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Operations on fuzzy numbers
DIDIER DUBOIS{ and HENRI PRADET

A fuzzy number is & fuzzy subset of the real line whose highest membership values
are clustered around a given real number called the mean value; the membership
function is monotonic on both sides of this mean value. In this paper, the usual
algebraic operations on real numbers are extended to fuzzy numbers by the use of
a fuzzification principle. The practical use of fuzzified operations is shown to be
easy, requiring no more computation than when dealing with error intervals in
classic tolerance analysis. The field of applications of this approach seems to be
large, since it allows many known algorithms to be fitted to fuzzy data.

1. Introduction

In many scientific areas, such as systems analysis and operations research,
a model has to be set up using data which is only approximately known.
Fuzzy sets theory, introduced by Zadeh (1965), makes this possible. Fuzzy
numerical data can be represented by means of fuzzy subsets of the real line,
known as fuzzy numbers. This approach may be of practical interest only
if we can easily perform algebraic operations on them. Fuzzy sets theory
generalizes tolerance analysis; it completely differs from a probabilistic
approach.” Jain (1976) had already attempted algebraic operations on fuzzy
sets wminmxmuwﬁoﬁm. Jain’s method will be shown to be inexact and rather
impractical, since it often involves too many computations. Pt

In the following sections, we set forth results for the algebraic combination
of fuzzy sets with infinite supports. Paradoxieally, our method can be proved
to be more rapid than Jain’s, and, moreover, exact. Section 2 recalls”the
fuzzification principle and gives the definition of a fuzzy number. ‘Section 3
is devoted to the sum of fuzzy numbers. Section 4 deals with the fuzzy
product and the quotient of fuzzy numbers. Section 5 shows how to find the
fuzzy value of the ‘ greatest ’ or the ‘smallest’ of several fuzzy subsets of

the real line. These operations are extensions of the usual max and min -

operations. Section 6 provides some results on the addition of fuzzy numbers
of type 2 (Mizumoto and Tanaka 1976), and §7 offers some concluding
remarks.

2. Fuzzy numbers and fuzzifications
2.1. Fuzzy numbers i

A real fuzzy number # is more precisely described as any fuzzy subset of
the real line R, whose membership function u; is :

(i) A continuous mapping from R to the closed interval [0, 1].

(ii) Constant on (— o0, ¢]: ps(z)=0 Vae(—co,c].
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(iii) Strictly increasing on [c, al.

(iv) Constant on [a, b]: bx(z)=1 Vaela, b).

(v) Strictly decreasing on [b, d]. )

(vi) Constant on (d, +00): pa(x)=0 Vazeld, + o).

@, b, ¢ and d are real numbers, Eventually we can have
¢=-—0, ora=h, orec=a, orb=d, ord—+ o
We will call mean value of 7 an element of [a, b], often (a+b)/2.

Comments
If a=c=b=d, # is an ordinary real number.

Ifa=c and b=d, # is a representation of the tolerance interval [a b] of
the measurement of a quantity. :

: If QWP # i8 a representation of a fuzzy number, the value of which is
. approximately & ’. :
H#(%) is the truth value of the assertion ‘ the value of 7 isx’.

: Two fuzzy numbers are equal if and only if they have the same member-
ship funetions,

2.2. Fuzzifications

From any function f from B* to R which associates a real number y=
f#y, ..., %) to each (x,...,%,) in B" we can induce a function f from (R)»
Ew B(R) ; : n.mmﬁs is the class of fuzzy subsets of R). This can be achieved
via a fuzzification principle mentioned by Gaines. (1976), Negoita (1976) and
others: (&, ..., Z,)eB(R)* whose membership functions are pg, ..., s

@.H.wﬂmt:;mymmmmﬁnﬁmnwmow&wﬂ&o v. . .
AT L a se membership function iy 18

VIR, p3(t)= max  min (ug(sy), ..., pals,) o

b= flgy, ..., 2n)

va. membership value yu;(t) is the greatest of the truth values of the
realizations of ¢ by (815 o0y 8,) through 7; the truth value of (81, -+, 8,) being
the smallest value among Hz1(81)s ooy pzn(5,). i

me.wm. are other possible fuzzifications ; for instance Jain (1976) used the
wnwwmw_rmﬁo sum # instead of max in eqn. (1); (xis defined as a+b —a +b—ab).
Jain (1976) proposes that since ¢ appears more than once with different grades
of membership, the membership of ¢ in y should be considered on the basis
of ﬁrm membership of all elements satisfying t=f(s;, ..., s,). Jain’s formula
noEwEmm.wHowmvEmﬂn and fuzzy approaches. Strictly, a fuzzy model does
not take into account the number of ways in which an event can oceur only
the fact that the occurrence may happen. However, Gaines’ HQHEEW will
ﬁm shown to involve far less computation than Jain’s when performing opera-
tions on fuzzy numbers,
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3. Sum of fuzzy numbers
3.1. Definition
Let 4 and 7 be two fuzzy numbers with membership functions f and g,
and mean values m and n, respectively. The membership function % of their
sum m@7 is defined as
h(z)= max min (f(x), gly)), (x, v, z)cR?

Ttymz
which can be expressed in the form

h(z) = max min (f(z), glz—z))

Tt is obvious that this operation is a convolution. In order to implement it
on a computer, we could think of using a sampling of f and g in the neigh-
bourhood of the mean values. Thus m and n would be approximated by
fuzzy sets having finite supports, as was done by Jain (1976). If the supports
of 77t and @ have many elements, we can obtain precise results, but the compu-
tation time can be very long. If, to save computation time, we use small
supports, we can be led to incorrect results (Dubois and Prade 1978 b)—it is
possible to obtained the same membership value for elements of the support
on the same side of the resulting mean value, even if the membership functions
of m and n are strictly monotonous on each side of their mean values. More-
over, as Jain (1976) shows, if p, and p, are the number of elements in the
supports of m and n, we have that Piea=Ps* Py S0 we must reduce, some-
times arbitrarily, the resulting support. All these remarks are independent
of the nature of the fuzzified operation.

In the sections that follow, it will be shown that when performing usual
fuzzified operations (in the sense of (aines (1976)), exact results can he
obtained very easily without sampling, with, in most cases, few hypotheses
concerning the analytical expressions of the membership funetions.

3.2, General case

Let 4% and 7 be two fuzzy numbers, as defined in §2.1; they are pictured in
Fig. 1.

Lemma 1
Let & be the membership function of # @7 ; then
(i) Vze(— oo, ¢t JV[dy+d,, + ), h(z)=0,
(ii) ze[a;+a,, b;+b,], hiz)=1.

Proof
Obvious.

Lemma 2
Let we]0, 1[ and (p, r)eR? such that

Hp)=9(r)=w, p<a,r<a,
Then”

hip+r)=w
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Figure 1.

Proof . .
Let k=p+r. To evaluate A(k) we must consider every pair (z, y) such

that z+y=k.
(i) If z<p, then y>r. Since f is strictly increasing on Je,, /[, f(x)<w,
therefore min (f(z), g(¥)) < w.
(ii) If x <p, then y>r. Since g is strictly increasing on Jg,, a,[, g(¥) <w,
therefore min (f(z), g{y)) < w.

Consequently, min (f(z), g(¥)) is at a maximum for x=p, y=r and A(k)=w.

Q.E.D.

Corollary

Let we]0, 1[ and (p, r)eR? such that

flp)=g(r)=w, p>b, r>b,

Then A(p+r)=w.
Proof

As for Lemma 2.
Lemma 3 '

Let we]0, 1[ and (p, 7) such that w=f(p)=g(r) and p+r<a,+a, Then

A(p*, r*) such that

(i) p*<ay, r*<a,
(ii) f(p*)=glr*)=h(p +7),

(iii) p*+r¥=p+r.

Proof

Let f_ and g_ be the restrictions of f and ¢ on [c;, _HL p,sm [Cgs n_L, Hmm@mwo-
tively ; f_ and g_ are continuous and strictly increasing in those Eaawwm 8.
Their inverse functions, f_—1 and g_-! exist, and are continuous and m&.ﬂnz%
inereasing on [0, 1]; their values belong to [¢), a;] mb.& lepr 2,1, .wmmﬁﬂoﬁdm_uﬁ
Therefore the function I=f —1+g_-1 is strictly increasing and bijective from
[0, 1] in [e;+¢,, a;+a,].

Let k=p+r; k>c,+c, since we]0, 1[. ; g il

Let w' be uniquely defined as l{w’) =k, and let p* =f_~}w') and r* =g_~(w’).
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We know that «w'e[0, 1] since k<a,+a, by hypothesis; therefore p*<a,
and r*<a,; moreover, f(p*)=gr*)=«w’ and Pr+r¥=f Yo' )+g_Ha')=
l{w')=k=p+r; o and (p*, r*) satisfy the hypothesis of Lemma 2.

Consequently, A(k)=w’ = f(p*) = gir®). Q.E.D.

Let us note that w’> w, since min (f(a), g(y)) is at a maximum for z=p*
and y =%,

Corollary
Let we]0, 1[ and (p,r) such that f(p)=g{r) and p+r>by+b,. Then
I(p*, r*) such that
(i) p*>by, r*>b,,
(i) f(p*)=g(p*)=h(p+r),
(iii) p*+r¥=p+r,

Proof
As for Lemma 3.

- Theorem 1

If Mm@ is a fuzzy number as defined in §2.1; A has the same properties
as f and ¢; particularly :

(i) # is continuous in R,
(i) A(z)=0, z&(— 0, ¢, +¢,]U[d, +d,, + ),
(iii) A(z) is strictly increasing in Jep+cgs @y +a,[ (and strictly decreasing in
1o, +b,, d+d,[),
(iv) h(z)=1, ze[a,+a,, by+b,].

Proof

This comes from the method used to obtain &, according to the preced-
ing lemmas. Particularly, 4_ depends only on f_and g_. (The exact formula
18 h_=i"t=(f_"14g 1)-1)

Since ! is continuous and strictly increasing, so is A_. Q.E.D.

3.3. Practical calculus

We now assume that #m and # have membership functions of the same
kind ; more specifically, that f_ and g_ differ only by a translation in the
Oz direction (the length of the translation vector is [m—n|) and an orthogonal
affinity whose axis is parallel to O ; and that f and g, differ by the same
translation but perhaps by another affinity.

Let L and R be two even functions belonging to the class defined in § 2.1

The fuzzy number # will have a membership funetion f such that

f)=L_ ?_sv e
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In the same way, # will have a membership function g such that

g_(x)=I_ ATJ, y>0

Y
r—n
Q.TAHUH.NITA 5 v“ 8>0

« and B will be respectively called the left and right spreads of # respectively.
M and 7 will be referred to as ‘ L-R fuzzy numbers ’.

Let us compute m@%. We know, by Lemma 3, that we]0, 1[, 3(p, r), s0
that w=f (p)=g_(r)=h_(z) where z=p+7. This can be expressed as

i (2] ()

which is equivalent to p=m—a.L_Yw) and r=n—y . L_~Yw); this implies
that z=p+r=m+n—(x+y) . L_~w), which is the same as

w n..ﬁ_l AEV “mﬁﬁlan

ety

In the same way we could prove that

z—(m+mn)
hi(z)=E, Aﬂv

Given L and R, we can write the L-R fuzzy numbers s = (m, «, 8) and #i=
(n, v, 8). The sum % @7 is an I-R fuzzy number, and

[{m, o, B)B(n, v, 8)=(m+n, «+ v, B+ 5)] (2)

3.4, Comments

(@) All these results remain valid if we use fuzzy numbers whose member-
ship functions are increasing, but not strictly, in [¢, a] and Qmonm@mmum. but
not strietly, in [b, d].

(6) To add two L—-R fuzzy numbers requires three classic additions ; this
extra amount of computation seems not to be too time-consuming in practice.
We have shown it to be considerably less than that involved in Jain’s (1976)
method. : .

Equation (2) does not depend on the analytical expressions of L and R,
provided that all the fuzzy numbers are of the I-R type. Those expressions
can be used at the end of the computation to represent the results. Choosing
L and R is a subjective matter ; we can modify this choice without additional
computation except for the expression of the final results. Examples of L
and R functions are .

*y=max"(0, 1 - |z|) *y=max (0, 1 —z?)
*y=exp (— [z]) sy =oxp (—a?)

1 1
R g e

sy=1in [—1, +1], y=0 elsewhere,.
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It is obvious that we can use different functions for L and R in order to
express a possible dissymmetry in the knowledge of the value of m :
‘approximately m’. When the choice of L and R has been made, it is
equivalent to know (x, 8), or two membership values, one on each side of m.
The greater « and 8, the wider the membership function, and the fuzzier the
number. An ordinary real number m will be written (m, 0, 0) (the spreads
are null).

(c) If the membership function is y=1 in [—1, +1] and zero elsewhere,
eqn. (2) means ‘the absolute tolerance of a sum is the sum of the absolute
tolerances *. Here « and § are respectively left and right errors.

Let us consider x-cuts of m (which are ordinary subsets), each of which
can be interpreted as an error interval whose truth value is «. Using the
theorem on the absolute tolerance of a sum for every «-cut, and the definition
of a fuzzy subset in terms of its a-cuts, we can again find Theorem 1.

(@) The sum of fuzzy numbers is associative and commutative ; (0,0,0)
is the identity. Unless its spreads are null, a fuzzy number has no m%EEm.oEo
element ; the set of fuzzy real numbers is a semi-group for @.

3.5. Subtraction of fuzzy numbers
3.5.1. Opposite of a fuzzy number
Let s be a fuzzy number and f its Emﬁvmnmw% function. The member-

it

ship function g of the opposite of i, written —m, is defined as

g(z)= max min f(x)=f(—z)

g is the symmetric function of f and Oy is the symmetry axis in Fig. 1. If #

(is an L-R fuzzy number, (m, , f), Tm is an R-L fuzzy number (—m, 8, «).

3.5.2. Consequence

We can easily perform a subtraction of two fuzzy numbers, only if they
are of opposite types (L—R and R-L respectively) since the difference operator

—

is defined as mOA=m@® —n. If Mm=(m, «, B), L-R type, and #=(n, y, 8),
B-L type, then e

mEORL=(m—mn, x+8, B+y)

is L-R type. Particularly, if % and # type is L-L or R-R, subtraction is
easy to perform.

4. Product and quotient of fuzzy numbers
4.1. Definition

Let 7% and # be two fuzzy numbers ; f and g are their respective member-
ship functions. The product % @# of these msmmw numbers is defined by its
Eog?ﬁmr% funetion A(z) :

h(z)= max min (f(z), g(y))

W=z

5.5 2T
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Here, we restrict ourselves to the case where ¢, and ¢, are positive. It is
eagy to show that lemmas analogous to Lemmas 1, 2 mb.w 3 can be established,
and we can obtain the following theorem.

Theorem 2
k defines a fuzzy number, as defined in § 2.1,
CR=C;.Cp @u=0;.G, b,=b.b, dy=d .d
ho=({H =0 h=0 gt

4.2, Praclical caleulus

When 7 and # are I-R tuzzy HESUE@ we can deduce results of the same
kind as for the sum; #i=(m,a, f), (n,y,8). We could show that
Yewe]0, 1[, I(p, r)eR+? such that

w=f_(p)=g_(r)=h(p . 1)

Using the function L_, we can write

)

p=m—al_Yw), r=n—yL_"Yu)

then

and
z=pr=mn—(my+na). L_No)+o.y.L_ Y w)?

Without any approximation, this second-order equation in L_—Y(w), whose
discriminant is (my —ne)? .&M&ﬁm =0, has always one positive root (z<mn) and
we can deduce explicitly k(z). Usually it will not be expressed in terms of
L_and R, : #®m@# is not an L-R fuzzy number.

If, however, we neglect the terms «y . L_—3(w)?, provided that « and y are
small compared with m and », and w is in the neighbourhood of 1, the equa-
tion in L_~!(w) becomes simple and we can deduce the approximation formula

(m, «, B)O(n, y, 8) F(mn, my+ na, mé+np) (3)
4.3. Comments
(¢) When o or 4 is non-fuzzy, eqn. (3) becomes exact :
(m, o, B) . (n, 0, 0) = (mn, no, np)
More generally, &(z)=f(z/n).
(6) The approximate product is associative and commutative. (1, 0, 0) is

- the identity for ©, the set of fuzzy positive real numbers is a semi-group

for ©. Moreover, the approximate product is distributive on @.
{c) Equation (3) gives for the square of #i
()2 4 (m?, 2ma, 2mpB)
and more generally, for the pth power of qm.\ i
OB 4¢(n7, pi, pmif)
Equation (3) is a generalization of the theorem concerning the error on a
product of two measurements, or the pth power of a measurement.
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(¢) From eqn. (3), the fuzziness of a product is greater than that of each
factor. Too frequent a use.of this formula may lead to wrong results,

4.4, Quotient of lwo real positive fuzzy numbers
4.4.1. “Inverse’ of a fuzzy number %
Gaines™ (1976) formula applied (see §2.2) to the inversion function is
recduced here to
Az)= max f(x)=[(1/z)

z=l/z

ity
Let us denote the inverse of 1 by ljm. (N.B.—This is not the usual inversion
in the sense of the symmetric element of 7 for the law®.)
If
&—m

fw)=L_ . z<m

we obtain

Mz)=f(1/z)=L, Ammm , z=1fm

1/m is not an L—R fuzzy number whem #i is so ; but, in the neighbourhood
of 1/m, an approximation formula can be used :

h(z)#L, % . z221/m
and finally ey ; !
Lfm=1/(m, «, B)F(1m, Bjm?, e/m?) (4)

If 7 is of the L-R type, 1/m is approximately of the R-L type, near 1/m.

4.4.2. Quotient Ay
The value of /% can now be defined approximately as /7 % O 1/n.
When s is an L-R fuzzy number and % an B-L one, from eqns. (3) and

(4) we obtain

m Sm+an ym-+fn

i

(m, o, .Qu__;:: s muﬁu

n m? n?

near mfn. We have thus generalized the theorems concerning the error on
the inverse of & measurement and the quotient of two measurements.

4.5. Cases in which m or n are negative

We could establish the following results. If the support of s is in the
negative part of R, and that of # is in the positive one (m <0, n>0) then

(m, o, B)@(n, y, 8) =(mn, ne—ms, nf —my)
=—[(-(m, e B O, 7: 8)]
If 7 and # have their supports in the negative part of R (m<0, n<0), then
{m, &, B)QO(n, y, 8) H(mn, —nf—ms, — ot —my)
] = ”ﬁ|nuw~: &, __m.:enl..awwu ke Mvv
2712
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If f or g take high values on both sides of 0, no approximation formula
of this kind is valid, since the order of magnitude of the spreads is greater or
equal to the mean value of the number itself. Lastly, since —(1/#)=1/—4,
we can generalize the’ quotient of # by #, whatever the signs of m and =,
provided that their support is in the positive or the negative part of R.

5. Fuzzification of ‘max * and ‘min’ operations

Two questions arise when fuzzifying the max and min operations :
(1) what is the value of the smaller or the greater of two fuzzy numbers ;
(2) what is the truth value of the assertion * % is greater (smaller) than 7’ ¢
Here we only deal with the first question ; proofs will concern the max
operation only.

5.1. Definition

Let #i and 7 be two fuzzy numbers and f and g their respective member-
—
ship functions. The ‘ fuzzy max ’ or 7 and #, which we denote by max (#, %),

has a membership funetion A such that
hz)= max min (f(z), g(y))

— max (z, y)=z 2
In the same way, min (s, %) has a membership function ! such that

Hz)= max _min (f(z), g(y))

min {z, )=z

5.2. General resulls

in dotted line {----}:
L, e OSRpt
max (m.% )

Figure 2.

The explanation will be given for the case where f and g have at most
three intersection points &, K, and K, whose abcissae are ky, &, and k,, where
flk;)e]0, 1] for i=1, 2, 3 (see Fig. 2). This is realized, for instance, when /i
and g_ (resp. f, and g,) have the same concavity. When K, K,, K, exist,
the following inequalities are always satisfied :

fle)<gly) V(x,y)e(—o0, k]2 and z<y (5)
f@)=g(y) Yz, y)elky, ky)? and 2>y (6)
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flw)< oly) V@, y)elks ks]* and 2>y (7)
f(x) wES V(x, y)elky, +0) and z<y (8)

These inequalities remain valid in the extreme cases when one of the K8
is such that f(k;)e{0, 1}, if we admit that K, may be indeterminate in an
interval I such that Yael, f(x)=g(x)=0o0r 1 ; zzm case will be detailed below.
Moreover, note that the ordinate of K, is always greater than those of K, and
K.

Since max (x, )=z is equivalent to (x=z and y<z) or (y=z and w<z),
we can deduce that

h(z) = max rwwr min (f(x), g(z)), max min ((z), g(y))

Lemma 4
Let us write A(z)=max min (f(2), g(y)). Then one of the two following
propositions is true, i
(1) Jy* <z, gly*)=[(z), and we have A(z)=/(z)
(ii) A(z)= max g(y).

w=z

In the same way, if B(z)=max min (f{z), g(z)) one of the two following

propositions is true Lt :
(i) Ja* <z, f(a*) > g(2), and we have B(z)=g(z).

(ii) B(z)=max f(x)
Proof

Obvious.
Theorem 3 o

The membership function % of max (i, ) is

hiz)=[(z), ze(—co,k,]U[ky, + c0)

M) =g(z), zelky, k;]
where f(k;)#0, 1 Vi and b,<a,.

Proof
8. Nmku
By eqn. (5), g{y) > f(z) for y=2, then, by Lemma 4, Afz)=f(z). _
By eqn. (5), g(z)>/(x) Yo<z then, by Lemma 4, B(z)=max f(x) and
B(z) ={(z), since [ is increasing in (— o, %,]. Thus, y=z

h(z)=max (A(z), B(z))=f(z)
(ii) ze[ky, kq]
By eqn. (6), f(z)>g(y) ¥Yy<z, then, by Lemma 4, A(z)=max g{y), and
A(z)=g(2) since g is increasing in (— oo, sl r5z
By eqn. (6), f(x)>g(z) for x=z, then B(z)=g(z) and h(z)=g(2).
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(iii) ze[k,, k]

By eqn. (7), f(z)<gly) for y=z, then A(z)=f(z). Morcover Jx<z and
flz) 2 g(z) (we choose a€la,, b;] where f(x)=1), then B(z)=g(z).

By eqn. (7), h(z) = max (f(z), g(2)) = g(2).
{iv) 22k,

3(x, y) such that g(y) = f(z), and f(z) > g(z) with <z and y<z. We choose
(=, y)elay, b,]x [a, b,] where flx)=g(y)=1. Then, by Lemma 4, A(z)=/(z)
and B(z)=g(z), and by eqn. (8), k{z) =max (/(z), g(z)) = f(2). Q.E.D.

Summary : practical rule
Theorem 3 is equivalent to the following assertions

(i) max (1, A) is a fuzzy number as defined in § 2.
(ii) @, =max (a, a,), ¢, =max (¢, ¢,), b, = max (b, b,) and d, =max (d,, d,).
(iif) The graph of & is obtained by joining the points (¢, 0), (a,, 1), {by, 1)
and (dy, 0), in that order, with the corresponding parts of the graph
of f or g (see Fig. 2).
We could show that this rule remains valid when 3k, :
_}.‘hn—.vm..mﬁ._“ .‘_.W

Tor the operator min, the function [ is obtained using the same rule but
replacing max by min. :

5.4. Approxvimation formulae
When 7 and 7 are L-R fuzzy numbers, max (7, #) is not always such
(see Iig. 2). More precisely,
(a) If ay=a,, by=b,, c,=c, and d, =d,, then h(z)=g(z) ¥z.
(b) If a pair of elements of the set {a,, by, ¢, d,} is composed of a point in
the graph of f and another in that of g, then max (#, #) is not an
L-R fuzzy number.
However, in all cases max (m,n) is always a correct mean value for

P o £ -
max (1, ). Moreover, in case (a) the formula r .

I
max (m, «, B), (n, ¥, 8))=(n, y, 8), n>m
is exact. This formula is a good approximation in case (b) when the ordinates
of K, and X, are low ; it is exact, particularly in [k,, k,), which is always the
most significant interval, because we find there the highest truth values.
When [k, &y] is very narrow, and max (f(k,), f(k;)) is close to 1 (i.e. when
#m and # are close to each other), we ¢an use the formula

max ((m, «, f), (n, y, 8))=(max (m, n), min (z, ), max (8, 8))

which is exact when m =n, and this is the only point where f and g reach the
value 1.

5.5. Case when [ and g have more than three inlersection poinls

Let K, be the intersection point with highest ordinate when PAE_n i
is unique since f is strictly decreasing, and g strictly increasing, in [b,, L.
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When b,z a,, K, is an indeterminate point of an interval whose ordinate is 1 2
let K, and K, be the first intersection points on the left and right side respec-
tively of K,. (We assume that in a finite interval of R, the number of
intersection points is finite (see Fig. 3).)
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Figure 3.

We could show that A(z) =g(z) in [k,, k;], as in Theorem 3.
Let K, and K, be two consecutive intersection points different to K,
K, or K;. We can show that

(i) If K, and K., are on the left side of K, (n<0), then
h(z) =min (g(z), h(z))

(ii) If K, and K., are on the right mE_o of K; (n>3), then
h(z) =max (g(2), h(z))

This enables us to complete the rule of §5.3: outside [%y, kg], R{z) is com-
posed of the rightest parts of f and g, as shown on Fig. 3, where A(z) is repre-
sented by the dotted line.

5.6. Some structural properties

e i -
max and min are associative and commutative operators. Moreover, we
have the following properties.

(i) max (i, max (1, 7)) = max (%, %) (absorption).

(il) max (m, 7)@min (m, @) =H@.
N.B.—Similar results for min can be deduced from those for max by ex-
changing min and max in the formulae in particular,

min ((m, &, B), (n, ¥, 8)=(m, o, B), m<n

min ((m, o, B, (n, v, 8))=(min (m, n), max («, y), min (8,8), m=n

6. Further results

Some refinements concerning operations on fuzzy numbers can be intro-
duced. For instance, a fuzzy set of type 2 (Mizumoto and Tanaka 1976) X,
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on a universe U is defined by the pair (z, uy(x)), xeU, where py(x) is no
longer a real number, but now is the membership function of a fuzzy subset
of [0, 1]. i

In practice, a fuzzy number of type two, m, can be represented by a
family of parametered membership functions f,, where A is the truth value
of the assertion ‘f, is a good membership function for m ’. When /1 is an
L-R function, we can show that this definition is equivalent to assigning
fuzzy spreads to the mean value m of m. We can derive the relation 7=
(m. &, ), and can show that the sum of two I—R tuzzy numbers of type 2 is
given by

n@n=(m, & B, 7, §)=(m+n, 507, f&S)
where @ is the symbol for fuzzified @.

7. Conclusions

Fuzzy algebraic caleulus is a generalization of the usual tolerance analysis,
80 it can be applied in any scientific domain where quantities which are
vaguely known have to be combined, provided that this uncertainty may be
quantified. Stabistical data on these quantities can help us for this purpose.
For instance, linear programming and shorter paths algorithms can be fuzzified
in a computable manner using this approach.

A fuzzy PERT method has already been proposed (Dubois and Prade
1978 a) ; new principles for realistic traffic affectation can be established when
speeds are not well-known (Dubois and Prade 1978 a) ; multicriteria aggrega-
tion using fuzzy weights and fuzzy evaluations of actions by means of
criteria. seems o be a promising method, as Jain (1977) has shown. These
applications can be seriously considered, since performing operations on
fuzzy numbers requires a moderate extra amount of computation compared
to using classic numbers—in fact, the same amount as when classic error
intervals are combined,
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