
HAL Id: hal-04215199
https://hal.science/hal-04215199v1

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deriving Product Line Requirements: the RED-PL
Guidance Approach

Olfa Djebbi, Camille Salinesi, Daniel Diaz

To cite this version:
Olfa Djebbi, Camille Salinesi, Daniel Diaz. Deriving Product Line Requirements: the RED-PL Guid-
ance Approach. Software Engineering Conference, 2007. APSEC 2007. 14th Asia-Pacific, Dec 2007,
Nagoya, Japan. pp.494 - 501, �10.1109/ASPEC.2007.63�. �hal-04215199�

https://hal.science/hal-04215199v1
https://hal.archives-ouvertes.fr

Product Line Requirements Matching and Deriving: the RED-PL Guidance

Approach

Olfa Djebbi12, Camille Salinesi1, Daniel Diaz1
1
CRI, Université Paris 1 – Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
2
 Satgo Instruments, 125 avenue Louis Roche, 92230 Gennevilliers, France

olfa.djebbi@malix.univ-paris1.fr, {Camille.Salinesi, Daniel.Diaz}@univ-paris1.fr,

odjebbi@stago.fr

Abstract

Product lines (PL) modeling have proven to be an

effective approach to reuse in software development.

Several variability approaches were developed to plan

requirements reuse, but only little of them actually

address the issue of deriving product requirements.

This paper presents a method, RED-PL that intends

to support requirements derivation. The originality of

the proposed approach is that (i) it is user-oriented,

(ii) it guides product requirements elicitation and

derivation as a decision making activity, and (iii) it

provides systematic and interactive guidance assisting

analysts in taking decisions about requirements.

The RED-PL methodological process was validated

in an industrial setting by considering the requirement

engineering phase of a product line of blood analyzers.

1. Introduction

Product Line Engineering (PLE) has proven to be a

viable development paradigm that allows companies to

realize order-of-magnitude improvements in time to

market, cost, productivity, quality and flexibility.

However, maintaining PL models is not enough to take

benefit of these advantages. It is also crucial to

maintain a marketplace and build products that will be

sold. Therefore, a special attention should be paid to

customers’ needs and requirements while developing

products, and while optimizing costs and other

constraints.

Requirements Engineering (RE) processes have two

main goals when put in the context of PLE: (i) to define

and manage requirements within the product line and

(ii) to coordinate requirements for individual products.

The latter goal should be achieved in a very specific

way as, contrary to the case of a new development,

there are two kinds of requirements to be considered:

those of the customers, and those that the product line

is able to satisfy.

Some recommendations can be found to guide RE

processes in the context of PLE [1] [2] [3] [4] [5]. In

these approaches, the first of the aforementioned PLE

goal is achieved by a requirements variability modeling

approach. The second goal is usually achieved by a

requirements selection approach. Requirements

selection consists in building the collection of

requirements for the product to build consistently with

the requirements identified in the PL requirements

variability model.

Several serious limitations of this way of working

have been shown by [6] and [7]. These limits concern

in particular the lack of representation of customers’

requirements, and the RE process itself.

Selecting requirements among pre-defined product

line requirements models influences stakeholders and

skews their choices. Experience with this approach in

other domains such as COTS selection or ERP

implementation shows that stakeholders naturally

establish links between their problem and the pre-

defined solutions, adopt features with marginal value,

and naturally forget about important requirements that

are not present in the PL requirements model [8] [9].

As a result, the focus is on model elements that

implement the solution rather than on the expression of

actual needs. While this approach supports reuse, it

generates products that finally lack of attractiveness, or

even worse usefulness. Each important requirement

missing leads to unsatisfied final users and customers.

Besides, while the RE process should foster creative

thinking within the system requirements, selecting

among predefined requirements restricts considerably

creativity and search for innovative ways to deal with

problems, and hence reduces the added value of the

new products to be developed.

Moreover, analysts are most often on their own to

elicit the requirements for new products. As shown in

previous publications [10] [11], existing approaches

and tools provide little guidance (notation, process,

rules, impact analysis) to assist them in eliciting

consistent product requirements. They are neither

guided in adding new requirements to the PL

requirements model to support more complex

evolutions of the PL requirements model [12].

On the other hand, an approach in which

stakeholders would come up with completely new

requirements, specifying these independently from the

PL requirements model would be difficult to handle

and can become very inefficient. Indeed, retrieving

correspondences between customers’ requirements and

PL requirements can be time taking, error prone, and

implies to face difficult issues such as inconsistent

levels of abstraction, inconsistency in the way similar

requirements are expressed, and the need for large

amount of details to decide whether customers'

requirements are satisfied. We strongly believe that a

systematic guidance is needed to facilitate this activity

and, most importantly to check the consistency of

product requirements with PL and customers’

requirements models.

More precisely, we believe that a “good”
1
 product

requirements derivation approach should satisfy the

following characteristics:

• Requirements oriented: customers should be able

to express their real needs with as little external

influence as possible; the product built should satisfy

these requirements.

• Product line based: the developed product should

take advantage of the PL platform and reuse elaborated

requirements so as to be traced and validated.

• Unified into the whole PL development cycle: the

approach should provide means to ensure traceability

with the remaining development phases for both the

product line and individual products.

• Provide interactive guidance: the derivation

approach should integrate guidance assisting analysts

in taking decisions about product requirements. This

can take various forms such as impact analysis tools,

wizards, informal guidelines, etc. One important aspect

is to get an adequate kind of guidance for each situation

in which guidance is needed.

• Supported by a CASE tool that is integrated into

existing toolkits: appropriate tool support is mandatory

to automate methodological processes, and hence their

large adoption by developers’ community.

• Scalable: the method should allow modeling real-

scale systems.

1 at least in the sense that it would face the aforementioned

shortcomings of existing approaches

This paper presents ongoing research towards the

development of a requirements derivation approach

meeting these objectives. Our research strategy is

experience based. It consisted in undertaking

innovation/validation cycles in a practical study within

an industrial company managing a product line of

blood analysis automatons [13]. We proceeded by

gradually introducing basic PL management principles

in the RE phases of product creation projects and

validating them by studying obtained results and

consulting domain experts. Based on this experience,

we developed a method, named RED-PL

(Requirements Elicitation & Derivation for Product

Lines), that guides the elicitation of product

requirements by derivation from the PL requirements

specification. RED-PL is based on already existing PL

requirements notations. Its originality is that (i) it is

user-oriented, and (ii) it guides product requirements

elicitation and derivation as a decision making activity.

RED-PL makes it possible to users to express their

needs using classic RE techniques. Mechanisms are

proposed to convert these needs and match them with

the PL requirements specification. Negotiation and

arbitration are also supported in RED-PL to elicit

optimal product requirements while maximizing reuse.

This paper focuses the derivation part of the RED-PL

approach. It provides guidelines for each step and hints

for its implementation.

The remaining of the paper is structured as

followed. Section 2 outlines derivation process related

works, presents the outline of the proposed RED-PL

approach and explains how it meets requirements

derivation challenges cited above through its processes

and guidance. Section 3 is dedicated to the technical

implementation of RED-PL. And finally, conclusions

and discussions about the validity of the approach and

the future work are reported in section 4.

2. The RED-PL approach

2.1. Related works

Several methods guiding the construction of PL

assets are available in literature [14] [15] [16]. Product

derivation methodologies are on the contrary rather

scarce [2] [17] [18]. Besides, although derivation

affects the whole product line artifacts, from

requirements to code, the derivation issues are mainly

addressed in terms of design and implementation [2]

[4]. Approaches that tackle the requirements level [5]

[19] [20] [21] [22] [23] mostly deal with the creation

of the right requirements assets for the PL and

dependencies among them to develop the right

products. Understanding the derivation process at the

requirements level has received little attention.

In existing derivation approaches, the derivation of

the product architecture, code or test artifacts from PL

specifications is performed using the following

techniques:

• Model transformation: static and dynamic models

are instantiated for products from the PL models, using

a model transformation language [2] [24] [25].

• Design patterns: are for instance used in

Jezequel’s method. This method consists in using the

‘Abstract Factory’ design pattern to create products

[26].

• Variability control: generative approaches such

as Generative Programming [17] guide automatic

derivation by code generation. Selecting desired

product features is sufficient to allow assembling

correspondent PL elementary reusable components and

generate the application code. Other approaches

introduce aspect programming techniques to assemble

components by waving features [27] [28].

For most of these derivation methods the input is a

collection of PL requirements selected from the PL

requirements model. However, industrials need more

than just selecting assets from requirements. It is also

necessary to be able to constrain requirements selection

by pre-selected asset assemblies. For instance, a

production plan that describes which core assets should

be used to develop products must be systematically

considered [29]. To achieve this, Hunt considers

software components and studies the optimal

organization to guide their identification and selection

[30]. [31] discusses automated component selection

using artificial intelligence techniques. [1] and [3]

provide a framework and a generic process to guide

software derivation, which is organized in iterative

phases that determine the final configuration of the

derived product. The input of the derivation process is

a subset of the requirements originating from

customers, legislation, hardware and product family

organization. Unfortunately, the approach provides no

detail on how these requirements should be aggregated.

Another derivation framework is provided by [2]. In

this framework, product requirements derivation is

achieved through a decision process. Again, details are

missing about the process to make it really systematic.

One important aspect of product derivation shown

by this review is that determining the requirements for

a particular product calls for (i) considering some sort

of description of the customers’ needs separately from

the PL requirements (which are only the requirements

that the product line is able to satisfy), (ii) considering

the constraints imposed by the developers in terms of

core assets to be used in the product.

While most of the approaches focus on handling

technical derivation, we are interested in requirements

derivation process that conciliates customers’ needs,

technical constraints, and guides decision making in a

systematic way.

2.2. Outline of the RED-PL approach

As depicted in Figure 1, RED-PL supports three goals:

• Elicit stakeholders’ requirements. By stakeholder

we mean customers and users, as well as actors from

the developing organisation: strategy makers,

marketing, engineers, developers, etc.

• Match stakeholders’ requirements with PL

requirements. This establishes the collection of

requirements that are both covered by the PL and that

satisfy stakeholders’ needs. To this collection of

requirements usually corresponds a set of products that

are consistent with the PL requirements model; a

choice must thus be made. Matching can also lead to

capitalizing on new requirements by introducing them

in the PL requirements model.

• Derive the optimal collection of product

requirements. This is achieved by taking into account

different kinds of constraints that were not covered by

stakeholders requirements such as cost, development

time, risk, etc. Non functional requirements such as

flexibility or maintainability can be used as decision

criteria too.

Figure 1. Overview of the REDOverview of the REDOverview of the REDOverview of the RED----PL approachPL approachPL approachPL approach

Several intertwined processes are guided by the

RED-PL approach: requirements elicitation, matching,

merging, deriving, capitalization, negotiation and

arbitrating. These are achieved as follows.

Product Line

Requirements

Product

Requirements

Stakeholders

Requirements

�
Product Line

Requirements

engineer

�
Product

Requirements
engineer

�
Stakeholders

 Elicit

 Negotiate

& Arbitrate

Match & Merge

 Derive

 Capitalize
Merge

In the RED-PL approach, analysts assist

stakeholders in eliciting their requirements regarding

the new product using classical requirements elicitation

techniques such as structured interviews, Use Case

analysis or goal modeling. Applying well established

methods allows to focus on the real stakeholders needs

and to ensure correctness, completeness, and

consistency.

2.3. Matching technique

Requirements are then interpreted and matched to

the PL requirements. Requirements’ matching uses

similarity analysis techniques and calls for

reformulation when conceptual mismatch issues are

met. Two kinds of similarity analysis techniques can be

used: surface level and deep level. Surface level

techniques are based on lexical similarity: two

requirements are considered similar when they use the

same term. Deep level technique uses a structural and a

semantic proximity. This allows to identify similar

requirements, even though they are not expressed using

the same terms or using the same linguistic structures.

These techniques need more sophisticated tools such a

dictionaries and linguistic parsers. Our similarity

analysis approach also uses refinement, as suggested by

goal modeling, to progressively improve the quality of

the matching and to focus on requirements that are

considered more important [32].

Our approach exploits the 30 generic similarity

metrics developed by [8] and adapted to Dice, Jaccard

and Cosine’s ratios. As shown below, similarity can be

automatically computed by applying a weighted ratio

between a number of similarities found between two

requirements and the number of elements that define

these requirements.

[] []

{ } { }BA

B

BA
A

A

BA
B

m

D
TermesTermes

TermesTermesSIMMAXTermesTermesSIMMAX

BAS
+

+
=

∑∑),(),(

),(

(Formula 1) Adapted Dice ratio

[] []

{ } { } [] []

+−+

+
=

∑∑

∑∑

B

BA
A

A

BA
B

BA

B

BA
A

A

BA
B

m

J

TermesTermesSIMMAXTermesTermesSIMMAXTermesTermes

TermesTermesSIMMAXTermesTermesSIMMAX

BAS

),(
2

1
),(

2

1

),(
2

1
),(

2

1

),(

(Formula 2) Adapted Jaccard ratio

[] []

{ } { }BA

B

BA
A

A

BA
B

m

C

TermesTermes

TermesTermesSIMMAXTermesTermesSIMMAX

BAS
×

+
=

∑∑),(
2

1
),(

2

1

),(

(Formula 3) Adapted Cosine's ratio

These ratios use a SIM function that computes the

similarity between simple items as follows:

SIM(A,B) = 1 if A and B are identical,

SIM(A,B) = 1-a if A and B are homonyms,

SIM(A,B) = 1-b if A is an hyponym of B,

SIM(A,B) = b if b is a hyperonym of A,

SIM(A,B) = 0 otherwise,

with a and b between 0 and 1 excluded.

The matching process is an iterative process that

results in a merged collection of requirements that shall

be implemented in the product. Requirements merging

is achieved by (i) fetching and mapping original

stakeholders’ requirements into the PL requirements

model, (ii) revising PL requirements with new ones,

(iii) negotiating on whether to include requirements in

the derived product specifications, (iv) reformulate the

stakeholders’ requirements model if a conceptual

mismatch issue is met, and (v) re-iterate until a

sufficient level of detail is found.

This activity allows refining progressively the final

product requirements while relating to the PL

capabilities and assessing reuse, as well as updating the

PL assets. To the product requirements thus obtained

corresponds a subset of all suitable products. The

arbitration process is applied to derive the optimal set

of product requirements, with respect to environmental,

user’s and company’s constraints.

We observed in current industrial practices, that to

achieve this, guidance is needed to assist stakeholders

and analysts in taking decisions while achieving these

processes. Several questions are typically raised

throughout the derivation cycle: “How can I compose

the cheaper product configuration? If I choose this

requirement to be part of the new product, is it

restrictive for remaining choices? If I add a new

requirement and its corresponding dependency

relationships in the PL model, can I be assured that my

model is kept consistent? I have some requirements

that I must include in the product configuration, how

can I deduce the remaining requirements in such a way

that I make a valid product model arranging my

priorities and constraints?” Answering these questions

is time consumed, tedious and risk-prone due to their

combinatorial nature.

We propose to deal with this need for guidance by a

wizard as described in the next section.

2.4. Derivation wizard

Derivation is carried out through interactive queries.

The objective is twofold: (i) to allow stakeholders

make decisions with a good view on their impacts, and

(ii) to control the validity of stakeholders’ decisions.

Two kinds of queries can be distinguished: those that

relate to model validity, and those that relate to

requirements selection.

Model validity queries:

Queries that concern the validity of model can apply

to product requirements models, and to PL

requirements models. Our choice in RED-PL was to

support feature modeling. Therefore, the queries dealt

with by RED-PL apply to Feature models. Similar

queries would emerge if another kind of modeling

language was used.

In so far as PL models are concerned, guidance is

needed to check that:

• the model is an acyclic oriented graph

• the model doesn’t contain an isolated feature

• within the model, a feature can be of three types:

either a mandatory feature, or an optional one, or

belonging to a group of features

• within a model, a group of features has one and

only one cardinality

• a model does not contain contradictory

dependency relationships or feature types, e.g. ‘mutex’

and ‘requires’ relations between the same features, an

optional feature ‘required’ by a mandatory one, etc.

• at least one valid configuration can be derived

from the model. Details concerning this query are

precisely reported below.

A product configuration is an extract of the PL

model, so it must verify all previous validity

conditions. Besides, a valid configuration is a product

model that verifies the additional following conditions:

• the model contains all PL mandatory features

• the variation points of the model are well solved,

i.e. options and cardinalities are rightly considered

• the dependency relationships of the model are

respected

Requirements selection queries:

Beyond validity queries, requirements selection

queries are the core of the derivation guidance. Their

resolution should vastly help analysts in conducting the

requirements derivation process. In front of his models,

an analyst may ask:

• What are the possible configurations that can be

composed from a given PL model?

• What are all the possible configurations that

include a pre-selected set of requirements?

• What are the configurations that do not contain a

given requirement to be excluded?

• What are the requirements that respect a given

criterion? (e.g. what are requirements with

‘implementation cost’<c?)

• What is the optimal requirements configuration

with respect to a criterion such as the minimal total cost

configuration, minimal number of features, etc?

• Given an initial requirements selection, what are

the choices that still need to be made?

• Is a given requirement consistent with all the

requirements already adopted?

This list is not exhaustive. Other user-defined

queries can be defined by personalizing requirements

attributes and their values, or by combining requests, as

for example in:

• what are all alternative requirements with

‘cost’<c?

• what are all possible configurations with respect

to a pre-selection of some requirements following some

criteria?

• having excluded some requirements, what is the

cheaper configuration among reminder ones?

One important challenge to handle these questions is

obviously to efficiently check both the constraints

underlying the model and the constraints expressed by

users for the product under development.

3. Tool Implementation

So far, our techniques have only been applied

manually, which implied both to follow the RED-PL

methodological process without assistance, and to

implement the techniques and achieved the required

calculations on the fly. We intend to guide RED-PL

using an interactive tool that would have the following

key features:

(1) A classical graphical editor that lets draw, load

and save PL requirements models, models of early

stakeholders’ requirements, and actual requirements

for the individual products. Such an editor should be

linked to a shared repository with concurrent access

and version control facilities.

(2) An efficient model validity checking feature.

Incremental maintenance should be possible as long as

models are modified.

(3) An intuitive way to express wishes about the

product to derive: the user should be able to

select/exclude some features in order to build a

product configuration (but we can imagine more

complex expressions).

(4) An efficient computation of a first complete

solution w.r.t. the selected/excluded features, so as to

provide a general idea of the product that is built.

(5) A efficient next solution computation that offers

an alternative to the previous solution. Iterating over

this function allows to review the various solutions one

by one.

(6) Interactive guidance of product construction.

This should consist helping users completing step by

step a partial solution starting from stakeholders’

requirements. Each time a new stakeholder’

requirement emerges, a matching is made with PL

requirements model as defined earlier. Once the user

has selected/excluded a feature, all deductible

consequences should be automatically shown under

the form of decisions that remain to be made. If no

matching can be made, then the suggestion shall be to

refine or revise the stockholder’s requirement.

In the above description, each computation should

be as efficient as possible since the tool interacts with

the user (and the user does not like to wait for a too

long time). The main challenge is then to efficiently

handle both the constraints associated to the underline

model drawn as in (1) and the constraints expressed by

the user for the final product as in (3).

If we were only interested in finding a complete

solution as for (4), any simple constraint solver could

be used. This problem can be solved by: pure boolean

methods, Operational Research techniques for Integer

Linear Programming (ILP), or Consistency techniques

designed for Constraint Satisfaction Problems (CSP).

We experimented the ILP approach [33] by

associating a 0-1 variable to each feature whose value

indicated if the corresponding feature should be present

in the final product. The model was then translated as a

set of constraints over those variables as shown in the

following table (which also details propagation rules):

Dependency Translation

(composition)

If a requirement is selected then all

mandatory requirements composing it

must be selected

Constraint: Ra = Rb

(option)

If a requirement is selected then its

sub-requirements may be selected

Ra = 0 ⇒ Rb = 0

Rb = 1 ⇒ Ra = 1

Constraint: Rb ≤ Ra

(alternatives)

If a requirement is selected then

alternative sub-requirements must be

selected respecting the specified

cardinality

Ra = 1 ⇒

 Rb + Rc + Rd ≤ Cardmax and

 Rb + Rc + Rd ≥ Cardmin

Ra = 0 ⇒ Rb..d = 0

Rb..d = 1 ⇒ Ra = 1

Constraints: Rb..d ≤ Ra

Ra*Cardmin ≤ Rb+..+Rd ≤ Cardmax

(requires)

If a requirement is selected then a

required requirement must be selected

Ra = 1 ⇒ Rb = 1

Rb = 0 ⇒ Ra = 0

Constraint: Ra ≤ Rb

(mutex)

If a requirement is selected then a

requirement mutually exclusive with

it must not be selected

Ra = 1 ⇒ Rb = 0

Rb = 1 ⇒ Ra = 0

Constraint: Ra + Rb ≤ 1

This ILP approach was applied to a real case

developed in the STAGO company. The experiment

showed that this approach could be used without initial

constraints or with a simple pre-selection of features,

but not in the case where complex requirements had to

be expressed. It also showed scalability problems.

Ra

Rb Rc Rd

Card min..max

Ra

Rb

Ra

Rb

« requires »

Ra

Rb

« mutex »

Ra

Rb

Recently [34] performed a performance comparison

between two boolean methods (one based on BDD -

Binary Decision Diagrams- and another using a SAT –

boolean SATisfiability- method) and one CSP method.

These methods were tested on a set of randomly

generated benchmarks. The paper only focuses on

finding one complete solution as needed for and

counting the total number of solutions. At a first

reading one could conclude that the BDD approach

outperforms the two other challengers. But the authors

themselves conclude that there is not an optimum

representation for all the possible operations that can

be performed on feature models. Obviously, the well-

known NP-completeness of the satisfiability of boolean

formulas shows that we are tackling a difficult problem

here in the general case. However, our experience on

solving boolean constraints showed that CSP

techniques can solve many problems that cannot be

handled with BDD [35]. We also know that results

obtained on random problems can be very far from

what we obtain in practice on real-life applications.

While these approaches satisfy the issue raised by

(4), they cannot handle more critical issues such as

those raised by (5) and (6). Indeed, these requirements

imply the use of a more complex solver since we are

also interested in incrementality dealing with a partial

solution and in finding several solutions. Besides, we

want a tool that is enough flexible to be able to deal

with new needs such as the introduction of new types

of requirement dependencies, new kinds of constrains,

or richer way to express stakeholders’ requirements

(e.g. “we want at most 3 occurrences of feature X in a

final product”). It appears that Constraint Programming

is the most adequate paradigm to fulfill all these

requirements.

Constraint programming is a powerful paradigm for

solving combinatorial problems arising in many

domains, such as scheduling, planning, vehicle routing,

configuration, networks or bioinformatics. The idea of

constraint programming is to solve problems by stating

constraints and finding a solution satisfying all the

constraints. A constraint is simply a logical relation

between several unknowns, these unknowns being

variables that should take values in some specific

domain of interest. A constraint thus restricts the

degrees of freedom (possible values) the unknowns can

take; it represents some partial information relating the

objects of interest. The execution of a program mainly

adds the constraints (incrementally) and asks the built-

in solver to find a solution (an assignment of variables

that satisfies the constraints). Constraint Programming

really appeared in the context of Logic Programming in

the 80s to give rise to Constraint Logic Programming

(CLP) [36]. Constraints were smoothly integrated into

Logic Programming since the unification (an equation

over trees) is a particular case of constraint (equality)

on a given domain (syntactic trees). The resulting

CLP(X) framework is parameterized by a constraint

system X. Classical systems include Reals, Intervals,

Rationals, Booleans, Finite Domains for arithmetics as

well as Rational Trees, Lists and Sets [37]. In fact, X

can be any system respecting some properties and for

which there exists an efficient solving algorithm.

Several CLP systems were designed like CHIP [38]

and GNU-Prolog [39] for Finite Domains, clp(R) for

Reals [40], Prolog-III for Reals, Trees and Lists [41].

Constraint Programming has grown and is no longer

limited to Logic Programming: several libraries

implementing constraint solving are available for

languages like C, C++, or Java. Constraint

Programming has been identified by the ACM

(Association for Computing Machinery) as one of the

strategic directions in computer research.

Constraint Programming over Finite Domains is

clearly the most adequate way to implement our list of

requirements. A Finite Domain variable is a variable

whose initial domain is a finite set of integers. The

Finite Domain constraint system offers to the user a

wide variety of constraints. For instance the solver we

have developed in GNU Prolog [39] offers:

• arithmetic constraints (both linear and non-linear).

e.g. X+Y≤ Z or X*Y≠Z.

• symbolic constraints. e.g. atmost (2,[X,Y,Z,T],10)

states that at most 2 variables among X,Y,Z,T can take

the value 10.

• reified constraints: making it possible to reason on

the issue of a constraint. e.g. with X<Y ⇒ K=8 as soon

as the solver discovers X<Y it enforces K=8

(conversely as soon as it detects K≠8 it enforces X≥Y).

These constraints are mainly solved by consistency

techniques issued from CSP [38] [42] but also with

techniques borrowed from Operations Research. In

addition, GNU Prolog also offers various enumeration

heuristics and optimization facilities. Probably more

than 90% of all industrial constraint applications use

Finite Domains. Obviously a boolean variable is a

special case of Finite Domain and we have shown how

to efficiently solve boolean problems with a Finite

Domain solver [35]. It is worth noting that dealing with

Finite Domain makes it possible to enrich both the

model (1) and the wishes (3) if we discover new needs.

Here are some examples:

• We could imagine more complex constraints

between 2 (or more) features. For instance: “feature X

is mutually exclusive with feature Y if some computed

information on X is greater than 10”.

• We could allow the user to specify a wish like “I

want at most 2 occurrences of feature X” in the final

product.

• If each feature has a weight we could ask for a

product whose total weight is less than 5 Kgs.

• We could add a cost (and/or a benefit) to each

feature and ask for a product minimizing some

objective function over those costs (benefits).

Constraint Programming not only brings us the needed

efficiency for the resolution but also the essential

flexibility for such a tool (whose requirements could

evolve when attacking real-life problems).

4. Conclusion

A major addition to existing reuse approaches since

the 90s are product line paradigm that has been the

long standing notion to solve the cost, quality and time-

to-market issues associated with development of

related applications.

Over the past few years, domain engineering has

received substantial attention from the software

engineering community. Most of the researches,

however, fail to provide detailed derivation processes

namely for deriving requirements, which has been

restricted to the selection of a requirements subset from

the PL assets.

The idea behind the proposed approach in this paper

is that:

(i) the user, the main stakeholder to whom the final

product is intended, should be involved in specifying

product requirements, in a way that efforts expended in

constructing the reusable requirements in domain

engineering are outweighed by the benefits in deriving

the right individual products that satisfy their mission.

(ii) the analysts who conduct the derivation process

should dispose of formal processes and automatic

means to be able to take efficient decisions about

product requirements to build.

The proposed RED-PL approach makes it possible

to users to express their needs using classic RE

techniques. Mechanisms are proposed to convert these

needs and match them with the PL requirements

specification using similarity analysis techniques.

This establishes the collection of requirements that are

both covered by the PL and that satisfy stakeholders’

needs. Matching can also lead to capitalizing on new

requirements by introducing them in the PL

requirements model.

To the obtained collection of requirements usually

corresponds a set of products that are consistent with

the PL requirements model. Negotiation and arbitration

are thus also supported in RED-PL in order to derive a

consistent and optimal product requirements taking into

account different kinds of constraints that were not

covered by stakeholders requirements.

As observed in current industrial practices, guidance

is needed to assist stakeholders and analysts in taking

decisions while achieving these processes. So RED-PL

deal also with this need for guidance by a derivation

wizard described as a set of interactive queries

allowing stakeholders making decisions with a good

view on their impacts, and controlling the validity of

these decisions.

Besides, we intend to support RED-PL systematic

guidance using an interactive tool. It should allow

following the RED-PL methodological processes and

enable assistance by implementing techniques to

achieve query calculations on the fly. We demonstrate

that Constraint Programming is the most adequate

paradigm to fulfill this.

Our research strategy is experience based. It

consisted in undertaking innovation/validation cycles in

a practical study within an industrial company

managing a product line of blood analysis automatons

[13]. We proceeded by gradually introducing basic PL

management principles in the RE phases of product

creation projects and validating them by studying

obtained results and consulting domain experts.

Further research will focus on the refinement of the

RED-PL approach processes. We aim also at

implementing the tool supporting it and that can be

interfaced with existing modeling tools.

10. References

[1] S. Deelstra, M. Sinnema, J. Bosch, “Product derivation in

software product families: a case study”, The Journal of

Systems and Software , 2004, pp. 173–194.

[2] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, A. Solberg,

“An MDA®-based framework for model-driven product

derivation”, Software Engineering and Applications, USA,

2004.

[3] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch,

“COVAMOF: A Framework for Modeling Variability in

Software Product Families”, The 3rd Software Product Line

Conference, 2004.

[4] J. Lee and K. C. Kang, “A Feature-Oriented Approach to

Developing Dynamically Reconfigurable Products in Product

Line Engineering”, Software Product Line Conference

SPLC, 2006.

[5] G. Halmans, K. Pohl K, “Communicating the variability

of a software-product family to customers”, Proceedings of

the Software and Systems Modeling, volume 2, Springer,

2003.

[6] N. Maiden, A. Gizikis, S. Robertson, “Provoking

Creativity: Imagine What Your Requirements Could Be

Like”, IEEE Software, Vol. 21, No. 5, 2004, pp. 68-75.

[7] G. Michael, K. C. Kang, “Issues in Requirements

Elicitation”, Technical Report, CMU/SEI-92-TR-012, ESC-

TR-92-012, 1992.

[8] I. Zoukar, C. Salinesi, “Matching ERP Functionalities

with the Logistic Requirements of French railways - A

Similarity Approach”, 6th International Conference on

Enterprise Information Systems, ICEIS’ 2004, Porto,

Portugal, 2004.

[9] C. Rolland, N. Prakash, “Matching ERP System

Functionality to Customer Requirements”, Proceedings of

the 5th International Symposium on Requirements

Engineering, RE’01, Toronto, Canada, 2001, pp. 66-75.

[10] O. Djebbi, C. Salinesi and G; Fanmy, “Industry Survey

of Product Lines Management Tools: Requirements,

Qualities and Open Issues”, submitted to the International

Requirements Engineering Conference, RE’07, India, 2007.

[11] O. Djebbi and C. Salinesi, “Criteria for Comparing

Requirements Variability Modeling Notations for Product

Lines”, in workshop on Comparative Evaluation in

Requirements Engineering (CERE), in RE’06, USA,

September 2006.

[12] C. Rolland, C. Salinesi, A. Etien, “Eliciting Gaps in

Requirements Change”, Requirements Engineering Journal

(REJ), 2004, pp. 1-15.

[13] www.stago.fr

[14] Pohl K., Böckle G., van der Linden F., Software

Product Line Engineering – Foundations, Principles, and

Techniques, Springer, Berlin, Heidelberg, New York, 2005.

[15] Clements P., Northrop L. M., Software Product Lines:

Practices and Patterns, Addison Wesley Professional, 2001.

[16] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H.

Obbink, K. Pohl, “Variability Issues in Software Product

Lines”, The International Workshop on Product Family

Engineering, 2001.

[17] Czarnecki K., Eisenecker U.W., Generative

Programming: Methods, Tools, and Applications, Addison

Wesley, 2000.

[18] M. Sinnema, S. Deelstra, P. Hoekstra, “The COVAMOF

Derivation Process”, Proceedings of the 9th International

Conference on Software Reuse, 2006.

[19] J. Thompson, M. Heimdahl, “Structuring Product

Family Requirements for n-Dimensional and Hierarchical

Product Lines”, Requirements Engineering Journal, vol-8,

Issue 1, 2002.

[20] Streitferdt D., Family-Oriented Requirements

Engineering. PhD Thesis, Technical University Ilmenau,

2003.

[21] K. Kang, K. Lee, J. Lee, “Concepts and Guidelines of

Feature Modeling for Product Line Software Engineering”,

Proceedings of the 7th International Conference on Software

Reuse: Methods, Techniques, and Tools, 2002, pp. 62-77.

[22] J.P. Gibson, “Feature Requirements Models:

Understanding Interactions”, in Feature Interactions, in

Telecommunications IV, Montreal, Canada, IOS Press, 1997.

[23] S. Buhne, K. Lauenroth, K. Pohl, “Modelling

requirements variability across product lines”, In 13th IEEE

International Conference on Requirements Engineering,

2005.

[24] J. Perez Garcia , M. A. Laguna, Y.C. Gonzalez-Carvajal,

B. Gonzalez-Baixauli, “Requirements variability support

through MDD and graph transformation”, International

Workshop on Graph and Model Transformation, Tallinn,

Estonia, 2006, pp. 161-173.

[25] T. Ziadi, L. Hélouët, J-M Jézéquel, “Towards a uml

profile for software product Lines”, In the Fifth Internationl

Workshop on Product Familly Engineering, Springer Verlag,

2003.

[26] J-M. Jézéquel, “Reifying variants in configuration

management”, ACM Transaction on Software Engineering

and Methodology, 1999, pp. 284-295.

[27] A. Jansen, R. Smedinga, J. van Gurp, J. Bosch, “First

class feature abstractions for product derivation”, Special

issue on Early Aspects: Aspect-oriented Requirements

Engineering and Architecture Design, IEE Proceedings

Software, 2004, pp. 187-197.

[28] M. Mezini, K. Ostermann, “Variability Management

with Feature Oriented Programming and Aspects”,

Foundations of Software Engineering, ACM SIGSOFT,

2004.

[29] G. Chastek, J.D. McGregor, “Guidelines for developing

a product line production plan”, Software Engineering

Institute, Technical Report CMU/SEI-2002-TR-006, 2002.

[30] J.M. Hunt, “Organizing the asset base for product

derivation”, In 10th International Software Product Line

Conference, 2006.

[31] T. Asikainen, T. Mnnist, T. Soininen, “Using a

configurator for modelling and configuring software product

lines based on feature models”, Software Variability

Management for Product Derivation - Towards Tool Support

at International Workshop of SPLC, 2004.

[32] C. Salinesi, A. Etien, I. Zoukar, “A Systematic

Approach to Express IS Evolution Requirements Using Gap

Modelling and Similarity Modelling Techniques”,

International Conference on Advanced information Systems

Engineering (CAiSE), Springer Verlag, Riga, Latvia, 2004.

[33] O. Djebbi and C. Salinesi, “RED-PL, a Method for

Deriving Product Requirements from a Product Line

Requirements Model”, International Conference on

Advanced information Systems Engineering (CAiSE)

conference, Norway, 2007.

[34] D. Benavides, S. Segura, P. Trinidad and A. Ruiz-

Cortés, “A first step towards a framework for the automated

analysis of feature models”, workshop Managing Variability

for Software Product Lines: Working with Variability

Mechanisms, SPLC, 2006.

[35] P. Codognet and D. Diaz, “Simple and Efficient

Consistency Techniques for Boolean Solvers in Constraint

Logic Programming”, Journal of Automated Reasoning, Vol.

17, No. 1, 1996.

[36] J. Jaffar and J-L. Lassez, “Constraint Logic

Programming”, In Principles Of Programming Languages,

Munich, Germany, January 1987.

 [37] J. Jaffar and M. J. Maher, “Constraint logic

programming: A survey”, Journal of Logic Programming,

Vol. 19/20, 1994.

[38] P. Van Hentenryck, “Constraint Satisfaction in Logic

Programming”, Logic Programming Series, The MIT Press,

Cambridge, MA, 1989.

[39] D. Diaz and P. Codognet, “Design and Implementation

of the GNU Prolog System”. Journal of Functional and Logic

Programming (JFLP), Vol. 2001, No. 6, October 2001.

[40] J. Jaffar, S. Michaylov, P. Stuckey and R. Yap, “The

CLP(R) Language and System”, ACM Transactions on

Programming Languages and Systems, 14(3), July 1992.

[41] A. Colmerauer, “An Introduction to Prolog III”, in

Communications of the ACM, vol. 33, no. 7, July 1990.

[42] A. K. Mackworth, “Consistency in Networks of

Relations”, Artificial Intelligence 8, 1977, pp 99-118.

