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Describing geophysical turbulence with a Schrödinger-Coriolis equation in velocity space *

In this paper we examine the predictions of the scale-relativity approach for a turbulent fluid in rotation. We first show that the time derivative of the governing Navier-Stokes equation in usual x-space can be transformed into a Schrödinger -like equation in velocity space with an external vectorial field to account for the rotation, together with a local Velocity Harmonic Oscillator (VHO) potential in v-space. The coefficients of this VHO are given by second order x-derivatives of the pressure. We can then give formulae for the velocity and acceleration Probability Distribution Functions (PDF). Using a simple model of anisotropic harmonic oscillator, we compare our predictions with relevant data from both Direct Numerical Simulations (DNS) and oceanic drifters velocity measurements. We find a good agreement of the predicted acceleration PDF with that observed from drifters, and some possible support in DNS for the existence of gaps in the local velocity PDF, expected in the presence of a Coriolis force.

Introduction

The theory of scale relativity and fractal space-time is based on relaxing the assumption of space smoothness and differentiability. As shown by Nottale [START_REF] Nottale | Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity[END_REF], a non-differentiable space is necessarily a fractal space. However, non-differentiablity is a deeper than mere fractality because it implies the arising of other mathematical properties, like two-valuedness. It also implies that derivatives can only be considered at a given scale, i.e. without using the infinitesimal limit. This theory has been recently applied to the problem of turbulence in fluid mechanics [START_REF] De Montera | A theory of turbulence based on scale relativity[END_REF][START_REF] Nottale | Relativity of Scales, Fractal Space-Time and Quantum Potentials[END_REF][START_REF] Nottale | Turbulence and Scale Relativity[END_REF]. The key idea for this application consists of working in velocity-space instead of position-space, i.e., of using the velocity as basic coordinate [START_REF] De Montera | A theory of turbulence based on scale relativity[END_REF]. This suggestion was motivated by the Kolmogorov (K41) [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[END_REF] scaling relation of velocity increments δv ∼ δt 1/2 in a turbulent flow. Indeed, this relation can be interpreted as a fractality of the velocity field with a fractal dimension D F = 2 (while the position field is not fractal).

The reason for going beyond mere fractality and using a fractal velocity-space is that the fluid's internal interactions have no reason to be smooth and regular (in the limit of zero viscosity). Therefore, due to the law of motion, all these properties are transfered from forces to Lagrangian velocities [START_REF] De Montera | A theory of turbulence based on scale relativity[END_REF]. Taking into account all the new mathematical properties related to non-differentiability and explicit scale dependence, one of the main consequences is that the time-derivative of the Navier-Stokes equations can be reintegrated under the form of a Schrödinger-like equation [START_REF] De Montera | A theory of turbulence based on scale relativity[END_REF]. Moreover, a new acceleration component is derived [START_REF] Nottale | Relativity of Scales, Fractal Space-Time and Quantum Potentials[END_REF], which allows to suggest an explanation for intermittency [START_REF] Nottale | Turbulence and Scale Relativity[END_REF] and for the extremely large non-Gaussian accelerations observed in turbulent fluids [START_REF] La Porta | Fluid particle accelerations in fully developed turbulence[END_REF][START_REF] Mordant | Measurement of Lagrangian Velocity in Fully Developed Turbulence[END_REF][START_REF] Voth | Measurement of Particle Accelerations in Fully Developed Turbulence[END_REF]. We have given in Ref. [START_REF] Nottale | Turbulence and Scale Relativity[END_REF] an extended account of the application of the scale relativity theory to isotropic 3D turbulence, including the founding principles on which it is based. However, one important field of application of turbulence theory is geophysics for which the presence of a Coriolis need to be taken into account. Therefore, in the present paper, we generalize this approach to rotating frames.

When considering the atmosphere or the ocean, the large scale range prevents one from performing Direct Numerical Simulations (DNS). Two different traditional approaches have been used to solve this issue. The first one consists in approximating statistically the effect of small scale processes on the non-linear terms of Navier-Stokes equations (NS). This allow performing so-called Large-Eddy Simulations (LES) by reducing artificially the scale range, however, one limitation is that there is no theoretical expression providing the related errors. The second traditional approach consists in refining dimensional analysis by taking into account gravity for example [START_REF] Bolgiano | Turbulent spectra in a stably stratified atmosphere[END_REF][START_REF] Obukhov | On influence of buoyancy forces on the structure of temperature field in a turbulent flow[END_REF] and/or developing more and more sophisticated multiplicative cascade objects to deal with turbulence intermittency [START_REF] Schertzer | Multifractal vector fields and stochastic Clifford algebra[END_REF][START_REF] Lilley | 23/9 dimensional anisotropic scaling of passive admixtures using lidar aerosol data[END_REF] . The limitation here is that renouncing to differential calculus leads to the impossibility to fully deal with initial and boundary conditions. In this context, using a non-differentiable fractal space has the potential of combining the advantages of both of these approaches, because the explicit scale dependence and the relaxation of the smoothness assumption allows incorporating fractal processes within differential equations.

First, Section 2 recalls the basis of scale relativity theory, the arising mathematical properties and the derivation of Schrödinger equation in a fractal space-time. Then, in Section 3, this framework is applied to turbulence in velocity-space and generalized to the presence of a Coriolis force. Finally, in Section 4, the theoretical predictions are tested against outputs of a Direct Numerical Simulations (DNS) and experimental data extracted Here ζ ± represents a dimensionless stochastic variable such that <ζ ± >= 0 and <ζ 2 ± >= 1. The parameter D characterizes the amplitude of fractal fluctuations.

These various effects can be combined in terms of a total derivative operator [START_REF] Nottale | Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity[END_REF] which generalizes the Euler derivative to a fractal space:

d dt = ∂ ∂t + V.∇ -iD∆. (2) 
Newton's fundamental equation of dynamics becomes, when it is written in terms of this operator

m d dt V = -∇φ. (3) 
In the absence of an exterior field φ, this is a geodesic equation (i.e., a free inertial Galilean-type equation),

d dt V = ∂ ∂t + V.∇ -iD∆ V = 0. (4) 
The next step consists of making a change of variable in which one connects the velocity field V = V -iU to a complex function ψ = e iS/S 0 (where S is the action, now complex because the velocity field is itself complex), according to the relation mV = -i S 0 ∇ ln ψ.

(
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This equation is but the standard relation between momentum and action P = ∇S, that provides a new expression (now exact) for the principle of correspondance. The parameter S 0 is a constant for the system considered (it identifies to the Planck constant in standard quantum mechanics). Thanks to this change of variables, the equation of motion can be integrated under the form of a Schrödinger equation [START_REF] Nottale | Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity[END_REF][START_REF]Nottale Scale Relativity and Fractal Space-Time: a New Approach to Unifying Relativity and Quantum Mechanics[END_REF], generalized to a constant which may be different from ,

D 2 ∆ψ + iD ∂ ∂t ψ - φ 2m ψ = 0, (6) 
where the two parameters introduced hereabove, S 0 and D, are linked by the relation:

S 0 = 2mD. ( 7 
)
By setting finally ψ = √ P × e iθ , with V = 2D∇θ, one can show [START_REF] Nottale | Derivation of the postulates of quantum mechanics from the first principles of scale relativity[END_REF][START_REF]Nottale Scale Relativity and Fractal Space-Time: a New Approach to Unifying Relativity and Quantum Mechanics[END_REF] that P = |ψ| 2 gives the number density of virtual geodesics. This function becomes naturally a density of probability when the geodesics are manifested in terms of effective particles. The function ψ, being solution of the Schrödinger equation and subjected to the Born postulate and to the Compton relation, owns therefore all the properties of a wave function.

Schrödinger equation in a vectorial field

More generally, let us consider an equation of dynamics of the Lorentz force type,

dv dt = -∇φ + v × B. (8) 
Including the geometric effects of nondifferentiability and fractality, it becomes:

d dt V = -∇φ + V × B, (9) 
assuming here that the fractality and the local irreversibility affects the motion of the particle but not the field B.

Inserting the expression for d/dt in this equation, then introducing a wave function ψ from the complex action, it can be integrated in terms of the Schrödinger equation for a particle of mass m = 1 in a vectorial-like field [START_REF] Nottale | Scale-Relativity: First Steps toward a Field Theory[END_REF][START_REF] Nottale | Generalized quantum potentials[END_REF][START_REF]Nottale Scale Relativity and Fractal Space-Time: a New Approach to Unifying Relativity and Quantum Mechanics[END_REF],

D∇ -i K 2 2 ψ + iD ∂ψ ∂t = φ 2 ψ, (10) 
where B = curlK.

3 Scale relativity approach to turbulence in v-space

Equation of dynamics in v-space

The application of the scale relativity approach to fluid turbulence in the inertial range (where the K41 relation δv ∼ δt 1/2 holds) amounts to just shift the variables (x, v, a) to (v, a, ȧ) [START_REF] De Montera | A theory of turbulence based on scale relativity[END_REF][START_REF] Nottale | Turbulence and Scale Relativity[END_REF]. Now, the velocity V is the primary variable, while the fundamental local irreversibility issued from non-differentiability leads to a two-valuedness of the acceleration field, (A + , A -), which is represented in terms of a complex acceleration,

A = A + + A - 2 -i A + -A - 2 = A R -iA I . (11) 
In the inertial range, and neglecting for the moment the Langevin term -v/T L , the new Lagrangian description starts with two stochastic differential equations (SDE) in v-space:

dV + = A + dt + dV ξ+ (12) dV -= A -dt + dV ξ- (13) 
where the scale dependence of the stochastic fluctuation reads:

dV ξ± = ζ ± 2D v |dt| 1/2 , ( 14 
)
where D v is a fundamental parameter, specific of the turbulent flow under consideration, which is homogeneous to a diffusion coefficient in v-space. This relation is the expression of the K41 scaling in the ScR approach. Such linear SDEs should yield Gaussian processes (see [START_REF] Pope | A stochastic Lagrangian model for acceleration in turbulent flows[END_REF] and references therein). However the experimentally observed stochastic behavior of velocity increments and of accelerations is far from Gaussian in turbulent flows (their probability distribution function (PDF) shows large tails which have been observed beyond 50 σ). This is fully explained by the scale-relativity process, which generates a new acceleration component A q = ±D v ∂ v ln P v (where P v (v) is the velocity PDF, see here below), that is at the very origin of this non-Gaussianity and of intermittency [START_REF] Nottale | Relativity of Scales, Fractal Space-Time and Quantum Potentials[END_REF][START_REF] Nottale | Turbulence and Scale Relativity[END_REF]. Because of this new contribution, the coefficient D v differs from its expected expression in the K41 regime,

D v = 1 2 C 0 ε = σ 2 v /T L
, where C 0 is Kolmogorov numerical constant, ε is the energy transfer rate, σ v is the velocity dispersion and T L the integral time-scale.

In this model, there still exists a purely stochastic background which remains fully Gaussian and which serves as seed for the fractal / scale-relativity process. This has been demonstrated by an analysis of Lagrangian experimental data: it has been shown that, in the intermittent alternation of calm periods and bursts, the calm zones (for which the new acceleration component vanishes) remain fully Gaussian, while the burst zones (generated by A q ) exhibit a highly non-Gaussian acceleration PDF characterized by large tails [START_REF] Nottale | Turbulence and Scale Relativity[END_REF].

Let us follow the successive steps of the derivation of these results in the v-space case. The reduced variable ζ ± is taken here to be a dimensionless Gaussian stochastic variable such that <ζ ± >= 0 and <ζ 2 ± >= 1. The parameter D v characterizes the amplitude of the fluctuations. It is apparented to a diffusion coefficient, but its meaning here is more general.

Using the Ito calculus, the various effects of fractality and non-differentiability can be combined in terms of a total derivative operator acting in v-space [START_REF] Nottale | Turbulence and Scale Relativity[END_REF]:

d dt = ∂ ∂t + A.∇ v -i D v ∆ v , (15) 
where the gradient and Laplacian operators are just the standard ones in terms of velocity coordinates,

∇ v = (∂/∂v x , ∂/∂v y , ∂/∂v z ) and ∆ v = ∂ 2 /∂v 2 x + ∂ 2 /∂v 2 y + ∂ 2 /∂v 2 z .
The Navier-Stokes equation (reduced to the Euler equation in the inertial range by neglecting for the moment the viscous term) writes in Lagrangian form dv/dt = F = -∇p/ρ. In the incompressible case, its derivative with respect to time reads:

da dt = - ∇ ṗ ρ . (16) 
In order to account for the various effects described here, one replaces d/dt by the new total derivative operator d/dt. One therefore obtains the new equation of dynamics in v-space:

d dt A = ∂ ∂t + A.∇ v -i D v ∆ v A = Ḟ , (17) 
where F contains the pressure gradient term and possibly an applied external force.

Force and potential in v-space

The new formulation involving the derivative of the Navier-Stokes equations has introduced the time derivative of a force. It is therefore important to study in more details the nature of such a derivated force. We shall now prove that when the force in x-space derives from an x-potential, the force in v-space also derives, now, from a v-potential.

Universal v-potential

Let φ be the potential in x-space, with

F i = -∂ i φ for x i = (x, y, z). The force in v-space is therefore Ḟi = - d dt (∂ i φ) = -∂ i d dt φ[x(t), y(t), z(t)], (18) 
Since v i = dx i /dt, we obtain for the first component of the force Ḟ = F v :

(F v ) x = - ∂ 2 φ ∂x ∂t - ∂ 2 φ ∂x 2 v x - ∂ 2 φ ∂x ∂y v y - ∂ 2 φ ∂x ∂z v z , (19) 
and similar expressions for the two other components. Therefore we find the important result according to which this v-force derives in a universal way from a v-potential, which reads (adopting Einstein's notation about indices summation)

φ v = (∂ t ∂ i φ) v i + 1 2 (∂ i ∂ j φ) v i v j . (20) 
In a more explicit way, it writes in dimension 2:

φ v (v x , v y ) = ∂ 2 φ ∂x ∂t v x + ∂ 2 φ ∂y ∂t v y + 1 2 ∂ 2 φ ∂x 2 v 2 x + 2 ∂ 2 φ ∂x ∂y v x v y + ∂ 2 φ ∂y 2 v 2 y , (21) 
with similar terms involving the third coordinate. This is in particular true for the pressure gradient in the NS equation, in which the pressure itself plays the role of a potential energy in the incompressible case (while this role is played by the enthalpy when the fluid is compressible). The pressure can be decomposed, under the Reynolds method, in terms of a mean pressure p, which is differentiable and of a turbulent fluctuation δp which is non-differentiable and of zero mean. We obtain in the derivated Navier-Stokes equations a force -∇ v p v in terms of v-potential p v coming from the mean pressure, which writes in 2D:

p v (v x , v y ) = ∂ 2 p ∂x ∂t v x + ∂ 2 p ∂y ∂t v y + 1 2 ∂ 2 p ∂x 2 v 2 x + 2 ∂ 2 p ∂x ∂y v x v y + ∂ 2 p ∂y 2 v 2 y , (22) 
with similar z terms in 3D.

Harmonic oscillator in v-space

We see in Eq. 21 that the first term, which appears when the x-potential depends on time, is the potential of a uniform v-force when the coefficients can be taken as constant with a good approximation.

As concerns the second term (which results from the time-independent part of the x-potential), let us set

a xx = 1 2 ∂ 2 φ ∂x 2 , a xy = 1 2 ∂ 2 φ ∂x ∂y , a yy = 1 2 ∂ 2 φ ∂y 2 . ( 23 
)
On a space-scale for which these coefficients can be considered as constant with a good approximation, three possible situations are to be studied, depending on the sign of these coefficients.

(1) a xx > 0 and a yy > 0. We set a x = √ a xx and a y = √ a yy . One can define new v-coordinates through the transformation:

V X = 1 √ 2 (a x v x + a y v y ), V Y = 1 √ 2 (-a x v x + a y v y ). (24) 
By setting A XY = a xy /(a x a y ), we obtain a simplified form for the v-potential where the variables are now separated (but still centered around the origin):

φ v = (1 + A XY ) V 2 X + (1 -A XY ) V 2 Y . (25) 
(i) When |A XY | < 1, the two contributions are positive and correspond to the attractive force of a 2D harmonic oscillator (HO), while (ii) When |A XY | > 1, one gets an HO on one axis and an exponential damping on the other.

(2) a xx < 0 and a yy < 0. We set a x = √ -a xx and a y = √ -a yy . One can define new v-coordinates through the transformation:

V X = 1 √ 2 (a x v x + a y v y ), V Y = 1 √ 2 (-a x v x + a y v y ). (26) 
By setting A XY = -a xy /(a x a y ), we obtain a simplified form for the v-potential where the variables are now separated:

φ v = -(1 + A XY ) V 2 X -(1 -A XY ) V 2 Y . (27) 
(i) When |A XY | < 1, the two contributions are negative and correspond to a repulsive force leading to exponential damping on the two axes.

(ii) When |A XY | > 1, one gets an HO on one axis and an exponential damping on the other.

(3) a xx > 0 and a yy < 0. We set a x = √ a xx and a y = √ -a yy and A xy = -a xy /(a x a y ).

One can define new v-coordinates through the transformation:

V x = a x v x + a xy a x v y , V y = a y 1 + A 2 xy v y . (28) 
We obtain a simplified form for the v-potential where the variables are now separated:

φ v = V 2 x -V 2 y . (29) 
We obtain an HO on the V x variable (defined as corresponding to the positive a xx ) and an exponential decay on the other variable (negative a yy ).

We can now combine the various effects of the initial x-potential: (i) the linear contributions coming from time-dependence; (ii) the quadratic contribution coming from space-dependence; (iii) plus a constant contribution; to finally write the v-potential under the general form:

φ v = (α x V 2 x + α y V 2 y ) + (β x V x + β y V y ) + γ = 1 2 k x (V x -V x0 ) 2 + 1 2 k y (V y -V y0 ) 2 , ( 30 
)
to which similar terms in V z can be added in 3D. The variables are now separated so that we can consider the 1D problem

φ v = 1 2 kV 2 , where V = (V x -V x0 ) is a velocity difference. When k = -ω 2 < 0, the v-force is repulsive and the classical motion equation takes the form, V -ω 2 V = 0, (31) 
The classical solution describes an exponential damping V = w exp(-ωt). Therefore, in the regions where k is negative, the velocity tends to vanish. At the integral scale, this equation is another form of the Langevin equation V = -V /T L for ω = 1/T L , which yields the integral time-scale T L and the typical velocity auto-correlation in a turbulent fluid.

The corresponding quantum equation is solved in terms of parabolic cylinder functions D ν (z). When k = ω 2 > 0, the v-force F v = -kV is attractive, the classical motion equation takes the harmonic oscillator (HO) form

V + ω 2 V = 0, (32) 
and the solutions are harmonic oscillators V (t) = w cos(ωt + ϕ). The quantum solutions are the well-known Quantum Harmonic Oscillators (QHOs) given by Hermite polynomials. All these results are easily generalizable to three or more dimensions. They apply to any x-potential, but more importantly to the pressure term p/ρ itself, whose derivative ṗ/ρ = P v (v)/ρ yields the v-force in the derivated Euler equations,

ρ da dt = -∇ v P v . (33) 
Let us finally consider the question of the space-time dependence on (t, x, y, z) of the frequency of these v-HOs.

Among all the possible x-potentials φ, harmonic oscillators potentials play a special role, since they are completely symetrical in position and velocity. Indeed, when φ =

1 2 ω 2 x 2 , one finds φ v = 1
2 ω 2 v 2 with the same constant frequency. Except in this special and fundamental (Planck-Einstein-type) case, the coefficients of the v-HOs depend on space and time coordinates. It may however be possible, in some cases, to invert this dependence and to obtain an exact form for the force and then for the potential. In dimension one, it reads V = V (X) then x = X(V ), so that

F v = -k(x)V with k(x) = ∂ 2 φ(x)/∂x 2 . The v-force becomes F v = -k[X(V )] V and derives from a v-potential: φ v (V ) = V 0 k[X(v)] v dv. (34) 
A more complete study of this process lies outside the scope of the present paper and will be given elsewhere. It leads in general to the same kind of results as before, i.e. off-center HO (or anharmonic oscillators, anHO), or damping solutions showing exponential decay. Another approch consists in taking solutions which are only local. As concerns the specific question considered here, namely, the shape of the potential which will appear in the macroscopic Schrödinger equation, the main point is that the Schrödinger equation Eq. 38 is written at the integral scale and beyond, since its construction relies on the cascade of eddies of the K41 inertial regime which plays the role of its (relative) microscopic theory. The potential φ v which appears in it is therefore defined at this scale, which means that its coefficients are averaged over the scale ∼ T L for the time coordinate and ∼ L for the space coordinates and can therefore be considered as constant over these space and time scales.

A final question to be discussed is the fact that the force expression from which we started, F = -∇p/ρ is valid in Eulerian coordinates, while its expression in Lagrangian coordinates has a more complicated form involving a Jacobian transform. However, our final result in v-space can be expressed in terms of the velocity components V i alone, which now play the role of primary coordinates. Such a force depending just on the coordinates therefore applies both to the Eulerian and Lagrangian form of the Navier-Stokes equations (and their derivative).

Macroscopic Schrödinger equation in v-space

Let us now consider the force in v-space, that we can formally write Ḟ (v). In the turbulent case considered here, it is well known that it manifests itself in terms of an energy cascade of eddies [START_REF] Richardson | Atmospheric Diffusion shown on a Distance-Neighbour graph[END_REF].

The pulsating [START_REF] Landau | Fluid Mechanics[END_REF] or oscillatory nature of the motion of fluid (or test) particles in eddies has led us to formalize them as a sum of oscillators. These oscillators are solutions of the well-known motion equation for harmonic (HO), damped (DHO) or anharmonic (AHO) oscillators. One of the advantages of this representation is that, in all cases, the force that generates these oscillators derives from a potential, in x-space as well as in v-space. As we shall see, this method becomes particularly useful with the Schrödinger form of the motion equation that we shall obtain, since quantum oscillator solutions, harmonic (QHO) and damped (QDHO) are well known and largely studied in standard quantum mechanics.

Therefore, an important contribution to the total force can be written in terms of the v-gradient of a potential φ v , and we get the equation:

d dt A = -∇ v φ v . (35) 
Then we introduce a wave function ψ v as a re-expression of the action S v which is now complex (since the dynamical variables are complex):

ψ v = e iSv/2Dv . ( 36 
)
It can be decomposed in terms of a modulus and a phase:

ψ v = P v × e iθv/2Dv . ( 37 
)
The main point here is that the PDF of velocities is given by the square of the modulus of the wave function,

P v (v) = |ψ v | 2
, while its phase is linked to the real part of the complex acceleration through the relation

A R = ∇ v θ v . The constant v = 2D
v is therefore the macroscopic equivalent in v-space of the constant of standard quantum mechanics (more generally, when m = 1, they are related by v = 2mD v ).

Schrödinger equation in v-space Finally, the time derivative of the Navier-Stokes fluid equations takes, after integration on v, the form of a macroscopic Schrödinger equation in v-space [START_REF] De Montera | A theory of turbulence based on scale relativity[END_REF][START_REF] Nottale | Relativity of Scales, Fractal Space-Time and Quantum Potentials[END_REF][START_REF] Nottale | Turbulence and Scale Relativity[END_REF]:

D 2 v ∆ψ v + i D v ∂ ∂t ψ v - 1 2 φ v ψ v = 0. ( 38 
)
This Schrödinger equation describes the effects of the part of the turbulent force (F = -∇p/ρ + possible forcing terms) which can be written in terms of the gradient of a potential in v-space. We have seen that this can be done, at least formally, for any force which derives itself from a potential in x-space, among which the most important one, the pressure gradient -∇p/ρ. We shall now see that there is more to that, since this v-potential takes in a universal way the form of an harmonic oscillator.

Link to the cascade of eddies In Ref. [START_REF] Nottale | Turbulence and Scale Relativity[END_REF], our argument for the description of the v-space force in terms of HO potentials relied on the experimental observation of the cascade of eddies. The motion of a Lagrangian particle driven by an eddy is expected to be locally described by an HO or DHO (also forced), which has a priori no reason to be centered around (v x , v y ) = (0, 0)). The new property obtained here, according to which any force in x-space deriving from a potential results in an off-center harmonic oscillator force in v-space, justifies and reinforces this choice. The experimental laboratory data fairly supports this conclusion [START_REF] Nottale | Turbulence and Scale Relativity[END_REF].

Recall finally that, since it is founded on the inertial range properties, in particular the K41 scaling relation δv 2 ∼ δt, this Schrödinger equation does not contain all the contributions to the dynamics, but it can be considered as a kind of kernel to which other effects (non potential terms, Langevin term, viscosity, etc.) can be added (see [START_REF] Nottale | Generalized quantum potentials[END_REF]).

New acceleration / force component

The complex acceleration field writes, in terms of the wave function,

A = -2i D v ∇ v ln ψ v , (39) 
so that we are now able to establish the expression for the two new acceleration components A + and A -:

A + = +D v ∂ v P v P v + ∂ v θ v , (40) 
A -= -D v ∂ v P v P v + ∂ v θ v . (41) 
In many situations which may be relevant to the turbulence case, in particular for a harmonic oscillator potential expected to describe the motion of a particle driven in the largest eddies of the turbulent cascade , the solutions of the Schrödinger equation are real [START_REF] Landau | Quantum Mechanics[END_REF], i.e. θ v ≈cst and then ∂ v θ v ≈ 0. Under this approximation (which is supported by the experimental data [START_REF] Nottale | Turbulence and Scale Relativity[END_REF]), the new acceleration can then be written as:

A q = ±D v ∂ v ln P v (v). (42) 
In an equivalent way, it can be considered as a component of the force appearing in the right-hand side of the Navier-Stokes equations, i.e., of the pressure gradient -∇p/ρ.

4 Generalization to the presence of a Coriolis force

Scale-relativity motion equation

The classical motion equation of a particle of velocity v subjected to a Coriolis force and to a scalar potential Φ writes:

dv dt -2 v × Ω = -∇Φ. ( 43 
)
Let us take the time derivative of this equation, in the case when the rotational velocity Ω =cst:

da dt -2 a × Ω = -∇ Φ, ( 44 
)
where a is the acceleration of the particle. The scale-relativity counterpart of this equation reads, in velocity-space:

d dt A -2A × Ω = -∇ v φ v , (45) 
where we assume that the effect of the x-potential Ḟ can be expressed in terms of a vpotential, i.e. Ḟ = -∇ x Φ = -∇ v φ v . This hypothesis is supported in the fully developed turbulent case by the decomposition of the flow in terms of a cascade of eddies. This decomposition can be described in terms of a sum of harmonic oscillators, the potential of which can be written in v-space as well as x-space. The potential Φ in x-space strictly contains a centrifugal component Φ c = 1 2 Ω 2 R 2 , where R = R T cos(ϕ) in the geophysical case (R T being the Earth radius and ϕ the latitude) while R is the rotation radius in a laboratory experiment. When jumping to v-space, this contribution vanishes since φ v = dΦ/dt and R ≈cst for the fluid under consideration.

Let us set:

Ω = 1 2 curl v K v , (46) 
where the curl is now taken in v-space and K v is a function of velocity. The motion equation becomes:

d dt A -A × curl v K v = -∇ v φ v . (47) 
This equation can be integrated in terms of a Schrödinger-type equation in v-space including a vectorial-like field (also defined in v-space),

D v ∇ v - 1 2 i K v 2 ψ v + iD v ∂ψ v ∂t - 1 2 φ v ψ v = 0. ( 48 
)
We clearly recover the Schrödinger equation Eq. ( 38) when K v = 0.

Simplified case: constant rotation

Consider the simplified case of a constant rotation around the z axis, so that Ω = (0, 0, Ω z ).

The standard motion equations write, in the plane perpendicular to z:

dv x dt -2Ω z v y = -∂ x Φ, ( 49 
)
dv y dt + 2Ω z v x = -∂ y Φ. ( 50 
)
In this case, the link to

K reads 2Ω z = ∂ x K y -∂ y K x , with K = (-Ω z y, Ω z x) (in position space).
If one now jumps to v-space by derivation of these equations, the link of Ω to

K v becomes 2Ω z = ∂ vx K vy -∂ vy K vx , with K v = (-Ω z v y , Ω z v x ) in v-space).

Application to geophysics

In the application to oceans or atmosphere (more generally to geophysical fluids), these equations become:

dv α dt -f v λ = -∂ α Φ, ( 51 
)
dv λ dt + f v α = -∂ λ Φ, ( 52 
)
where v α is the zonal East-West velocity (equivalent to v x ) and v λ the meridional North-South velocity (equivalent to v y ). The Coriolis factor is:

f = 2Ω sin λ, ( 53 
)
where Ω is now the rotational velocity of the Earth Ω z around its axis, λ is the latitude, α the longitude and Φ is the geopotential,

Φ(λ) = h 0 g(λ, z) dz, ( 54 
)
where g is the Earth gravity acceleration.

The field associated to the Coriolis force in v-space is therefore:

K v = Ω sin λ (-v λ , v α ). ( 55 
)
If one considers only a local situation around a given Earth position (α 0 , λ 0 ), this Coriois field no longer depends on coordinates, but only on velocities,

K v = Ω sin λ 0 (-v λ , v α ).
Provided one can define a geopotential Φ v (v) in v-space (this, as reminded before, is supported in the turbulent case considered here by the existence of a cascade of eddies which can be described as a sum of oscillators, see more detail in Ref. [START_REF] Nottale | Turbulence and Scale Relativity[END_REF]), one finally obtains a Schrödinger-Coriolis equation written in v-space:

D v ∇ v - 1 2 i K v (v) 2 ψ v + iD v ∂ψ v ∂t - 1 2 Φ v (v) ψ v = 0. ( 56 
)
5 Solutions to the Schrödinger-Coriolis equation in v-space

Let us now derive various solutions of the Schrödinger equation including a Coriolis force expressed in terms of the vectorial field K v (Eq. 48).

We have shown that, in Lagrangian turbulence experiments, one can locally describe the oscillatory motion of a particle swept away in an eddy as an harmonic oscillator (HO, possibly damped: DHO). This can be accounted for by introducing an HO potential in the motion equation. More generally, one can decompose the potential in terms of a sum of harmonic oscillators. The advantage of this decomposition choice is that HOs (or DHOs) in x remain HOs (or DHOs) in v, so that this representation can be easily transported to the Schrödinger equation in v-space.

We assume that the same approach can be used in the geostrophic case. In this case, we have in 3D, K v = (-Ω z v y , Ω z v x , 0). As specified hereabove, one decomposes the exterior geopotential in terms of a sum of harmonic oscillators in v-space around a variable center v 0 = (v 0x , v 0y ), where v 0 = 0 in most cases [START_REF] Nottale | Turbulence and Scale Relativity[END_REF], contrarily to the Coriolis contribution which is centered around 0 (it depends directly on v x and v y ).

Since the emergence of a Schrödinger equation relies on the scaling of the inertial range itself which serves as microscopic theory to construct it, it strictly applies only to the largest integral scales of this range. At this maximal scale, the geostrophic potential is reduced to an oscillator which we assume to be harmonic with frequency ω. We also account for a possible intrinsic potential along the z axis, which we modelize by another harmonic oscillator potential with frequency ω z . In this case the Hamiltonian reads:

H = (p vx + Ω v y ) 2 + (p vy -Ω v x ) 2 + 1 2 ω 2 (v x -v 0x ) 2 + (v y -v 0y ) 2 + p 2 vz + 1 2 ω 2 z v 2 z , (57) 
where

p v k = i D v k ∇ v k
, accounting for a possible anisotropy in the diffusion coefficient.

We restrict the study to 3D cylindrical coordinates. The solution will be exact or quasiexact only provided we use the eigenvalue of the L z operator, which intervenes here in the combination 2 Ω (v x p vy -v y p vx ). Therefore we take polar coordinates in 2D v-space (v, ϕ) and v z in the z direction, and we obtain for the stationary equation Hψ = Eψ:

D 2 v ∆ v + O ϕ -Ω 2 v 2 - 1 2 ω 2 v 2 + v 2 0 -2v v 0 cos(φ -φ 0 ) + E ψ v (v, ϕ, v z ) = -F (v z )ψ v , (58) 
where we have defined the operators

O ϕ = D 2 v 1 v 2 ∂ 2 ∂ϕ 2 -2 i D v Ω ∂ ∂ϕ (59) 
and

F (v z ) = D 2 vz ∆ vz - 1 2 ω 2 z v 2 z . (60) 

Solution in v z variable

Since F is function of v z only and the above l.h.s is function of v and ϕ only, the variables can be separated as

ψ v (v, ϕ, v z ) = Ψ v (v, ϕ) × f (v z
), since we have also the sum of independent corresponding differential operators in each of the variables. By dividing the two members of Eq. ( 58) by this product Ψ v .f , the l.h.s depends only on v and ϕ, while the r.h.s depends only on v z , thus they are both equal to a constant (which we note as E z ).

The equation for f (v z ) is thus the standard equation for a 1D harmonic oscillator since we have :

[

F (v z ) + E z ] f (v z ) = 0. ( 61 
)
Thus we get the solution as :

f (v z ) = c nz H nz (β z v z ) e -1 2 β 2 z v 2 z , (62) 
where c nz is a normalization constant and :

β 4 z = 1 4 ω 2 z D 2 vz , (63) 
and the H n 's are the Hermite polynomials. Therefore the energy E z is quantized as :

E nz = D vz ω z n z + 1 2 . ( 64 
)
5.2 Solutions in v and ϕ variables

Pure Coriolis contribution

By assuming that there is no oscillator contribution (ω = 0 in Eq. ( 58)), the Coriolis force is dominant and the equation becomes:

D 2 v ∆ v + 1 v 2 ∂ 2 ∂ϕ 2 -2 i D v Ω ∂ ∂ϕ -Ω 2 v 2 + (E + E z ) Ψ v (v, ϕ) = 0. ( 65 
)
Several resolutions are possible in the 2D perpendicular variables.

The full 2D equation in cylindrical variables for v and ϕ seems to have no simple analytical solutions, since it is not completely separable in the two variables. However an approximate solution can be found if we assume the usual factorization Ψ v (v, ϕ) = g(v) × h(ϕ). But this is pertinent only if we assume that the angular part can be easily integrated, by doing the following approximation :

h(ϕ) = e i lzϕ , (66) 
where l z is the eigenvalue of the angular momentum operator L z = -i ∂/∂ϕ. The remaining radial equation in v writes:

D 2 v ∆ v - l 2 z v 2 + 2 D v Ω l z -Ω 2 v 2 + E + E z g(v) = 0. ( 67 
)
After some calculations, one obtains a solution which solves almost exactly this equation and can be expressed in terms of Hermite polynomials H n :

g(v) = c n v lz H n (βv) e -1 2 β 2 v 2 , ( 68 
)
where c n is a numerical constant, and n is an integer with n = 2p or n = 2p + 1.

β 2 = Ω √ 2 D v . ( 69 
)
Therefore the perpendicular energy is again quantized, but now as follows :

E n = 2 D v Ω (2n -1), ( 70 
)
where n = 0 to ∞ and l z = 0 to n -1.

The exact solution of the radial equation can be found, for instance with Mathematica: it is similar to the solution given above, but is expressed in terms of generalized Laguerre polynomials instead of Hermite polynomials. But it contains the same important prefactor v l z in the function g. More precisely the v solution reads:

g(v) = c 1 2 b exp(-x 2 /2) x lz HypergeometricU[1/4(2+ E z + E perp ), 1 -l z , x 2 ])/x + c 2 2 b exp(-x 2 /2) x lz LaguerreL[1/4(-2 -E z -E perp ), -l z , -x 2 ]) with b = (1 -l z )/2.
By choosing the solution with the generalized Laguerre polynomial even if the solution with the HypergeometricU function is also regular at v = 0, we get the quantization of the (normalized) energy as given above. There are known relations between L(n, a, x 2 ), H 2n (x) and x H 2n+1 (x), but only for a = 1/2 or -1/2, or for a being a semi-integer (but here l z is an integer).

If the term in 2 l z D v Ω was absent in the potential energy, then the energy E would depend also on l z , with a term in -2 l z D v Ω.

The complete 3D solution in this particular case is ψ v (v, ϕ, v z , t) ∝ f.g.h times a phase factor, while the total energy is :

E n,nz = E nz + E n . ( 71 
)
Therefore the velocity PDF, given by P v (v) = |ψ v | 2 , could be anisotropic with respect to v and v z but it is here independent of the polar angle ϕ, although it depends on l z :

P v (v, v z ) = C(n, n z , l z )v 2lz H 2 n (βv) H 2 nz (β z v z )e -β 2 v 2 -β 2 z v 2 z ( 72 
)
where C is a constant. In this model the local PDF P v (v, v z ) (i.e., for a given trajectory) is thus the product of the 2 PDF 's of v and v z .

The induced acceleration is given by its remaining 2 components (since the PDF P (v) is here independent of ϕ) as :

A q (v) = ±D v ∂ v ln P v = ± 2D v 2n H n-1 (βv) H n (βv) + l z v -β 2 v , (73) 
A q (v z ) = ±D vz ∂ vz ln P v = ± 2D vz 2n z H nz-1 (β z v z ) H n (β z v z ) -β 2 z v z . (74) 
Remark that the involved parameters are here : β, β z , D v and D vz . Note also here the possible anisotropy of the acceleration according to the direction along or perpendicular to z.

The v lz contribution in g(v), which is specific of the Coriolis problem, involves a flattening of the central regions (v ≈ 0) in the v ⊥ -space, which in its turn leads to an enlargement of the high acceleration zone around v ≈ 0 (see Fig. 2).

This means that we have found a very clear signature of the quantum-type regime predicted by the scale-relativity approach, under the influence of a Coriolis force. Without a Coriolis force one expects narrow null minima of the PDF P v (v i ) ∼ (v -v i ) 2 around some (in general non null) values v i of the velocity. The existence of these minima is supported by already existing laboratory experiments (see [START_REF] Nottale | Turbulence and Scale Relativity[END_REF] and references therein and Fig. 5)

These off-center minima will not be changed by the presence of a Coriolis force. However, concerning the possible minimum at v = 0, in the presence of a Coriolis force, it may become a large velocity band P v ∼ v 4 , v 6 etc.., where the existence of velocity values is almost forbidden (see Fig. 1). This happens for non-zero values of l z , i.e. for large values of the angular momentum L = 2D v l z , in dependence of the value of the parameter D v .

Combined Coriolis and HO contributions

In the case where the local oscillators are dominant with respect to the Coriolis force, the minima in the velocity PDF remain of power 2, P v (v i ) ∼ (v -v i ) 2 , since these oscillators are generally off-centered.

In the general case where both effects contribute with the same order of size, there is no known analytical solution. Anyway, we expect possible new effects only from the Coriolis contribution around the possible minimum at v = 0. Let us recall the general reasoning by which an universal acceleration PDF ∝ a -4 (apart from exponential cut-off in the very far tails) can be derived from the mere knowledge that the velocity PDF is the square of a wave function, [START_REF] Nottale | Macroscopic Quantum-Type Potentials in Theoretical Systems Biology[END_REF][START_REF] Nottale | Relativity of Scales, Fractal Space-Time and Quantum Potentials[END_REF].

Acceleration PDF

P v = |ψ v | 2
Since ψ v can be positive or negative, when it crosses the zero line for specific values v i 's, one obtains (in the absence of a Coriolis force) null minima of P v for which most of the time

ψ v ∝ ±(v-v i ). Therefore P v ∝ (v-v i ) 2 , so that A q ∝ (v-v i ) -1
, which finally implies that the acceleration PDF is (to this lowest order approximation accounting only for the inertial range, see [START_REF] Nottale | Turbulence and Scale Relativity[END_REF]) P (a) ∝ 1/a 4 in the large tails, or better, P (a/σ a ) ∝ (1 + (a/σ a ) 2 ) -2 which applies also to smaller a values. Moreover, we have derived a full theoretical shape of the acceleration PDF in turbulent flows (involving an exponential cut-off of the previous function in the very large tails) [START_REF] Nottale | Turbulence and Scale Relativity[END_REF], which very precisely agrees with experimental data and with the empirical model suggested by Bodenschatz et al [START_REF] La Porta | Fluid particle accelerations in fully developed turbulence[END_REF][START_REF] Voth | Measurement of Particle Accelerations in Fully Developed Turbulence[END_REF].

The same conclusion can be drawn in the z direction with a possible asymptotic PDF P (a z ) ∝ 1/a 4 z . 

(1 + ( a σa ) 2 ) -2 .
The green dashed curve is the same no-Coriolis PDF, but now fitted on the large tails of the Coriolis PDF. The brown thin line is a Gaussian curve with the same standard deviation σ a .

The new additional term coming from the Coriolis contribution in the previous solution is also of the form (v -v i ) -1 , so that, while there is a clear effect on the shape of accelerations (see Fig. 2), no new effect is expected on the very large tails of the acceleration PDF itself.

However, this expectation is no longer true for small and intermediate a values, owing to the different behavior of small P v (v) values in the Coriolis and no-Coriolis cases (see Fig. 1). We have therefore performed a numerical simulation (10 7 points) for building the PDF of velocity of the n = 3 harmonic oscillator given in Fig. 1, in absence of Coriolis force, then with Coriolis force l z = 2, and then derived the corresponding acceleration PDF. The result is given in Fig. 3.

This supports our conclusion that the tails are not affected by rotation. However the overall shape of the PDFmay have slighly changed. This would be difficult to validate by experimental data, but could possibly be used in the future as a signature of the Coriolis force in relation with the scale relativity / macroquantum theoretical expectations.

6 Tests of the quantum-like Coriolis signature

Geophysical data

A first possible test of the present theory could be achieved by analysing relevant geophysical data.

Indeed a large amount of data on and from surface drifter trajectories in the Oceans is now available. The Global Drifter Program (GDP) maintains a global array of more than 1000 satellite-tracked surface drifting buoys [START_REF] Elipot | A global surface drifter data set at hourly resolution[END_REF]. Drifters not only provide information on oceanic drift at 15 m, the nominal depth of their drogue, but also measure sea surface temperature and, for a subset of the drifters, sea level pressure, sea surface salinity, and surface winds. The GDP has been instrumental in describing and advancing the dynamical understanding of large-scale and regional oceanic variability on monthly to climate time scales.

Among these drifters, loopers (i.e., looping trajectories that complete at least two orbits) have been identified in Lagrangian trajectory data by an automatic algorithm. This algorithm has been applied to the Global Drifter Program data set, and over 15,000 looping trajectory segments have been identified worldwide [START_REF] Lumpkin | Global characteristics of coherent vortices from surface drifter trajectories[END_REF].

The global drifter acceleration PDF is well fitted by an 1/a 4 up to ≈ 40 sigmas, as can be seen in Fig. 4. This result is in excellent agreement with the theoretical expectation from the scale-relativity description of turbulent flows.

We have also studied the PDF of accelerations of loopers in function of latitude, owing to the fact that the Coriolis force varies with latitude, vanishing at the equator and being maximal at the poles.

All the PDFs show a common exponent P a (a) ∼ a -4 up to large values of the acceleration (see Fig. 4), in agreement with the laboratory data and with the theoretically expected value for l z = 0.

Laboratory experiment

We may also suggest a new laboratory experiment in order to put to the test our theoretical predictions.

It is based on already existing Lagrangian experiments, where the trajectories of small tracer particles have been followed, either from velocities by Doppler tracking [START_REF] Mordant | Lagrangian measurements in turbulence[END_REF][START_REF] Mordant | Measurement of Lagrangian Velocity in Fully Developed Turbulence[END_REF][START_REF] Mordant | Lagrangian Velocity Fluctuations in Fully Developed Turbulence: Scaling, Intermittency, and Dynamics[END_REF][START_REF] Mordant | Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence[END_REF] or from position measurements [START_REF] La Porta | Fluid particle accelerations in fully developed turbulence[END_REF][START_REF] Voth | Measurement of Particle Accelerations in Fully Developed Turbulence[END_REF][START_REF] Jucha | Time-reversal-symmetry Breaking in Turbulence[END_REF]. It consists of a von Karman-type experiment: two counter-rotation disks in a cylinder generate a turbulent shear flow which is almost homogeneous in the central region.

We have analysed these data and found strong support in favor of the scale relativity predictions, in particular the existence of the new acceleration component A q = ±D v ∂ v ln P v and of null minima in the local velocity PDF (which involve divergent values of A q around these minima) [START_REF] Nottale | Turbulence and Scale Relativity[END_REF].

The new proposal consists of adding a rotation, for example with an axis perpendicular to the cylinder rotation axis, to set a Coriolis force in a suitable frame. The acquisition of the velocity data on the various trajectories should be done in the rotating frame. The analysis of the resulting velocity PDF and of accelerations should allow to clearly validate (or invalidate) our theoretical predictions.

Test in Direct Numerical Simulations

A last proposal consists of performing Direct Numerical Simulations (DNS) of the Navier-Stokes (NS) equations, without and with Coriolis force. There is a double stake to such simulations.

The first question is whether or not the various signatures of the scale relativity effects Mordant's experiment man290501 [START_REF] Mordant | Measurement of Lagrangian Velocity in Fully Developed Turbulence[END_REF]. This PDF is well fitted by a quantum harmonic oscillator (n = 3, v m = 0.04 m/s and v 0 = 0.28 m/s, red dashed curve, compare with case l z = 0 of Fig. 1. The effect of a Coriolis force under the same conditions is expected to involve a suppression of the two inner secondary probability peaks (see Fig. 1 for l z = 1, 2.

in turbulence that we have identified in the real experimental data could be recovered in the DNS. If yes, this would mean that the Schrödinger regime is generated by the Navier-Stokes equations under turbulent conditions, despite the fact that the NS equations are classical and apparently deterministic. If not, this would imply that new physics is generated by the scale relativity approach, which would go beyond the mere NS equations.

In order to answer this question, recall that, since one works in v-space, the fundamental equations of dynamics (from which a Schrödinger-type equation is constructed by re-integration) become the derivative of the NS equations, while the NS equations themselves remain unaffected. Since numerical methods simulate directly the NS equations, this suggests that the Schrödinger behavior just unveils hidden properties of the NS equations under fully developed turbulent conditions, and that it should therefore be seen in DNS's.

DNS's of turbulent flows with and without rotation have been recently performed by Buaria et al. [1] in order to study how geophysical fluid flows are affected by the Earth's rotation. We shall use them here for a first analysis of the effect of a Coriolis force on the velocity PDF of a turbulent flow. The simulations are performed in a periodic domain, at Reynolds number Re ≈ 2300-6000, and Froude number in the range 0.03 < F r < 0.2 (with Rossby number Ro = 5F r).

They have carried out the simulations using the Geophysical High-Order Suite for Turbulence (GHOST) code, a versatile, highly parallelized, pseudo-spectral code, utilizing hybrid MPI-OpenMP programming model, with second order explicit Runge-Kutta time stepping. All runs correspond to a (2π) 3 periodic domain with 5123 grid points.

All the runs reported were started from an initial condition, consisting of a few random modes in the velocity field, whereas the temperature field was initialized to zero. The Boussinesq equations were integrated until a statistically stationary state was reached.

A large-scale stochastic forcing term is utilized in the velocity equation to achieve and maintain a statistically stationary state. The forcing is random in time and isotropic in Fourier space, with the energy being injected in a spherical shell of wavenumbers given by 2 < |k| < 3, with the characteristic forcing length scale L f = 2π/2.5.

The mean dissipation of kinetic energy ε was obtained by averaging over all the grid points and the time over which particles were tracked in the simulations.

Comparison with SR prediction

Here we select only two runs, which are similar except for the absence or presence of rotation:

-run 0 (HIT) without rotation ( for comparison), with N = 0, f = 0, ν = 0.0015, Re = 2379, ε = 0.375, and T L /τ η = 10 -11;

-run 8 (pure rotation) with N = 0, f = 2.948, ν = 0.001, Re = 2645, ε = 0.065 and T L /τ η = 8.2 -8.4.

Unfortunately the reduced Reynolds number R λ = √ 15 Re of these simulations is rather low, respectively R λ = 189 and 199 for run0 and run8. This corresponds to not yet fully developed turbulence, which occurs for R λ >≈ 450 [START_REF] Voth | Measurement of Particle Accelerations in Fully Developed Turbulence[END_REF], while we expect the Schrödinger regime to emerge only when turbulence is fully developed. Actually the quantum-like and classical behaviors are mixed [START_REF] Nottale | Turbulence and Scale Relativity[END_REF], with the proportion of quantum characteristics increasing when R λ increases.

We have nevertheless compared the PDF of velocities of several Lagrangian trajectories from these two runs. A typical example of the result obtained (in a systematic way) is given in Fig. 6. As expected from the scale-relativity approach, the velocity PDF in the presence of rotation is systematically characterized by the presence of large velocity intervals with flat almost null probability, a behavior which is not seen in the no-rotation case, where the minima remain narrow.

A difficulty in testing for such a behavior is that the velocity PDF of classical oscillators is also characterized by only two extreme peaks and an absence of intermediate secondary peaks. There are however characteristic differences which could allow to distinguish between the classical and macroquantum behavior: (1) it varies (decreasing from one peak and increasing to the other) instead of being flat in the Schrödinger case; (2) it remains non null at minimum while one expects a large flat band with P ≈ 0 (plus fluctuations) in the Schrödinger regime; (3) the shape of the main external peaks are different (clear classical oscillator peaks are seen in the right Fig. 6, to be compared to the more symmetrical quantum-type shape in Figs. 1 and5).

This preliminary result gives just a hint of a possible support to our present proposal, while a more detailed statistical analysis is clearly needed to conclude with certainty that the expected quantum-type behavior has been detected. We intend to achieve such an analysis in a forthcoming work. But the answer is expected to truly come from DNSs performed with higher Reynolds numbers corresponding to fully developed turbulence. Under the same conditions, the quantum-type behavior would be first detected in the no-rotation case, then its change (suppression of the intermediate peaks leading to large empty bands in v-space) identified in the Coriolis case.

Conclusion

We have first recalled in this paper how the scale-relativity approach to turbulence leads to re-integrate the time derivative of the Navier-Stokes equations in terms of a Schrödinger equation for a wave function ψ v acting in v-space and yielding the velocity PDF as P v = |ψ v | 2 . One of the main consequences of this theory is the identification of an acceleration component A q which accounts for intermittence and for the large non-Gaussian tails of the acceleration PDF in turbulent flows.

In the present paper we apply this new approach to turbulent fluids subjected to a Coriolis force through rotation. In Ref. [START_REF] Nottale | Turbulence and Scale Relativity[END_REF], we introduced the hypothesis according to which the potential energy entering into the v-Schrödinger equation could be decomposed in terms of harmonic oscillators (possibly damped) modelizing the pulsating nature of velocities [START_REF] Landau | Fluid Mechanics[END_REF] linked to the eddies. Strong support was given to this description from experimental data in contra-rotative von Karman flows [START_REF] Mordant | Lagrangian measurements in turbulence[END_REF][START_REF] Mordant | Measurement of Lagrangian Velocity in Fully Developed Turbulence[END_REF], which showed very clear local velocity PDFs from quantized harmonic oscillators (QHOs, 5). Here we make a fundamental progress on this subject by demonstrating that the potential which appears in the v-Schrödinger equation from the effects of pressure is just an harmonic oscillator potential, thus fully justifying our previous description.

As concerns the specific effects of rotation on turbulence, we find a clear quantum-type signature of the Coriolis force in terms of a suppression of secondary probability peaks leading to the emergence of wide empty intervals, where the velocity values have almost zero probability of occurrence. We suggest possible ways to test this theoretical prediction: in geophysical flows, in laboratory experiments and in direct numerical simulations. Some hints of the expected behavior may have possibly already been seen in a recent DNS of turbulent fluids without and with rotation.

In the future we intend to apply the scale-relativity / macroscopic Schrödinger approach to more general cases such as differential rotation, particularly important for astrophysical fluids (Keplerian protoplanetary disks, accretion disks around black holes etc.). Moreover, one expects a new transition at large scale toward fractality, now in space, for free, unlimited fluid. Indeed, turbulent trajectories are fractal (D F =2, K41) in v-space in a scale interval ranging from the Kolmogorov viscous scale η to the integral scale L, but they are not fractal in x-space in this range (i.e., not explicitly scale-dependent). However, when considering trajectories far larger than L, one expects them to fluctuate in space and to become fractal beyond a scale transition ≈ L. The scale-relativity conditions for the emergence of a Schrödinger equation, now in position space, would then be fulfilled. Such a new regime is supported by geophysical data, e.g. of drifters which show fractal trajectories and large non-Gaussian tails of their velocity PDF [START_REF] Lumpkin | Global characteristics of coherent vortices from surface drifter trajectories[END_REF]. This approach has already been applied to astrophysical problems such as planetary system formation and evolution [START_REF] Nottale | Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity[END_REF]Chapt.7.2], [START_REF] Nottale | Scale-Relativity and Quantization of Extrasolar Planetary Systems[END_REF][START_REF] Nottale | Scale relativity and Quantization of the Universe[END_REF][START_REF] Nottale | Scale relativity and quantization of exoplanet orbital semi-major axes[END_REF][START_REF]Nottale Scale Relativity and Fractal Space-Time: a New Approach to Unifying Relativity and Quantum Mechanics[END_REF] and it could be applied in the future to geophysical problem such as climate modelization.
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 1 Figure 1: PDF of velocities generated by the solution ψ v of the Schrödinger-Coriolis equation (Eq. 72), with P v = |ψ v | 2 , for v 0 = 1 (arbitrary unit), n = 3 and l z = 0 to n -1 = 2. The value l z = 0 corresponds to an absence of Coriolis force (upper figure). The presence of a Coriolis force involves a suppression of the inner secondary peaks increasing with the value of l z , leaving a large empty central band with almost forbidden velocity values.

Figure 2 :

 2 Figure 2: Magnitude of the acceleration component |A q | = D v |∂ v ln P v | generated by the solution of the Schrödinger-Coriolis equation ψ v (Eq. 68), with P v = |ψ v | 2 , for D v = 3, v 0 = 1 m/s, n = 3 and l z = 2 (down figure), compared with its form in the absence of a Coriolis force (l z = 0, up figure). The effect of the Coriolis force amounts to enlarge the velocity range where large accelerations are generated.

Figure 3 :

 3 Figure3: Acceleration PDF obtained from a numerical simulation of a quantum harmonic oscillator (10 7 points). The blue thick curve is the PDF obtained in the presence of a Coriolis force. The red dashed curve is the PDF obtained in the absence of a Coriolis force with the same normalization, which is very well fitted in the acceleration range shown (±30 σ a ) by the theoretically expected function 2 π (1 + ( a σa ) 2 ) -2 . The green dashed curve is the same no-Coriolis PDF, but now fitted on the large tails of the Coriolis PDF. The brown thin line is a Gaussian curve with the same standard deviation σ a .

Figure 4 :

 4 Figure 4: Acceleration PDF obtained for a subsample of drifters (red curve) compared to the function (1 + (a/σ a ) 2 ) -2 (black curve) theoretically predicted by the scale-relativity theory of turbulence [17, 13, 9].
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 5 Figure 5: Example of velocity PDF obtained for three segments (number 600, 5524 and 5708) of
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 31 Description of the DNS Buria et al. have performed simulations of geophysical rotating and stratified fluid flows using direct numerical simulations of forced Boussinesq equations (on velocity and temperature fluctuations).

Figure 6 :

 6 Figure 6: Examples of typical behavior of velocity PDFs in the no-rotation (left figure) and Coriolis case (right figure). The no-rotation case shows an alternance of narrow minima and maxima, while the Coriolis case shows, as theoretically expected in the Schrödinger regime, large bands of almost null probability due to the suppression of secondary peaks.
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