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Exemplar-based image colorization using
object-guided attention

Hernan Carrillo, Michaël Clément and Aurélie Bugeau

Abstract—Exemplar-based image colorization is a challenging
task that involves adding color to a grayscale image using a
reference color image. The goal is to preserve the semantic
content of the target image while also incorporating the color style
of the reference image. However, results from previous methods
are still unsatisfactory for real-world applications. One of the
reasons is that they are inefficient at exploiting semantic color
information, mainly when two or more objects are presented
in the target or reference images. In this work, we propose
a novel end-to-end deep learning framework for exemplar-
based colorization that integrates user-provided object masks.
We aim to guide the colorization on specific and meaningful
objects rather than a full reference image. Our framework
consists of an encoder-decoder generator architecture. The core
module of the encoder is our proposed masked super-attention.
This multiscale object-specific attention mechanism improves the
ability to transfer color characteristics from the user’s selected
objects. In addition, we introduce a strategic method for se-
lecting pertinent target/reference image pairs at the object-level.
To comprehensively evaluate the effectiveness of our proposed
approach, we conduct a complete evaluation of both full-level
and object-level images. Finally, our framework achieves colorful
and visually pleasant colorization and surpasses state-of-the-art
methods on different quantitative metrics.

Index Terms—Colorization, attention mechanism, segmenta-
tion.

I. INTRODUCTION

COLORIZATION is assigning plausible colors to
grayscale images, aiming to produce visually appealing

images while avoiding unwanted artifacts or incorrect colors.
This application is used in many fields, including restoration
of legacy photos/videos, broadcasting, film post-production,
and animation. However, current processes are often time-
consuming and tedious, as they highly depend on manual
intervention from the artist. Automating the colorization
process can greatly improve workflow for artists, but it is
challenging due to its inherent ambiguity. This is because
several plausible colors can be assigned to the same gray
pixel of an image, depending on various factors such as
complex structures on the image. Therefore, there is no
unique correct solution, and user input is often required to
achieve satisfactory results.

Several colorization approaches have been proposed in the
literature and can be classified into three types: scribble-
based colorization, exemplar-based colorization, and auto-
matic colorization methods without interaction. Scribble-based
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methods [1], [2] require users to manually assign colors to
specific pixels based on the semantics and luminance of
the patch, which is both time-consuming and difficult for
those without artistic sensibility. Exemplar-based methods [3]–
[6] use grayscale and similar reference images to output a
colorized image based on chrominance information. However,
the process can be time-consuming, and the quality of results
depends heavily on the reference image chosen. Automatic
colorization methods without interaction [7], [8] leverage a
large-scale image database to train a neural network to predict
colors for the target image automatically. However, the process
is uncontrollable and does not allow for customization. Fur-
thermore, satisfactory results can only be achieved if similar
objects are included in the image database.

To address the weaknesses identified in the previous meth-
ods, we combine exemplar-based and learning approaches. We
propose a guided attention mechanism using a segmentation
map with an exemplar-based colorization method to better
guide the colorization on specific, meaningful objects rather
than a whole reference image. We suggest using segmentation
masks to enhance the quality of image colorization in the
following ways. First, the segmentation masks identify visually
significant regions within the image. This allows the coloriza-
tion framework to prioritize important objects rather than,
for example, the background. Typically, objects of interest
are more colorful, while backgrounds tend to be dominated
by green and blue hues, such as sky, trees, and water. Our
approach decreases the probability that the framework is
biased toward the background colors. Secondly, segmentation
masks help localize specific objects, highlighting semantically
relevant regions with distinct boundaries. The previous is
advantageous for colorization networks as it reduces color
bleeding artifacts. Finally, adding segmentation as input is
relatively easy for the user.

In this paper, we present a novel approach to object-specific
exemplar-based colorization. Our approach builds upon the
super-attention block introduced in [9], which leverages skip
connections to transfer semantically related color characteris-
tics from a reference image across various scales of a deep
neural network. In this work, we extend the application of
the super-attention block by incorporating an object-specific
guidance mechanism and examining its impact on the encoder
part of the architecture. Our main contributions are as follows:
• We develop a new end-to-end deep learning framework

for exemplar-based colorization capable of incorporating
object masks provided by the user.

• We integrate the super-attention block within the encoder
of the network architecture instead of within the skip
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Fig. 1. Our proposal. The colorization framework includes two main parts that jointly handle the semantic correspondence and chromatic propagation between
the input images. First, The color feature extractor ϕ extracts multi-level feature maps from a color reference image R. The main colorization network Φ that
learns to map a luminance channel image TL to its chrominance channels T̂ab given color characteristics from image R. The colorization guidance is done
by the masked super-attention modules. These attention layers receive feature maps from distinct levels fT , fR and their respective superpixels grids S and
a segmentation mask M from the target and reference images.

connections as in [9].
• We propose a multiscale object-specific attention

mechanism that utilizes masked superpixel features
for reference-based colorization, called masked super-
attention.

• We leverage a strategy for selecting relevant object pairs
in target/reference images.

• We conduct a complete and comprehensive evaluation of
our approach at both the full-image level and object-level
images, comparing it to state-of-the-art methods.

II. RELATED WORKS

Automatic colorization methods without interaction. These
colorization techniques use large datasets to learn how to
map each grayscale pixel in an input image to a specific
color value. The earliest work in this area [10] proposes
feeding to a neural network a grayscale image and predicting
UV chrominance channels using a regression loss from the
YUV luminance-chrominance color space. Another method
proposed by Larsson et al. [7] used a VGG network architec-
ture to predict a histogram of hue and chroma for each pixel,
providing guidance for the final colorization result. Other deep
learning approaches, such as Generative Adversarial Networks
(GANs), have also been employed. For example, by Vitoria et
al. [8] combined semantic and perceptual information through
adversarial learning and high-level classification features to
colorize grayscale images. In contrast, [11] used axial attention
to predict the distribution of each pixel colors based on the
previous pixel color distribution and the input grayscale image

in an autoregressive framework. Overall, previous automatic
colorization methods without interaction reduce colorization
time but lack user-specific requirements when compared to
purely manual colorization.

Exemplar-based colorization. These methods transfer color
information from a reference image, which can either be
provided by the user or proposed by a recommendation
system, to the grayscale target image. Welsh et al. [12]
matched luminance and texture information to transfer color
information between images. Many extensions of this method
have been proposed in the literature [3], [13], [14]. While
providing satisfactory results, they all highly depend on the
reference provided, and they cannot generate new colors if
not present. To address this limitation, combining learning-
based methods and exemplar-based approaches can overcome
this issue. In recent years, He et al. [4] proposed a fully
automatic image colorization system that used an end-to-
end neural network to calculate the similarity between the
reference image and the target image before color transfer.
Their image retrieval algorithm also automatically suggests
reference images by analyzing luminance and semantic fea-
tures to reduce manual work further. After, Yi et al. [6]
and Lu et al. [5] propose an end-to-end colorization network
that exploits semantic correspondences between two images
based on a gated attention mechanism. Improvement over [6]
was suggested in Blanch et al. [15] where they introduced
the axial attention mechanism for guiding the transfer of
color attributes from the reference image to the target image.
Recently Carrillo et al. [9] implemented the super-attention
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blocks that enable the transfer of semantically related color
characteristics from the reference image at various scales of a
deep network. And finally, [16] design a framework that sup-
ports colorization in multiple modalities, both unconditional
and conditional approaches such as stroke, exemplar, text, and
their combinations, achieving state-of-the-art results. However,
their technique cannot compensate for incorrect colors in less
semantically significant areas or differentiate less semantic
portions with identical local textures.

Segmentation. Image segmentation involves dividing an
image into multiple regions or segments, each of which
corresponds to a specific object. These approaches range
from classical methods such as thresholding [17], [18], clus-
tering [19], and edge detection [20] to deep learning-based
methods. They have been successfully applied to image gener-
ation [21], image-to-image translation [22], [23], and semantic
image synthesis [24]. Segmentation has been used for the
cartoon colorization task, starting by Sykora et al. [25], which
presents an exemplar-based colorization technique that uses
unsupervised image segmentation joined with patch-based
sampling to transfer colors from a reference colorized image.
Extensions have been made to natural image colorization.
Irony et al. [26] proposed a method for colorizing grayscale
images using a segmented reference image. It considers the
higher-level context of each pixel, resulting in colorization
with a higher degree of spatial consistency through the mean-
shift segmentation algorithm [27]. Later, Gupta et al. [28] used
superpixels to improve the colorization process by speeding up
the task and increasing spatial coherence, which was further
improved in [29] by taking into account intensity, texture, and
semantic features. Recent approaches such as Zhao et al. [30]
coupled neural networks and pixel-level object semantics to
guide colorization and mitigate the context confusion issues.
Recently, Su et al. [31] proposed a method to improve image
colorization with multiple objects, it uses an object detector
to extract object instances, then employs a neural network to
capture object-level features for later combining them with
full-image features using a fusion module to predict accurate
colors. Previous methods leverage fully automatic colorization
methods with segmentation, meaning human intervention is
unavailable for the colorization or segmentation tasks. The
previous leads to issues where the automatic segmentation
mask is inaccurate, or none of the objects were identified
correctly, causing visible artifacts such as washed-out colors
or bleeding across object boundaries.

III. COLORIZATION FRAMEWORK

Our objective is to add feasible colors to a grayscale image
using a color reference image. We aim to apply reference
colors to semantically related content in the target image while
creating a plausible colorization for regions or objects without
such relationships. This goal poses two challenges. First, mea-
suring the semantic connection between reference and target
images is particularly challenging when the reference and
the target images are partly semantically different. Secondly,
even if we have good similarity metrics, selecting appropriate
reference colors and effectively propagating them through the
target image remains a difficult task.

We propose an end-to-end colorization network framework
to address the previous two challenges. This framework in-
cludes two main parts that jointly handle the semantic cor-
respondence and chromatic propagation between the input
images. By doing so, we can break down the colorization task
into two distinct subproblems instead of a highly complex one.
Then, an external feature extractor is designed to extract color
features from the reference color image. The main colorization
network uses the original super-attention modules [32] in
combination with our proposal on masked features at various
levels of the encoder to guide the final colorization. The
main colorization network uses a traditional encoder-decoder
architecture similar to Unet [33], incorporating our proposed
superpixel-level masked attention blocks. These blocks enable
the transfer of color characteristics from the reference image to
the main colorization network, allowing a more accurate and
robust colorization. An overview of our proposal is depicted
in Figure 1.

Our approach uses the CIELAB color space, taking a
grayscale target image T and a color reference image R. Pre-
cisely, we extract the luminance component TL ∈ RH×W×1

of the target image, which is represented by channel L
from the CIELAB color space. The color reference image
RLab ∈ RH×W×3 is also represented in the same color
space. In this study, we opted for the luminance-chrominance
CIELAB color space as it is more perceptually uniform than
other color spaces [34]. Our framework predicts the target
chrominance channels T̂ab, and concatenates it with the target
luminance TL for retrieving the complete image in the LAB
color space T̂Lab. Next, it converts this result to the RGB color
space T̂ .

For training, we use a two-phase sequential approach that
involves first, training the framework without any segmenta-
tion (i.e., just pairs of full target-reference images), and then,
pre-loading weights from the previous step and re-training with
the masked super-attention block.

A. Colorization network

The main colorization network Φ aims to colorize a
grayscale target image based on a reference image, transferring
semantic-related color content where similarities exist and
relying on the learned model when there is a lack of this infor-
mation between the images. The users input to the colorization
network the target image TL and mask MT and reference
image RL and mask MR, which are processed to obtain deep
learning feature maps f `T and f `R from the `th level of the
network architecture. To learn to extract specific color features
from the reference image R, we use a VGG19 [35] encoder
pre-trained on ImageNet [36]. The color feature extractor
ϕ (see Figure 1) retrieves multiscale feature maps ϕ`

R. The
extracted features from the target and reference images are
then fed to our proposed attention blocks (see Section III-B),
where a correlation is computed between the masked features
of the target and reference images. Next, the network relies
on attention maps to transfer the content from the reference
to the target image. The color features generated from the
masked super-attention blocks are then introduced to the main
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Fig. 2. Overview of our masked super-attention layer. Given a reference luminance feature map, denoted as fR, a reference color feature map represented
as ϕR, and a target luminance feature map called fT with their respective reference mask MR and target mask MT . Through a robust matching process
between high-resolution encoded feature maps, this layer learns an attention map at the level of superpixels
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Fig. 3. Diagram of our masked super-features encoding proposal (MSFE).
This encoding block takes as input a feature map of size H×W ×C, where
each superpixel that belongs inside the mask Ms is extracted and encoded in
vectors of size C×Pi pixels. Afterward, the vectors are pooled channel-wise
and, finally, stacked in the super-features matrix F with size C ×N number
of superpixels.

colorization network encoder. Finally, the decoder predicts the
two chrominance channels T̂ab.

B. Masked Super-attention

In addition to colorizing grayscale images from full ref-
erence images, our colorization framework can also be used
to colorize specific objects within an image. This is done
using a segmentation mask Ms to identify the object of
interest. Once the object of interest has been specified, a
super-attention mechanism [9] is applied to focus on the most
essential features in that region. Mainly, this masked super-
attention mechanism, learns to find similar object-to-object
characteristics between a reference and a target image.

Target image Segmentation mask

SLIC [19] MaskSLIC [37]
Fig. 4. Example of superpixel algorithm on a gray-scale image. The superpixel
grids are generated using the SLIC and the MaskSLIC algorithm, which is a
region-based image segmentation algorithm. The SLIC algorithm divides the
full image into a set of small, non-overlapping regions. On the other hand,
the MaskSLIC divides only the regions inside a segmentation mask.

Our masked super-attention block is a novel way to add
controlled color information from a reference image to the
main colorization network Φ. This is achieved by comparing
the features of the target and reference images at multiple
levels. The masked super-attention block has two parts: the
masked super-features encoding layer (MSFE) and the super-
features matching layer (SFM). The MSFE creates a com-
pact representation of the high-resolution deep features using
superpixels constrained to a segmentation mask. The SFM
layer then matches these compact representations to find the
most similar features between the target and reference object
images. In the MSFE, we use features from all four levels
of the architecture, as these features provide a broad range of
high-level and low-level characteristics that are well-suited for
content and style applications [32]. Figure 2 shows the diagram
of our masked super-attention block where f `T , f `R and ϕ`

R are
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feature maps from the encoder f and the encoder ϕ at level ` of
TL, RL and R respectively. Figure 3 exemplifies the encoding
process of the MSFE block where superpixels are used to
represent the target and reference images into smaller regions.
Each of these smaller regions inside the mask Ms contains NT

and NR superpixels, respectively, with Pi pixels each, where
i is the superpixel index. We apply a channel-wise masked
pooling operation on the chosen superpixels to perform the
encoding. This results in super-features F with dimensions
C × N , where N is significantly smaller than H ×W . Our
masked-super-attention block is inspired by the super-attention
module [9], Which guides the colorization, considering the
global context of a full reference image. However, our masked
super-attention module focuses on specific object-to-object
feature maps, helping the network guide the colorization to
a particular structure the user decides. This guidance is done
by multi-level feature correlations between the target FT

and reference FR masked super-features by computing the
attention map at layer ` as:

A` = softmax(M`
TR/τ). (1)

The softmax operation normalizes row-wise the input into
probability distributions, proportionally to the number of target
superpixels NR. Then, the correlation matrix MTR between
target and reference super-features reads:

M`
TR(i, j) =

(
F `
T (i)− µ`

T

)
·
(
F `
R(j)− µ`

R

)∥∥F `
T (i)− µ`

T

∥∥
2

∥∥F `
R(j)− µ`

R

∥∥
2

(2)

where µT , µR are the mean of each super-feature and i, j are
the current superpixels that belongs to the segmentation mask
M from the target and reference respectively.

Figure 5 illustrates attention maps A` at all four levels
` of the architecture encoder. These attention maps depict
the similarity between specific characteristics of an object
in the target image and another in the reference image.
This shows that the learned masked attention map can find
relevant superpixels in the reference feature maps with similar
characteristics to the target superpixel.

Masked super-attention vs. original super-attention:
Masked super-attention can be seen as a generalization of the
super-attention from [9]. To retrieve this global attention, we
can simply apply the block without an object mask.

C. Loss function

In the context of automatic colorization, a common ap-
proach involves predicting the colors (T̂ab) by reconstruct-
ing them from the ground truth image (Tab). However, this
approach can be insufficient in exemplar-based colorization
because the main idea is to use the colors from the reference
image R to fully or partially colorize the grayscale image
TL. Therefore, the predicted colors T̂ab need to incorporate
the color information from a reference image, that is T̂ab =
φ(TL|R). The objective is to ensure a precise and consistent
transfer of color characteristics from the reference to the target.

Our method proposes a combined strategy using two loss
terms: L1 smooth and LPIPS [38]. The L1 smooth helps to

A1 A2

A3 A4

Fig. 5. Example of masked super-attention mechanism guidance. Each
bounding box presents a target and a reference image with a superpose grid
of superpixel using MaskSLIC [37] and its respective attention map A`. In
the first bounding box, we can see two arrows that point to which superpixels
from the reference image correspond to its similarities in the target image, in
addition to its similarity score in the attention map where rows refer to the
target superpixels and columns to reference superpixels.

ensure that the predicted colors are smooth and gradual as
well as helping to address the multi-modal ambiguity problem
in colorization [4], [5], [39]. This problem refers to the fact
that there can be multiple possible colorizations for a given
grayscale image. And the LPIPS loss encourages the network
to generate perceptually plausible images. These terms are
essential in reconstructing the final image accurately. The joint
total loss used in the training phase is then:

Ltotal = λ1L1smooth
+ λ2LLPIPS (3)

In this equation, λ1 and λ2 represent the predetermined
weights for each individual loss component.

IV. DATASET AND REFERENCE SELECTION

Our framework was trained on COCO dataset [40]. This
dataset exhibits images with complex scene structures and
diverse object classes. Additionally, it provides object seg-
mentation information, which we later use in our strategy of
pairing object-specific target and reference images. For our
training, we use two different splits of the dataset. First, a full
image-level split, which consists of 100k images for training
and 5k images for validation. Second, an object-level split
consists of 25k object images and their segmentation mask
for training and 1k images for testing. We resized the images
to a standardized size of 224×224 pixels during the training
process.
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Another essential aspect of the training strategy of
exemplar-based methods is the identification of an appropriate
semantic reference for the target image. For searching pairs be-
tween target and reference images in the full image-level split,
we use Carrillo et al. [9] approach to match several reference
images with each target one. In [9], five reference images
are ranked regarding semantic similarity using a pre-trained
VGG-19 and a L2 distance. However, we found that after top-
3, images do not convey significant semantic relevance with
respect to the target image. We therefore keep only top-3 target
images and complete this set with two additional pseudo-
synthetic reference images. These two images are obtained
by appearance and spatial transformation on the current target
image using the Thin Plate Spline (TPS) [41], [42], a non-
linear spatial transformation operator.

For the second split, we search pairs at the object level
between target and reference images. First, we do a local
search in each class to find meaningful objects whose size is
larger than a percentage of the actual image. This is because
image features are downsampled at each of the four levels
of the architecture, and then small objects will not introduce
meaningful characteristics to the attention calculation. For this,
we set the percentage empirically to 30%. Therefore, doing
superpixels on a smaller threshold (smaller objects) would
not represent the actual object well in the architecture lower
levels. Knowing the object class, we randomly sampled three
reference images from this class, and additionally, we applied
TPS transformation on the target object to finish a top-5
reference object images.

Finally, during training and for both splits, target-reference
pairs of images were sampled using a uniform distribution
with a weight of 0.25. This was accomplished by randomly
selecting either the three semantically closest reference images
or the two synthetic references.

V. EXPERIMENTS

A. Implementation details
In this paper, we implement an Unet-like generator archi-

tecture for our main colorization network Φ where, for each
of the levels in the encoder, we introduce our masked super-
attention block. Both the main model Φ and color encoder
ϕ are jointly trained. We employed the Adam optimizer to
optimize both networks with a learning rate of 10−5, β1 = 0.9,
and β2 = 0.99. The training was conducted in two phases.
First was a full image-level phase where we used the original
super-attention without providing any segmentation mask for
40 epochs. The second phase uses our masked super-attention
to introduce object-specific characteristics to the network for
10 epochs. Throughout both phases, a batch size of 8 was
used. In order to balance the losses, we set the coefficients
for each loss function as follows: λ1 = 2 and λ2 = 0.15. The
training process was performed on a single GPU, specifically,
the NVIDIA RTX 2080 Ti, and PyTorch 1.30.0 was used as
the programming framework.

We took inspiration from the original super-attention mod-
ule [9] when developing our masked super-attention approach.
The classic super-attention module employs the SLIC algo-
rithm [19] to calculate superpixel segmentation on the full

image level. However, our masked super-attention leverages
an object-specific segmentation mask for the calculation. We
then employ MaskSLIC [37] to compute both the target and
reference masked superpixel grid. Figure 4 shows an example
of the difference between SLIC and MaskSLIC. Note that any
superpixel segmentation method could be used.

B. Metrics details

To quantitatively evaluate the results, we used five metrics.
Three of the metrics compare the results with the ground-
truth color image, while the two other metrics compare the
prediction of colors with respect to the reference color image.

Structural similarity (SSIM) [43]. This metric analyzes the
ability of the model to reconstruct the original image color
and texture.

Learned perceptual image patch similarity (LPIPS) [38].
The goal is to measure the perceptual similarity between the
predicted and ground-truth images.

Learned perceptual image patch similarity w.r.t reference
(LPIPSR) [44]. This metric, also known as contextual loss,
measures the perceptual similarity between non-aligned im-
ages, in this case, the predicted and the reference images.

Fréchet Inception Distance (FID) [45]. This metric mea-
sures the similarity between the distribution of features ex-
tracted from a set of predicted images and the distribution of
features extracted from a set of ground-truth images.

Fréchet Inception Distance infinity (FID∞) [46]. Chong et
al. [46] show that the bias in the FID metrics depends on
the particular model being evaluated, so a specific model may
get a better score than another simply because the bias term
is smaller. The number of samples heavily influences this
effect. More precisely, FID is linear to 1/N , where N is the
number of generated samples. In [46], they propose a method
for extrapolating the FID scores to obtain an effectively bias-
free estimate of scores computed with an infinite number of
samples called FID infinity. Their method involves randomly
sampling images from a generated dataset of size N in k
intervals, each containing Nitv images. They calculate a FID
score for each of these intervals and perform linear regression
on these k data points to determine the bias-free FID metric,
denoted as FIDNitv

. This metric is particularly useful for
comparing our test set at the object level, especially when our
current split comprises only N = 1k images and is susceptible
to this bias issue. In detail, we let k = 15 as the default value
in their metric. In addition, we choose to calculate FID300

and FID600 as they are sufficient to know the true tendency of
the metric. Finally, To ensure robustness and reliability in our
results, since the metric relies on randomly sampled intervals
from the test set, we evaluate FID300 and FID600 ten times.
The final results are obtained by calculating the average and
standard deviation across these ten evaluations.

Histogram intersection similarity (HIS) [47]. This metric
evaluates the similarity of the global color distributions of the
two images. This metric becomes contradictory if the ground-
truth and reference have different color distributions. In other
words, a good histogram intersection similarity (HIS) score
between the predicted and reference image would lead to
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Target Reference Super-attention [9] Ours w/o seg.

Fig. 6. Results of using the original super-attention [9] on skip-connection and our implementation with super-attention module in the encoder. Our proposal
is more effective at transferring color characteristics between the reference and the target.

TABLE I
QUANTITATIVE ANALYSIS BETWEEN SUPER-ATTENTION IN THE SKIP CONNECTION [9] AND SUPER ATTENTION IN THE ENCODER AT FULL IMAGE LEVEL.

Full image split
T̂ - GT target T̂ - Reference

Method SSIM↑ LPIPS↓ FID↓ LPIPSR↓ ∆ HIS↓
Super-attention [9] 0.92 0.14 11.24 2.14 0.23
Ours w/o seg 0.91 0.14 9.20 2.01 0.18

poor scores in terms of structural similarity (SSIM), learned
perceptual image patch similarity (LPIPS ), and the Fréchet
Inception Distance (FID). We consider the reference image as
color guidance to our network in generating a more plausible
and realistic colorization. Thus, we regard the HIS score
between the ground-truth target images and the reference
images as the optimal score in this context, representing what
would be achieved with perfect predictions. Then, the equation
used for calculating ∆HIS:

∆HIS =| Thist (TH , RH)− Thist (T̂H , RH) |, (4)

where Thist refers to histogram intersection metric [48], and
TH , T̂H , and RH represent the chrominance histogram cal-
culated in the ab space for the target ground-truth, predicted
image, and reference image, respectively.

The metrics SSIM, LPIPS, and FID evaluate the quality
of the output colorization compared to the ground-truth. The
other two metrics, HIS and LPIPSR, are computed between
the predicted and reference colors images. The final results
for these five metrics are the averages calculated using either
the full-image evaluation set from the COCO validation set or
the subset of object-level within the same dataset. We strongly
believe that these five metrics provide a comprehensive mea-
surement of the quality of the output colorization at the full-
level image and the object-level image.

C. Analysis on super-attention at the encoder

We conduct qualitative and quantitative evaluations to in-
spect the super-attention effectiveness in the encoder rather
than in the skip-connections as presented in [9]. For our
proposal with the original super-attention in the encoder, we
named it ”our proposal without segmentation”, as we used the
super-attention and not the masked super-attention. And the
approach using the super-attention in the skip-connection is
called super-attention [9]. In terms of quantitative results, Ta-
ble I shows that our proposal, without segmentation, retrieves
a better FID score than using the original super-attention in
the skip connection. However, in the other two metrics that
compare the target with respect to the ground-truth (LPIPS and
SSIM), our super-attention in the encoder got worse results
than [9]; this happened because the super-attention in the
encoder uses sequentially the outputs of high and low deep-
features features of the encoder which push the transfer of
features from the reference to the target image. For the metrics
comparing the results with respect to the reference image, our
proposal achieves better results in LPIPSR and ∆HIS, which
means that results using super-attention in the encoder present
more semantics characteristics from the reference image, as
well as better similarity on the global tone from the reference
image than the super-attention approach [9].

Figure 6 compares these two versions qualitatively. In the
case of the super-attention in the skip connection [9], it
produces washed-out and opaque colors, which means that
colors expected from the reference images are not being truly
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Target Reference Mask target Mask reference Ours w/o fine-tune Ours

Fig. 7. Comparison of the proposal with and without fine-tuning at object-level. The first four columns show the inputs to our framework, which the user
provides. The fifth column shows the results of our framework without object-level learning. This means we only use our masked super-attention module
without additional training on object-specific images. The last column shows the results of our full method, which includes both the masked super-attention
module and fine-tuning on object-level images

TABLE II
QUANTITATIVE RESULTS ON FINE-TUNING AT OBJECT-LEVEL. OURS W/O FINE-TUNE. CORRESPONDS TO OUR PROPOSAL WITHOUT FINE-TUNING ON

OBJECT IMAGES BUT USING MASKED SUPER-ATTENTION. OURS CORRESPONDS TO OUR FULL MODEL WITH MASKED SUPER-ATTENTION MODULE AND
AFTER FINE-TUNING WITH OBJECT-RELATED IMAGES.

Object level split
T̂ - GT target T̂ - Reference

Method LPIPS↓ FID↓ FID∞ 300 ↓ FID∞ 600 ↓ LPIPSR↓ ∆ HIS↓
Ours w/o fine-tune. 0.17 32.80 10.87 ± 0.29 4.02 ± 0.33 1.92 0.18
Ours 0.15 30.45 6.80 ± 0.28 2.67 ± 0.32 2.04 0.17

transferred but average to the target image. On the other
hand, placing the super-attention in the encoder forces vivid
and visually pleasant transfer of color characteristics between
reference and target images.

D. Fine tuning at object-level
This subsection evaluates the benefits of training our pro-

posal with object-level images. We conducted experiments on
two versions of our model using the same architecture and
pre-trained at the full-image level (first training phase). The
first uses the masked super-attention module without further
fine-tuning or training on object-specific images. The second
is our full proposal, including the masked super-attention
and training phases with full and object-level images. We
compared the two models quantitatively and qualitatively.

As shown in Table II, our full proposal achieved better
LPIPS and FID results, meaning that stronger perceptual
similarities are retained between the colorized results and the
target ground truth. In metrics concerning the references, such
as LPIPSR, the approach without fine-tuning achieves better
results showing that the masked super-attention can transfer
meaningful semantic characteristics from the reference object
to target object. Finally, our full method achieves smaller
∆HIS, meaning that the global tone of the reference object
is also well transferred.

In addition to the quantitative evaluation, Figure 7 provides
a qualitative comparison of the two approaches. In the first
row, the goal is to colorize the woman’s sweater in the target
image with the color characteristics of the pink pajamas in
the reference image while ensuring that the rest of the image
is properly colorized. The result achieved by our proposal
without leaning at the object level shows a correct transfer
of color within the sweater; however, the face shows a not
visually pleasant grayish color with slight color bleeding
on the wall. Our full proposal overcomes previous aspects;
however, we got a yellowish tonality in the back wall. For
the last image, the goal is to transfer the bird’s blue in the
reference images to the bird in the image in the grayscale.
The result of our proposal, without learning at the object level,
presents a fairly good transfer of colors from the global tones
within the object, as we can see that a mix of dark blue is
transferred to the target image. However, our full proposal
shows a more colorful colorization with a brighter blue, nearly
as the one in the reference mask image.

The results showed that our full proposal achieved the
best performance in terms of both quantitative and qualitative
metrics with respect to our proposal without fine-tuning object-
specific images. This suggests that by fine-tuning the masked
super-attention results gains more spatial consistency in colors
between the object and the image background, resulting in
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Target Reference Gray2ColorNet [5] Just attention [6] Super-attention [9] Unicolor [16] Ours

Fig. 8. Comparison of our proposed method with different reference-based colorization methods. Target and reference images are the only input to the SOTA
methods: Gray2colorNet [5], Just Attention [6], Super-attentionT [9], Unicolor [16]. For our full method, in addition to the target and reference images, users
can also provide an object segmentation mask. The yellow contours in both columns of images indicate the object segmentation mask.

TABLE III
COMPARATIVE EVALUATION AT FULL IMAGE LEVEL.

Full image split
T̂ - GT target T̂ - Reference

Method SSIM↑ LPIPS↓ FID↓ LPIPSR↓ ∆ HIS↓
Gray2ColorNet [5] 0.89 0.24 22.04 2.17 0.34
Just attention [6] 0.90 0.23 16.80 2.23 0.26
Super-attention [9] 0.92 0.14 11.24 2.14 0.23
Unicolor [16] 0.88 0.22 9.70 2.11 0.21
Ours w/o seg 0.91 0.14 9.20 2.01 0.18

more naturalness in the image.

E. Comparison with state-of-the-art

We evaluate the performance of our framework, and for
that, we compared our results quantitatively and qualitatively
with four other state-of-the-art exemplar-based image coloriza-
tion approaches Gray2colorNet [5], Just attention [6], Super-
attention [9] and Unicolor [16]. To ensure a fair comparison,
we ran the available codes for the four approaches using the
same experimental protocol and the same evaluation set for
all the methods.

Color transfer at full image level. As shown in Table III
our proposal without object-specific segmentation obtains the
best LPIPS, FID, and LPIPSR. The latter means that our
framework retains strong perceptual information not only from
the original target image but as well as from the reference color
image. For the SSIM metric, ours achieve competitive results
with respect to super-attention [9] and surpasses all four other
methods. Finally, our method achieves a smaller ∆HIS with
respect to all compared state-of-the-art methods. This indicates
that rather than forcing to transfer all colors from the reference
images, our model has the ability to selectively choose specific
colors from the references. As a result, it can generate natural
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TABLE IV
COMPARATIVE EVALUATION AT OBJECT-LEVEL.

Object level split
T̂ - GT target T̂ - Reference

Method ↑ LPIPS↓ FID↓ FID∞ 300 ↓ FID∞ 600 ↓ LPIPSR↓ ∆ HIS↓
Gray2ColorNet [5] 0.18 35.85 19.04 ± 0.31 18.40 ± 0.26 2.88 0.21
Just attention [6] 0.19 39.65 15.34 ± 0.23 14.76 ± 0.45 2.58 0.18
Super-attention [9] 0.17 32.61 8.22 ± 0.28 4.28 ± 0.38 2.14 0.20
Unicolor [16] 0.23 32.40 7.64 ± 0.15 3.57 ± 0.32 1.87 0.16
Ours 0.15 30.45 6.80 ± 0.28 2.67 ± 0.32 2.04 0.16

colorization results.

Color transfer over object. Table IV shows the comparison
of the four evaluation metrics for each of the different methods.
It is important to note that these metrics were calculated
on object-specific images. Instead of doing calculations on
the entire predicted image, we cropped the specific object
for which color transfer was desired and measured each of
the metrics on this object image. As for the metrics used,
we employed LPIPS, FID, LPIPSR, and HIS as mentioned
before. In addition, we utilized both the classic FID method
and the unbiased FID∞ for this purpose. In terms of metrics
our full proposal retrieves more perceptually semantically
characteristics at the object level than other fourth methods.
From all the variants of FID calculations, our method manages
to well retain similar characteristics distribution from the
ground-truth images. LPIPSR metric measures how well the
model transfers perceptual characteristics from the reference
image to the target one. In this case, our method surpasses
all state-of-the-art approaches. Finally, in terms of ∆HIS our
full method successfully achieves smaller results with these
metrics in comparison with all state-of-the-art methods as well
as our method without segmentation part. This demonstrates
the capability to transfer color characteristics from an object
reference to specific regions on the target object.

Figure 8 shows results of image colorization from five
different methods: [5], [6], [9], [16], and our full method.
For the first two images, our proposal produces more visually
pleasant and natural colorization than the other four methods.
The results from [5], [6], and [9] fail to transfer the blue
from the woman’s sweater. Additionally, [6] and [9] produce
washed-out colors, making the head and clothes having the
same color in the first image. For the fourth image, [5] and [16]
show a high amount of color bleeding, mainly on the car.
This color bleeding also appears on the small trailer and in
its background. In contrast, our proposal and [5] shows the
right balance between transferring colors between objects and
colorizing the background. Finally, for the last image, [6], [9],
and [16] struggle to find the correct colors to transfer. The
first method transfers a red color, the second method transfers a
blue color, and the third method transfers an average of colors.
Our proposal and [16] correctly transfer vivid colors from
the reference image, especially from the ship in the reference
image. Our proposal and [16] shows the right balance between
a colorful colorization and the naturalness from the learned
colorization model.

VI. CONCLUSION

In this paper, we have introduced a novel end-to-end deep
learning framework for exemplar-based colorization, which
stands out for its ability to incorporate user-provided object
masks. Our proposed masked super-attention provides visually
pleasant and spatially consistent results with vivid colors.
We performed a comprehensive evaluation, which includes
both full-image and object-level metrics, outperforming quan-
titatively four state-of-the-art methods. However, we believe
there is room for improvement, particularly regarding the
layers where the masked super-attention module is applied.
A possible solution involves calculating the attention maps on
upsampled low-level features and re-weighing them with all
attention maps. Another future line of work could be to study
the clipping problem arising from passing from Lab to RGB
spaces when the combination of predicted Lab values falls
outside the conversion range. One solution could be using an
oblique projection [49] in the final part of our model.
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