrete settings[END_REF]) that LSI ⇒ MLSI ⇒ PI, and the aim of this paper is to investigate the reverse implications.

Setup

Throughout the paper, we consider an irreducible Markov generator Q on a finite state space X , and we assume that Q is reversible with respect to a probability measure π. The associated Dirichlet form is given, for any observables f, g : X → R, by the formula E (f, g) := 1 2

x,y∈X π(x)Q(x, y) (f (x) -f (y)) (g(x) -g(y)) .

The variance and entropy of a function f : X → (0, ∞) are defined as Var(f

) := E[f 2 ]-E 2 [f ]
and Ent(f

) := E[f log f ] -E[f ] log E[f ],
where E[•] denotes expectation with respect to π and where 'log' stands for the natural logarithm. The log-Sobolev constant t ls , the modified log-Sobolev constant t mls , and the Poincaré constant t rel are then respectively defined as the optimal constants in the functional inequalities

Ent(f ) ≤ tE( f , f ); (LSI) Ent(f ) ≤ tE (f, log f ) ; (MLSI) Var(f ) ≤ tE (f, f ) , (PI) 
for all functions f : X → (0, ∞). We refer the unfamiliar reader to the seminal papers [START_REF] Diaconis | Logarithmic Sobolev inequalities for finite Markov chains[END_REF][START_REF] Lata | Between Sobolev and Poincaré[END_REF][START_REF] Sergey | Modified logarithmic Sobolev inequalities in discrete settings[END_REF], the book [START_REF] Montenegro | Mathematical aspects of mixing times in Markov chains[END_REF], or the more recent works [START_REF] Hermon | A characterization of L 2 mixing and hypercontractivity via hitting times and maximal inequalities[END_REF][START_REF] Sambale | Modified log-Sobolev inequalities and two-level concentration[END_REF][START_REF] Law Adamczak | Modified log-Sobolev inequalities, Beckner inequalities and moment estimates[END_REF][START_REF] Conforti | A probabilistic approach to convex (φ)-entropy decay for Markov chains[END_REF] for details about those fundamental constants and their many variants.

It is classical that (LSI), (MLSI), (PI) are decreasing in strength, in the exact sense that

t rel 2 ≤ t mls ≤ t ls 4 . (1) 
The leftmost inequality is obtained by a standard perturbation argument around constant functions, while the rightmost one is a direct consequence of the inequality

4E f , f ≤ E(f, log f ), (2) 
for all f : X → (0, ∞), which in turns follows from the easy bound 4(

√ u- √ v) 2 ≤ (u-v) log u v
for all u, v > 0. However, in contrast with what happens in the smooth setting of diffusions on manifolds, the functional inequality (2) can here not be reversed uniformly in f : indeed, as soon as |X | ≥ 2, the quantity E (f, log f ) can be made arbitrarily larger than E √ f , √ f by simply increasing the value of f at a single point. This degeneracy is one of the many infamous consequences of the lack of a chain rule for Markov generators on discrete spaces [START_REF] Ledoux | Concentration of measure and logarithmic Sobolev inequalities[END_REF]. It introduces a fundamental discrepancy between the inequalities (MLSI) and (LSI), which results in two very different meanings for their optimal constants: t mls measures the entropy production along the semi-group, while t ls quantifies the much stronger hypercontractivity. As a result, the ratio t ls /t mls can be arbitrarily large even for two-point chains (see [START_REF] Sergey | Modified logarithmic Sobolev inequalities in discrete settings[END_REF]Section 3]), and any general upper bound on it will inevitably have to depend on the data (Q, π). Understanding how is the task we undertake here.

To the best of our knowledge, the only general upper bound available on the ratio t ls /t mls is the one resulting from the chain of inequalities

t ls t mls ≤ 2t ls t rel ≤ 2 1 -2π ⋆ log 1 π ⋆ -1 , (3) 
where π ⋆ := min x∈X π(x). The first inequality follows from (1), and the second from a direct comparison with the Dirichlet form of the trivial chain Q(x, y) = π(y), whose log-Sobolev constant is explicit (see, e.g. [START_REF] Diaconis | Logarithmic Sobolev inequalities for finite Markov chains[END_REF]). Note that this 'extreme' chain, which mixes in a single jump, actually saturates both inequalities in (3). However, a quick look at more reasonable examples should convince the reader that the ratio t ls /t mls is typically much smaller than log (1/π ⋆ ) in practice, and this observation was the motivation behind the present paper.

Main result

Writing E := {(x, y) ∈ X 2 : Q(x, y) > 0} for the (symmetric) set of allowed transitions and Q(x) := y∈X \{x} Q(x, y) for the total jump rate at x ∈ X , we define the sparsity parameter p := min

(x,y)∈E Q(x, y) Q(x) ∨ Q(y, x) . (4) 
In particular, in the standard stochastic case where Q(x) = 1 for all x ∈ X , this reduces to

p = min (x,y)∈E Q(x, y).
Our main result is that the lost equivalence between (MLSI) and (LSI) on discrete spaces can be restored at the surprisingly low cost log(1/p) only.

Theorem 1 (Upgrading MLSI to LSI). For any reversible Markov generator, we have

t ls ≤ 20 t mls log 1 p .
The improvement over (3) can be considerable, since p is typically much larger than π ⋆ .

To appreciate this, consider the important case of simple random walk on a finite graph [START_REF] Caputo | Convex entropy decay via the Bochner-Bakry-Emery approach[END_REF], Zero-Range processes [START_REF] Hermon | Entropy dissipation estimates for inhomogeneous zero-range processes[END_REF][START_REF] Caputo | Convex entropy decay via the Bochner-Bakry-Emery approach[END_REF],

G = (V G , E G ):
or negatively-dependent measures on the Boolean hypercube [START_REF] Hermon | Modified log-Sobolev inequalities for strong-Rayleigh measures[END_REF][START_REF] Cryan | Modified log-Sobolev inequalities for strongly log-concave distributions[END_REF]. In such examples, using Theorem 1 to convert the known upper bound on t mls into a new one on t ls is of practical interest for at least three reasons:

(i) Mixing times: writing f t for the density with respect to equilibrium of the Markov process at time t, the parameter t mls only controls the decay rate of the relative entropy Ent(f t ), while t ls controls the much stronger uniform norm f t -1 ∞ (see, e.g., [START_REF] Montenegro | Mathematical aspects of mixing times in Markov chains[END_REF]).

(ii) Isoperimetry: by specializing (LSI) to {0, 1}-valued functions, the constant t ls captures small-set expansion, which has numerous applications (see, e.g., [START_REF] Filmus | Log-Sobolev inequality for the multislice, with applications[END_REF]).

(iii) Robustness: unlike t mls , an estimate on t ls can be transferred to other chains using the classical and well-developed comparison theory for Dirichlet forms (see, e.g., [START_REF] Diaconis | Comparison theorems for reversible Markov chains[END_REF]).

In Section 1.4 below, we will illustrate this by providing the very first log-Sobolev estimate for the Zero-Range Process with increasing rates on arbitrary graphs.

Application to Lamplighter chains

Fix a finite graph G = (V G , E G ) and imagine that each vertex is equipped with a lamp that can be either off or on. Now, consider a lamplighter performing a simple random walk on G and randomly switching the lamps off or on on his way. More formally, let us describe the state of the system by a pair (i, σ) where i ∈ V represents the position of the lamplighter and σ ∈ {0, 1} V indicates which lamps are on. The Lamplighter chain on G is the continuous-time Markov chain on X := V × {0, 1} V whose generator acts on any f : X → R as follows:

(Qf )(i, σ) = 1 2 f (i, σ i ) -f (i, σ) + 1 2 deg(i) j∼i (f (j, σ) -f (i, σ)) .
In this formula, the notation j ∼ i means that {i, j} ∈ E G , while σ i denotes the configuration obtained from σ ∈ {0, 1} V by replacing σ i with 1 -σ i . The behavior of this process is extremely rich and has drawn considerable interest across various fields, including graph theory, group theory, spectral theory, discrete functional analysis and probability. We refer the reader to the book [26, Chapter 19] and the references therein for a quick introduction.

The works [START_REF] Häggström | Rates of convergence for lamplighter processes[END_REF][START_REF] Peres | Mixing times for random walks on finite lamplighter groups[END_REF][START_REF] Abakumov | The logarithmic Sobolev constant of the lamplighter[END_REF][START_REF] Komjáthy | Uniform mixing time for random walk on lamplighter graphs[END_REF][START_REF] Murali | A tight bound for the lamplighter problem[END_REF] are all devoted to the fundamental question of relating the mixing properties of the Lamplighter chain to those of the underlying graph G. In particular, the relaxation time, the total-variation mixing time and the uniform mixing time are now completely understood. This is also true for the log-Sobolev constant, at least on bounded-degree graphs. Specifically, the Lamplighter chain on G was shown in [START_REF] Abakumov | The logarithmic Sobolev constant of the lamplighter[END_REF] to satisfy

t ls ≍ d |V G | γ(G) , (5) 
where γ(G) denotes the spectral gap of G and d = max i∈V G deg(i) the maximum degree. Here, the notation a ≍ d b means that the ratio a/b is bounded from above and below by positive numbers that depend only on d. However, in contrast with many other mixing parameters, nothing seems to be known about the modified log-Sobolev constant of Lamplighter chains, even on simple graphs such as the n-cycle Z n . Since the Lamplighter chain has sparsity p = 1/(2d), our main result allows us to determine t mls on all bounded-degree graphs.

Corollary 1 (MLSI for the Lamplighter chain on bounded-degree graphs). We have

t mls ≍ d |V G | γ(G) .
On the discrete torus G = Z d n , we thus obtain t mls = Θ(n d+2 ) for any fixed dimension d ≥ 1. Surprisingly, this is always much larger than the total-variation mixing time of the Lamplighter chain, which is known [START_REF] Häggström | Rates of convergence for lamplighter processes[END_REF][START_REF] Peres | Mixing times for random walks on finite lamplighter groups[END_REF] Question 1 (Question 8.2 in [START_REF] Montenegro | Mathematical aspects of mixing times in Markov chains[END_REF]). Is there a universal constant c > 0 such that t mls ≤ c t mix , for all irreducible Markov chains?

to be t mix = Θ(n 2 ) when d = 1, t mix = Θ(n 2 log 2 n) when d =
Very recently, Hermon and Peres [START_REF] Hermon | A characterization of L 2 mixing and hypercontractivity via hitting times and maximal inequalities[END_REF]Question 7.1] proposed the following more reasonable conjecture, in which t mix is replaced by the larger relative-entropy mixing time t ent (see [START_REF] Murali | A tight bound for the lamplighter problem[END_REF] or [START_REF] Hermon | A characterization of L 2 mixing and hypercontractivity via hitting times and maximal inequalities[END_REF] for the precise definition).

Question 2 (Question 7.1 in [START_REF] Hermon | A characterization of L 2 mixing and hypercontractivity via hitting times and maximal inequalities[END_REF]). Is there a universal constant c > 0 such that t mls ≤ c t ent , for all irreducible Markov chains?

Since the Lamplighter chain on the n-cycle Z n is known to satisfy t ent = Θ(n 2 log n) [START_REF] Murali | A tight bound for the lamplighter problem[END_REF], the estimate t mls = Θ(n 3 ) given by Corollary 1 again provides a negative answer to this question. Finally, we note that our example also refutes Question 7.2 in the same paper, which asks for an even stronger upper bound on t mls .

Application to Zero-Range Processes

Introduced by Spitzer [START_REF] Spitzer | Interaction of Markov processes[END_REF], the Zero-Range Process (ZRP) is a generic interacting particle system in which individual jumps occur at a rate that only depends on the current number of particles present at the source. The model is parameterized by the following ingredients:

• two integers m, n ≥ 1 representing the number of particles and sites, respectively;

• a symmetric stochastic matrix G = (G ij ) 1≤i,j≤n specifying the geometry;

• a function r i : {1, 2, . . .} → (0, ∞) encoding the kinetics at each site i ∈ [n].

The ZRP with these parameters is a continuous-time Markov chain on the state space

X := x = (x 1 , . . . , x n ) ∈ Z n + : n i=1 x i = m , (6) 
where x i represents the number of particles at site i. The action of the generator is given by

(Qf )(x) := 1≤i,j≤n r i (x i )G ij (f (x + δ j -δ i ) -f (x)) , (7) 
where (δ 1 , . . . , δ n ) denotes the canonical n-dimensional basis, and with the convention that r i (0) = 0 for all i ∈ [n] (no jumps from empty sites). In words, a site i with k ≥ 1 particles expels a particle at rate r i (k), and the destination is chosen according to G. A natural choice for the latter is the transition matrix of simple random walk on a regular graph. In fact, the model is already interesting on the complete graph (the so-called mean-field case):

∀(i, j) ∈ [n] 2 , G ij = 1 n . (8) 
Obtaining quantitative estimates on the convergence to equilibrium of the ZRP has been and continues to be a subject of active research, see e.g., [START_REF] Caputo | Entropy dissipation estimates in a zero-range dynamics[END_REF][START_REF] Hermon | Cutoff for the mean-field zero-range process with bounded monotone rates[END_REF] in the mean-field case and [START_REF] Dai | Logarithmic Sobolev inequality for zero-range dynamics[END_REF][START_REF] Dai | Logarithmic Sobolev inequality for zero-range dynamics: independence of the number of particles[END_REF] on integer lattices. A standard assumption on the rate functions (r i ) 1≤i≤n is that their increments all lie in a fixed compact subset of (0, ∞):

δ ≤ r i (k + 1) -r i (k) ≤ ∆, (9) 
for some δ, ∆ > 0 and every i ∈ [n] and k ∈ Z + . Under this weak interaction condition, and in the mean-field setting (8), the ZRP was shown in [START_REF] Hermon | Entropy dissipation estimates for inhomogeneous zero-range processes[END_REF] to satisfy the dimension-free MLSI

t mls ≤ 2∆ δ 2 .
Note that our sparsity parameter p here satisfies p ≥ δ ∆mn , because Q(x) ≤ n i=1 r i (x i ) ≤ ∆m for all x ∈ X and Q(x, y) ≥ δ/n for all (x, y) ∈ E. Thus, Theorem 1 produces the following estimate which, to the best of our knowledge, is the very first LSI for the mean-field ZRP.

Corollary 2 (LSI for mean-field ZRP). Under assumptions ( 8) and ( 9), we have

t ls ≤ 40∆ δ 2 log ∆mn δ ,
for any choice of the dimension parameters n, m.

The dependency in n is optimal, as can be seen by investigating the case of a single particle (m = 1). As already mentioned, one of the advantages of t ls over t mls is its robustness under comparison of Dirichlet forms. This is particularly true in the present setting, because it was shown in [START_REF] Hermon | A version of Aldous' spectral-gap conjecture for the zero range process[END_REF] that replacing a general symmetric stochastic matrix G by its mean-field version [START_REF] Cryan | Modified log-Sobolev inequalities for strongly log-concave distributions[END_REF] can not increase the Dirichlet form of the ZRP by more than a factor 1/γ(G),

where γ(G) denotes the spectral gap of G. Consequently, our mean-field LSI estimate can be directly transferred to arbitrary geometries, yielding the following result. To the best of our knowledge, log-Sobolev estimates for the ZRP were so far restricted to lattices [START_REF] Dai | Logarithmic Sobolev inequality for zero-range dynamics[END_REF].

Corollary 3 (LSI for ZRP on arbitrary geometries). Under Assumption ( 9), we have

t ls ≤ 40∆ γ(G)δ 2 log ∆mn δ ,
for any choice of the dimension parameters n, m and of the symmetric stochastic matrix G.

Remark 1 (Asymmetric geometries). Interestingly, the symmetry of G is never actually used in [START_REF] Hermon | Entropy dissipation estimates for inhomogeneous zero-range processes[END_REF][START_REF] Hermon | A version of Aldous' spectral-gap conjecture for the zero range process[END_REF], so Corollary 3 generalizes to any stochastic matrix G as follows:

t ls ≤ 40∆ γ(G)δ 2 log ∆m δp ⋆ ,
where p ⋆ denotes the smallest entry of the invariant probability vector of G, and where γ(G)

denotes the spectral gap of the additive reversibilization of G.

Let us respectively denote by t ls (r) and t mls (r) the optimal constants in the inequalities (LSI) and (MLSI), when restricted to r-regular functions. The above lemma readily implies t ls (r) ≤ H(r)t mls (r), [START_REF] Diaconis | Comparison theorems for reversible Markov chains[END_REF] which can be seen as a regularized version of Theorem 1. To conclude, we now need to relate the constants t mls (r) and t ls (r) to their unregularized versions t mls and t ls . Of course, we trivially have t mls (r) ≤ t mls and t ls (r) ≤ t ls , by definition. We will now show that those inequalities can be reversed, provided r is large enough. Specifically, we henceforth set

r := 4 p 2 , (13) 
and we assume that p ≤ 1/2 (if this is not the case, then irreducibility and reversibility imply that |X | ≤ 2, so that Theorem 1 can be checked by hands). Note that we then have 3H(r) ≤ 20 log 1 p . Thus, Theorem 1 is a consequence of the following crucial result. Theorem 2 (Regularization). With r as in ( 13), we have t ls ≤ 3t ls (r) and t mls ≤ 3t mls (r).

In other words, to establish (LSI) or (MLSI) for a reversible Markov chain, it is enough to restrict attention to r-regular observables. Such a costless regularization is of course interesting beyond its role in the present paper. A first version of it (for t mls , and with an additional factor γ = max π min π in the regularization parameter r) was recently used in [START_REF] Tikhomirov | Regularized modified log-sobolev inequalities, and comparison of markov chains[END_REF] to obtain a sharp (MLSI) for the switch chain on regular bipartite graphs and as a consequence prove a long-standing conjecture about the mixing time of that chain (see [START_REF] Tikhomirov | Sharp poincaré and log-sobolev inequalities for the switch chain on regular bipartite graphs[END_REF] and references therein). Our proof below follows the same strategy, but optimizes it so as to remove the dependency of r on γ. Note that this improvement is crucial for our application to the ZRP.

We write d(•, •) for the graph distance on (X , E). Following [START_REF] Tikhomirov | Regularized modified log-sobolev inequalities, and comparison of markov chains[END_REF], we fix an arbitrary observable f : X → (0, ∞) and we define a new observable

f ⋆ : X → (0, ∞) by ∀x ∈ X , f ⋆ (x) := max z∈X r -d(x,z) f (z).
It is immediate to check that f ⋆ is r-regular and above f (it is in fact the smallest such function, but we will not use this property here). The following propositions show that the quantities E( √ f , √ f ), E(f, log f ) and Ent(f ) do not change much upon replacing f by f ⋆ .

Proposition 1 (Comparison of Dirichlet forms). For r as in [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF], we have

E( f ⋆ , f ⋆ ) ≤ 4 3 E( f , f ) and E(f ⋆ , log f ⋆ ) ≤ 4 3 E(f, log f ).
Proposition 2 (Comparison of entropies). For r as in [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF], we have Ent(f ) ≤ 2Ent(f ⋆ ).

Those propositions clearly imply Theorem 2, and we henceforth focus on their proofs.

Comparing Dirichlet forms (Proposition 1)

The proof of Proposition 1 consists of three steps, of which only the last one uses the specific choice for r made at [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF]. We define the distance from an edge e ∈ E to e ′ ∈ E in the obvious way: d(e, e ′ ) = ℓ -1, where ℓ ≥ 1 is the minimum length of a path (x 0 , . . . , x ℓ ) with (x 0 , x 1 ) = e and (x ℓ-1 , x ℓ ) = e ′ . We first compare the variations of f and f ⋆ across edges.

Lemma 2.

For each e = (x, y) ∈ E with f ⋆ (x) ≤ f ⋆ (y), there is e ′ = (x ′ , y ′ ) ∈ E so that

r -d(e,e ′ ) f (x ′ ) ≤ f ⋆ (x) ≤ f ⋆ (y) ≤ r -d(e,e ′ ) f (y ′ ). ( 14 
)
Proof. If f ⋆ (y) = f (y), then we simply choose e ′ = e and ( 14) trivially holds. If on the contrary f ⋆ (y) < f (y), then we take e ′ = (x ′ , y ′ ) where y ′ is such that f ⋆ (y) = r -d(y,y ′ ) f (y ′ ), and where x ′ is the penultimate vertex on a geodesic from y to y ′ . We then have d(e, e ′ ) = d(y, y ′ ) = 1 + d(y, x ′ ) ≥ d(x, x ′ ). Thus, the last inequality in ( 14) holds with equality, while

the definition of f ⋆ ensures that f ⋆ (x) ≥ r -d(x,x ′ ) f (x ′ ) ≥ r -d(e,e ′ ) f (x ′ ).
We now use this local comparison to estimate how the global quantities E( √ f , √ f ) and E(f, log f ) change upon replacing f with f ⋆ . For (x, y) ∈ E, we introduce the short-hand c(x, y) := π(x)Q(x, y). 

Lemma 3. We have E( √ f ⋆ , √ f ⋆ ) ≤ κ E( √ f , √ f ) and E(f ⋆ , log f ⋆ ) ≤ κ E(f, log 
Proof. Let ∇f (e) := f (y) -f (x) denote the discrete gradient of f across an edge e = (x, y).

To each edge e ∈ E, Lemma 2 associates a new edge e ′ ∈ E such that

∇ f ⋆ + (e) ≤ r -d(e,e ′ ) ∇ f + (e ′ ),
where h + = max(h, 0) denotes the positive part of h. Consequently, we have

E( f ⋆ , f ⋆ ) = e∈E c(e) ∇ f ⋆ 2 + (e) ≤ e,e ′ ∈E c(e)r -d(e,e ′ ) ∇ f 2 + (e ′ ) ≤ κ e ′ ∈E c(e ′ ) ∇ f 2 + (e ′ ) = κE( f , f ),
as desired. The second claim is obtained in exactly the same way.

To obtain Proposition 1, it finally remains to estimate the constant κ defined at [START_REF] Murali | A tight bound for the lamplighter problem[END_REF].

Lemma 4. Choosing r as in [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF] ensures that κ ≤ 4/3.

Proof. If e, e ′ ∈ E satisfy d(e, e ′ ) = 1, then we can write e = (x, y) and e ′ = (y, z). Using reversibility and the definition of p at (4), we have

c(e) = π(x)Q(x, y) = π(y)Q(y, x) ≤ π(y)Q(y) ≤ p -1 π(y)Q(y, z) = p -1 c(e ′ ).
By an immediate induction, we deduce that c(e) ≤ p -d(e,e ′ ) c(e ′ ) for all e, e ′ ∈ E. Thus,

κ ≤ max e ′ ∈E e∈E (rp) -d(e,e ′ ) ≤ ∞ k=0 ∆ k (rp) -k ,
where ∆ denotes the maximum degree of the graph (X , E). But ∆ ≤ p -1 , because from every vertex, the outgoing transition probabilities are at least p and must sum to 1. Thus, κ ≤ k (p 2 r) -k = 4/3, thanks to our choice for r.

Comparing entropies (Proposition 2)

As in [START_REF] Tikhomirov | Regularized modified log-sobolev inequalities, and comparison of markov chains[END_REF], we use the variational characterization of entropy [START_REF] Boucheron | Concentration inequalities[END_REF]: for any g : X → (0, ∞),

Ent(g) = max E[gh] : h ∈ R X , E[e h ] ≤ 1 . (16) 
We start with an elementary lemma, which only uses the fact that f ⋆ ≥ f . Lemma 5. We have 5Ent

(f ) ≤ 6Ent(f ⋆ ) + (6 log 6)E[f ⋆ -f ].
Proof. Upon multiplying f (hence also f ⋆ ) by a constant, we may assume without loss of generality that E[f ] = 1. Then, the function h := log 1+5f 6 satisfies E[e h ] = 1 so (16) yields

Ent(f ⋆ ) ≥ E[f ⋆ h] = E[f h] + E[(f ⋆ -f )h].
The claim now readily follows from the pointwise bounds h ≥ 5 6 log f and h ≥ log 1 6 .

In view of this lemma, Proposition 2 boils down to the following result. Proof. For each x ∈ X , let us choose a state T (x) ∈ X that achieves the maximum in the definition of f ⋆ (x) (breaking ties arbitrarily), i.e.

f ⋆ (x) = r -d(x,T (x)) f (T (x)) .

Thus, T (x) = x if and only if f ⋆ (x) = f (x). Note that if we had f (T (x)) < f ⋆ (T (x)), then f ⋆ (x) < r -d(x,T (x)) f ⋆ (T (x)) = r -d(x,T (x)) r -d(T (x),T 2 (x)) f T 2 (x) ≤ r -d(x,T 2 (x)) f T 2 (x) , which would contradict the maximal definition of f ⋆ (x). Thus, we must in fact have f (T (x)) = Recalling that T (A) = A c , we may set h = -1 on A to rewrite the previous computation as

E[f ⋆ -f ] = E[f h].
In light of the variational characterization of entropy ( 16) (with 3h log 6 instead of h), it remains to check that E[6 3h ] ≤ 1. As in the proof of Lemma 4, our choice r = 4p -2 easily ensures that h ≤ k=1 (p 2 r) -k = 1/3, so that 6 3h ≤ 1 + 15h on A c . Recalling the definition of h, we deduce that

E (6 3h -1)1 A c ≤ 15E[h1 A c ] = 15
x∈A π(x)r -d(x,T (x)) ≤ 15 16 π(A), because r ≥ 16. On the other hand, E (6 3h -1)1 A = (6 -3 -1)π(A) ≤ - 15 16 π(A).

  2, and t mix = Θ(n d log n) for any fixed d ≥ 3. Thus, Lamplighter chains on discrete tori constitute a simple family of counter-examples to the following classical question, which appears as Question 8.2 in the classical monograph [27] by Montenegro and Tetali.

  f ), where κ := max e ′ ∈E 1 c(e ′ ) e∈E c(e)r -d(e,e ′ ) .

Lemma 6 .

 6 With r as in[START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF], we have(3 log 6)E[f ⋆ -f ] ≤ Ent(f ).

f

  ⋆ (T (x)), or equivalently, T 2 (x) = T (x). This shows that T (A) = A c , whereA := {x ∈ X : T (x) = x} = {x ∈ X : f (x) = f ⋆ (x)}.Now, coming back to our goal, let us writeE[f ⋆ -f ] = x∈A π(x)(f ⋆ (x) -f (x)) = x∈A π(x)f (T (x))r -d(x,T (x)) -x∈A π(x)f (x) = y∈T (A) π(y)f (y)h(y) -x∈A π(x)f (x),where for y ∈ T (A), we have introduced the short-hand h(y) := x∈T -1 ({y}) π(x) π(y) r -d(x,y) .
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Proof of the main result

The proof of Theorem 1 builds upon a simple but fruitful idea, recently introduced by the last two authors in [START_REF] Tikhomirov | Regularized modified log-sobolev inequalities, and comparison of markov chains[END_REF]: the regularization trick. It consists in restricting functional inequalities to observables f : X → (0, ∞) that are smooth, in an appropriate sense.

The regularization trick

Fix a parameter r ≥ 1. Following [START_REF] Tikhomirov | Regularized modified log-sobolev inequalities, and comparison of markov chains[END_REF], we say that a function f :

Our starting point is the elementary but new observation that, once restricted to r-regular functions, the basic inequality (2) can be reversed at the optimal cost

Note that H(∞) = ∞, in agreement with our earlier observation that the unrestricted inequality (2) can not be reversed. At the other extreme, we have H(1+) = 4, in agreement with the fact that ( 2) is an equality in the infinitely smooth setting of diffusions on manifolds.

Lemma 1 (Exploiting regularity). If f : X → (0, ∞) is r-regular, then

Proof. With H(1) := 4, the formula (11) defines a function H : (0, ∞) → (0, ∞) which increases on [1, ∞) and satisfies H(u) = H(u -1 ) for all u ∈ (0, ∞). It follows that H(u) ≤ H(r) for all u ∈ [r -1 , r]. On the other hand, elementary manipulations give

for all u, v > 0. Taking u = f (x) and v = f (y), and recalling our assumption [START_REF] Dai | Logarithmic Sobolev inequality for zero-range dynamics: independence of the number of particles[END_REF], we obtain

for any (x, y) ∈ E. To conclude, we multiply by π(x)Q(x, y) and sum over all x, y ∈ X . 
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