
HAL Id: hal-04215020
https://hal.science/hal-04215020

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Menger-Like Dualities in Digraphs and
Applications to Half-Integral Linkages
Victor Campos, Jonas Costa, Raul Lopes, Ignasi Sau

To cite this version:
Victor Campos, Jonas Costa, Raul Lopes, Ignasi Sau. New Menger-Like Dualities in Digraphs and
Applications to Half-Integral Linkages. ESA 2023 - 31st Annual European Symposium on Algorithms,
Sep 2023, Amsterdam, Netherlands. pp.30:1-30:18, �10.4230/LIPIcs.ESA.2023.30�. �hal-04215020�

https://hal.science/hal-04215020
https://hal.archives-ouvertes.fr


New Menger-Like Dualities in Digraphs and
Applications to Half-Integral Linkages
Victor Campos #

ParGO group, Universidade Federal do Ceará, Fortaleza, Brazil

Jonas Costa #

ParGO group, Universidade Federal do Ceará, Fortaleza, Brazil

Raul Lopes #

DIENS, École normale supérieure de Paris, CNRS, France
Université Paris-Dauphine, PSL University, CNRS UMR7243, Paris, France

Ignasi Sau #

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Abstract
We present new min-max relations in digraphs between the number of paths satisfying certain
conditions and the order of the corresponding cuts. We define these objects in order to capture, in
the context of solving the half-integral linkage problem, the essential properties needed for reaching
a large bramble of congestion two (or any other constant) from the terminal set. This strategy has
been used ad-hoc in several articles, usually with lengthy technical proofs, and our objective is to
abstract it to make it applicable in a simpler and unified way. We provide two proofs of the min-max
relations, one consisting in applying Menger’s Theorem on appropriately defined auxiliary digraphs,
and an alternative simpler one using matroids, however with worse polynomial running time.

As an application, we manage to simplify and improve several results of Edwards et al. [ESA
2017] and of Giannopoulou et al. [SODA 2022] about finding half-integral linkages in digraphs.
Concerning the former, besides being simpler, our proof provides an almost optimal bound on the
strong connectivity of a digraph for it to be half-integrally feasible under the presence of a large
bramble of congestion two (or equivalently, if the directed tree-width is large, which is the hard
case). Concerning the latter, our proof uses brambles as rerouting objects instead of cylindrical
grids, hence yielding much better bounds and being somehow independent of a particular topology.

We hope that our min-max relations will find further applications as, in our opinion, they are
simple, robust, and versatile to be easily applicable to different types of routing problems in digraphs.
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1 Introduction

In combinatorial optimization, a min-max relation establishes the equality between two
quantities, one naturally associated with minimizing the size of an object satisfying some
conditions, and the other one associated with maximizing the size of another object. Within
graph theory, famous such min-max relations include Kőnig’s Theorem [15] stating the
equality between the sizes of a maximum matching and a minimum vertex cover in a bipartite
graph or, more relevant to this article, Menger’s Theorem [18] stating, in its simplest form,
the equality between the maximum number of pairwise internally disjoint paths between
two vertices, and the minimum size of a vertex set disconnecting them. Typically, min-max
relations come along with polynomial-time algorithms to find the corresponding objects,
making them extremely useful from the algorithmic point of view.

In this article we focus on directed graphs, or digraphs for short, and our results are
motivated by the complexity of problems related to finding directed disjoint paths between
given terminals. More precisely, in the k-Directed Disjoint Paths problem (k-DDP for
short), we are given a digraph G and k pairs of vertices si, ti, i ∈ [k], and the objective is to
decide whether G contains k pairwise disjoint paths connecting si to ti for i ∈ [k]. A solution
to this problem is usually called a linkage in the literature. Here we note that disjoint paths
is equivalent to paths which are vertex-disjoint.

Unfortunately, Fortune et al. [9] proved that the k-DDP problem is NP-complete already
for k = 2, and Thomassen [20] strengthened this result by showing that it remains so even if
the input digraph is p-strongly connected (see Section 2 for the definition) for any integer
p ≥ 1. Thus, in order to obtain positive algorithmic results, research has focused on either
restricting the input digraphs (for instance, to being acyclic [19] or, more generally, to having
bounded directed tree-width [12]), or on considering relaxations of the problem. Concerning
the latter, a natural candidate is to relax the disjointness condition of the paths, and allow
for congestion in the vertices. Namely, for an integer c ≥ 2, an input of the k-Directed
c-Congested Disjoint Paths problem ((k, c)-DDP for short) is the same as in the k-DDP,
but now we allow each vertex of G to occur in at most c out of the k paths connecting
the terminals. In the particular case c = 2, a solution to this problem is usually called a
half-integral linkage in the literature.

Despite a considerable number of attempts, it is still open whether the (k, c)-DDP
problem can be solved in polynomial time for every fixed value of c ≥ 2 and k > c (note that
if k ≤ c, then the problem can be easily solvable in polynomial time just by verifying the
connectivity between each pair of terminals). A positive answer for the case c = 2 has been
recently conjectured by Giannopoulou et al. [11]. Again, in order to obtain positive results,
several restrictions and variations of the problem have been considered, such as considering
several parameterizations [2, 16], restricting the input graph to have high connectivity [8], or
considering an asymmetric version of the (k, c)-DDP problem [11, 13, 14], where the input is
as in (k, c)-DDP, but the goal is to either certify that it is a no-instance of k-DDP (without
congestion) or a yes-instance of (k, c)-DDP. This asymmetric version has been solved in
polynomial time for every fixed k (i.e., showing that it is in XP; see Section 2) for distinct
values of c in a series of articles, namely for c = 4 by Kawarabayashi et al. [13], for c = 3 by
Kawarabayashi and Kreutzer [14], and for c = 2 by Giannopoulou et al. [11].

The main motivation of this article stems from the techniques used in the latter two
approaches mentioned above. In a nutshell, the main strategy used in [8, 11, 13, 14] is the
following. First, one computes whether the directed tree-width of the input graph is bounded
by an appropriate function of k, the number of terminal pairs. This can be done in time XP
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in k by the results of Johnson et al. [12], or even in time FPT by the results of Campos et
al. [4] (see also [3, Theorem 9.4.4]). If the directed tree-width is bounded by a function of k,
one solves the problem in time XP by using standard programming techniques from Johnson
et al. [12] (cf. Proposition 3). If not, one exploits the fact that large directed tree-width
implies the existence of large “structures” that can be used to carry out the routing of the
desired paths. Typically, such a structure is a bramble, as for example in [8], or a cylindrical
grid, as for example in [11, 14], making use of the celebrated Directed Grid Theorem of
Kawarabayashi and Kreutzer [14] (see also [4] for recent improvements). For the sake of
exposition, assume henceforth that the desired structure is a bramble, but the strategy is
essentially the same with a cylindrical grid.

A bramble in a digraph D is a set B of strongly connected subgraphs of G that pairwise
either intersect or have edges in both directions. The order of a bramble B is the smallest
size of a vertex set of G that intersects all its elements, and its congestion is the maximum
number of times that a vertex of G appears in the elements of B. It is known that large
directed treewidth implies the existence of a bramble of large order and of congestion c ≥ 2.
For c = 2, a proof about how to find such a bramble in polynomial time (with degree not
depending on k), provided that a certificate for large directed tree-width is given, can be
found in [8] (see also [17] for improved bounds for brambles of higher congestion). Assume
for simplicity that c = 2, let B be such a bramble, and let S and T be the sets of sources
and sinks, respectively, of the corresponding problem. The idea is that if one can find a set
PS of disjoint paths from S to appropriate elements of B, and a set PT of disjoint paths
from appropriate elements of B to T (regardless of the ordering of the vertices of S and T ),
then we are done. Indeed, once the paths starting in S reach B, one can use the connectivity
properties of the bramble to “shuffle” the paths appropriately as required by the terminals,
and then follow the paths from B to T . The fact that the bramble has congestion two, and
that the paths in PS , as well as those in PT , are pairwise disjoint, together with a good
choice for the destination and starting points of the those paths, implies that every vertex of
G occurs in at most two of the resulting paths.

Otherwise, if such sets of paths PS and PT do not exist, the approach consists in using
a Menger-like min-max duality to obtain an appropriate separator (or cut) between the
terminals and the bramble of size bounded by a function of c and k, and make some progress
toward the resolution of the problem, for instance by splitting into subproblems of lower
complexity. The ways to define and to exploit such a separator depend on every particular
application, and this ad-hoc subroutine is usually one of the most technically involved parts
of the resulting algorithms [8, 11,13,14].

Our results and techniques. Motivated by the inherent common essential strategy in the
above articles, we aim at finding the crucial general ingredient that can be applied in order
to define and find the corresponding separators. To this end, we introduce new objects
that abstract the existence of the aforementioned desired paths PS and PT between the
terminals and the bramble. These objects are what we call D-paths, T-paths and R-paths. The
inspiration for D-paths and T-paths is what we believe to be the common essential strategies
used by Edwards et al. [8] and Giannopoulou et al. [10]. We remark that a particular set
of T-paths is directly constructed in [10], particularly inside the proof of [10, Theorem 9.1].
The presence of D-paths and T-paths in [8] is more subtle in the construction of a long
algorithm and a collection of non-trivial proofs. In fact, they are not explicitly built due to
constraints in their techniques, but our initial results for this paper included simplifying and
improving the proofs in [8] using D-paths and T-paths. Once the new proofs were obtained,
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we noticed that they could be further improved by a new object which we call R-paths. It
must be noted that this paper includes results for D-paths, T-paths, and R-paths but we only
show applications for R-paths. The reason for this is twofold. First, T-paths have stronger
properties than R-paths which might be useful for solving different problems, and D-paths
are needed in the proof of the duality of T-paths. And second, these three objects are similar
to the point of having similar proofs for their min-max formulas and algorithms, and showing
these variations incurs little additional effort. The formal definitions of these special types of
paths can be found in Section 3.

All three types of paths are associated with a defining partition P1, . . . , Pℓ sharing some
properties and differing in others. For all three, it holds that any two paths in a same part Pi

are disjoint, and it is possible that two paths in distinct parts share vertices. In the context
of the (k, c)-DDP problem, the main difference between D-paths, T-paths, and R-paths lies
in how we want to reach (or, by applying a simple trick of reversing the edges of the digraph,
be reached from) the elements of a bramble B in the given digraph. In D-paths we ask that
all paths end in distinct vertices of a given B ⊆ V (G). In T-paths we ask that all paths end
in distinct vertices of the bramble, and that the set containing all last vertices of the T-paths
forms a partial transversal (see Section 2 for the definition) of B. In R-paths we ask that all
R-paths end in elements of B and that there is a “matching-like” association between the
last vertices of the paths and elements of B containing these vertices.

For each type of paths we define an associated notion of cut and its corresponding order
(see e.g. Definition 10). These cuts are respectively called D-cuts, T-cuts, and R-cuts. We
show that each of these special types of paths and cuts satisfies a Menger-like min-max
duality, that is, that the maximum number of paths equals the minimum order of a cut
(cf. Theorems 11, 13, and 15). Moreover, the corresponding objects attaining the equality
can be found in polynomial time. The proofs of these min-max relations basically consist
in applying Menger’s Theorem [18] in appropriately defined auxiliary graphs. We provide
alternative simpler proofs of these equalities using intersections and unions of matroids,
namely gammoids and transversal matroids. Even if the resulting polynomial-time algorithms
using matroids have worse running time than the ones that we obtain by applying Menger’s
Theorem [18], and that using the deep theory of matroids somehow sheds less light on
interpreting the actual behavior of the considered objects, we think that it is interesting to
observe that the paths and cuts that we define are in fact matroids with nice properties.

The main application we provide for R-paths/cuts in this article is in the proof of
Theorem 16, which is an improved version of [10, Theorem 9.1] both in the requested order of
the structure and by relying on brambles instead of cylindrical grids. Informally, Theorem 16
says that given a digraph G, ordered sets S, T ⊆ V (G), and a large (depending on the
congestion c and on the size k of S and T ) bramble of congestion c, we can either find a
large set of R-paths from S to the bramble and from the bramble to T , which in turn are
used to appropriately connect the pairs si ∈ S, ti ∈ T , or find a separator of size at most
k − 1 intersecting every path from S to a large subset of the bramble, or every path from a
large subset of the bramble to T . Additionally, if the bramble is given, one of the outputs
can be obtained in polynomial time, computing either the paths or one of the separators.

Since in k-strong digraphs the separators are never found, Theorem 16 immediately
implies an improved version of a result by Edwards et al. [8]. Namely, in [8, Theorem 11]
the authors show that, when restricted to (36k3 + 2k)-strong digraphs, every instance of
(k, 2)-DDP where the input digraph contains a large (depending on k) bramble of congestion
two is positive and a solution can be found in polynomial time. When compared to theirs, our
result is an improvement in the following ways. First, it allows us to solve (k, c)-DDP for any
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c ≥ 2 in the larger class of k-strong digraphs instead of being restricted to (36k3 + 2k)-strong
digraphs as in [8]. This bound on the strong connectivity of the digraph is almost best possible
according to [8, Theorem 2], unless P = NP (note that an XP algorithm in (k − d)-strong
digraphs, for some constant d, may still be possible). Second, we show how to find the desired
paths using a bramble of congestion c and size at least 2k(c · k − c + 2) + c(k − 1), which
is equal to 4k2 + 2k − 2 when c = 2, instead of the size 188k3 required in [8]. Finally, our
proof is much simpler and shorter than the proof presented in [8]. A main reason of this
simplification is that we can replace the seven properties of the paths requested in [8, Lemma
12] by R-paths. It is worth mentioning that our algorithm reuses the procedure of Edwards
et al. [8] to find a large bramble of congestion two in digraphs of large directed tree-width
(cf. Corollary 8).

We remark that it is also possible to improve the result by Edwards et al. [8] from
(36k3 + 2k)-strong digraphs to k-strong digraphs by replacing part of their proof, namely [8,
Theorem 11], by the result of Giannopoulou et al. [10, Theorem 9.1]. The trade-off is that
the latter relies on the stronger structure of a cylindrical grid (and such grids do contain
brambles of congestion two [8]) instead of brambles. A fundamental difference stands on
the fact that, given a certificate of large directed tree-width, one can produce a bramble of
congestion two in polynomial time, while finding a cylindrical grid still requires FPT time
parameterized by the order of the certificate [4]. Our result using R-paths keeps the best of
both worlds: we are able to drop the request on the strong connectivity of the digraph to k

while relying only on brambles as the routing structures.
Our second application deals with the asymmetric version of the (k, c)-DDP problem

discussed in the introduction. By using our min-max relations, we manage to simplify and
improve one of the main results of Giannopoulou et al. [11] for the case c = 2. Instead of
using the Directed Grid Theorem [14] to reroute the paths through a cylindrical grid, we
reroute them through a bramble of congestion two in a very easy manner after a careful
choice of the paths reaching and leaving the bramble, which is done by applying the duality
between R-paths and R-cuts. Namely, we can replace [10, Theorem 9.1] (this is the full
version of [11]) entirely by Theorem 16 and mostly keep the remaining part of their proof to
obtain an improved version of their XP algorithm for the asymmetric version of (k, 2)-DDP.

We hope that our min-max relations will find further applications in the future as, in
our opinion, they are quite simple, robust, and versatile to be easily applicable to different
types of routing problems in digraphs. A natural candidate is the (k, c)-DDP problem for
any choice of fixed values of c ≥ 2 and k > c, which has remained elusive for some time.

Organization. In Section 2 we present some preliminaries. In Section 3 we state and
discuss our new Menger-like statements for paths in digraphs. The applications of our
results are presented in Section 4. Due to space limitations, the proofs of the results
marked with “(⋆)” can be found in the full version of this paper, available at https:
//arxiv.org/abs/2306.16134.

2 Preliminaries

Due to space limitations, in this section we provide only the most important or non-standard
preliminaries, and additional ones can be found in the full version of this paper, namely basic
definitions of digraphs and matroids.

We refer the reader to [5, 7] for background on parameterized complexity, and we define
here only the most basic definitions. A parameterized problem is a language L ⊆ Σ∗ ×N. For
an instance I = (x, k) ∈ Σ∗ × N, k is called the parameter. A parameterized problem L is
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fixed-parameter tractable (FPT) if there exists an algorithm A, a computable function f , and
a constant c such that given an instance I = (x, k), A (called an FPT algorithm) correctly
decides whether I ∈ L in time bounded by f(k) · |I|c. For instance, the Vertex Cover
problem parameterized by the size of the solution is FPT. A parameterized problem L is in
XP if there exists an algorithm A and two computable functions f and g such that given
an instance I = (x, k), A (called an XP algorithm) correctly decides whether I ∈ L in time
bounded by f(k) · |I|g(k). For instance, the Clique problem parameterized by the size of
the solution is in XP.

Within parameterized problems, the class W[1] may be seen as the parameterized equi-
valent to the class NP of classical decision problems. Without entering into details, a
parameterized problem being W[1]-hard can be seen as a strong evidence that this problem
is not FPT. The canonical example of W[1]-hard problem is Clique parameterized by the
size of the solution.

If B is a collection of sets, for conciseness we use
⋃⋃⋃

B to denote the set
⋃

A∈B A. For a
positive integer k, we denote by [k] the set {1, . . . , k}. For a sequence of sets B = (B1, . . . , Bk),
a transversal of B is a set {b1, . . . , bk} such that bi ∈ Bi for all i ∈ [k]. Here we remark that
the terms in B need not be distinct but the elements in a transversal {b1, . . . , bk} are distinct.
For a set of indices J , we use (Bj | j ∈ J) to denote the sequence of sets indexed by J so
we can use B = (Bj | j ∈ [k]). A subsequence of B is a sequence (Bj | j ∈ J) for J ⊆ [k].
A partial transversal of B is a transversal of some subsequence of B. For convenience, we
extend all notation regarding transversals and partial transversals to collections of sets.

If P is a path in a digraph G, we denote by s-(P ) and s+(P ) the first and last vertices of
P , respectively. Every vertex of P other than s-(P ) and s+(P ) is an internal vertex. For
A, B ∈ V (G), we say that P is an A → B path if s-(P ) ∈ A and s+(P ) ∈ B. For A, B ⊆ V (G)
an (A, B)-separator is a set X ⊆ V (G) such that there are no A → B paths in G \ X.

Let P be a collection of paths in G. We use s-(P) to denote
⋃

P ∈P s-(P ) and s+(P) to
denote

⋃
P ∈P s+(P ). For conciseness, we say henceforth that the paths in P are disjoint if

they are pairwise vertex-disjoint. For A, B ∈ V (G), we say that P is a collection of A → B

paths if s-(P) ⊆ A and s+(P) ⊆ B. For the remaining of this article and unless stated
otherwise, n is used to denote the number of vertices of the input digraph of the problem
under consideration.

▶ Theorem 1 (Menger’s Theorem [18]). Let G be a digraph and A, B ⊆ V (D). The maximum
size of a collection of disjoint A → B paths is equal to the minimum size of an (A, B)-
separator. Furthermore, a maximum size collection of paths and a minimum size separator
can be found in time O(n2).

A digraph G is strongly connected if for every u, v ∈ V (G) there are paths from u to v

and from v to u in G. A separator of G is a set X ⊆ V (G) such that G \ X has a single
vertex or is not strongly connected. If G has at least k + 1 vertices and k is the minimum
size of a separator of G, we say that G is k-strongly connected (or k-strong for short). A
strongly connected component (or strong component for short) of a digraph G is a maximal
induced subgraph of G that is strongly connected.

The directed tree-width of digraphs was introduced by Johnson et al. [12] as a directed
analogue of tree-width of undirected graphs. Informally, the directed tree-width dtw(G) of a
digraph G measures how close G can be approximated by a DAG, and the formal definition
immediately implies that dtw(G) = 0 if and only if G is an acyclic digraph (DAG). Directed
tree-width and arboreal decompositions are not explicitly used in this article and thus we
refer the reader to [12] for the formal definitions. Here it suffices to mention a few known
results. In the same paper where they introduced directed tree-width, Johnson et al. [12]
showed that k-DDP can be solved in XP time with parameters k + dtw(G).
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▶ Proposition 2 (Johnson et al. [12]). The k-DDP problem is solvable in time nO(k+dtw(G)).

Notice that every instance of the (k, c)-DDP problem with c ≥ k is trivially solvable in
polynomial time by simply checking for connectivity between each pair (si, ti). Thus we can
always assume that c < k. It is easy to reduce the congested version to the disjoint version
of DDP: it suffices to generate a new instance by making c copies of each vertex v of the
input digraph, each of them with the same in- and out-neighborhood as v. A formal proof of
this statement was given by Amiri et al. [1]. Hence it follows that (k, c)-DDP is also XP
with parameters k and dtw(G). A direct proof of this statement is also possible by applying
the same framework used to prove Proposition 2, although such a proof is not given in [12].
A similar proof for a congested version of a DDP-like problem is given by Sau and Lopes
in [16]. In any case, the following holds.

▶ Proposition 3. The (k, c)-DDP problem is solvable in time (c · n)O(c(k+dtw(G))).

For both the k-DDP and (k, c)-DDP problems, (a small variation of) the result of
Slivkins [19] implies that the XP time is unlikely to be improvable to FPT, even when
restricted to DAGs (although the result in [19] concerns the edge-disjoint version of k-DDP,
it easily implies W[1]-hardness of the disjoint version by noticing that the line digraph of a
DAG is also a DAG).

As it is the case with tree-width, Johnson et al. [12] also introduced a dual notion for
directed tree-width in the form of havens. However, although the duality in the undirected
case is sharp, in the directed case it is only approximate: they showed that the directed
tree-width of a digraph G is within a constant factor (more precisely, a factor three) from
the maximum order of a haven of G. Since havens and (strict) brambles are interchangeable
in digraphs whilst paying only a constant factor for the transformation (see [6, Chapter 6]
for example), we skip the definition of the former and focus only on the latter.

▶ Definition 4 (Brambles in digraphs). A bramble B = {B1, . . . , Bℓ} in a digraph G is a
collection of strong subgraphs of G such that if B, B′ ∈ B then V (B) ∩ V (B′) ̸= ∅ or there are
edges in G from V (B) to V (B′) and from V (B′) to V (B). We say that the elements of B are
the bags of B. A hitting set of a bramble B is a set C ⊆ V (G) such that C ∩ V (B) ̸= ∅ for all
B ∈ B. The order of a bramble B, denoted by ord(B), is the minimum size of a hitting set of
B. A bramble B is said to be strict if for all pairs B, B′ ∈ B it holds that V (B) ∩ V (B′) ̸= ∅.
For an integer c ≥ 1 we say that B has congestion c if every vertex of G appears in at most
c bags of B.

See Figure 1 for an example of a bramble. Notice that if B is a bramble of congestion c for
some constant c, its order increases together with its size; i.e., |B|. More precisely, since every
vertex of the host digraph can hit at most c elements of B it holds that ord(B) ≥ ⌈|B|/c⌉. If
B′ ⊆ B then we may say that B′ is a subbramble of B.

B1 B2

B3

Figure 1 Example of a bramble {B1, B2, B3} of order two.
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Johnson et al. [12] gave an algorithm that, given a digraph G, either correctly decides
that dtw(G) ≤ 3k − 2 (also yielding an arboreal decomposition of G) or produces a bramble
of order ⌊k/2⌋. This was later improved to an FPT algorithm by Campos et al. [4]. Although
the authors do not explicitly say that the produced bramble is strict, it is easy to verify that
this is the case in their proof, and the same holds for the proof of [12].

▶ Proposition 5 (Campos et al. [4]). Let G be a digraph and t be a non-negative integer.
There is an algorithm running in time 2O(t log t) · nO(1) that either produces an arboreal
decomposition of G of width at most 3t − 2 or finds a strict bramble of order t in G.

Brambles of constant congestion are a key structure used to solve instances of (k, c)-DDP
in f(k)-strong digraphs in the approach by Edwards et al. [8], as discussed in Section 4. In
particular, they use the following result, originally proved by Kawarabayashi and Kreutzer [14]
where an XP algorithm is given, and then improved by Campos et al. [4] with an FPT algorithm
and a better dependency on k. We refer the reader to [4, 14] for the definition of well-linked
sets, and we remark that, for convenience, we present the statement of the following result in
a slightly different way than in the original article.

▶ Proposition 6 (Campos et al. [4]). Let g(k) = (t+1)(⌊t/2⌋+1)−1 and G be a digraph with
directed tree-width at least 3g(t) − 1. There is an algorithm running in time 2O(t2 log t) · nO(1)

that finds in G a bramble B of order g(t), a path P that intersects every bag of B, and a
well-linked set X of size t such that X ⊆ V (P ).

▶ Proposition 7 (Edwards et al. [8]). There exists a function f : N → N satisfying the
following. Let G be a digraph and t ≥ 1 be an integer. Let P be a path in G and X ⊆ V (P )
be a well-linked set with |X| ≥ f(t). Then G contains a bramble B of congestion two and
size t and, given G, P , and X, we can find B in polynomial time.

Pipelining Propositions 5–7 we obtain the following.

▶ Corollary 8. There is a function f : N → N and an FPT algorithm with parameter t that,
given a digraph G and an integer t ≥ 1, either correctly decides that the directed tree-width
of G is at most f(t) or finds a bramble B of congestion two and size t in G.

3 New Menger-like statements for paths and cuts in digraphs

In this section we present the definition and the min-max formulas associated with each
pair D-paths/D-cuts, T-paths/T-cuts, and R-paths/R-cuts. Since all three types of paths
share some properties (in fact, the major distinction between them is in how they reach their
destinations), it is convenient to adopt the following notations.

▶ Definition 9 (Digraph-source sequences and respecting paths). For an integer ℓ ≥ 1, a
digraph-source sequence of size ℓ is a pair (F , S) such that F = (G1, . . . , Gℓ) is a sequence
of digraphs and S = (S1, . . . , Sℓ) is a sequence of subsets of vertices with Si ⊆ V (Gi) for
i ∈ [ℓ]. We say that a set of paths P respects (F , S) or, alternatively, is (F , S)-respecting
if there is a partition P1, . . . , Pℓ of P such that
(a) for i ∈ [ℓ], Pi is a set of disjoints paths in Gi, and
(b) for i ∈ [ℓ], s-(Pi) ∈ Si.
In this case, we say that P1, . . . , Pℓ is a defining partition of P.

Thus in any set of (F , S)-respecting paths, any two paths can intersect only if they belong
to distinct parts of the defining partition.
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To provide some intuition within the context of the (k, c)-DDP problem, in the next
three definitions one can think of the sequence (S1, . . . , Sℓ) as being formed by many copies
of S followed by many copies of T . Notice that any set of (F , S)-respecting paths includes
paths leaving T , which seems counter-intuitive when considering the goal of solving instances
of (k, c)-DDP. We remark this can be easily addressed by associating, with each copy of T

in the sequence S, the digraph Grev obtained by reversing the orientation of every edge of G.

D-paths and D-cuts. Within the context of this paper, D-paths and D-cuts are used as a
tool to prove our results regarding T-paths and T-cuts. In this scenario, one should think of
the set B in the following definition as the set of vertices of a highly connected structure
that is intended to be used to appropriately connect the last vertices of paths from S to the
first vertices of paths from T .

▶ Definition 10 (D-paths and D-cuts). For an integer ℓ ≥ 1, let (F , S) be a digraph-source
sequence with F = (G1, . . . , Gℓ), S = (S1, . . . , Sℓ), and B ⊆

⋃ℓ
i=1 V (Gi). With respect to B,

we say that a set of (F , S)-respecting paths P with defining partition P1, . . . , Pℓ is a set of
D-paths if
(1) for all distinct P, P ′ ∈ P it holds that s+(P ) ̸= s+(P ′), and

(2a) s+(P) ⊆ B.
A D-cut is a sequence X = (X0, . . . , Xℓ) with X0 ⊆ B such that, for i ∈ [ℓ], the set Xi ⊆ V (Gi)
is an (Si, B \ X0)-separator in Gi. The order of a D-cut X is ord(X ) = |X0| +

∑ℓ
i=1 |Xi|.

Thus, in the definition of D-paths we ask each collection of paths associated with each Pi

to be pairwise disjoint in Gi, and the paths from distinct parts Pi, Pj may share vertices
in

⋃ℓ
i=1 V (Gi) other than the last vertices of the paths. The “D” in the name stands for

“disjoint”. For the min-max formula, we prove the following.

▶ Theorem 11 (⋆). Let (F , S) be digraph-source sequence of size ℓ with F = (G1, . . . , Gℓ), and
let B ⊆

⋃ℓ
i=1 V (Gi). With respect to F , S, and B, the maximum number of D-paths is equal

to the minimum order of a D-cut. Additionally, a D-cut of minimum order and a maximum
collection of D-paths can be found in time O((ℓ · n∗ + |B|)2) where n∗ = maxi∈[ℓ](|V (Gi)|).

T-paths and T-cuts. For the sake of intuition, in the next definition one should think of B
as a bramble. Informally, and given a digraph G, we use T-paths and T-cuts to find a large
collection of paths from a given ordered S ⊆ V (G) to the bags of a subbramble BS ⊆ B,
and from the bags of another subbramble BT ⊆ B to T (we can achieve this orientation for
these paths by reversing the orientation of the edges of G), while ensuring that every vertex
outside of B appears in at most two of those paths, and that all elements of BS ∪ BT are
pairwise distinct. The first property can be achieved by simply applying Menger’s Theorem
(cf. Theorem 1) twice. However, by doing this, we can end with a set of paths all ending on
the same bag of B. This scenario is far from ideal, since at some point the goal is to use the
strong connectivity of G[B ∪ B′] for every B, B′ ∈ B to appropriately connect the ending
vertices of the paths from S to the starting vertices of the paths to T , while maintaining the
property that every vertex appears in at most two (or c, in the general case) of those paths.
If a unique bag B contains all starting and ending vertices of the paths, then connecting
those vertices while maintaining such properties may be as hard as finding a solution to an
instance of (k, c)-DDP in the strong digraph G[B], or downright impossible to do.

Therefore, in the proofs applying similar techniques, as seen in the works by Edwards
et al. [8] and by Giannopoulou et al. [10], there is considerable effort into finding paths
with “good properties” that can be used to connected the paths inside of B (or inside of a
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cylindrical grid in the case of [10]), and these properties always include, as far as we know,
that the paths end or start in distinct bags of B (or distinct sections of the cylindrical grid).
In particular, [8, Lemma 16] includes a set of seven properties over a set of paths that we
can substitute by T-paths to achieve better results in a simpler manner.

We can prove the same results using R-paths and R-cuts, which are simpler than T-paths
and T-cuts. We include the proofs for the two latter objects for potential applications in
which the extra properties of T-paths and T-cuts may become handy.

▶ Definition 12 (T-paths and T-cuts). For an integer ℓ ≥ 1, let (F , S) be a digraph-source
sequence with F = (G1, . . . , Gℓ) and S = (S1, . . . , Sℓ), and B be a family of subsets of⋃ℓ

i=1 V (Gi). With respect to B, we say that a set of (F , S)-respecting paths P with defining
partition P1, . . . , Pℓ is a set of T-paths if
(1) for all distinct P, P ′ ∈ P it holds that s+(P ) ̸= s+(P ′), and

(2b) the set s+(P) is a partial transversal of B.
A T-cut is a pair (B′, X ) with B′ ⊆ B and such that X is a D-cut with respect to F , S, and⋃⋃⋃

B′. The order of a T-cut (B′, X) is ord(B′, X) = |B \ B′| + ord(X ).

For convenience, we keep only one set of parenthesis, writing ord(B′, X ) instead of ord((B′, X )).
Notice that conditions (1) in the definition of T-paths is the same as in the definition

of D-paths. Thus the difference between D-paths and T-paths is that in the former we ask
the paths to end in distinct vertices of B, while in the latter we ask the endpoints of the
paths to form a partial transversal of B. This implies that those endpoints are distinct, and
that each of them is associated with a unique element of B. The “T” in the name stands for
“transversal”. See Figure 2 for an example of a transversal of a collection of sets.

B4

B1

v1

B2

v2

B3

v3 v4

Figure 2 Example of a transversal of the collection {B1, B2, B3, B4}. For i ∈ [4] the vertex vi is
associated with the set Bi.

For the T-paths/T-cuts duality, we prove the following.

▶ Theorem 13 (⋆). Let (F , S) be a digraph-source sequence of size ℓ with F = (G1, . . . , Gℓ),
and let B be a collection of subsets of

⋃ℓ
i=1 V (Gi). With respect to F , S, and B, the maximum

number of T-paths is equal to the minimum order of a T-cut. Additionally, a T-cut of
minimum order and a maximum collection of T-paths can be found in time O((ℓ · n∗ + |B|)2),
where n∗ = maxi∈[ℓ](|V (Gi)|).

R-paths and R-cuts. The intuition for R-paths is similar to the one for T-paths, as is the
motivation to use these objects in the context of (k, c)-DDP and similar problems. The
difference between them is that, if P is a set of T-paths, then all vertices of the form s+(P ),
where P ∈ P, are distinct. In R-paths this only holds when considering paths inside of the
same part of its defining partition. More precisely, given a partition P of a set of R-paths
as defined below, s+(P ) and s+(P ′) are guaranteed to be disjoint only when P and P ′ are
in distinct parts of P. In Section 4 we show that this relaxation poses no problem for the
application of R-paths/R-cuts we show in this article.
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▶ Definition 14 (R-paths and R-cuts). For ℓ ≥ 1, let (F , S) be a digraph-source sequence with
F = (G1, . . . , Gℓ) and S = (S1, . . . , Sℓ), and B be a family of subsets of

⋃ℓ
i=1 V (Gi). With

respect to B, we say that a set of (F , S)-respecting paths P with defining partition P1, . . . , Pℓ

is a set of R-paths if
(1c) for some family B∗ ⊆ B there is a bijective mapping h : P → B∗ such that h(P ) = B

implies s+(P ) ∈ B.
An R-cut is a pair (B′, X ) where B′ ⊆ B and X is a sequence (X1, . . . , Xℓ) such that each
Xi ∈ X is an (Si,

⋃⋃⋃
B′)-separator in Gi. The order of an R-cut (B′, X ) is ord(B′, X ) =

|B \ B′| +
∑ℓ

i=1 |Xi|.

We remark that the only difference between R-paths and T-paths is that, in the latter,
condition (1) ensures that all vertices forming the partial transversal of B are distinct. The
“R” in the name stands for “representatives”. For the duality, we prove the following.

▶ Theorem 15 (⋆). Given a digraph-source sequence (F , S) of size ℓ and a set B ⊆⋃ℓ
i=1 V (Gi) then, with respect to F , S, and B, the maximum number of R-paths is equal to

the minimum order of an R-cut. Additionally, an R-cut of minimum order and a maximum
collection of R-paths can be found in O((k · n∗ + |B|)2) where n∗ = maxi∈[ℓ](|V (Gi)|).

Observe that the right side of the pair forming an R-cut cannot be simply a set of vertices
X because, for example, a vertex v ∈ X can be in two distinct Gi and Gj and be part of the
separator in Gi but not part of the separator in Gj . In this case v would be counted twice
in the order of the R-cut, but it is only used in one separator. Also notice that when |B|
is larger than the allowed budget to construct an R-cut, every R-cut of appropriate order
must identify some separator in some Gi, i.e., X ̸= ∅. In fact, there are only two options for
the size of X : either B′ = ∅ and hence X = ∅, or B′ ̸= ∅ and |X | = ℓ. In the latter case, it
is possible that some Xi ∈ X are empty. In Lemma 19 we exploit this fact to show how to
either find in a digraph G a large collection of R-paths from a set S to the vertices appearing
in the elements of some sufficiently large collection B (corresponding to a bramble), or a
small separator intersecting every path from S to all such vertices.

4 Applications

In this section we show how to exploit the duality between R-paths and R-cuts to improve on
results by Edwards et al. [8] and Giannopoulou et al. [11]. The following is the main result
that we prove, and then we use it to improve on results by [8, 11].

▶ Theorem 16. Let k, c be integers with k, c ≥ 2 and g(k, c) = 2k(c · k − c + 2) + c(k − 1).
Let G be a digraph, assume that we are given the bags of a bramble B of congestion c and
size at least g(k, c), and S, T ⊆ V (G) with S = {s1, . . . , sk} and T = {t1, . . . , tk}. Then in
time O(k4 · n2) one can either
1. find a B∗ ⊆ B with |B∗| ≥ g(k, c)−c(k−1) and an (S,

⋃⋃⋃
B∗)-separator XS with |XS | ≤ k−1

that is disjoint from all bags of B∗, or
2. find a B∗ ⊆ B with |B∗| ≥ g(k, c)−c(k−1) and an (

⋃⋃⋃
B∗, T )-separator XT with |XT | ≤ k−1

that is disjoint from all bags of B∗, or
3. find a set of paths {P1, . . . , Pk} in G such that each Pi with i ∈ [k] is a path from si to ti

and each vertex of G appears in at most c of these paths.

Theorem 16 yields an XP algorithm with parameter k for the (k, c)-DDP problem in
k-strong digraphs, as we proceed to discuss. First, we remark that the XP time is only
required when a large bramble of congestion at most c is not provided. If this is the case, we
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first look at the directed tree-width of G, which can be approximated in FPT time applying
Proposition 5. If dtw(G) ≤ f(k) for some computable function f , then we solve the problem
applying Proposition 3. Otherwise, we apply the machinery by Edwards et al. [8] pipelining
Propositions 6 and 7 to obtain a large bramble of congestion two in digraphs of large directed
tree-width, and use Theorem 16 to find a solution in polynomial time, which we show to
always be possible. When assuming that the input digraph is k-strong, only the third output
of Theorem 16 is possible, and therefore as a direct consequence of Theorem 16 we obtain
the following.

▶ Theorem 17. Let G be a k-strong digraph and B be a bramble of congestion c ≥ 2 with
|B| ≥ 2k(c · k − c + 2) + c(k − 1). Then for any ordered sets S, T ⊆ V (G) both of size k, the
instance (G, S, T ) of (k, c)-DDP with c ≥ 2 is positive and a solution can be found in time
O(k4 · n2).

As mentioned in the introduction, our result improves over the result of Edwards et
al. [8] by relaxing the strong connectivity of the input digraph from 36k3 + 2k to k (and this
bound is close to the best possible unless P = NP), by needing a smaller bramble (from size
188k3 to 4k2 + 2k − 2 when c = 2), and because the proof is simpler and shorter. Finally,
applying Corollary 8, Proposition 3, and Theorem 17 (thus again using Proposition 7 by [8])
we immediately obtain the following.

▶ Corollary 18. For every integer c ≥ 2, the (k, c)-DDP problem is solvable in XP time with
parameter k in k-strong digraphs.

As a tool to prove Theorem 16, we first show how we can take many copies of digraphs G

and G′, say ℓ copies of each, to either find 2ℓ · k R-paths to a given collection B of sufficiently
large size, or find an appropriate separator of size at most k − 1 in G or in G′.

▶ Lemma 19. Let (F , S) be a digraph-source sequence where F contains ℓ copies of a digraph
GS and ℓ copies of a digraph GT , in this order, and S contains ℓ copies of a set S ⊆ V (GS)
and ℓ copies of a set T ⊆ V (GT ), in this order, where |S| = |T | = k. Finally, let B be a
collection of subsets of V (G) with |B| ≥ 2ℓ · k. Then either there is a set of R-paths with
respect to F , S, and B of size at least 2ℓ · k, or for some non-empty B′ ⊊ B there is an R-cut
(B′, X ) of order at most 2ℓ · k − 1 such that X contains ℓ copies of an (S,

⋃⋃⋃
B′)-separator XS

followed by ℓ copies of an an (T,
⋃⋃⋃

B)-separator XT with |XS | + |XT | ≤ 2k − 1.

Proof. Assume that the maximum size of a set of R-paths with respect to F , S, and B is
at most 2ℓ · k − 1. Then by Theorem 15 there is a minimum R-cut Y = (B′, X ′) of order at
most 2ℓ · k − 1.

Since |B| ≥ 2ℓ · k we conclude that B′ ̸= ∅ and thus |X ′| = 2ℓ. (we refer the reader to
the discussion in the end of the first part of Section 3). Hence by the choice of F and S
and the definition of R-cuts, we can construct an R-cut (B′, X ) with the same order as Y by
simply including in X exactly ℓ copies of the (S,

⋃⋃⋃
B′)-separator XS contained in X ′, and

ℓ copies of the (T,
⋃⋃⋃

B′)-separator XT contained in X ′. Thus the newly generated R-cut
satisfies |B \ B′| + ℓ(|XS | + |XT |) = ord(B′, X ) = ord(B′, X ′) ≤ 2ℓk − 1. This immediately
implies that |XS | + |XT | ≤ 2k − 1 and the result follows. ◀

Now the plan is to apply twice the duality between R-paths and R-cuts. In the first
application, we consider the digraph-source sequence formed by 2k(c · k − c + 1) copies of
GS = G and then exactly as many copies of GT = Grev, and the same number of copies of S

and T , also in this order. If we do not find a set of 2k(c · k − c + 1) R-paths to the bags of the
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bramble, then we apply Lemma 19 and find an R-cut (B′, X ) of small order and a separator
of size at most k − 1 in GS or GT . Since the given bramble has congestion c, we show that
we can stop with output 1 or 2 of Theorem 16 by taking the bramble B∗ containing all bags
of B that are disjoint from the small separator. This holds because no bag of B∗ can be in
the “wrong side” of the separator. That is, if for instance there is an S → A path P avoiding
the separator XS of size at most k − 1 in GS , then every bag of B∗ must be in B \ B′ since
otherwise one can construct a path in GS \ XS from S to a bag of B′ by using P and the
connectivity properties of the bramble. In this case, we also arrive at a contradiction since
the size of B∗ is too large to be contained in the R-cut.

If the R-paths are found, then we refine the digraph by carefully choosing edges to delete
from G in such a way that, from a second application of the duality between R-paths and
R-cuts, we are guaranteed to find 2k R-paths that can be used to construct the {si} → {ti}
paths while maintaining the congestion under control. In the refined digraph, we keep the
R-paths found in the first iteration and delete edges leaving vertices of the bramble appearing
in bags that were not used as destinations for the R-paths. We apply Lemma 19 in this
digraph and show that the only possible outcome is that the R-paths are found. Otherwise,
there is an R-cut of order at most 2k − 1 and hence there is a B′′ ⊆ B that contains at least
one bag A that is not in the R-cut and is disjoint from the separator, say X ′

S , of size at most
k − 1 that is part of the R-cut. Now the size of X ′

S implies that there is a path from S to a
bag disjoint from X ′

S avoiding the separator, and thus we can reach A from S avoiding X ′
S .

Finally, the refined digraph allows us to associate each vertex of the bramble used by a path
in {P1, . . . , Pk} with a bag of the bramble, depending on where the vertex appears in the
path, in such a way that no vertex is associated twice with the same bag by two distinct
paths. Together with the bound on the congestion of the bramble, this immediately implies
that every vertex of the digraph appears in at most c paths of the set {P1, . . . , Pk}.

Proof of Theorem 16. Let G, S, T , and B be as in the statement of the theorem. Define
GS = G and GT = Grev and let (F , S) be a digraph-source sequence with F containing, in
order, c · k − c + 1 copies of GS followed by c · k − c + 1 copies of GT , and S containing,
in order, the same number of copies of S followed by exactly as many copies of T . Now,
applying Lemma 19 with respect to F , S, B, and ℓ = c · k − c + 1, we conclude that either
there are 2k(c · k − c + 1) R-paths or, for some B′ ⊆ B there is an R-cut (B′, X ) where X
contains ℓ copies of an (S,

⋃⋃⋃
B′)-separator XS and ℓ copies of an an (S,

⋃⋃⋃
B′)-separator XT

with |XS | + |XT | ≤ 2k − 1. We first consider the case where the separators are obtained.
Thus |XS | ≤ k − 1 or |XT | ≤ k − 1. Since both cases are symmetric (the T → XT paths
become XT → T paths when we restore the orientation of the edges of GT ), we suppose
without loss of generality that |XS | ≤ k − 1.

Let B∗ contain all bags of B that are disjoint from XS . Since B has congestion c we
conclude that |B∗| ≥ g(k, c) − c(k − 1). We show that no vertex appearing in a bag of B∗ is
reachable from S in GS \ XS . By contradiction, assume that there is an S → A path P in
GS \ XS for some A ∈ B∗. If there is A′ ∈ B∗ ∩ B′ then we can use the strong connectivity
of GS [A ∪ A′] and the path P to construct an S → A′ path in GS \ XS , contradicting the
choice of XS . Thus in this case B∗ must be entirely contained in B \ B′. Again we obtain
a contradiction since 2k(c · k − c + 2) ≤ |B∗| ≤ |B \ B′| ≤ ord(B′, X ) < 2k(c · k − c + 1). In
other words, the existence of path from S to a vertex in a bag of B∗ avoiding XS implies
that every bag of B∗ is reachable from S in GS \ XS and thus such path cannot exist since
B∗ is too large to be contained in any R-cut of order less than 2k(c · k − c + 1). We conclude
that no bag A ∈ B∗ is reachable from S in GS \ XS , and and output 1 of the theorem follows.
Symmetrically, output 2 of the theorem follows if |XT | ≤ k − 1.
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Assume now that a set of R-paths P of size at least 2k(c · k − c + 1) is found. Let B1 ⊆ B
and let h : P → B1 be the bijective mapping as in (1c) of Definition 14. Thus h(p) = B

implies that s+(P ) ∈ B. Since |S| = |T | = k, we can split P into two sets of equal size PS

and PT , where every path in PS is a path leaving S in GS and every path in PT is a path
leaving T in GT . We define BS = {h(P ) ∈ B1 | P ∈ PS} and BT = {h(P ) ∈ B1 | P ∈ PT }.
The next step is to refine P to make it minimal with respect to B. That is, we say that P

is B-minimal if no path of P contains an internal vertex that is in a bag B \ (BS ∪ BT ). In
other words, when following a path P ∈ P from the first to the last vertex, if we find an
internal vertex v in a bag B that is not in BS nor in BT , we swap P in P by its subpath
ending in v and update BS or BT accordingly. Clearly, condition (1c) of Definition 14 still
hold with respect to the new choice of P, and therefore from now on we assume that P is
B-minimal. This property is important later to bound the maximum number of times that a
vertex can appear in the S → T paths we construct.

Next, we reduce GS and GT to digraphs that are still well connected to B, thus ensuring
that we can find a large set of R-paths in the new digraphs, in which we can maintain control
over how many times a vertex can appear in the S → T paths we construct from these new
R-paths. To this end, define

VS =
⋃

P ∈PS

(V (P ) \ {s+(P )}) ∪
⋃

A∈BS

A and VT =
⋃

P ∈PT

(V (P ) \ {s+(P )}) ∪
⋃

A∈BT

A. (1)

Finally, we construct the digraphs G′
S and G′

T starting from GS and GT , respectively,
applying the following two rules:

For every v ∈ V (GS), if v ∈ (
⋃⋃⋃

B) \ VS then we delete from G′
S every edge leaving v.

For every v ∈ V (GT ), if v ∈ (
⋃⋃⋃

B) \ VT then we delete from G′
T every edge leaving v.

Consider the digraph-source sequence ({G′
S , G′

T }, {S, T}) and let B′ = B \ (BS ∪ BT ), and
notice that B′ may not be a bramble in G′

S nor in G′
T . Clearly |B′| ≥ g(k, c)−2k(c·k−c+1) =

c(k − 1) + 2k > 2k. We apply Lemma 19 with respect to {G′
S , G′

T }, {S, T} (and thus ℓ = 1),
and B′, to either obtain a set of R-paths P ′ of size at least 2k or an R-cut (B′′, {X ′

S , X ′
T })

with order at most 2k − 1 where |X ′
S | + |X ′

T | ≤ 2k − 1 and B′′ ̸= ∅. We claim that only the
first output is possible. By contradiction, assume that the R-cut and the separators were
obtained and, without loss of generality, that |XS | ≤ k − 1. First notice that the upper
bound on the order of the R-cut implies that |B′′ \ B′| ≥ c(k − 1) + 1. Since |XS | ≤ k − 1
this implies that there is at least one bag A′ ∈ B′′ that is disjoint from XS and not included
in R-cut.

Now, set q = 2(c · k − c + 1) and let P1, . . . , Pq be the defining partition of P. That
is, for every i ∈ [q], the part Pi is a set of k disjoint paths in the i-th digraph of F (this
is possible since |S| = |T | = k and hence P cannot contain more than k disjoint paths in
any digraph in F). Thus exactly q/2 parts Pi contain only paths starting in S. Now the
size of XS allows it to intersect at most c(k − 1) bags of B, and thus for some Pi no bag in
Bi = {A ∈ BS | P ∈ Pi and s+(P ) ∈ A} is intersected by X ′

S . Since |X ′
S | ≤ k − 1, there is

a P ∈ Pi from S to a bag A ∈ Bi that is not intersected by X ′
S . By the choice of G′

S this
path also exists in this digraph and, since s+(P ) ∈ A and A ∈ BS , every edge of GS leaving
every vertex in A is kept in G′

S and thus G′
S [A] is strong. Now, as B is a bramble, we can

construct a path from S to A′ (remember that A′ ∈ B′′ and A′ ∩ XS = ∅) by following the
path P and then taking a path from s+(P ) to A′ in G′

S [A ∪ A′], which in turn is guaranteed
to exist since either A ∩ A′ ̸= ∅ or there is an edge from A to A′ in G′

S . This contradicts our
assumption that (B′′, {X ′

S , X ′
T }) is an R-cut and the claim follows.
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Assume now that a set P ′ of 2k R-paths is obtained. Therefore, there are disjoint paths
{QS

1 , . . . , QS
k } leaving S and disjoint paths {Q′

1, . . . , Q′
k} leaving T in P. By recovering the

orientation of the edges of G′
T (we remind the reader that GT = Grev), we construct paths

{QT
1 , . . . , QT

k } reaching T in G and, by renaming the paths if needed, we assume that, for
i ∈ [k], each QS

i is a path starting in si and each QT
i is a path ending in ti. Moreover, by

condition (1c) in the definition of R-paths (see Definition 14), each s+(QS
i ) is associated

with a unique bag Ai ∈ B and each s-(QT
i ) is associated with a unique bag A′

i ∈ B, such that
all bags A1, . . . , Ak, A′

1, . . . , A′
k are distinct. Hence, since B is a bramble, it follows that for

every i ∈ [k] we can find a shortest path Qi from s+(QS
i ) to s-(QT

i ) in the strong digraph
G[Ai ∪ A′

i]. Finally, we construct the desired paths {P1, . . . , Pk}, such that each Pi with
i ∈ [k] is a path from si to ti, by appending Qi to QS

i and then QT
i to the resulting path.

Notice that this construction may result in a walk instead of a path, but every walk can be
easily shortened into a path Pi.

We now claim that every vertex of G appears in at most c paths of the collection
{P1, . . . , Pk}. First, notice that since the paths {QS

1 , . . . , QS
k } are disjoint and the paths

{QT
1 , . . . , QT

k } are disjoint as well, any vertex not appearing in any bag of B can appear in
at most two paths of {P1, . . . , Pk}. Assume now that v is a vertex appearing in some bag of
B. Depending on where v is located in the paths QS

i , QT
i , and Qi, we associate v with a bag

of B. Since B has congestion c, this immediately validates the claim and the result follows.
We remind the reader of our assumption that P is B-minimal, and look again at Equation 1.
If v is in VS because v is in path P ∈ PS ∪ PT and v ̸= s+(P ), then we say that v is a type
1 vertex. Otherwise, we say that v is a type 2 vertex.

For i ∈ [k], if v is a internal vertex of some QS
i , then v ∈ V S and is either a type 1 or

a type 2 vertex. If v is of type 1, then v is an internal vertex of some path P ∈ PS and
v ̸= s+(P ). Since P is B-minimal, this implies that v is in some destination bag of BS and
we associate v with this bag. If v is of type 2, then v is not an internal vertex of any path in
PS and is in some bag of BS . We associate v with this bag. Since the paths {QS

1 , . . . , QS
k }

are disjoint, v appears only in one of those paths and thus no other QS
j can associate v with

another bag of B. The analysis is similar if v is an internal vertex of some QT
j . Notice that

it is possible that v is in both QS
i and QT

j and, in this case, those two paths associate v with
two distinct bags of BS and BT , respectively.

Now let B2 ⊆ B′ and let h′ : P → B2 be a bijective mapping as in (1c) of Definition 14. If
v is a vertex of some Pi from s+(QS

i ) to s-(QT
i ) then we associate v with h′(QS

i ) if v ∈ h′(QS
i ),

and we associated v with h′(QT
i ) if v ∈ h′(QT

i ).
Now, for i, j ∈ [k], every path of the form QS

i , QT
i , or Pi associates each of its vertex

inside of the bramble with a unique bag of B, each vertex associated with some bag appears
in V (QS

i )\{s+(QS
i )}, V (QT

i )\{s-(QT
i )}, or V (Qi), no two distinct QS

i , QT
j associate a vertex

v with the same bag, and the same holds with relation to distinct pairs of paths of the form
Qi, Qj and QT

i , QT
j . We remark that while it is possible that some v appears in both QS

i

and QT
i , this does not pose an issue since in this case v is associated with a pair of distinct

bags B ∈ BS and B′ ∈ BT by QS
i and QT

i , respectively. Since B has congestion c, it follows
that every vertex is associated with at most c bags, which implies that every vertex is in at
most c paths of {P1, . . . , Pk}, and the result follows.

The bound on the running time follows by Theorem 15 and by observing that a set of
R-paths can be made B-minimal in time O(c · k2 · n2) ◀

Application to the asymmetric version of (k, c)-DDP. Theorem 16 is a direct translation
of Giannopoulou et al. [10, Theorem 9.1] to our setting. As mentioned in the introduction,
we can prove a weaker version of Theorem 17 by replacing Theorem 16 by [10, Theorem 9.1].

ESA 2023
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In comparison with the result by Edwards et al. [8], with this approach we can drop the
bound on the strong connectivity of the digraph from (36k3 + 2k) to k, and the trade-off is
that in this case we have to rely on the topology of cylindrical grids to connect the paths,
instead of a bramble of congestion c. Although it is true that every digraph with large
directed tree-width contains a large cylindrical grid [14], and that such a grid can be found
in FPT time [4], to find a cylindrical grid of order k the directed tree-width of the digraph
has to increase much more than it is needed to find a bramble of congestion two (although
both dependencies still consist of a non-elementary tower of exponentials). Additionally, we
remark that if the goal is to solve the (k, c)-DDP problem with c ≥ 8, then as stated in
Theorem 17 a bramble of congestion eight suffices, and a polynomial dependency on how
large the directed tree-width of a digraph must be to guarantee the existence of a large
bramble of congestion eight was shown by Masarík et al. [17].

On the other hand, Theorem 16 improves upon [10, Theorem 9.1] in both its statement,
since we use brambles instead of cylindrical grids, and in simplicity. Indeed, brambles of
bounded congestion seem to be a weaker structure than cylindrical grids, since it possible to
extract such brambles with order t from a cylindrical grid of order at least 2t (see [8, Lemma
9]), and the bound on how large the directed tree-width of a digraph has to be to guarantee
the existence of such a bramble with size t is, in many cases (see [17] for instance) and as far as
we know also in the general case, substantially better than what is needed to find a cylindrical
grid with the same order. Additionally, the algorithm to find cylindrical grids runs in FPT
time [4] given a certificate of large directed tree-width and, in contrast, a large bramble of
congestion two can be found in polynomial time when such certificates are provided, as stated
in Proposition 7. Finally, we only ask the bramble to have order 2k(c · k − c + 2) + c(k − 1)
(which equals 4k2 + 2k − 2 when c = 2) instead of order k(6k2 + 2k + 3) for the cylindrical
grid in [10, Theorem 9.1], where the goal is to compute solutions for (k, 2)-DDP. Their proof
relies on the topology of cylindrical grids to connect the paths inside of this structure, after
some careful selection on how to reach it from S and leave it to reach T . In our proof of
Theorem 16, it is very simple to connect the paths inside the bramble. Indeed, after applying
twice the duality between R-paths and R-cuts, for each i ∈ [k] we simply connect the ending
vertex of the path from si to the bramble containing the starting vertex of the path from the
bramble to ti, using the strong connectivity of the digraph induced by B ∪ B′, where B is
the bag associated with si and B′ the bag associated with ti.

Their result [10, Theorem 9.1] is one of the cornerstones in their algorithm to solve the
asymmetric version of (k, 2)-DDP. Recall that, given ordered sets of terminals {s1, . . . , sk}
and {t1, . . . , tk}, the goal in this asymmetric version is to either produce a collection of
paths from each si to the corresponding ti such that every vertex is in at most two paths
of the collection, or conclude that there is no collection of disjoint {si} → {ti} paths.
In the first case, we say that we have constructed a half-integral linkage. In the second
case, we say that we have a no-instance. At any point of their dynamic programming
algorithm, if one of the subproblems they define deals with an instance in which there is no
small separator intersecting all paths from S to the grid or from the grid to T , then they
apply [10, Theorem 9.1] to find a solution to the instance. If a separator is found, then
they generate two easier instances, one of bounded directed tree-width, and one with fewer
number of terminals. Intuitively, the same holds true if we substitute [10, Theorem 9.1] by
our Theorem 16. In the full version of this paper, we give an informal sketch of why this is
indeed the case.
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