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Abstract

For reversible Markov chains on finite state spaces, we show that the modified

log-Sobolev inequality (MLSI) can be upgraded to a log-Sobolev inequality (LSI) at

the surprisingly low cost of degrading the associated constant by log(1/p), where p

is the minimum non-zero transition probability. We illustrate this by providing the

first log-Sobolev estimate for Zero-Range processes on arbitrary graphs. As another

application, we determine the modified log-Sobolev constant of the Lamplighter chain

on all bounded-degree graphs, and use it to provide negative answers to two open

questions by Montenegro and Tetali (2006) and Hermon and Peres (2018). Our proof

builds upon the ‘regularization trick’ recently introduced by the last two authors.
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1 Introduction

Functional inequalities constitute a powerful set of tools for the study of the concentration

of measure phenomenon [24, 25]. On a conceptual level, those inequalities relate certain

statistics of a measure (such as the variance and entropy) to the Dirichlet form of a Markov

process that preserves the measure. Besides concentration, those inequalities are intimately

connected to the rate of convergence to equilibrium of the considered Markov process. Per-

haps the most popular functional inequalities are the Poincaré Inequality (PI) and the log-

Sobolev Inequality (LSI), which were initially studied in the continuous setting. On discrete

spaces, a variant called the Modified log-Sobolev Inequality (MLSI) has been put forward and

exploited due to its connection with the entropic exponential ergodicity of the underlying

semi-group. Informally, it is a standard fact (see for example [3]) that

LSI ⇒ MLSI ⇒ PI,

and the aim of this paper is to investigate the reverse implications.

1.1 Setup

Throughout the paper, we consider an irreducible Markov generator Q on a finite state

space X , and we assume that Q is reversible with respect to a probability measure π. The

associated Dirichlet form is given, for any observables f, g : X → R, by the formula

E (f, g) :=
1

2

∑

x,y∈X

π(x)Q(x, y) (f(x) − f(y)) (g(x) − g(y)) .

The variance and entropy of a function f : X → (0,∞) are defined as Var(f) := E[f 2]−E2[f ]

and Ent(f) := E[f log f ] − E[f ] logE[f ], where E[·] denotes expectation with respect to π

and where ‘log’ stands for the natural logarithm. The log-Sobolev constant tls, the modified

log-Sobolev constant tmls, and the Poincaré constant trel are then respectively defined as

the optimal constants in the functional inequalities

Ent(f) ≤ tE(
√

f,
√

f); (LSI)

Ent(f) ≤ tE (f, log f) ; (MLSI)

Var(f) ≤ tE (f, f) , (PI)
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for all functions f : X → (0,∞). We refer the unfamiliar reader to the seminal papers

[11, 23, 3], the book [27], or the more recent works [17, 29, 2, 7] for details about those

fundamental constants and their many variants.

It is classical that (LSI), (MLSI), (PI) are decreasing in strength, in the exact sense that

trel
2

≤ tmls ≤ tls
4
. (1)

The leftmost inequality is obtained by a standard perturbation argument around constant

functions, while the rightmost one is a direct consequence of the inequality

4E
(

√

f,
√

f
)

≤ E(f, log f), (2)

for all f : X → (0,∞), which in turns follows from the easy bound 4(
√
u−√

v)2 ≤ (u−v) log u
v

for all u, v > 0. However, in contrast with what happens in the smooth setting of diffusions

on manifolds, the functional inequality (2) can here not be reversed uniformly in f : indeed,

as soon as |X | ≥ 2, the quantity E (f, log f) can be made arbitrarily larger than E
(√

f,
√
f
)

by simply increasing the value of f at a single point. This degeneracy is one of the many

infamous consequences of the lack of a chain rule for Markov generators on discrete spaces

[24]. It introduces a fundamental discrepancy between the inequalities (MLSI) and (LSI),

which results in two very different meanings for their optimal constants: tmls measures

the entropy production along the semi-group, while tls quantifies the much stronger hyper-

contractivity. As a result, the ratio tls/tmls can be arbitrarily large even for two-point chains

(see [3, Section 3]), and any general upper bound on it will inevitably have to depend on the

data (Q, π). Understanding how is the task we undertake here.

To the best of our knowledge, the only general upper bound available on the ratio tls/tmls

is the one resulting from the chain of inequalities

tls
tmls

≤ 2tls
trel

≤ 2

1 − 2π⋆

log

(

1

π⋆

− 1

)

, (3)

where π⋆ := minx∈X π(x). The first inequality follows from (1), and the second from a direct

comparison with the Dirichlet form of the trivial chain Q(x, y) = π(y), whose log-Sobolev

constant is explicit (see, e.g. [11]). Note that this ‘extreme’ chain, which mixes in a single

jump, actually saturates both inequalities in (3). However, a quick look at more reasonable

examples should convince the reader that the ratio tls/tmls is typically much smaller than

log (1/π⋆) in practice, and this observation was the motivation behind the present paper.
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1.2 Main result

Writing E := {(x, y) ∈ X 2 : Q(x, y) > 0} for the (symmetric) set of allowed transitions and

Q(x) :=
∑

y∈X\{x} Q(x, y) for the total jump rate at x ∈ X , we define the sparsity parameter

p := min
(x,y)∈E

Q(x, y)

Q(x) ∨Q(y, x)
. (4)

In particular, in the standard stochastic case where Q(x) = 1 for all x ∈ X , this reduces to

p = min
(x,y)∈E

Q(x, y).

Our main result is that the lost equivalence between (MLSI) and (LSI) on discrete spaces

can be restored at the surprisingly low cost log(1/p) only.

Theorem 1 (Upgrading MLSI to LSI). For any reversible Markov generator, we have

tls ≤ 20 tmls log

(

1

p

)

.

The improvement over (3) can be considerable, since p is typically much larger than π⋆.

To appreciate this, consider the important case of simple random walk on a finite graph

G = (VG, EG): the classical estimate (3) predicts tls/tmls = O(log |VG|), whereas our result

gives tls/tmls = O(log d) where d denotes the maximum degree. As a concrete example,

when G is the transposition walk on the symmetric group Sn, we obtain tls/tmls = O(logn)

instead of tls/tmls = O(n logn). Incidentally, this example demonstrates that our result is

sharp except for the value of the universal prefactor, which we did not try to optimize (see,

e.g. [13]). On bounded-degree graphs, Theorem 1 shows that (MLSI) and (LSI) are actually

equivalent, a new fact with surprising consequences (see Section 1.3 below).

Beyond the theoretical interest of a universal comparison between (MLSI) and (LSI),

Theorem 1 can be used in practice to derive new, ready-to-use functional-analytic estimates.

Obviously, this can be done in two different directions. First, we can produce lower bounds

on tmls in situations where a lower bound on tls is available. In Section 1.3 below, we

illustrate this by determining the modified log-Sobolev constant of the Lamplighter chain

on all bounded-degree graphs, and we use this to provide negative answers to two open

questions by Montenegro and Tetali and by Hermon and Peres. Conversely, there are several

concrete classes of chains for which a (MLSI) was established by methods that do not carry

over to (LSI). Examples include Bernoulli-Laplace models [5], Zero-Range processes [21, 5],
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or negatively-dependent measures on the Boolean hypercube [18, 8]. In such examples, using

Theorem 1 to convert the known upper bound on tmls into a new one on tls is of practical

interest for at least three reasons:

(i) Mixing times : writing ft for the density with respect to equilibrium of the Markov

process at time t, the parameter tmls only controls the decay rate of the relative entropy

Ent(ft), while tls controls the much stronger uniform norm ‖ft − 1‖∞ (see, e.g., [27]).

(ii) Isoperimetry : by specializing (LSI) to {0, 1}−valued functions, the constant tls cap-

tures small-set expansion, which has numerous applications (see, e.g., [14]).

(iii) Robustness : unlike tmls, an estimate on tls can be transferred to other chains using the

classical and well-developed comparison theory for Dirichlet forms (see, e.g., [12]).

In Section 1.4 below, we will illustrate this by providing the very first log-Sobolev estimate

for the Zero-Range Process with increasing rates on arbitrary graphs.

1.3 Application to Lamplighter chains

Fix a finite graph G = (VG, EG) and imagine that each vertex is equipped with a lamp that

can be either off or on. Now, consider a lamplighter performing a simple random walk on G

and randomly switching the lamps off or on on his way. More formally, let us describe the

state of the system by a pair (i, σ) where i ∈ V represents the position of the lamplighter and

σ ∈ {0, 1}V indicates which lamps are on. The Lamplighter chain on G is the continuous-time

Markov chain on X := V × {0, 1}V whose generator acts on any f : X → R as follows:

(Qf)(i, σ) =
1

2

(

f(i, σi) − f(i, σ)
)

+
1

2 deg(i)

∑

j∼i

(f(j, σ) − f(i, σ)) .

In this formula, the notation j ∼ i means that {i, j} ∈ EG, while σi denotes the configuration

obtained from σ ∈ {0, 1}V by replacing σi with 1 − σi. The behavior of this process is

extremely rich and has drawn considerable interest across various fields, including graph

theory, group theory, spectral theory, discrete functional analysis and probability. We refer

the reader to the book [26, Chapter 19] and the references therein for a quick introduction.

The works [16, 28, 1, 22, 15] are all devoted to the fundamental question of relating

the mixing properties of the Lamplighter chain to those of the underlying graph G. In

particular, the relaxation time, the total-variation mixing time and the uniform mixing time
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are now completely understood. This is also true for the log-Sobolev constant, at least on

bounded-degree graphs. Specifically, the Lamplighter chain on G was shown in [1] to satisfy

tls ≍d

|VG|
γ(G)

, (5)

where γ(G) denotes the spectral gap of G and d = maxi∈VG
deg(i) the maximum degree. Here,

the notation a ≍d b means that the ratio a/b is bounded from above and below by positive

numbers that depend only on d. However, in contrast with many other mixing parameters,

nothing seems to be known about the modified log-Sobolev constant of Lamplighter chains,

even on simple graphs such as the n−cycle Zn. Since the Lamplighter chain has sparsity

p = 1/(2d), our main result allows us to determine tmls on all bounded-degree graphs.

Corollary 1 (MLSI for the Lamplighter chain on bounded-degree graphs). We have

tmls ≍d

|VG|
γ(G)

.

On the discrete torus G = Z
d
n, we thus obtain tmls = Θ(nd+2) for any fixed dimension

d ≥ 1. Surprisingly, this is always much larger than the total-variation mixing time of the

Lamplighter chain, which is known [16, 28] to be tmix = Θ(n2) when d = 1, tmix = Θ(n2 log2 n)

when d = 2, and tmix = Θ(nd logn) for any fixed d ≥ 3. Thus, Lamplighter chains on discrete

tori constitute a simple family of counter-examples to the following classical question, which

appears as Question 8.2 in the classical monograph [27] by Montenegro and Tetali.

Question 1 (Question 8.2 in [27]). Is there a universal constant c > 0 such that tmls ≤ c tmix,

for all irreducible Markov chains?

Very recently, Hermon and Peres [17, Question 7.1] proposed the following more reason-

able conjecture, in which tmix is replaced by the larger relative-entropy mixing time tent (see

[15] or [17] for the precise definition).

Question 2 (Question 7.1 in [17]). Is there a universal constant c > 0 such that tmls ≤ c tent,

for all irreducible Markov chains?

Since the Lamplighter chain on the n−cycle Zn is known to satisfy tent = Θ(n2 log n)

[15], the estimate tmls = Θ(n3) given by Corollary 1 again provides a negative answer to this

question. Finally, we note that our example also refutes Question 7.2 in the same paper,

which asks for an even stronger upper bound on tmls.
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1.4 Application to Zero-Range Processes

Introduced by Spitzer [30], the Zero-Range Process (ZRP) is a generic interacting particle

system in which individual jumps occur at a rate that only depends on the current number

of particles present at the source. The model is parameterized by the following ingredients:

• two integers m,n ≥ 1 representing the number of particles and sites, respectively;

• a symmetric stochastic matrix G = (Gij)1≤i,j≤n specifying the geometry;

• a function ri : {1, 2, . . .} → (0,∞) encoding the kinetics at each site i ∈ [n].

The ZRP with these parameters is a continuous-time Markov chain on the state space

X :=

{

x = (x1, . . . , xn) ∈ Z
n
+ :

n
∑

i=1

xi = m

}

, (6)

where xi represents the number of particles at site i. The action of the generator is given by

(Qf)(x) :=
∑

1≤i,j≤n

ri(xi)Gij (f(x + δj − δi) − f(x)) , (7)

where (δ1, . . . , δn) denotes the canonical n−dimensional basis, and with the convention that

ri(0) = 0 for all i ∈ [n] (no jumps from empty sites). In words, a site i with k ≥ 1 particles

expels a particle at rate ri(k), and the destination is chosen according to G. A natural choice

for the latter is the transition matrix of simple random walk on a regular graph. In fact, the

model is already interesting on the complete graph (the so-called mean-field case):

∀(i, j) ∈ [n]2, Gij =
1

n
. (8)

Obtaining quantitative estimates on the convergence to equilibrium of the ZRP has been

and continues to be a subject of active research, see e.g., [6, 20] in the mean-field case and

[9, 10] on integer lattices. A standard assumption on the rate functions (ri)1≤i≤n is that their

increments all lie in a fixed compact subset of (0,∞):

δ ≤ ri(k + 1) − ri(k) ≤ ∆, (9)

for some δ,∆ > 0 and every i ∈ [n] and k ∈ Z+. Under this weak interaction condition, and

in the mean-field setting (8), the ZRP was shown in [21] to satisfy the dimension-free MLSI

tmls ≤ 2∆

δ2
.
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Note that our sparsity parameter p here satisfies p ≥ δ
∆mn

, because Q(x) ≤
∑n

i=1 ri(xi) ≤ ∆m

for all x ∈ X and Q(x, y) ≥ δ/n for all (x, y) ∈ E. Thus, Theorem 1 produces the following

estimate which, to the best of our knowledge, is the very first LSI for the mean-field ZRP.

Corollary 2 (LSI for mean-field ZRP). Under assumptions (8) and (9), we have

tls ≤ 40∆

δ2
log

(

∆mn

δ

)

,

for any choice of the dimension parameters n,m.

The dependency in n is optimal, as can be seen by investigating the case of a single particle

(m = 1). As already mentioned, one of the advantages of tls over tmls is its robustness under

comparison of Dirichlet forms. This is particularly true in the present setting, because it

was shown in [19] that replacing a general symmetric stochastic matrix G by its mean-field

version (8) can not increase the Dirichlet form of the ZRP by more than a factor 1/γ(G),

where γ(G) denotes the spectral gap of G. Consequently, our mean-field LSI estimate can

be directly transferred to arbitrary geometries, yielding the following result. To the best of

our knowledge, log-Sobolev estimates for the ZRP were so far restricted to lattices [9].

Corollary 3 (LSI for ZRP on arbitrary geometries). Under Assumption (9), we have

tls ≤ 40∆

γ(G)δ2
log

(

∆mn

δ

)

,

for any choice of the dimension parameters n,m and of the symmetric stochastic matrix G.

Remark 1 (Asymmetric geometries). Interestingly, the symmetry of G is never actually

used in [21, 19], so Corollary 3 generalizes to any stochastic matrix G as follows:

tls ≤ 40∆

γ(G)δ2
log

(

∆m

δp⋆

)

,

where p⋆ denotes the smallest entry of the invariant probability vector of G, and where γ(G)

denotes the spectral gap of the additive reversibilization of G.
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2 Proof of the main result

The proof of Theorem 1 builds upon a simple but fruitful idea, recently introduced by the last

two authors in [31]: the regularization trick. It consists in restricting functional inequalities

to observables f : X → (0,∞) that are smooth, in an appropriate sense.

2.1 The regularization trick

Fix a parameter r ≥ 1. Following [31], we say that a function f : X → (0,∞) is r−regular if

∀(x, y) ∈ E, f(x) ≤ rf(y). (10)

Our starting point is the elementary but new observation that, once restricted to r−regular

functions, the basic inequality (2) can be reversed at the optimal cost

H(r) :=

√
r + 1√
r − 1

log r. (11)

Note that H(∞) = ∞, in agreement with our earlier observation that the unrestricted

inequality (2) can not be reversed. At the other extreme, we have H(1+) = 4, in agreement

with the fact that (2) is an equality in the infinitely smooth setting of diffusions on manifolds.

Lemma 1 (Exploiting regularity). If f : X → (0,∞) is r−regular, then

E(f, log f) ≤ H(r)E(
√

f,
√

f).

Proof. With H(1) := 4, the formula (11) defines a function H : (0,∞) → (0,∞) which

increases on [1,∞) and satisfies H(u) = H(u−1) for all u ∈ (0,∞). It follows that H(u) ≤
H(r) for all u ∈ [r−1, r]. On the other hand, elementary manipulations give

(u− v) log
(u

v

)

= H
(u

v

)

(
√
u−

√
v)2,

for all u, v > 0. Taking u = f(x) and v = f(y), and recalling our assumption (10), we obtain

(f(x) − f(y)) log

(

f(x)

f(y)

)

≤ H (r) (
√

f(x) −
√

f(y))2,

for any (x, y) ∈ E. To conclude, we multiply by π(x)Q(x, y) and sum over all x, y ∈ X .
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Let us respectively denote by tls(r) and tmls(r) the optimal constants in the inequalities

(LSI) and (MLSI), when restricted to r−regular functions. The above lemma readily implies

tls(r) ≤ H(r)tmls(r), (12)

which can be seen as a regularized version of Theorem 1. To conclude, we now need to relate

the constants tmls(r) and tls(r) to their unregularized versions tmls and tls. Of course, we

trivially have tmls(r) ≤ tmls and tls(r) ≤ tls, by definition. We will now show that those

inequalities can be reversed, provided r is large enough. Specifically, we henceforth set

r :=
4

p2
, (13)

and we assume that p ≤ 1/2 (if this is not the case, then irreducibility and reversibility

imply that |X | ≤ 2, so that Theorem 1 can be checked by hands). Note that we then have

3H(r) ≤ 20 log 1
p
. Thus, Theorem 1 is a consequence of the following crucial result.

Theorem 2 (Regularization). With r as in (13), we have tls ≤ 3tls(r) and tmls ≤ 3tmls(r).

In other words, to establish (LSI) or (MLSI) for a reversible Markov chain, it is enough

to restrict attention to r−regular observables. Such a costless regularization is of course

interesting beyond its role in the present paper. A first version of it (for tmls, and with an

additional factor γ = maxπ
minπ

in the regularization parameter r) was recently used in [31] to

obtain a sharp (MLSI) for the switch chain on regular bipartite graphs and as a consequence

prove a long-standing conjecture about the mixing time of that chain (see [32] and references

therein). Our proof below follows the same strategy, but optimizes it so as to remove the

dependency of r on γ. Note that this improvement is crucial for our application to the ZRP.

We write d(·, ·) for the graph distance on (X , E). Following [31], we fix an arbitrary

observable f : X → (0,∞) and we define a new observable f⋆ : X → (0,∞) by

∀x ∈ X , f⋆(x) := max
z∈X

r−d(x,z)f(z).

It is immediate to check that f⋆ is r−regular and above f (it is in fact the smallest such

function, but we will not use this property here). The following propositions show that the

quantities E(
√
f,

√
f), E(f, log f) and Ent(f) do not change much upon replacing f by f⋆.

Proposition 1 (Comparison of Dirichlet forms). For r as in (13), we have

E(
√

f⋆,
√

f⋆) ≤ 4

3
E(

√

f,
√

f) and E(f⋆, log f⋆) ≤ 4

3
E(f, log f).

Proposition 2 (Comparison of entropies). For r as in (13), we have Ent(f) ≤ 2Ent(f⋆).

Those propositions clearly imply Theorem 2, and we henceforth focus on their proofs.
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2.2 Comparing Dirichlet forms (Proposition 1)

The proof of Proposition 1 consists of three steps, of which only the last one uses the specific

choice for r made at (13). We define the distance from an edge e ∈ E to e′ ∈ E in the

obvious way: d(e, e′) = ℓ− 1, where ℓ ≥ 1 is the minimum length of a path (x0, . . . , xℓ) with

(x0, x1) = e and (xℓ−1, xℓ) = e′. We first compare the variations of f and f⋆ across edges.

Lemma 2. For each e = (x, y) ∈ E with f⋆(x) ≤ f⋆(y), there is e′ = (x′, y′) ∈ E so that

r−d(e,e′)f(x′) ≤ f⋆(x) ≤ f⋆(y) ≤ r−d(e,e′)f(y′). (14)

Proof. If f⋆(y) = f(y), then we simply choose e′ = e and (14) trivially holds. If on the

contrary f⋆(y) < f(y), then we take e′ = (x′, y′) where y′ is such that f⋆(y) = r−d(y,y′)f(y′),

and where x′ is the penultimate vertex on a geodesic from y to y′. We then have d(e, e′) =

d(y, y′) = 1 + d(y, x′) ≥ d(x, x′). Thus, the last inequality in (14) holds with equality, while

the definition of f⋆ ensures that f⋆(x) ≥ r−d(x,x′)f(x′) ≥ r−d(e,e′)f(x′).

We now use this local comparison to estimate how the global quantities E(
√
f,

√
f) and

E(f, log f) change upon replacing f with f⋆. For (x, y) ∈ E, we introduce the short-hand

c(x, y) := π(x)Q(x, y).

Lemma 3. We have E(
√
f⋆,

√
f⋆) ≤ κ E(

√
f,

√
f) and E(f⋆, log f⋆) ≤ κ E(f, log f), where

κ := max
e′∈E

{

1

c(e′)

∑

e∈E

c(e)r−d(e,e′)

}

. (15)

Proof. Let ∇f(e) := f(y)− f(x) denote the discrete gradient of f across an edge e = (x, y).

To each edge e ∈ E, Lemma 2 associates a new edge e′ ∈ E such that
(

∇
√

f⋆

)

+
(e) ≤ r−d(e,e′)

(

∇
√

f
)

+
(e′),

where h+ = max(h, 0) denotes the positive part of h. Consequently, we have

E(
√

f⋆,
√

f⋆) =
∑

e∈E

c(e)
(

∇
√

f⋆

)2

+
(e)

≤
∑

e,e′∈E

c(e)r−d(e,e′)
(

∇
√

f
)2

+
(e′)

≤ κ
∑

e′∈E

c(e′)
(

∇
√

f
)2

+
(e′) = κE(

√

f,
√

f),

as desired. The second claim is obtained in exactly the same way.
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To obtain Proposition 1, it finally remains to estimate the constant κ defined at (15).

Lemma 4. Choosing r as in (13) ensures that κ ≤ 4/3.

Proof. If e, e′ ∈ E satisfy d(e, e′) = 1, then we can write e = (x, y) and e′ = (y, z). Using

reversibility and the definition of p at (4), we have

c(e) = π(x)Q(x, y) = π(y)Q(y, x) ≤ π(y)Q(y) ≤ p−1π(y)Q(y, z) = p−1c(e′).

By an immediate induction, we deduce that c(e) ≤ p−d(e,e′)c(e′) for all e, e′ ∈ E. Thus,

κ ≤ max
e′∈E

{

∑

e∈E

(rp)−d(e,e′)

}

≤
∞
∑

k=0

∆k(rp)−k,

where ∆ denotes the maximum degree of the graph (X , E). But ∆ ≤ p−1, because from

every vertex, the outgoing transition probabilities are at least p and must sum to 1. Thus,

κ ≤ ∑

k(p2r)−k = 4/3, thanks to our choice for r.

2.3 Comparing entropies (Proposition 2)

As in [31], we use the variational characterization of entropy [4]: for any g : X → (0,∞),

Ent(g) = max
{

E[gh] : h ∈ R
X ,E[eh] ≤ 1

}

. (16)

We start with an elementary lemma, which only uses the fact that f⋆ ≥ f .

Lemma 5. We have 5Ent(f) ≤ 6Ent(f⋆) + (6 log 6)E[f⋆ − f ].

Proof. Upon multiplying f (hence also f⋆) by a constant, we may assume without loss of

generality that E[f ] = 1. Then, the function h := log
(

1+5f
6

)

satisfies E[eh] = 1 so (16) yields

Ent(f⋆) ≥ E[f⋆h] = E[fh] + E[(f⋆ − f)h].

The claim now readily follows from the pointwise bounds h ≥ 5
6
log f and h ≥ log 1

6
.

In view of this lemma, Proposition 2 boils down to the following result.

Lemma 6. With r as in (13), we have (3 log 6)E[f⋆ − f ] ≤ Ent(f).

12



Proof. For each x ∈ X , let us choose a state T (x) ∈ X that achieves the maximum in the

definition of f⋆(x) (breaking ties arbitrarily), i.e.

f⋆(x) = r−d(x,T (x))f (T (x)) .

Thus, T (x) = x if and only if f⋆(x) = f(x). Note that if we had f(T (x)) < f⋆(T (x)), then

f⋆(x) < r−d(x,T (x))f⋆ (T (x)) = r−d(x,T (x))r−d(T (x),T 2(x))f
(

T 2(x)
)

≤ r−d(x,T 2(x))f
(

T 2(x)
)

,

which would contradict the maximal definition of f⋆(x). Thus, we must in fact have f(T (x)) =

f⋆(T (x)), or equivalently, T 2(x) = T (x). This shows that T (A) = Ac, where

A := {x ∈ X : T (x) 6= x} = {x ∈ X : f(x) 6= f⋆(x)}.

Now, coming back to our goal, let us write

E[f⋆ − f ] =
∑

x∈A

π(x)(f⋆(x) − f(x))

=
∑

x∈A

π(x)f(T (x))r−d(x,T (x)) −
∑

x∈A

π(x)f(x)

=
∑

y∈T (A)

π(y)f(y)h(y)−
∑

x∈A

π(x)f(x),

where for y ∈ T (A), we have introduced the short-hand

h(y) :=
∑

x∈T−1({y})

π(x)

π(y)
r−d(x,y).

Recalling that T (A) = Ac, we may set h = −1 on A to rewrite the previous computation as

E[f⋆ − f ] = E[fh].

In light of the variational characterization of entropy (16) (with 3h log 6 instead of h), it

remains to check that E[63h] ≤ 1. As in the proof of Lemma 4, our choice r = 4p−2 easily

ensures that h ≤
∑

k=1(p
2r)−k = 1/3, so that 63h ≤ 1 + 15h on Ac. Recalling the definition

of h, we deduce that

E
[

(63h − 1)1Ac

]

≤ 15E[h1Ac] = 15
∑

x∈A

π(x)r−d(x,T (x)) ≤ 15

16
π(A),

because r ≥ 16. On the other hand, E
[

(63h − 1)1A

]

= (6−3 − 1)π(A) ≤ −15
16
π(A).
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