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SUMMARY

Damage generally refers to the more or less gradual development of micro-voids and micro-cracks. Damage
mechanics is the modelling of these phenomena on a structural analysis scale. In this paper we first recall the
non-lincar behaviour models we have developed to model composite laminates. Then we present two
examples of implementations of such models in a structural analysis code in order to simulate the inner-
failure of a structure, or to study delamination initiation.

INTRODUCTION

Damage is maybe the main mechanical phenomenon in composite materials. Therefore it has
given nise to many studies.' ~2 The classical theory of isotropic damage* is not sufficient to deal
with composite matenials because for such materials damage is generally of a highly complex
nature. For example, fibrous compositelaminates are prone to a wide range of damage which may
significantly reduce their residualstiffness and strength. In carbon-epoxy laminates such as T300-
914 or IM6-914 the main types of damage which can occur are (i) a progressive transverse matrix
cracking, (ii) brittlefracture of fibres, (ili)debonding of fibre-matrix interface and (iv) debonding of
adjacent layer (delamination). In order to model such phenomena it is possible to describe the
microstructure of the composite in detail and to apply calculation techniques such as homogeniz-
ation.>® Nevertheless, for composite structures submitted to complex loadings it is not possible to
keep the calculation cost of such techniques within reasonable limits.

A Damage Mechanics of Composite Matenials is proposed in References 7-10 which enables us
to mode] these phenomena on a structural analysis scale and thus to apply this modelling to
simulate the failure of a structure or more generally to estimate the state of its damage compared
to one or several ultimate damage states. The aim of this paper is to recall the main features of this
modelling, which has been proposed by Ladevéze,'!-!'? and to explain how it is now applied to
predict through calculation the state of damage of complex composite structures.

The mechanical behaviour study of any composite laminate is reduced to the modelling of two
constituents: the elementary single layer and the interface. The latter is a zero thickness entity
which depends on the angle between two adjacent layers. The general idea we use to model the
deterioration is that proposed by Kachanov'® and Rabotnov:'* variations in the elastic
characteristics of a material are indicators of its deterioration. The opening and shutting effects of



the micro-defects are schematized by splitting up the strain energy into ‘tension’-energy and
‘compression’-energy. The layer model includes anisotropic unilateral damage and elasto—plastic
behaviour.

At the constituents level we get some qualitative information on the nature of the damage.
Simple homogenization techniques allow us to transfer this information at the single layer level in
order to build comprehensive models. The classical laminate theory enables us to identify the
single layer by means of tensile tests on different stacking sequences. The identification is achieved
by means of three tensile tests on [ +45, —45],5, [0, 90],s, [45]s specimens. The modelling has
been checked out on other stacking sequences and is supported by works that have been carried
out in joint collaboration with Aerospatiale.

The interface is a two-dimensional entity which ensures displacements and traction transfer
from one layer to another. It depends on the angle between the fibre directions of adjacent layers.
The interface influence is located near edges or defects, where a tridimensional stress state may
occur and lead to delamination. In the first instance the interface is assumed to be elastic and
damageable. Thus delamination, which has been studied in many different manner,'*~!7 is here
modelled as a damage mode. This modelling will be completed through comparisons between
computation and experimental tests; this presents further difficulties. It is to be noted that Damage
Mechanics allows us to predict delamination initiation and growth; nevertheless we restrict the
delamination analysis to small perturbations and so we do not yet take into account the
interaction between buckling and delamination as in References 18-20. Inner-layer effects such as
transverse cracking have to be taken into account in delamination analysis since in the first
instance it can considerably affect delamination initiation and secondly, it explains the fact that
delamination may ‘jump’ from one interface to another.!® This approach to delamination is
compared to the more classical approach of Fracture Mechanics in the case of elastic layers for an
existing delaminated area.

Implementation of this refined mechanical behaviour in a computer program is quite complex,
but it allows us to simulate the state of a structure after loading. The computational analysis of
laminate failureis splitinto two parts: (i) inner-layer degradatlon and (ii) edge effects damage such
as delamination.

The first aspect has been studied and numerically set in References 21-23. A Finite Element
program using isoparametric finite elements and including a non-linear analysis of laminates has
been realized. The failure of laminates is simulated through a global instability condition which
means that the structure cannot support any increase in prescribed loadings. The calculation of
the corresponding limit points is made by using the Riks algorithm.?* In order to decrease the
calculation cost an automatic process of ‘an arc- length-parameter determination has been
implemented.

At a structural level, the computation of delamination initiation and growth leads to a non-
linear three-dimensional evolution problem. Nevertheless, this analysis can be restricted to the
vicinity of edges where the three-dimensional effects arelocated. We have restricted the analysis to
composite laminates with initially circular holes. The computation is kept within reasonable limits
by using (i) a new approach for non-linear structural computation, i.e. the ‘large time increment
method’ proposed in References 25 and 26, and (i) a semi-analytical method which allows us to
solve only two-dimensional problems, owing to the particular geometry of the edge.2”-*® The
latter method combines the gradient conjugate method and Fourier expansions using Fast
Fourier Transforms. An axially symmetrical pre-conditioned operator is used to solve non-axially
symmetrical problems. The large time increment method is totally different from the step-by-step
time process of all previous computation techniques. It proceeds by a single global iterative
procedure on the whole loading history. This considerably reduces first, the number of transfers



between local and global levels and second, the number of global resolutions and hence the
numerical cost of calculation.?->® The initial results are presented below.showing.the practic-
ability and efficiency of this approach.

LAMINATE MODELLING:
At the level we called meso-level the composite may be schematized By'(seé Figure 1)

—a homogeneous single layer in thickness
—an interface which is a surface entity connecting two adjacent layers and which depends on
the relative directions of their fibres.

These entities being modelled and identified, the mechanical behaviour reconstitution of any
laminate is then a relatively easy task. It is to be noticed that we limit ourselves to single layers with
only one reinforced direction. The single layer is also analysed at a smaller level, the level of its
constituents: fibres, matrix, interfaces. Some more or less qualitative information is thus
transferred at the single-layer level by means of a homogenization process. Homogenization
techniques have become classical, and therefore we shall not emphasize them.>® We have noticed
and verified that some approximations work remarkably well: o

—the local shear stress distributions are uniform
—the local strain distributions in the fibre direction are uniform too.

This leads to very simple homogenization techniques even in the non-lincar field. As regards
laminate plates and shells, the homogenization consists in writing the basic assumption of C.L.T.
This allows us (i) to identify the single layer behaviour from tests on different stacking sequeaces
and (i) to construct the laminate inner behaviour from our knowledge of the layer behaviour.

A DAMAGE AND PLASTICITY MODEL OF THE SINGLE LAYER®~10-12

The kinematics of the single-layer damage

The identification and modelling of the single layer is made with the assumption of in-plane
stresses. In what follows subscripts 1, 2 and 3 designate respectively the fibre direction, the
transverse direction inside the layer, and the normal direction to the plate.

Beside brittle fractures in the. fibre direction, the matrix and the fibre-matrix interfaces inside
the layer are deteriorated in a very particular manner the microcracks are parallel to the fibre
direction. A homogenization calculation shows that the only moduli which are modified are the
transverse modulus E, and the shear modulus G, ,. The other independent elastic characteristics
E, and v,, remain constant. These properties are confirmed by experimental observations.

U '_,},-’-"/’
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PP, . Interface

Figure t. Laminate modelling



The undamaged material strain energy, is written in the following form, reached by splitting up
the energy into ‘tension’-energy and ‘compression’-energy:

1[ e}, (V?Z ng) 63203  (—032)% 0%2]
Ep=z|—=5—| o +55 1011022+ + +—5- 1

P 2[E‘: B Ryt TE TR Yy, @
The transverse rigidity in compression being supposed equal to E2, one obtains the following
energy for the damaged material:

1[o2, [v9, 9 (=03,0%2 (0553 ¢
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where d and d’ are two scalar damage variables. The variables associated with dissipation are
By _1__ois
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Modelling of the damage evolution
From experimental results it follows that the governing quantities of damage evolution are
Yi=suply[Ys+bYe 1% Y'l,=suply<,[Y,o+bY,]"2 @)

b, b’ are characteristic constants of the material which balances the transverse energy influence and
the shear energy influence. In fact, experimentally we obtain very simple evolution laws for
damage:

d=%(Y—Y0>+ if d<l;d=1 otherwise ©)

[
d’=—);,u( Y —Yo), if d'<l;d'=1 otherwise ©)

where Y, Y, are characteristic constants of the material. In practice, damage equal to 1 is rarely
encountered: the rupture appears far below that level and is associated with instability. Hence Y,
Y’ appears quantities which govern the damage evolution and then the transverse fracture of
the single layer. Near the edges it is necessary to take out-of-plane stresses into account. In order
to simplify, Young’s modulus E, and the shear moduli G, and G,; remain constant and thus
damage effects of out-of-plane stresses are assumed to affiect interface behaviour only.

Plasticity modelling and damage-plasticity coupling

€” denotes the inelastic part of the strain and the dot designates the derivative with respect to
time. We define effective quantities & and £° as
. 032 ™ 022 2 . s s .
Su=g_g ‘2Tg_a Ela=81,(1—d), &,=83,(1-d) Q)
The plasticity modelling and damage plasticity coupling are build upon these quantities because
experimentally the hardening curves which appear to be very different in ‘tension’ and in
‘compression’ are, in fact, the same if expressed in effective quantities. From a homogenization



calculation, and assuming that only the matrix plastifies we have

ef,=0 ®)
In order to make the incremental problem symmetrical we use the following description of the
elasticity domain:
([ e
= Gy —=+a*d, —|[dt) —R—-R,<
o L (1-4d) 2 d) °

The hardening is assumed to be isotropic, which means that the threshold R is a function of the
cumulated strain p; p—R(p) is a characteristic function of the material. The yield conditions are
written as follows:

: 1. 6 ip .
8‘1’2=§pﬁ; £5,=a PR_:; (p=0) (10
0 0

Identification and checking
The model described above, apart from the elastic characteristics, depends on:

— the rupture tension and compression strains of the fibre: ¢; and ¢,

— the hardening curve p—R(p), the constant a®. Assuming an isotropic matrix and a perfect
fibre-matrix bonding, one is led to attribute to a the value of 0-33, which is in good agreement
with experimental results

—the Y,, Y., Y. constants which define the damage evolution.

This model had been identified on T300-914 laminates. The hardening curve and the b, b', Y,
Y., Y. constants have been obtained from a tensile test on a [+45, —45],5 specimen and a
[+ 67, 5; 67, 5], specimen. For single layers constituted with the same matrix but with IM6 fibres,
the previous characteristics have also been identified. For laminates constituted with the same
matrix, it appears that the plasticity and the damage curves are very close. These results confirm
the idea that the matrix and the fibre-matrix bond play a prominent part in this phenomenon.
This modelling has been checked out on numerous experimentals tests.

INTERFACE MODELLING

Interface definition

The interface (see Figure 2) is a surface entity (of zero thickness) which ensures stress and
displacement transfers from one ply to another. In elasticity the interface is schematized by means

ply

ply-

Figure 2. Interface modelling



of a model which has been used in order to model the fibre-matrix interface.3! It depends on the
relative orientation of the upper and lower plies. The displacement discontinuities are denoted by

[Ul=U"-U"=[U}1N, +[U],N, +[ W ]N, (1)

The (N, N, ) axes are associated with the bisectrix of directions the fibres. The undamaged energy
of the interface is _

=4I 1)+ 3V, I+ K [U:ﬂ’]-—[f—’—’-f”ﬂi‘] (12

where k°, k2, k9 are the initial elastic characteristics.

Kinematics and evolution of the damages

With a restriction to one scalar damage variable, the deterioration can be described by

1[{=0633)%  <o33)3 a3, 0':2;1
Ep== + 13
> 2[ R TO0—d) k-7 K —7,d) 3
where y, and y, are constants. The variable associated with dissipation is
OEp 1[<G33>2 &3, &2 '
Y= 2[ Pt tnge (14)

where G;; denotes the effective normal stress. The y, and y, constants introduce a coupling
between the energy connected with the normal tension stress and the shear energy. In terms of
delamination modes, the first term is associated with the first opening mode, the two others with
the second and third modes. The damage evolution is described by the following standard model:

d=w(Y) if d<1; d=1 otherwise (15)

Connections between two approaches of delamination: Damage Mechanics and Fracture Mechanics

The comparison has been carried out on a D.C.B. specimen constituted with two elastic layers
loaded with a pure-mode-I loading (see Figure 3). We designate respectively by e and b the

PN

\J
-1
N

built in area

L ’ (x=L)

Figure 3. Schematization of the specimen and of the loading mode



thickness and the width of the specimen. The layers are connected with an interface I', whose
elastic damageable behaviour is characterized by k, and Y; d denotes the damage variable. The
specimen bas initially been separated along the interface. We denote by ‘a’ the delaminated area
length. The specimen is loaded in the N, direction with uniform tensile forces whose resultants are
denoted by P and — P; moreover, the specimen is clamped at x = L. The computation of the energy
release rate could be achieved by different computation methods.>? In order to derive analytical
results, the specimen calculation is achieved using Reissner’s plate theory, under the-assumption of
a plane strain state in the (N,, N;) plane. The admissible displacement fields are restricted to

Us={/U, v, w) regular in Q, and Q_ respecting the symmetry
and the displacement conditions} (16)

In order to simplify, we assume that, before instability, the load is increasing monotonically. So the
problem is to find (o, U) satisfying

— displacement conditions U € U
J. Tr[me(U")]dQ-t—J 03;3[w*]dI =2Pw*(0) (W)
o r

o=K.e(U)inQ,and: o33 =ko(1—-d)[w]on F(w(Y)=Y/Y,) (18)

If the crack is long enough, it is possible to obtain, for the energy release rate, the following
approximate expression:

G=

o2w(O)| _ 4P? (302 . 3E, e?\ (19)

da |, E, be 10G,, )

The delamination propagation caendition is obtained by means of an instability condition,
associated with the incremental variational problem. In this particular case, the instability is
reached for d=1 on the delamination front. Denoting by P, the value of P at the instability we get

2pP? , . 3E, e
Y¢~E—”w<3a +T(E2- and Gc~2Yc (20)

For an established delamination, the critical energy release rate G, is independent of the crack
length. Fracture mechanics appear as a simplified tool for the delamination study in the case of an
established front and elastic layers. Moreover, the previous result enables us to identify behaviours
of different materials from experimental results obtained by Laksimi.>3-34 Such an approach is
made with the assumption that layers are elastic; thus it can constitute a first approach only.

INNER-FRACTURE ANALYSIS OF LAMINATE STRUCTURES?!-23

According to experiment the multilayered coupon’s fracture is well defined by the first ply failure.
However, the use of internal damage vatiables enable us to translate the instability calculation
from the layer to more global domains. In a first step, instability has been calculated on the whole
stacking sequence of each element. The following examples (Figure 4) show that this approach
often leads to very close fracture-load levels compared to those determined by first ply failure.

In a next step, the limit point of the structure’s equilibrium path is determined. On the example
which corresponds to Figure 5 this point and first ply failure occurring in one of the elements of
the discrete structure are reached for nearly the same load level.
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Figure 4. Laminate and first ply instabilities Figure 5. Structure and first ply instabilities

The point of the equilibrium path is calculated for given value of the arc length parameter As
according to Reference 24. The values of the arc-length parameter As, which fix the different load
increments, may be calculated automatically through extrapolation methods.>* The aim of such
methods is to reach the limit as fast as possible. The current stiffness parameter S, is the quantity
on which the extrapolation is performed. In the elastic range S, is equal to one and near the limit
point it is equal to zero. By a linearization method this last condition allows us to predict a value
As* for which S, is supposed to be zero. In order to ensure the determination of the limit point, a
safety factor f is introduced such that the value of As which is used is

As=p As* (21)

DAMAGE COMPUTATION FOR DELAMINATION ANALYSIS?7-28

Implementation of the above mechanical behaviourin a computer program to study the initiation
and propagation of delamination leads us to solve a’three-dimensional (because of edge effects)
non-linear evolution problem. To study edge effects in elastlcny it is possible to use mixed
techniques to ensure traction continuities from one ply to another as in Reference 36, or to use
boundary layer techniques®” in the case of a quasi-straight edge. Owing to the interface behaviour
the traction continuities are ensured by means of a displacements approach. The study of the full
non-linear three-dimensional evolution problem in the case of an initially circular hole has been
achieved in References 27 and 28 and is presented below.

To solve with a reasonable computational cost this non-linear three-dimensional -evolution
problem we use, (i) the ‘Large Time Increment Method’ and (ii) a semi-analytical method which
requires the solution of two-dimensional problems only.

Formulations of the mechanical problem

The analysis is restricted to the vicinity of the edges in the domain Q, where the three-
dimensional effects are significant. A link with the solution obtained by a ‘shell’ computation is



made on the J, area through given displacement Uy. On the complementary part of the
boundary of Q either displacements or forces may be prescribed. We assume, for example, that a
load F, is prescribed on'6,Q (Figure 6). _

The problem to be solved is: Find (g, €(U)) such that: U kinematically admissible (K.A.), which
means:

U regular and Ul a=Uq4(t) Vte[0, T]
o statically admissible (S.A.), which means that ¢ is in equilibrium with the given data:
YU*e U={U/U regular and U|,,q=0},Vte[0, T]

j Tr(a.e(u*))dmu"il oN[U*]dl'= J’ F,()U*dS
0 i r -

229
and (o, ¢) satisfies the constitutive relations Ve [0, T’} (22)

In these equations data as well as unknowns are functions of time and space. I order to be
clearly distinguished such function are called processes. We denote by A, the (linear) subspace of
couples of processes s=(o, ¢) such that U is K.A. and ¢ is S.A. We denote by I' the (non-linear)
subspace of couples of processes s=(c, ¢) such that (o, ¢) satisfies the constitutive relations
Vte[0, T]. So the problem may then be written:

find s such as: s=A;N T (23)

Scheme of the large time increment method?>-26-29-3°

The ‘large time increment method’ breaks with the step by step process of all previous
computation techniques. This method allows the treatment of the whole loading using only one
increment. The intersection .of A, and I is- obtained by an iterative procedure on the whole
loading history by means of two stages. From a couple of processes s, € A, we search a couple §
which belongs to I, this stage being non-linear but local. From § we build a couple s,,;€ A4
‘better’ than s,; this stage-is'global but linear.

An important point is to define‘how to build the couples § and s, , ; from theccouple s,. For this
two search direétions E* and E~ are defined (Figure 7).

There.are many different choices which are-possible for the direction E* ‘and E~. Because of the
damage constitutive 1aw there may be local and global instability. We use the simplest version
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Figure 7. Schematic representation of the two steps

which is also the safer; we denote A¢, =¢,,,—&, and A6,=6,,,—8,.
E "~ (local stage): i= &,
E* (global stage). A¢,=K . Aé,+ -6, (K . is the elastic operator) (24)

The first step is a local but non-linear problem. This leads to solve a non-linear problem at each
Gauss point with the Finite Element Method.

This last problem is an elastic problem where the time is a parameter. The stresses and strains
corrections are searches of the following form:

Aiy= 3 H(0)A(M)  (4; KA. to zero) 25)
i=1

Ad,= i B;(t)B;(M) (B; S.A. to zero (26)
I

In other words, the corrections are searched as superposition of proportional loadings. Such
loadings are known to be quite good approximations of non-linear small perturbation problems.
This reduces considerably the number of global resolutions. With a kinematics approach the
global problem leads us to find A¢é, K.A. to zero such that

T -
Ve* KA. to zero: J j e*{K.(Aé,)+ (6 —06,))dQdt=0 27
0 Jo -

In order to simplify, we suppose that the number m of time functions in the approximation (33) is
equal to 1. The problem (35) is resolved iteratively in time and space. This process is initiated by
the choice of a time function a4(t) (which is normalized); we then search again the best space
function Ay(M) associated with aq(¢) that is:

T .
VA* KA. to zero: J' A‘KC(AO)dQ=J‘ A‘f ao(t)(6—6,)dtdQ (28)
n o o

This problem is a classical elastic problem and leads to a solution 4,(M). We then search the best
time function a,(t) associated with A,(M); this lead to a very small problem. This process is
stopped when the time functions «,(t) and x;, ,(r) are sufficiently close together. In practice this
process need two or three iterations. So the determination of the correction A¢, on [0, T ] needs
only two or three elastic resolutions. Since the determination of the solution needed a number of
global stages which do not exceed five or six, the resolution of a non-linear problem on the whole
loading often needed only about ten resolutions of classical elastic problems. Nevertheless, the
problem we have to solve is three-dimensional. So, in order to decrease its numerical cost, we

10



present a semi-analytical method which allows the treatment of this three-dimensional problem by
means of two-dimensional problems in a strip, which is made by using (i} the conjugate gradient
method and (ii) the Fast Fourier Transform.

Scheme of the semi-analytical method

An axially symmetric conditioned operator is used to solve non-axially symmetric problems, so

the elastic problem to be solved is replaced by a series of intermediate problems:
2x
KoX=F where K= il—n- J K.dé (K.: elasticity operator) (29)
0

By means of the Fast Fourier Transform the displacement is developed in Fourier series, and each
of its components is computed as the solution of two-dimensional elastic problems associated with
K, whicharesolved in a finite strip. The displacement is then optimized by the conjugate gradient
method.

An example of a structure (0, 45, —45, 90)s which is loaded by a radial pressure on the hole is
presented. These results were obtained with the above semi-analytical method. This computation
was made in 64 strips which represented about 100000 degrees of freedom for the whole problem.
It needed only 25 iterations. Figure 8 shows the displacements in strip B at 0°. Figure 9 shows the
peeling stress in this strip at the (90°, 90°) interface.

A first non-linear example computation of a laminate (0, 90) loaded in pure mode I is given. A
normal displacement is prescribed on the edge of the hole (radius ry) in the following form:
Ul(rg, 1)=4A(t)U,, where A(t)=t/T. Figure 10 shows the work of the outside forces divided by 4,
with respect to i. Through a global instability condition, this curve allows us to predict the
delamination initiation and the Gauss point at which it happens. Figure 11 shows the evolution of
the peeling stress at this Gauss point.
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CONCLUSION

The mechanical behaviour study of any composite laminate is reduced to the modelling of two
constituents: the elementary single layer and the interface. Damage Mechanics of Composite
Materials allows us to model the elementary constituents behaviour whose main features are
damage and plasticity. Thanks to this modelling it is easy to compare the behaviour of several
carbon-epoxy laminates. This kind of approach can be extended to other type of materials, and
has been successfully applied to 3D carbon-carbon composites.>®

From the different fracture modes that have been introduced to model the layer, a multicriterion
approach, similar the one proposed by Hashin,*® can be deduced for laminates. It consists of a
brittle elastic criterion for fibres and a rupture criterion for the matrix. The latter is obtained
through an instability condition caused by the damage behaviour of the matrix. This approach is
global throughout the thickness of the laminate and thus is implicit. The general application of the
single layer modelling is proposed to predict the inner fracture of a laminate by means of non-
linear two-dimensional computation.?! =23

The interface modelling allows us to predict the initial stage of delamination due to the damage
behaviour of connections between layers.?”-28 This leads to a non-linear tridimensional evolution
problem whose treatment is dealt with in this paper. Within this frame-work it is also possible to
study the delamination propagation.
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