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ABSTRACT
IP geolocation is one of the most widely used forms of metadata
for IP addresses, and despite almost twenty years of effort from
the research community, the reality is that there is no accurate,
complete, up-to-date, and explainable publicly available dataset
for IP geolocation. We argue that a central reason for this state
of affairs is the impressive results from prior publications, both in
terms of accuracy and coverage: up to street level accuracy and
locating millions of IP addresses with a few hundred vantage points
in months. We believe the community would substantially benefit
from a public baseline dataset and code. To encourage future re-
search in IP geolocation, we replicate two geolocation techniques
and evaluate their accuracy and coverage. We show that we can
neither use the first technique to obtain the previously claimed
street level accuracy, nor the second to geolocate millions of IP
addresses on today’s Internet and with publicly available measure-
ment infrastructure. In addition to this reappraisal, we re-evaluate
the fundamental insights that led to these prior results, as well as
provide new insights and recommendations to help the design of
future geolocation techniques. All of our code and data are publicly
available to support reproducibility.
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1 INTRODUCTION
IP geolocation is one of the most widely used forms of metadata for
IP addresses to help Internet measurements [29], and it supports
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many network research applications, such as path troubleshooting
[20, 22, 43], path prediction [18], or cybersecurity [19], but also
commercial applications, such as geowalls, location based advertis-
ing, or fraud detection. But despite almost twenty years of effort
from the research community, we have to face the reality: there is
no accurate, complete, and explainable publicly available dataset
for IP geolocation, and we are still far from the objective. The only
large scale publicly available datasets are ITDK [16], RIPE IPMap
[40], which are research efforts to provide the geolocation of router
IP addresses of the Internet topology, and commercial databases.
If they all provide a city level accuracy, which should satisfy the
need of most applications [17, 18, 28, 47], none of these datasets fill
the three criteria. On one hand, ITDK and RIPE IPMap focus on
router IP addresses, so they are not complete. On the other hand, the
commercial databases are not explainable, and prior work showed
that the provided city level accuracy was overclaimed [26, 39].

We argue that one of the central reasons why we are far from our
objective is that a significant body of prior work has been published
in IP geolocation, and that this is a disincentive for producing new
work, especially when, among this prior work, there are papers
that appear to have solved two major problems: accuracy, up to
street level [46], and coverage, with nearly geolocating the full
range of IP addresses in a few months [32]. Wang et al. [46] uses a
combination of latency measurements and locally hosted websites
that serve as landmarks to geolocate IP addresses at street level,
while Hu et al. [32] provide a methodology to scale classic latency-
based geolocation techniques [31], by showing that a small subset
of ten close vantage points to a target can obtain almost the same
performance as hundreds.

A new technique should therefore compare its performance to
those techniques in order to prove that it provides a significant
improvement. As these techniques came with no publicly available
code, we cannot easily evaluate or compare them. Further, as ten
year old techniques, the results may not hold in the current (or
future) Internet, motivating our imperative to produce code that
provides up-to-date baselines to re-evaluate the techniques. To
encourage future research on IP geolocation, we propose in this
paper to fill this gap and replicate the two papers cited above [32, 46].
Our work makes several contributions:

• A new baseline of performance for the two replicated tech-
niques for future geolocation techniques to compare against.

• The reappraisal of the fundamental insights that led to prior
results.
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• A set of recommendations for future research on IP geoloca-
tion based on both old and new insights found in our study.

• All of our code and data that is publicly available to facilitate
reproducibility at the following url: https://github.com/
dioptra-io/geoloc-imc-2023

Our main results are: For the paper of Hu et al. [32], we are
unable to replicate the geolocation of millions of IP addresses in
a few months: To obtain this result, Hu et al. designed a vantage
point selection algorithm to reduce the number of vantage points
necessary to geolocate a target: To find which vantage points to use
for a target, the algorithm first probes representative IP addresses
that are likely to be close to the target (i.e.,, in the target’s /24
prefix) from all the vantage points, and then use the subset of
vantage points with low latency to the representatives to probe the
target. We find that although the algorithm still works in theory,
probing all the /24 from all the vantage points produces too much
measurement overhead and hinders the possibility of deploying it
on the current biggest publicly available measurement platform,
RIPE Atlas. We propose an extension of the algorithm to reduce its
overhead and find that our extension uses as little as 13.2% of the
measurements used by the original algorithm while obtaining the
same accuracy. Nonetheless, even if we are not able to replicate the
main result of the paper, we find that the main hypothesis that lead
to this result still holds: A few geographically close vantage points
to the target and even a single one, can obtain the same accuracy as
the full set of 10K RIPE Atlas vantage points, the biggest publicly
available measurement platform in terms of geographic coverage
and number of vantage points.

For the paper from Wang et al. [46], we find that the claimed
street level geolocation technique performs only as well as the
classic constrained based geolocation (CBG) technique [31] on our
dataset, with a median error of 28 km, versus 29 km for CBG - far
from the 690 m of the original paper. We show that we could not
obtain the same results because the two insights of the original
paper do not hold. First, whereas the authors found that there exist
street level landmarks for most targets, we find that only 28% of our
targets have a landmark located at less than 1 km away. This number
provides an upper bound on the number of targets that we can
geolocate at street level, as the final step of the geolocation is to map
a target to a landmark. Second, they found that the relative order of
the latency-based measured distances between the landmarks and
the target was preserved in the physical distance. In other words, if
a landmark has a lower latency-based distance to the target than
another landmark, this landmark is actually physically closer to the
target than the other landmark. If this idea seems sound, we could
not replicate these results as we found that the measurements to
compute the latency-based distances are often unusable.

Finally, in addition to the replication, we had the opportunity to
share and discuss our results with a geolocation database company
that outperformed CBG and the street level technique on our dataset.
We demystify partly how this geolocation base works by sharing
the main results of our discussion, explaining that it mainly uses
publicly available data accessible to researchers, which is a step
towards more explainability of these commercial databases.

Gathering all these results, we provide a new baseline that on our
dataset of 723 RIPE Atlas anchors as targets, 73% of them could be

geolocated at city level and 11% of them at less than 1 km away from
their real geolocation. We also provide a set of recommendations
for future work in IP geolocation, including the challenges to use
and improve latency-based and landmark-based techniques and
insights to develop new techniques.

2 MOTIVATION
Our goal is to reinvigorate the community to pursue efforts toward
an accurate, complete, and publicly available IP geolocation dataset
and open methodology for the entire routable space. A reasonable
granularity that would satisfy the community is a city level accu-
racy, as it is enough for most applications, such as knowing if the
geolocation of a proxy is accurate [47], predicting the geographic
path of a measurement [18], or geolocating an outage [20, 22], so
our paper is written with this granularity in mind. Without this
dataset, one needs to perform their own measurements, or rely on
free or paid geolocation databases that are inscrutable black boxes:
58 papers published in network conferences used the MaxMind [4]
geolocation database during the 2016-2020 period [29]. By repli-
cating two ten year old techniques that previously achieved high
performance, we hope to establish a proper baseline for future work
in the area.

2.1 Which papers do we replicate?
We replicate the two papers, “Towards Geolocation of Millions of
IP addresses”, published at IMC in 2012 [32], and “Towards Street-
Level Client-Independent IP geolocation”, published at NSDI in 2011
[46]. They are called million scale and street level papers from now.
In the million scale paper, the authors were able to geolocate 35% of
the IPv4 space in a few months, while in the street level paper, the
median error of the technique was 690 meters. With these results,
it is hard to propose a major contribution in the domain, and one
can be discouraged to invest efforts in the field, as publishing in a
major venue is hard considering these prior works.

Our work focuses on IPv4: For the million scape paper, the van-
tage point selection algorithm relies on finding representative IP
addresses in every /24 prefix to use fewer vantage points to ge-
olocate an IP address (§3.1). Due to the sparsity of the IPv6 space,
finding representatives of a target is not straightforward. For the
street level paper, there is no fundamental reason why the tech-
nique cannot be adapted. We leave the replication of these papers
in IPv6 as future work.

2.2 What does the community stand to learn
from the replication?

2.2.1 A new baseline for comparing geolocation techniques. We
want to provide a new baseline of the results obtained with the two
techniques in the current Internet with publicly available measure-
ment platforms, such as RIPE Atlas. RIPE Atlas [41] is the largest
geographically and topologically distributed public measurement
platform providing more than 10K vantage points in 172 different
countries, 5 continents, and 3,494 ASes. People can run measure-
ments including pings and traceroutes on this platform with a
system of credits. Ten years ago, the evaluation was made on small
datasets of tenths of targets or proprietary datasets of unknown
size, using a few hundred vantage points. Replicating the results
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with larger datasets of targets and vantage points enabled by the
RIPE Atlas platform will not only give a new baseline, but also give
more robust and more representative results. We want this baseline
and our results to be easily extended and updated, so we make our
code publicly available and only use publicly available datasets.

2.2.2 Revisiting the fundamental insights that led to earlier results.
Beyond the new baseline, we want to re-evaluate whether the in-
sights that led to the results of the techniques are still valid because
they could serve for future geolocation techniques: In the million
scale paper, the main insight was that a few vantage points close to
a target can perform as well as many vantage points. In the street
level paper, there were two main insights: (1) There exists locally
hosted websites close to a target that one can use as landmarks;
(2) The relative order of the geographic distances between these
landmarks and a target is preserved by the measured distance, so
mapping the target to the landmark with the lowest RTT to it gives
the best results.

2.2.3 Giving recommendations for IP geolocation usage and research.
Finally, we want this replication study to serve for both future usage
of IP geolocation and research in IP geolocation. Re-evaluating the
insights and maybe finding new ones will help us to give useful
recommendations about which ideas are more likely to work in the
future.

3 METHODOLOGY
Given the goals described in Section 2, our methodology to replicate
the papers should: (1) Be faithful to the original, to be able to provide
a sound baseline of comparison with the two techniques (2) Provide
updated results on the end to end results of the techniques, but also
on the insights that led to these results (3) Provide, when possible,
additional results to help future research using IP geolocation.

To follow these guidelines, for each paper, we give a background
of the technique, the insights that were used and found, and the
details of the replication, i.e., whether there is any change in the
methodology, the results that we replicate, and some additional
results that could help future work.

To be clear, we replicate the papers, and do not reproduce them.
We do not use the same set of targets, vantage points, or the same
mapping service for the street level paper. These differences are
explained in their own section (§4).

Before delving into the details of howwe replicate the two papers,
we give some background on Shortest ping and Constrained Based
Geolocation (CBG) [31] which are two classic latency-based IP
geolocation techniques on which the two replicated papers rely.
Latency based geolocation: To geolocate a target IP address,
latency-based geolocation consists in issuing measurements from
distributed vantage points with known locations to the target in or-
der to obtain RTTs between them and the target. Then, to transform
these measurements into a geolocation: (1) Shortest Ping maps the
target IP address to the geolocation of the vantage point with the
lowest RTT. (2) CBG transforms the RTTs into a maximum distance
between the vantage points and the target by converting time to
distance via speed of light, forming several circles centered at the
vantage points, providing a set of constraints where the IP address
can possibly be located. CBG estimates the target’s location as the

centroid of the intersection of the different constrained regions.
Figure 1a shows an example.

3.1 Million scale paper
3.1.1 Background. This paper describes how to scale Shortest ping
and CBG, by showing that a set of well chosen vantage points (VPs)
close to the target can be as accurate as the set of full VPs. To show
this result, they start by showing three hypotheses (Section 4 of the
million scale paper):

• A few VPs can be as accurate as many VPs.
• Certain small subsets have good accuracy.
• The closest VPs generally maximize accuracy.

The intuition behind these hypotheses is that only the VPs with
small RTTs to the target contribute to the constraints. Typically,
a VP with an RTT of 100ms to the target results in a constrained
region with a radius of 10,000 km, and almost never serves to
accurately geolocate a target, as some smaller circles are included
within this one. If these hypotheses are valid, then one could only
use a few VPs per target, drastically reducing the active probing
overhead from Shortest Ping and CBG, enabling faster geolocation.

Once the authors have shown that their hypotheses are rea-
sonable, the challenge is then to know which VPs to select per IP
address. Their idea is to probe representatives for each target: the
representatives of a target are three responsive (if they exist) IP
addresses in its /24. The intuition is that IP addresses in the same
/24 should be close, so VPs close to the representatives should be
also close to the target. They probe these representatives from all
the VPs to obtain RTTs between the VPs and then select the ten
VPs with the lowest RTTs to the representatives to probe the target.

With this technique, they achieve a comparable performance
to CBG with all vantage points, showing that their VP selection
algorithm works, with a median error decreasing from 231 km to
208 km, while only using 2% of the VPs. These savings allow the
authors to geolocate 35% of the IPv4 routable space (in 2012) in a
few months.

3.1.2 Replication.

Methodology and changes: We replicate the methodology with-
out any change.

Insights and results that we re-evaluate: First, we evaluate
whether the insight that a few close VPs can perform as well as
many VPs is still valid, by looking at the three hypotheses (Sec.
4.1, Figure 2 and Figure 3 of the million scale paper) and the VP
selection algorithm (Sec. 4.3, 4.4, and Figure 5 of the million scale
paper). Then, as the main goal of the paper is to scale geolocation
techniques, we provide an evaluation about the applicability of the
VP selection algorithm on RIPE Atlas.

Results that we do not replicate: We do not provide the hilbert
curve that shows the visualization of the geolocated IPv4 address
space, we could not geolocate millions of IP addresses with the
technique on RIPE Atlas (§5.1).

3.1.3 New insights. We extend the results from ten years ago, show-
ing that a single well chosen VP per target performs as well as many
VPs. We also extend the original VP selection algorithm, which is
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not deployable on RIPE Atlas because of its measurement overhead,
to make it more scalable.

3.2 Street level paper
3.2.1 Background. This paper presents a methodology to accu-
rately geolocate a target IP address, up to street level, by leveraging
two insights: (1) There exists some locally hosted websites land-
marks close to the target that can serve as third-party VPs although
they are not controlled by the authors, and (2) The relative order
of geographical distances between the landmarks and the target is
preserved by the measured distances with RTTs, i.e., a landmark
geographically closer to the target should have a smaller RTT be-
tween it and the target than a geographically further landmark.
With these two insights, to obtain a very accurate geolocation, one
has to find the landmark with the lowest RTT to the target and map
the target to this landmark’s coordinates.

The authors present a three-tier system to geolocate a target IP
address using these insights, shown in Figure 1.

Tier 1, Section 2.1 of the street level paper: The first tier (Fig-
ure 1a) goal is to obtain a first approximation of the geolocation of
the target, by running ping measurements from the VPs to the tar-
get and perform CBG. The centroid of the CBG region is extracted
and given as input to the tier 2.

Tier 2, Section 2.2 of the street level paper: The second tier’s
(Figures 1b and 1c) goal is to obtain landmarks from locally hosted
websites. The idea is that websites owned by entities such as univer-
sity, the government, or a company, might be located at the postal
address given by a mapping service (e.g., OpenStreetMap or Google
Maps). For instance, when typing our laboratory on a mapping ser-
vice, one finds its postal address, and its website laboratory.com1.
Our website is locally hosted in the laboratory, so it can serve as
a landmark. If we can obtain multiple websites in the CBG region
and compute delays between them and the target, we will likely
reduce the region where the target must be.

To obtain those websites, the technique uses a mapping service
to map some points in the CBG region to their zip code and extracts
the websites of the points of presence that are close to these zip
codes. To sample the points in the CBG region, one draws concentric
circles centered at the centroid of the region obtained with CBG,
increasing the radius of the circle by step of 𝑅, here 𝑅 = 5 km. The
process stops when no points of a circle are within the CBG region.
For each circle, one extracts points from it by rotating the point at
0 degree from an angle of 𝛼 degree, here 𝛼 = 36, so 10 points are
extracted from each circle.

A website is not necessarily locally hosted (e.g., it can be hosted
by a CDN), so the technique performs multiple checks to assess
whether the website is locally hosted or not, consisting in (1) com-
paring the zip code of the postal address of the entity given by the
mapping service with zip code of the coordinates of the point of
the circle (2) checking that the content is not served by a CDN (3)
checking whether a website appears in multiple zipcodes. If one of
the three tests fails, the website is not used as a landmark. Section
3.2 of the street level paper provides more details on these tests.

1anonymized for submission

Then, to obtain the delay between the landmarks and a target,
one runs traceroutes from each VP to each landmark and to the tar-
get (Figure 1c). For each pair of traceroutes from a VP to a landmark
and the target, one extracts the delay between the last common
hop in the traceroutes, here R1 for the traceroutes from V1 and
R2 for the traceroutes from V2. D1, the delay between R1 and the
landmark, and D2, the delay between R2 and the target, are then
obtained from the traceroutes from V1, and similarly D3 and D4 are
obtained from the traceroutes from V2. Then, the minimum of D1
+ D2 and D3 + D4, here D1 + D2, is selected to be an upper bound
of the delay between the landmark and the target. We describe in
Section 3.2.2 how we compute the 𝐷𝑖 , as the street level paper lacks
explanations. With these delays between the landmarks and the
target, one converts these delays into distances to obtain a new
CBG region formed by the intersection of the circles centered at
landmarks.

Tier 3, Section 2.3 of the street level paper: The last tier consists
in repeating the tier 2 technique but with the new region obtained
from the tier 2, and with a finer granularity (Figure 1d). Now the
concentric circles are drawn by increasing the radius by steps of
𝑅=1km and using a rotation angle 𝛼 is 10 degrees, obtaining 36
points per circle. After repeating the steps of finding locally hosted
websites and of performing the traceroutes, the geolocation of the
target is set to the geolocation of the landmark with the smallest
delay Figure 1e. The key here is that the authors use the insight that
the order of the delays is preserved in the order of the distances, so
selecting the landmark with the smallest delay should result in the
smallest error distance.

3.2.2 Replication.

Methodology and changes: In the tier 1, the only thing that dif-
fers with the million scale paper is that the speed of Internet used
to convert RTT into distance is 2

3𝑐 , whereas it is
4
9𝑐 in the street

level paper, as they say that 2
3𝑐 is too conservative. We are faithful

to their methodology and use 4
9𝑐 for the replication of the street

level paper.
We replicate the tier 2 and the tier 3, with one modification to

reduce the measurement overhead: for each landmark of a target,
instead of running traceroutes from all the VPs to the landmark,
we only use the 10 closest VPs to the target to run traceroutes to
the landmark, as our results show that adding more VPs does not
bring useful information (§5.1).

We also add a statement about how the delay between a land-
marks and a target is computed. In Figure 1c, 𝐷1 and 𝐷2 represent
the delays between R1, the last common router between the two
traceroutes, and the landmark and the target. In the paper, it is
simply stated: “Next, we calculate the latency between the common
router and the landmark [. . . ] and the latency between the com-
mon router and the target”. However, obtaining these values is not
possible without information about the reverse paths (appendix B),
and the values of D1 and D2 are very noisy (§5.2). As the authors
did not mention the usage of a technique to get information about
the reverse paths [35], we assume that the authors just subtracted
the RTTs between (V1, landmark) and (V1, R1) to obtain D1 and
subtracted the RTTs between (V1, target) and the landmark (V1,
R1) to obtain D2, so we do the same.
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(a) Tier 1 performs CBG from VPs to the tar-
get, compute the centroid of the intersection
that will serve for Tier 2.

⍺

Zipcode

Landmarks 
R

(b) Tier 2 draws concentric circles from the
centroid of the CBG region of radius 𝑘 × 𝑅,
and picks sample points on the circles by ro-
tating froman angle𝛼 , and look around these
points to find landmarks from locally hosted
websites.

Target

Landmark

Vantage Point

Router

V1 V2

D2

R3

R2

R1

D1

D4

D3

(c) Tier 2 runs traceroutes from 𝑉1 and 𝑉2 to
the target and the landmark to obtain delays
between the target and the landmark, choos-
ing theminimumbetween𝐷1+𝐷2 and𝐷3+𝐷4.

⍺

Zipcode

Landmarks 
R

(d) Tier 3, repeat Tier 2 but from the cen-
troid of the intersection of circles given by
the computed delays between the landmarks
and the target.

(e) Tier 3, the geolocation of the target is the
one of the landmark with the smallest delay.

Figure 1: Three tier technique to geolocate an IP address in the street level paper [46]

Insight and results that we re-evaluate: We first replicate the
results on the overall accuracy of the technique (Figure 8 of the
street level paper), to showwhether the technique can still geolocate
IP addresses with a street level precision.

Then, we re-evaluate the insights that led to these results, i.e.,
whether there exists some locally hosted landmarks near the targets
(Figure 9 of the street level paper), and whether the relative order
of the geographical distances between the landmarks and the target
is preserved in the measured distances (Figure 5 of the street level
paper). We also replicate the results on the relationship between
accuracy and population density (Figure 11 of the street level paper).

Finally, we also re-evaluate the scalability of the technique (Sec-
tion 5 of the street level paper).

Results thatwewill not replicate:Wedo not replicate the results
on relationship between the accuracy and the different ISPs.

4 DATASETS
For each replicated paper, we describe the datasets that were used,
their limitations, and present our choices for the replication. In
particular, we describe our choice of targets and vantage points, and
the measurements run between them. Other datasets include the
mapping service used to perform reverse geocoding and to obtain
websites that serve as landmarks in the street level paper. We then
describe how we sanitize the geolocation of our vantage points and
targets, and finally discuss the bias of our datasets. Table 1 gives
a recap of the datasets and APIs used in the two replicated papers
and in our replication. All the datasets were collected during the
March-April-May 2023 period.

4.1 Million scale paper

4.1.1 Vantage points.

What has been done: The authors used 400 PlanetLab nodes.
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Million scale paper [32] Street level paper [46]

Original
targets PlanetLab nodes (25)

PlanetLab nodes (88),
Residential dataset (72)
Driving service dataset (?)

Replication
targets RIPE Atlas anchors (723)

Original
vantage points PlanetLab nodes (400) Ping servers (163)

Traceroute servers (136)

Replication
vantage points RIPE Atlas probes (10k) RIPE Atlas anchors (723)

Original
Other datasets None Geonames [2]

Replication
Other datasets None

Nominatim [5]
OpenStreetMap [6]
Overpass API [7]

Table 1: Targets, vantage points, and other datasets used in
the replicated papers and in our replication. Numbers in
parenthesis for the targets and vantage points rows corre-
spond to the number of elements. All datasets andAPIs used
in our replication are public.

Limitations: PlanetLab nodes were mainly located in universities
in research and education networks, which are not representative of
the global Internet connectivity. Nowadays, universities are consid-
ered to be located at the edge of the Internet and not well connected,
in comparison to vantage points in IXPs, for instance. Finally, Plan-
etLab is no longer an option as it was decommissioned several years
ago.
Our choices: With more than 10K vantage points in 172 countries
and 3,494 ASes, RIPE Atlas is the publicly available platform with
the best coverage to run geolocation measurements. We choose to
use the 10K vantage points to obtain an upper bound of the accuracy
that one can obtain with the technique with the entire coverage of
the RIPE Atlas platform. To be clear, this work used a lot of RIPE
Atlas credits (hundreds of millions) and has only beenmade possible
because RIPE Atlas generously gave us an upgraded RIPE Atlas
account with increased rate limits to perform our measurements in
a reasonable time.

4.1.2 Targets.

What has been done: The authors used 25 servers in universities
around the world.
Limitations: This dataset is small, and lacks of diversity. As stated
earlier, universities are in networks that are not representative
of the entire Internet, so, as stated by the authors, the accuracy
might be different for these targets than for other targets in other
networks.
Our choices:We use the set of the 723 RIPE Atlas anchors because
their geolocation is more accurate that RIPE Atlas probes (but we do
perform some sanity checks though, see Section 4.3). This dataset
is best effort: although the number can appear as being small, there
exists no publicly available ground truth dataset for IP geolocation.

These 723 targets are located in 441 cities, 96 countries, and 561
ASes, and non uniformly spread over the continents: we have 133
targets in Asia, 16 in Africa, 18 in Oceania, 125 in North America,
399 in Europe and 27 in South America.

4.1.3 Measurements. We run pings from all the RIPE Atlas probes
to each target. For the VP selection algorithm, we use the ISI hitlist
[25] to select the three representatives of the /24 prefix of each
target with the highest score of responsiveness. For 8 targets there
were fewer than three responsive representatives, so we select
random IP addresses in their /24 prefix to till the missing represen-
tatives. We then run pings from all the RIPE Atlas probes to these
representatives.

4.2 Street level paper

4.2.1 Vantage points.

What has been done: The authors used 163 publicly available
ping and 136 traceroute servers geographically distributed in the
US. The ping servers are used for the tier 1, while the traceroute
servers are used for the tiers 2 and 3.
Limitations: The set of vantage points is restricted to the US. In
addition, from a more practical point of view, even if prior work
tried to automate measurements from ping and traceroute servers
[27], these servers are not made to perform automated measure-
ments, and often explicitly mention in their policy that automating
measurements is a violation.
Our choices: We use the RIPE Atlas platform, but this time we
restrict ourselves to the set of anchors to run the ping and tracer-
oute measurements. We cannot use the full set of probes for this
paper, because in addition to the ping measurements from the tier
1, we have to issue one traceroute from each vantage point to each
landmark: the median number of landmarks per target is 111, so
it is both unrealistic in terms of credits needed and in terms of
measurement overhead put on the RIPE Atlas platform.

4.2.2 Targets.

What has been done: The authors used three datasets: 88 Plan-
etLab nodes, 72 IP addresses from a residential dataset obtained
with crowd-sourcing, and another dataset containing three months
of user’s search logs for driving directions from a “popular online
maps service”, where each record of the dataset includes the user
acces IP address and the driving sequence represented by two pairs
of latitude and longitude points. They extract IP addresses which
appear in multiple driving sequence as source or destination and set
the geolocation of these IP addresses to the source or the destina-
tion, depending on a set of heuristics (Section 4.1.3 of the street level
paper). This last dataset has an unknown number of IP addresses
(the lack of details is justified by the authors by a non disclosure
agreement set with the company). All the IP addresses of the three
datasets are located in the US.
Limitations: The first limitation is one of the ones described for
the first million scale paper: the dataset the target IP addresses
is rather small, even if this time, the three different dataset bring
diversity in the type of networks. Another limitation is that the
geolocation of the targets in the second dataset is based on crowd
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sourced measurements and can be subject to errors. Finally, the last
dataset is opaque and its validation relies on handcrafted heuristics.
Our choices: For the same reasons as given for the first million
scale paper, we choose to use the RIPE Atlas anchors as targets. As
in the Figure 7 of the street level paper, our dataset covers both
rural and urban areas (appendix C).

4.2.3 Measurements. We run pings from all the RIPE Atlas anchors
to the targets to compute the tier 1. For the tiers 2 and 3, for each
landmark associated with a target, we select the ten VPs with the
lowest RTTs to the target using the measurements from the tier 1
and run traceroutes to the landmark and to the target.

4.2.4 Services to obtain the websites and landmarks. The tier 2,
which consists in obtaining landmarks from locally hosted web-
sites found in the region determined by the tier 1 CBG, is divided
into several steps: how to perform reverse geocoding (map a point
with latitude and longitude coordinates into a postal code), how to
extract points of interests in each postal code, and how to obtain
the websites from the points of interest, if they exist.
What has been done: The authors used the Geonames [2] publicly
available service to perform the reverse geocoding queries and
obtain the websites that can serve as landmarks if they pass the
tests of being locally hosted. They used the websites of entities
qualified as “business”, “university” and “government office” by
Geonames.
Limitations: The Geonames API allows a limited number of calls,
1000 calls per hour, and 20,000 calls per day, unless one subscribes
for a premium tier. The median number of reverse geocoding
queries that we had to do per target is 878, so the Geonames API
was not an option to replicate the technique in a reasonable amount
of time.
Our choices: To perform the reverse geocoding queries, we use a
local instance of Nominatim [5], an engine built on top of Open-
StreetMap [6], which allows us not to be restricted in terms of
the number of queries that we perform on the server. To find the
places of interest in a postal code, we use the overpass API [7] and
query for all the amenities with a website, so it is not restricted to
keywords used in the street level paper. We use a public instance
allowing an unlimited amount of queries, although we experienced
some rate limiting when trying more than 8 simultaneous requests
[7]. All these datasets and services are publicly available.

4.3 Sanitizing RIPE Atlas geolocation
As we are using RIPE Atlas probes and anchors as vantage points
and anchors as targets, it is important to have high confidence in
their geolocation. If the common thought is that the geolocation
of the anchors reported by RIPE Atlas can be trusted [10], it is
less certain for RIPE Atlas probes, and it cannot hurt to perform
additional checks.

Our sanitizing process starts by verifying anchors, and consists
in counting the number of speed of Internet violations per anchor.
We extract RIPE Atlas meshed measurements between anchors
and count, for each anchor, how many of its RTTs from and to
other anchors violates the speed of Internet (SOI) constraint. SOI is
set to 2

3𝑐 where 𝑐 is the speed of light [31]. We iteratively remove
the anchor with the highest number of SOI violations, update the

number of SOI violations, until there is no anchor with any violation.
With this process, we remove 9 anchors from both datasets of
vantage points and targets. We do the same for probes: we perform
ping measurements from all the probes to each anchor correctly
geolocated, and remove 96 probes from our dataset of vantage
points.

4.4 Potential bias of the RIPE atlas platform
Before describing the limitations of our dataset of targets and van-
tage points, we mention that these datasets are best efforts given
the publicly available ground truth that we have. Moreover, our
methodology is fully replicable and our code publicly available, so
someone has a better set of targets and vantage points, it can re-run
our methodology with this set and obtain a new baseline.

4.4.1 Geographic and topological bias. Our targets and vantage
points are limited by the coverage of the RIPE Atlas platform, which
is non uniformly geographically spread, with a denser presence
in Europe. In addition to the geographic bias, we also look at a
potential AS type bias. PlanetLab were mainly located in R&E net-
works and were not representative of the different types of network
composing the Internet. Table 2 shows the distribution of the AS
category of our targets according to the CAIDA AS classification
dataset [1]. We see that the targets are located in different types of
networks, with most of them being in content providers, access net-
works, and transit/access networks. In addition, we look at the AS
type of our targets according to the ASDB dataset [50], finding that
they fall into 16 categories, with 72% falling into the “Computer and
Information Technology” category. The second most represented
category being “R&E” with 5%. All of the other categories are below
5%. The classification according to these two different datasets show
that even if our targets are not representative of the whole Internet,
they contain more network diversity than the datasets used in the
replicated papers.

We also show in Table 2 the distribution of the RIPE Atlas probes
+ anchors that serve as our vantage points for the million scale
paper. We see that if the dataset is dominated by the access network
category, there are nonetheless 25% of the probes in other categories,
showing the topological diversity of the RIPE Atlas platform.

4.4.2 Last mile delay. Our targets, the RIPE Atlas anchors, are
well-connected servers that typically not suffer from the last mile
delay [37]. However, targets in access networks might suffer from
it, adding precious milliseconds to latency measurements and make
latency-based geolocation techniques less precise. As a result, ge-
olocating the targets in access networks impacted by the last mile
delay is even more challenging.

5 EVALUATION
For each replicated paper (§5.1 and §5.2), we first give the main
takeaways in a leading paragraph, and then support each of the
takeaways in a dedicated paragraph with the analysis supporting
the takeaway.

5.1 Million scale paper
Takeaways: The number of VPs, the parameter used to evaluate
the accuracy by the first two hypotheses of the million scale paper,
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Dataset Content Access Transit/Access Enterprise Tier-1 Unknown
Anchors 229 (31.7%) 211 (29.2%) 197 (27.2%) 55 (7.6%) 6 (0.8%) 25 (3.5%)
Probes 1112 (9.2%) 9124 (75.2%) 1005 (8.3 %) 410 (3.4%) 166 (1.4%) 312 (2.6%)

Probes + Anchors 1361 (10.5%) 9347 (72.4%) 1221 (9.5%) 472 (3.7%) 174 (1.3%) 339 (2.6%)

Table 2: AS type of the RIPE Atlas probes, anchors, and probes + anchors according to the CAIDA AS classification dataset [1].
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Figure 2: Replication of the three hypotheses on how using subsets of VPs affect accuracy.
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Figure 3: CBG performance with original VP selection algorithm and new VP selection algorithm.

is not the right metric to measure accuracy. Instead, what matters is
the access to VPs close to the target (§5.1.1). In particular, we extend
the prior result that a few close VPs were enough to geolocate
a target: a single well chosen VP is enough (§5.1.2). Beyond the
replication, we show that VP selection algorithm to find the closest
VPs to a target cannot be deployed on RIPE Atlas because of its
measurement overhead (§5.1.3), but that it is possible to reduce it
to 13.2% of the original measurements, while achieving a similar
performance, by decoupling the VP selection algorithm in two steps
(§5.1.4). Finally, we have a look at whether the accuracy depends
on the geographical coverage, finding that the better coverage of
the RIPE Atlas platform does not necessarily translate into a better
accuracy (§5.1.5). All the results are given for CBG, but results with
shortest ping are similar.

5.1.1 The number of VPs is not the right metric to evaluate accuracy.
The hypotheses that we need to re-evaluate are that: (1) “a few VPs
can be accurate”; (2) “certain small subsets have good accuracy”;
(3) “The closest VPs generally maximize accuracy.”

A few VPs can be accurate: We replicate the experiment that
looks at the median geolocation error for subsets of 10 to 10K VPs.
For each subset size, we run 100 trials with a random subset of
VPs and we compute the median error for each trial. Figure 2a
shows the error bars of the distribution of the median error (Figure
3a of the million scale paper). First, our results are qualitatively
different from the million scale paper, where the best median of the
median error was a few hundred kilometers. Here, the median of
the median errors is as low as 8 km with 10K VPs. Then, whereas
in the replicated work, beyond 60 VPs, the median error was stable,
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the median error still decreases when we add VPs, even beyond
thousands, although the gains are smaller.
Certain small subsets have good accuracy: We replicate the
experiment that focus on specific sizes of subsets. Figure 2b shows
the CDF of the median error for sizes of subsets of 100, 500, 1000,
and 2000 VPs (Figure 3b of the million scale paper). Our results are
also different: in the million scale paper, the authors found that
some subsets were performing poorly, and some were doing well.
Our distributions vary much less than theirs: for instance, for 100
VPs, where the median error is supposed to vary the most, the
median error varies from 191 to 366 km, whereas in the million
scale paper, for 50 VPs, where the median error varies the least, the
median error varies from a few hundred km to almost a thousand
km.
The closest VPs generally maximize accuracy: Figure 3c of
the million scale paper showed on one example target that the
geolocation error was dependent on the distance to the closest
VPs. We generalize this figure: Figure 2c of our paper shows the
geolocation error when, for each target, we remove VPs that are
closer than a certain distance. We see that when we remove VPs
that are closer than 40 km (basically, in the same city [26]), the
median error increases from 8 km to 120 km, and only 6% of the
targets have an error of 40 km or less when removing the VPs in
the same city, versus 73% with all the VPs.
Do the hypotheses still hold? If the goal is to provide a city level
accuracy for each target, one should at least have one VP in each
city where there is a target. So, if the third hypothesis stating that
the closest VPs maximize accuracy is still definitely true, the two
first are not really relevant, as small subsets of VPs can only be
accurate for geolocating targets close to each of them.

5.1.2 A well chosen single VP per target works well. As the key to
be accurate is to have access to VPs geographically close to the
target, we re-evaluate whether the VP selection algorithm (§3.1)
can find these VPs, if they exist. Recall that this algorithm selects
the VPs with the lowest RTTs to three representatives per prefix so
that it can use this subset of VPs to geolocate a target in the prefix.
As low RTTs imply that the VPs are geographically close to the
target, we expect the VP selection algorithm to still work well.

Figure 3a shows the replication of the Figure 5 of the million
scale paper, where we compute the CDF of the geolocation error
if we take 1, 3, and 10, and all VPs with the lowest RTTs to the
target (the figure in the million paper has only the line for 10 VPs).
The results are a little bit surprising: for errors lower than 40 km,
the single closest VP outperforms the other alternatives, with, for
instance, 62% of the IP addresses located at 10 km or less, against
52% for all VPs. This shows that it is hard to obtain a better accuracy
than city level (40 km) for CBG.

5.1.3 The VP selection algorithm cannot be deployed on RIPE At-
las because of its measurement overhead. Even if the VP selection
algorithm provides a way to reduce the number of VPs needed to
geolocate an IP address, each VP still needs to probe three repre-
sentatives per prefix. To be able to geolocate 35% of the unicast
allocated IPv4 address space in a few months, the authors used VPs
which had a probing rate of 500 packets per second (pps). This is
not feasible with RIPE Atlas, as the 10k VPs cannot have a probing

rate of 500 pps only for geolocation. Indeed, on average, an anchor
has a probing rate between 200 and 400 pps, whereas a probe has a
probing rate between 4 and 12 pps [11].

5.1.4 Towards scaling the VP selection algorithm. As we cannot use
all the VPs to measure the three representatives of an IP address,
we need to reduce the number of VPs without losing too much
accuracy.

To reduce the number of VPs, we modify the VP selection algo-
rithm to proceed in two steps: instead of using all the VPs to probe
the representatives, we use a subset of VPs as a first step, compute
CBG, and select one VP per AS/city in the CBG region. We then run
pings to the representatives from this subset of VPs, and select the
VP with the lowest median RTT to the representatives to geolocate
the target. The subset of VPs for the first step is greedily selected
to cover a maximum of the earth with a minimum number of VPs:
at each iteration, we select the VP which maximizes sum of the
logarithmic distances to the other VPs. This technique is similar to
what has been done in prior work [15].

Figure 3b shows the error with this new VP selection algorithm
using different sizes of subsets for the first step. We see that using
this technique does not degrade the performance, even when using
10 VPs. Now that we know that this technique does not degrade
performance, we have a look at by howmuch it reduces the probing
overhead: Figure 3c shows the number of measurements needed
depending on the number of VPs used for the first step. We see that
the better tradeoff is realized with 500 VPs, which brings a total
of 2.88M ping measurements, which represents 13.2% of the 21.7M
needed by the original algorithm.
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Figure 4: Error per continent

5.1.5 . Figure 4 shows the geolocation error when we split the tar-
gets by continent. The numbers in parenthesis indicate the number
of targets in the continent. We observe that the accuracy does not
necessarily match the coverage of the RIPE Atlas platform: Africa
has an overall better performance than Europe, whereas there are
way fewer VPs in Africa. Digging into these results, we find that
the access to a close vantage point is not the reason why the results
for Africa are better: 94% of the targets do have a VP at less than
40km, and this number grows to 99% for Europe. Inspecting the
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26 targets in Europe with a high error above 300km, we find that
the probes close to the targets did not give a small RTT, with a
median over the targets of 7.96 ms, suggesting that the probes close
to the targets could suffer from the last mile delay, or that their
geolocation is not accurate.

5.2 Street level paper

Takeways: The street level technique has a similar accuracy to
CBG on our dataset, with a median error of 28 km vs 29 km for CBG,
far from the 690 m of the street level paper (§5.2.1). We explain this
low performance by re-evaluating the insights of the street level
paper, finding that they do not hold: (1) At most, 28% of targets
have a landmark within 1km radius around them (§5.2.2) (2) The
relative order of the geographical distances between the landmarks
and a target is not preserved in the measured distances: the me-
dian correlation between the measured distance and geographical
distance across the targets is 0.08 (§5.2.3). We also find that the ac-
curacy of the technique does not depend on the population density
as was previously found (§5.2.4). Finally, with our best effort setup,
the median time to geolocate an IP address is 1,238 seconds (20
minutes), far from the few seconds that the authors of the street
level paper gave as a theoretical time to geolocate an IP address
(§5.2.5).

5.2.1 The technique has a similar performance to CBG. Figure 5a
shows the CDF of the error per target for three techniques: street
level, CBG, and closest landmark. The closest landmark technique,
as its name indicates, selects the closest landmark to each target.
This technique simulates an oracle where we know the geolocation
of the target and is a lower bound of the error that the street level
can obtain, for two reasons: it assumes that all the websites passing
the tests of Section 3.2 are actually locally hosted and can be used
as landmarks, and that the technique always select the closest
landmark to the target. For 46 targets, we are not able to find a
landmark for the target, so we assume that the street level technique
and the closest landmark technique return the same geolocation as
CBG. Finally, there are also 5 targets where the value of 4

9𝑐 for the
speed of the Internet did not bring any intersection, so we used a
value of 2

3𝑐 for them.
There are two results from the graph. First, the street level and

CBG technique are close, with a median error of 28 km for the
street level technique vs 29 km for CBG. In the street level paper,
the authors found a median error of 690 m on the PlanetLab dataset,
so two orders of magnitude of difference. Second, the closest land-
mark technique shows that at most, if we consider than 1 km is a
street level precision, only 33% of the targets could eventually be
geolocated at street level. We detail these two results in the next
sections.

5.2.2 Most targets do not have a street level landmark. Figure 5b
shows two things: (1) the second column shows the number targets
with a locally hosted landmark at less than a certain distance. It is
an upper bound as it corresponds to a scenario where the landmarks
that passed the tests to be locally hosted are actually locally hosted.
(2) The third column shows that same number but with additional
latency checks on the landmarks. These checks consist in running
pings from each target, which is a RIPE Atlas anchor, to all the

landmarks that passed the tests to be locally hosted at less than 40
km from this target. We only keep the landmarks with a RTT of
less than 1 ms. These checks do not prove the exact geolocation of
the landmark, but we have higher confidence that these landmarks
are actually locally hosted.

We see that 28% of the targets have a landmark at less than 1 km
away, and 76% of the targets have a landmark at less than 40 km
away for the optimistic view, and these numbers decrease to 19% and
72% when we perform additional latency checks on the landmarks.
We conclude that most of our targets cannot be geolocated at street
level, but most of them could be at least geolocated at city level if a
technique could select the right landmark.

In addition to these results, we mention that a lot of websites
did not pass the tests to be classified as locally hosted: only 65,325
landmarks out of 2,584,527 passed the tests (2.5%).

5.2.3 Relative order of the geographic distances is not preserved by
the measured distances. Figure 5c replicates the Figure 5 of the street
level paper. It shows the scatter plot of measured vs geographic
distances for targets that were geolocated with an error of 1 km,
5 km, 10 km and 40 km. For each target, the landmark selected
corresponds to the point closest to the X axis. We can see that
our results are noisier than the one found in the street level paper:
the street level technique selects the closest landmark only for the
target with an error within 1 km. More generally, we compute the
Pearson correlation coefficient between the measured distance and
the geographical distances for all targets and find a median value
of 0.08, so almost no correlation.

The authors of replicated work said that the relative distance pre-
served the geographical distance because “the network paths that
are used to estimate the distance between landmarks and the target
share vastly common links”. We verify this property by looking at
whether we can find many landmarks that are in the same network
as a target, and whether the relative distance is preserved if we
only consider landmarks in the same network as the target: 140
targets (19%) have at least one landmark within the same AS as the
target, 59 targets (8%) have at least one landmark in the same BGP
prefix retrieved from RouteViews, and only 3 targets have at least
one landmark within the same /24. Even for the 57 and 24 targets
with at least two landmarks within the same AS or the same BGP
prefix, the Pearson correlation coefficient between the measured
distance and the geographical distance is 0.39 and 0.19, showing
that the insight does not really hold even with this property.

Finally, we show that the D1 + D2 value used to compute the
measured distance between a landmark and a target is noisy. Fig-
ure 6a shows the CDF of the percentage of landmark for which
the D1+D2 value is negative and therefore unusable to compute a
distance. For 50% of the targets, at least 28% of the landmarks are
unusable, so a significant number, questioning the computation of
the D1 + D2 value. More details about this computation are given
in Appendix B.

5.2.4 Gelocation accuracy does not depend on population density.
Figure 6b replicates the results of the Figure 11 of the street level
paper and shows a scatter plot of the error distance vs the pop-
ulation density, with a best fit linear regression. We obtain the
population density data via the “Gridded Population of the World
2020” dataset, which gives the density of the population with a one
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Figure 6: Delays between landmark and targets are noisy (left), accuracy does not depend on the popultaion density (middle),
the technique hardly scales with our setup (right).

kilometer square precision [8]. We see that the error is not really
better for denser areas, as they found in the street level paper.

5.2.5 We could not scale the technique. In the Section 5 of the street
level paper, the authors mention two things to show the scalability
of the technique: (1) They can cache the results of the query to
the mapping service to obtain the landmarks and the results of
the test checking whether a landmark is locally hosted or not (2)
They only need 8 RTTs to geolocate an IP address, where an RTT
either corresponds to a master node asking a vantage point to run
a measurement (a ping or a traceroute) or the measurement itself,
resulting in a 1-2 second to run the measurements per target.

Although the authors are right for their first point on caching,
this first step still represents a significant overhead. First, for 723
targets in 441 cities, we had to run 753,428 queries to our mapping
service, where we observed a rate limiting of our queries to ap-
proximately 8 per seconds. Second, we ran 2,755,315 tests on the
websites involving one DNS query and two wgets per test.

On the second point, our RTTs are way bigger for us as our mas-
ter node correspond to calling the RIPE Atlas API, and it generally
takes a few minutes to get the results of a measurement. But more
importantly, in terms of measurement overhead put in the network,
the original technique ran a traceroute per landmark and per target

from all the vantage points, so for the same reasons as given in
Section 5.1.3, the technique cannot be deployed on RIPE Atlas.

Finally, Figure 6c shows the time needed to geolocate a target
using the street level technique. The median time to geolocate an
IP is 1,238 seconds (20 minutes) using a multiprocessed code on a
32-core processor with 62 GB of RAM, so far from the theoretical
1-2 seconds that the authors of the street level paper found, so at
least we can say that with our setup, we cannot use the technique
at scale.

6 GEOLOCATION DATABASES
Commercial geolocation databases are often used by the community
[29] as we lack a publicly available IP geolocation dataset from
the community. We compare two geolocation databases, MaxMind
(the free version) [4] and IPinfo (the free API) [3] to CBG with all
the RIPE atlas probes (§5.1). These databases provide a mapping
between IP prefixes (up to /32 for IPv4) and their geolocation. We
query the data for both MaxMind and IPinfo in May 2023. Figure 7
shows that IPinfo is better than the two other datasets: 89% of the
targets have an error of less than 40 km (correct at city level) for IP
info, against 73% for all the RIPE Atlas VPs and 55% for MaxMind.
We sent our results to IPinfo to better understand why they were
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Figure 7: Geolocation of CBG with all the RIPE Atlas VPs
versus geolocation databases.

doing better than the other techniques. This exchange2 demystified
a bit the geolocation databases usually considered as black boxes:
They told us for 20% of the targets, their latency measurements
gave an error of 42 km or less, and 70% of the targets with an error
of 137 km, whereas it is 74% and 87% for these errors for CBG with
all RIPE Atlas probes. Then, to further refine the geolocation, they
told us that they were using hints extracted from DNS, WHOIS,
geofeeds [9], or other proprietary data. To be clear, these results
are specific to our dataset of targets, and IPinfo does not claim to
be able to geolocate 70% of the Internet targets with an error of 137
km with latency measurements.

These explanations suggest that our goal to obtain an Internet
scale IP geolocation is realistic if one combines the latency mea-
surements from RIPE Atlas with hints from these different sources.
Some work has been made in this direction using DNS names and
latency measurements but was limited to routers [21, 36, 42] so
future work could be to extend these techniques to the entire In-
ternet. One of the big challenges is to manage to geolocate the IP
addresses that do not have DNS names or are unresponsive.

7 LESSONS LEARNED
7.1 A new baseline
Our evaluation has set a new baseline for geolocation techniques:
(1) On accuracy, 73% of the IP addresses could be geolocated at
city level with both the street level and CBG techniques, and 11%
of them could be geolocated at less than 1 km away, which we
can consider as being street level. (2) On coverage, no technique
is able to geolocate millions of IP addresses in a few months with
RIPE Atlas (§5.1). In the future, if one is able to significantly beat
the results of our replication on this dataset or another one by re-
running our methodology, it should be considered as a substantial
contribution.

2we publish these numbers with IPinfo approval

7.2 Insights for future work
7.2.1 We need inferential techniques when we have no close van-
tage points to use latency based techniques. We learned two lessons
about latency based techniques (§§ 5.1 and 5.2): (1) For classic la-
tency based techniques such as CBG, the accuracy only depends
on the access to geographically close vantage points to the target.
(2) Latency techniques based on RTT difference in traceroutes to
obtain the latency between the landmarks and a target are noisy
and are not trustworthy without information on the reverse path.

These two results suggest that we need to develop inferential
techniques to geolocate IP addresses in cities where we have no
vantage points.

7.2.2 There exists some landmarks at city level. We retain from
Section 5.2 two lessons about the landmark-based techniques. The
first one is that, surprisingly, in an era dominated by the cloud
providers where one might think that it would be hard to find
locally hosted websites, we found at least one locally hosted website
in the same city as 72% of our targets, so that one can still use these
locally hosted websites as landmarks for a city level accuracy, as
we saw that street level geolocation is too optimistic.

The second lesson is that although these landmarks exist, choos-
ing the closest one to a target is challenging, as one measuring the
latency between the landmarks and a target is hard (§5.2.3). For
future usage, one should develop new techniques to determine how
to map a landmark to a target.

7.2.3 Round based geolocation is one key to scale. In Section 5.1,
we have seen that the proposed VP selection algorithm was not de-
ployable because of its measurement overhead. However, to reduce
the overhead, we have proposed to decouple the VP selection in
two steps, showing that we can use only 13.2% of the measurements
needed by the original VP selection algorithm while obtaining the
same accuracy. This principle could be easily extended to multiple
rounds instead of two, and attain a number of rounds for which the
measurement overhead is minimum. The tradeoff is that multiple
rounds take more time than a single round, as each round needs the
results of the previous round as input. As a result, multiple rounds
need multiple calls to the RIPE Atlas API instead of one, so it would
take a few minutes more in practice, but this is not really an issue as
we do not expect the geolocation of IP addresses to quickly change
over time.

8 RELATEDWORK
Replicability of IP geolocation techniques: IP geolocation has
been a longstanding goal of the community: Multiple types of tech-
niques have been developed, such as latency based techniques
[31, 32, 34, 38, 46, 48], DNS based combined with latency based
measurements [21, 33, 36, 42], statistical techniques [49]; or ma-
chine learning techniques [24]. It is not easy to compare with all of
these techniques, as only a few of them come with available code
[21, 36]. And even for those, it is not easy to replicate them, as they
both use proprietary data to train their model. Our paper is a step
towards providing a new baseline to compare geolocation tech-
niques, as it presents a replication of two techniques that achieved
high performance in terms of coverage and accuracy [32, 46] using
only publicly available data.
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Towards a publicly available dataset of the routable space:
The authors of the million scale paper [32] are the last ones to have
published a dataset of all the routable IP addresses [12], and this
dataset is a single snapshot dated of 2012. In parallel, some efforts
have been made on the router IP addresses: (1) CAIDA ITDK [16]
provides a dataset of geolocated router IP addresses collected with
the Ark platform. The geolocation is made using a combination of
sources, including DNS based techniques [36], peering information
[13, 14], and MaxMind [4]. (2) RIPE IPMap is the service providing
a daily dataset of the router IP addresses that the single radius
technique [23] could geolocate at city level. A snapshot of March
2023 contained 419K IP addresses, which is significant, but still far
from the 3.3M router IP addresses seen by state-of-the-art topology
mapping systems [30, 44].

Prior work looked at the performance of the geolocation
databases [26, 39], and how dynamic they are [29], finding some
differences between the databases and stating that these databases
should not be trusted. Our work shows a more nuanced story: At
least one geolocation database, IPinfo, outperformed CBG with all
the RIPE Atlas vantage points on our dataset, and we know now
that IPinfo mostly uses standard geolocation techniques. In the
future, we could consider using geolocation databases for research
if they provide more explainability, such as which geolocation
technique, and eventually which dataset were used per IP address.

None of these public datasets are accurate, complete, and ex-
plainable, as ITDK and RIPE IPMap focus on router IP addresses,
while geolocation databases are not explainable. In addition, our
paper shows that no current techniques are capable of providing
a dataset meeting the three criteria, setting up a new baseline for
future contributions.

9 CONCLUSION
In this paper we presented a replication of two ten year old high per-
formance techniques for IP geolocation, showing that no technique
can either geolocate millions of IP addresses in a few months with
the available measurement platforms, nor geolocate IP addresses at
street level precision in the current Internet with the most powerful
publicly available active measurement infrastructure (RIPE Atlas).
In addition to providing a new baseline for future work, we revis-
ited the fundamental insights of these prior techniques and found
new insights in our study to inform considerations for the design of
future IP geolocation techniques. This paper thus serves as a step
towards the community’s goal of obtaining a publicly available In-
ternet scale dataset and code for IP geolocation. All our code is avail-
able: https://github.com/dioptra-io/geoloc-imc-2023.

https://github.com/dioptra-io/geoloc-imc-2023
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B LATENCY BETWEEN THE LANDMARKS
AND THE TARGETS

We show that the step of computing the latency between the land-
marks and the targets in the tier 2 of the street level paper (Figure 1c)
is not straightforward without information on the reverse path.

Given the two traceroutes from the VP to the landmark 𝐿 and
the target 𝑇 and the common router 𝑅1, what we can obtain is
RTT(𝑉𝑃, 𝑅1), RTT(𝑉𝑃, 𝐿), and RTT(𝑉𝑃,𝑇 ).

Let us decompose these RTT into one way delays, written
𝐷 (𝑋,𝑌 ) for the one way delay from X to Y, to make the terms 𝐷1
and 𝐷2 appear. We have:

RTT(𝑉𝑃, 𝐿) = 𝐷 (𝑉𝑃, 𝑅1) + 𝐷1 + 𝐷 (𝐿,𝑉𝑃)
RTT(𝑉𝑃,𝑇 ) = 𝐷 (𝑉𝑃, 𝑅1) + 𝐷2 + 𝐷 (𝑇,𝑉𝑃)

With no assumption on the reverse paths from L to VP and T to
VP, we cannot isolate the D1 and D2 terms. If we do the assumption
that the last link (R1, L) and (R1, T) is symmetric and then the reverse
paths from R1 are the same (which should be the case because of
destination based routing [45]), we have now:

RTT(𝑉𝑃, 𝐿) = 𝐷 (𝑉𝑃, 𝑅1) + 𝐷1 + 𝐷 (𝐿, 𝑅1) + 𝐷 (𝑅1,𝑉 𝑃)
RTT(𝑉𝑃,𝑇 ) = 𝐷 (𝑉𝑃, 𝑅1) + 𝐷2 + 𝐷 (𝑇, 𝑅1) + 𝐷 (𝑅1,𝑉 𝑃)

which simplifies into:

RTT(𝑉𝑃, 𝐿) = RTT(𝑉𝑃, 𝑅1) + 2𝐷1
RTT(𝑉𝑃,𝑇 ) = RTT(𝑉𝑃, 𝑅1) + 2𝐷2

and so we can compute D1 and D2. The assumption of symmetry
between two hops has been shown to be valid in 90% of the cases
when the two hops belong to the same AS [45], so we see that
further analysis needs to be done when one wants to compute D1
and D2. But in the street level paper, the authors do not give any
explanation about this question.
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Figure 8: The distribution of the population density of our
targets dataset

Figure 8 shows the CDF of population density per target. Like in
the replicated work, we have both targets in rural and urban areas.
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