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Abstract 

This study explores the analogy of general relativity with the theory of elasticity by considering the 

cosmological constant  as an additional curvature of the structure of space due to a thermal gradient 

coming from the cosmic web and the cold vacuum. It follows from this analogy and from the supposed 

space model consisting of thin sheets of Planck’s thickness curved by this thermal gradient a possible 

coefficient of thermal expansion of the equivalent elastic medium modeling the space of the order of 

𝑠𝑝𝑎𝑐𝑒−𝑄𝐹𝑇=1.16 x 10-6 K-1 

 

Keywords: space-time fabric, general relativity, elasticity theory, quantum mechanics, expansion 
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1. Introduction 

1.1 Measured strains of space and analogy of the general relativity theory with the elasticity theory 

Einstein's theory of general relativity is over 100 years old and is now widely verified. Thus, spacetime 

is according to this theory a deformable elastic physical object. Gravitation is thus a manifestation of 

the geometric deformation of space-time under the effect of the masses or energy density therein. The 

manifestations of the deformations of this space-time are now known and measured with great 

precision. We can cite the apparent position variation of stars placed behind the sun during an eclipse 

measured by Edington [1], the frame dragging of space-time by angular distortion by the rotation of 

the earth (experiment prob B, Lense-Thirring and frame dragging effects) [2], the simultaneous 

lengthening and shortening deformations in each of the arms of Ligo/Virgo type interferometers during 

the passage of gravitational waves [3][4], gravitational lenses or substantial masses located between a 

galaxy and our field sighting on earth distorts space to the point of making it appear to us in the shape 

of a circle (a bit like a candle placed behind the flat circle of a stemmed wine glass appears circular by 

its transparency reflection), and finally the expansion of the universe where the galaxies are “fixed” in 

a space which expands in an increasingly accelerated way characterized by Hubble's law. All these 

manifestations of the deformations of space time have led many physicists like A Sakharov [5], J.L Synge 

[6], C. B Rayner [7], R. Grot [8], V.V Vasilev and L.V Fedorov [9] [10], J.D Brown [11], T.G. Tenev and M.F. 

Horstemeyer [12], P.A Millette [13] and many others as T. Damour in its conferences and books consider 



2 
 

that the theory of general relativity is a kind of theory of the elasticity in 4 dimensions of a deformable 

elastic space-time medium. We then speak of “elastic metric” or “elastic theory of gravitation”. It is 

within the framework of this analogy that we place ourselves in this paper. 

If by analogy, therefore, space-time is considered as an equivalent deformable elastic medium, they 

are two consequences. We will study it in the next two paragraphs. 

 

1.2 The mechanical characteristics of the equivalent elastic medium in the field of the analogy of the 

elasticity theory with the General Relativity – review of the state of the art 

This equivalent elastic medium must therefore be characterized with the usual parameters linked to all 

elastic mediums and to the elasticity theory (Young’s modulus Y, Poisson’s ratio , density , etc.). Thus, 

various authors have sought to establish an equivalent Young's modulus of the space noted 𝑌𝑠𝑝𝑎𝑐𝑒 . We 

can quote R. Weiss during his Nobel prize speech I quote «In other words, it takes enormous amounts 

of energy to distort space. One way to say it is, the stiffness (Young’s modulus) of space at a distortion 

frequency of 100 Hz is 1020 larger than steel».  

T.G Tenev et M.F Horstemeyer [12] who propose by considering the space-time made up of thin elastic 

sheets of the thickness of Planck the following formulation (1) giving 𝑌𝑠𝑝𝑎𝑐𝑒 = 4.4× 10113𝑁/𝑚² 

𝑌𝑠𝑝𝑎𝑐𝑒 =
6𝑐7

2ℏ𝐺2 
=

24

𝑙𝑝
2

                                                                                                                                                  (1) 

In this expression, c is the speed of light, G is the gravitational constant, ℏ is Planck's constant, 𝑙𝑝 is the 

Planck's length (thicknesses of the thin sheets supposed to constitute the space fabric in [12]) and  is 

the Einstein's gravitational constant ( =
8𝐺

𝑐4 ). 

M. Beau proposes a space bulk modulus [14] and arrives at 𝐾𝑠𝑝𝑎𝑐𝑒 =1.64× 10109𝑁/𝑚².  

K. McDonald [15] proposes another expression of the Young's modulus (2) based on dimensional 

equations and obtain: 

𝑌𝑠𝑝𝑎𝑐𝑒 =
𝑐2𝑓2

𝐺
                                                                                                                                                              (2) 

Where f is the frequency of the gravitational wave. He thus obtains for a gravitational wave of 100 Hz 

𝑌𝑠𝑝𝑎𝑐𝑒 =1020 Ysteel so, 𝑌𝑠𝑝𝑎𝑐𝑒 =4.5 × 1031𝑃𝑎 as R. Weiss. 

D. Izabel in [16] arrives at an expression similar to K. Mc Donald by studying the elastic deformations 

in space dynamics located in the arms of the Ligo/Virgo laser interferometers and by studying the 

elastic deformations of a space cylinder twisted by the rotation of two black holes. He thus obtains the 

expression (3) of the Young's modulus of space similar to K. Mc Donald at the factor  close: 

𝑌𝑠𝑝𝑎𝑐𝑒 =
𝑓2𝑐2

𝐺
                                                                                                                                                            (3) 

This leads by considering a density  from quantum field theory (hypothesis similar to T.G Tenev and 

M.F Horstemeyer [12]) at 𝑌𝑠𝑝𝑎𝑐𝑒 = 1 at 4.0 × 10113𝑃𝑎 

A.C. Melissinos [17] considers vibrating plates in the planes of the arms of the interferometers and 

arrives at the following expression (4) of the Young's modulus of space: 

𝑌𝑠𝑝𝑎𝑐𝑒 <
𝑐2𝑓2

4𝐺
×

𝑐

𝑧
                                                                                                                                                     (4) 
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In this expression, ∆τ is the length of the Gravitational Wave burst and the total path length traversed 

by the GW is designated by ∆z. The numerical application is done with ∆τ ≈ 1 s and ∆z ≈ 400 Mpc and 

leads it to a next value of Young's modulus 𝑌𝑠𝑝𝑎𝑐𝑒 < 2.5× 10−17(c2f2/G). 

Finally, let us quote S.R. Hwang in [18] which by comparing the energy of gravitational waves for 

different frequencies (35 to 100 Hz and different GW) with the deformation energy of a spring modeling 

the lengthening and shortening of the arms of the interferometers arrives at values of the Young’ 

modulus of space time 𝑌𝑠𝑝𝑎𝑐𝑒 = 1.0 × 1036 𝑎𝑡 1 × 1054 Pa. 

Another key parameter of any elastic medium is of course the coefficient of transverse deformation, 

the space Poisson's ratio . Again, many authors have proposed values. From the simultaneous 

deformations of the arms of the Ligo/Virgo interferometers (while one arm is shortened by a 

deformation by shortening of the order of −10−21 the other lengthens by the same amount of 

+10−21) T.G Tenev and M.F Horstemeyer [12] propose =1 which presupposes a certain anisotropy of 

space which behaves like a kind of thousand leaves during the passage of a gravitational wave , each 

plane deforming successively according to the polarizations 𝐴+ and 𝐴×. The Poisson's ratio being close 

to zero in the direction of propagation of the wave and being equal to 1 in the plane perpendicular to 

the direction of propagation. 

D. Izabel in [16] arrives at the same conclusion on this Poisson’s ratio. 

Concerning the equivalent density of the medium space , A Sakharov [5] shows that quantum 

considerations of space (quantum field theory) make it possible to go back to an elastic theory of space 

(5). We quote it below: 

"In Einstein's theory of gravitation, it is postulated that the action of space-time depends on the 

curvature (R is the invariant of the Ricci tensor): 

𝑆(𝑅) = −
1

16𝐺
∫(𝑑𝑥)√−𝑔𝑅                                                                                                                                        (5) 

The presence of action (1) results in a "metric elasticity" of space, that is, the generalized forces that 

oppose the curve of space. 

T.G Tenev and M.F Horstemeyer [12] and D. Izabel [16] also follow this path which leads them by 

considering the minimum non-zero energy of the vacuum to the following expression (6): 

 =
𝑌𝑠𝑝𝑎𝑐𝑒

4𝑐2 = 1.3 × 1096 𝑘𝑔

𝑚3                                                                                                                                          (6) 

P.A Millette in [13] formula 19.36 proposes the following expression (7) for the density of space: 

̅
0

=
32𝑐5

ℏ𝐺2 = 1.7 × 1098𝑘𝑔/𝑚3                                                                                                                                   (7) 

Finally concerning the shear modulus of the middle space P.A Millette always in [13] formula 19.14 and 

19.22 proposes the following expression (8a): 

̅
0

=  = 𝐺 =
𝑌

2(1+)
=

32𝑐7

ℏ𝐺2 1.5 × 10115𝑁/𝑚2                                                                                                (8a) 

For bulk modulus (formula 19.21 of [13]): 

̅0 = 𝐾 =
̅0

32
=

𝑐7

ℏ𝐺2 =  +
2

3
 =

𝑌

3(1−2)
= 0.046875 × 10115𝑁/𝑚2                                                                      (8b) 
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That concludes this review of the characteristics of space following the analogy of it as an equivalent 

elastic medium. Two conclusions emerge from this state of the art. Firstly, all space is absolutely not in 

this elastic analogy an "equivalent elastic material" like the others classically known on Earth, given the 

orders of magnitude of the deformations (10−21), of the Young's modulus (10113𝑃𝑎), the Poisson's 

ratio outside the usual standards (=1), the density of the medium (1098𝑘𝑔/𝑚3) and its associated 

anisotropy linked to the Poisson's ratio if it is 1 in a direction perpendicular to the propagation of the 

wave and 0 in the direction of propagation. Secondly, and this is partly the subject of this paper, no 

publication to our knowledge deals with a possible coefficient of expansion  of this space medium. 

We are therefore going to propose an original and innovative approach in this paper to try to propose 

a mechanical expression and a numerical value of this possible expansion coefficient  of the 

equivalent space fabric. 

1.3 Analogy about the behaviour law of the space following the general relativity with the Hooke’s law 

in elasticity without and with cosmological constant – thermal gradient implication about the different 

curvatures that have to be considered 

The second aspect about this analogy is the law governing this equivalent elastic medium, this very 

special space fabric. Indeed, it is well known that Einstein's equation of general relativity without 

cosmological constant  relates the curvature of space 𝐺 to the density of energy which deforms it 

𝑇 (9). 

𝐺 = 𝑅 −
1

2
𝑔𝑅 = −

8𝐺

𝑐4 𝑇                                                                                                                                  (9) 

In this expression 𝑅 is the Ricci tensor resulting from the contraction of the Riemann tensor, R is the 

scalar curvature resulting from the contraction of the Ricci tensor and 𝑇 the momentum energy 

tensor.  varying from 0 for time to 3 for the 3 dimensions of space. 

D. Izabel showed in [16] that the equation of general relativity in 4 dimensions presents an analogy 

with the expressions in 1 and 2 dimensions of the curvature of beam (10, 11) and plate (12) in pure 

bending under two moments applied at each extremity (see Figure 1.) according to the Timoshenko’s 

strength of materials theory issued of the elasticity theory. 

1

𝑅2 =
2

𝐸𝐼
(

𝑊𝑒𝑥𝑡(𝑡𝑜𝑡𝑎𝑙)

𝐿
) = 𝐾 (

𝑊𝑒𝑥𝑡(𝑡𝑜𝑡𝑎𝑙)

𝐿
)                                                                                                                      (10) 

In analogy with: 

𝐺µ𝜈 = −
8𝜋𝐺

𝑐4
(𝑇µ𝜈) = − (𝑇µ𝜈)                                                                                                                             (11) 

In these expressions, R is the radius of curvature of a beam of span L, inertia I and Young's modulus E=Y 

associated with a work of the external forces W. K is the mechanical coupling constant between the 

curvature and the strain energy U of the beam which is equal to the work applied external forces W. 

Or in theory of the plates of thickness h following [25]: 

[(
1

𝑅𝑥
)

2
+ (

1

𝑅𝑦
)

2

+ 2(1 − ) {(
1

𝑅𝑥𝑦
)

2

} + 2 {
1

𝑅𝑥

1

𝑅𝑦
}] =

24(1−2)

𝐸ℎ2 ×
∆𝑈

ℎ∆𝑥∆𝑦
                                                              (12) 

T.G Tenev et M.F Horstemeyer [12] but also T. Damour in his book “if Einstein was told to me “ showed 

this analogy from a tensor point of view in terms of Hooke's law (13) and (14): 

𝑘𝑙 =
𝑌

1+
(



1−2
𝑔𝑖𝑗𝑔𝑘𝑙 + 𝑔𝑖𝑘𝑔𝑖𝑙) 𝑖𝑗                                                                                                                     (13) 
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𝑇 =
1


(𝑅 −

1

2
𝑅𝑔)                                                                                                                                                 (14) 

In the space fabric model of T.G Tenev et M.F Horstemeyer [12], space is assumed to be made up of 

ultra-thin sheets of Planck thickness, having an elastic behavior. It is in this space model that we will 

place ourselves in the rest of this publication. 

But the tensorial equation of Einstein (9) can be also written by considering this time the cosmological 

constant  as a materialization of a certain repulsive dark energy. It is written as follows: 

𝑅 −
1

2
𝑔𝑅 =

8𝐺

𝑐4 𝑇 − 𝑔                                                                                                                                  (15) 

Or by factoring Einstein's constant  : 

𝑅 −
1

2
𝑔𝑅 =

8𝐺

𝑐4 [𝑇 −
𝑐4

8𝐺
𝑔]                                                                                                                       (16)  

But the Einstein's tensorial equation (9) considering the cosmological constant can be also written as 

an additional curvature present in all space (frame of this paper). It is written as follows: 

𝐺 = 𝑅 −
1

2
𝑔𝑅 + 𝑔 = −

8𝐺

𝑐4 𝑇                                                                                                                (17) 

If we follow completely the analogy of the beam or the plate in elasticity describes before it exists not 

one but two sources of curvature (see chapter 3): one under the applied masses developed in [12] and 

[16] and one under the temperature gradient, hence our idea of associating the second with the 

cosmological constant if our analogy is correct, the first one having already been partially demonstrated 

in [16]. 

So, we come to the subject of this publication. In the same way that we have shown that Einstein's 

constant , by analogy with an elastic medium made of thin sheet of thickness lp, (plate theory) could 

be expressed in terms of mechanical constants [12] [16] (
24(1−2)

𝐸ℎ2 →  → 𝑌 =
24

𝑙𝑝
2

), the cosmological 

constant  which is generally associated with a dark energy [19] opposed to gravitation (15 and 16), 

can it not also be expressed in terms of mechanical parameters as an additional curvature present in 

all space (17) due at a thermal gradient?  

This constant  generally associated with an expansion of space [20], can it not be correlated with a 

hidden mechanical behaviour of space via a parameter missing from the state of the art cited above in 

the analogy of space as an elastic medium, namely a coefficient of thermal expansion  of it? The 

phenomenal temperature difference between the cosmic web that fills the entire universe and the icy 

vacuum at -2.73 K does not constitute such a thermal gradient sufficient to impose on the sheets [12] 

constituting the space of a thickness of Planck in the framework of our model an additional source 

curvature of this cosmological constant? It is these hypotheses that we will study in this paper, thus 

placing ourselves in the continuity of the publications and theoretical models of T.G Tenev and M.F 

Horstemeyer [12] and D. Izabel [16]. 
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2. Methods 

The following methodology has been implemented to estimate, within the framework of the analogy 

of space as an equivalent elastic medium, the value of a possible coefficient of thermal expansion  of 

space in line with the cosmology constant  associated with an additional thermal space curvature in 

the framework of a Planck thickness sheet space model as considered by T.G Tenev and M.F 

Horstemeyer [12]: 

1) Within the framework of the analogy of an elastic medium to model the deformations of space in 

the presence of mass energy, restructure the simplified and appropriate mechanical model among 

those already developed to evaluate a possible generalized thermal curvature of this one, 

2) Search for certain scientific data that can feed this mechanical model of curved space under the 

effect of a thermal gradient between the cosmic web and the space vacuum, 

3) Consider the cosmological constant  not as a gravitationally repulsive dark energy (if placed to the 

right of equations (15) and (16) but as an additional curvature present in all space (if placed to the left 

of the equation (17)) and analysis of the consequences of this approach, 

4) Extract from the mechanical model of curvature of space under thermal gradient and from the 

scientific data available in connection with this model by considering the cosmological constant , a 

possible coefficient of expansion of the medium space , 

5) Discuss the representativeness of this model by varying the assumptions (value of ) and seeing the 

consequences on the value of the thermal expansion coefficient of the elastic medium modeling space, 

6) Discuss the additional verifications necessary to confirm this approach, 

7) Presentation of the possible consequences of this model concerning the interpretation of dark 

energy. 

 

3. Search for a simplified mechanical model of space allowing to represent a thermal curvature of 

this one 

3.1 Analogy of the thermal curvature of an elastic medium with a simplified approach of resistance of 

materials in one dimension - beam under thermal gradient 

In the strength of materials, two phenomena and only 2 can create curvature: masses supported by 

the object, a thermal gradient applied to the object (beam, plate, shell). 

We studied the first in [16] and showed that masses placed on a beam create curvature (18). Thus, we 

have shown in [16] that the curvature of a beam in pure bending (solicited by two moments M at each 

end) (18) takes a form similar to Einstein's equation from the point of view of the analogy of space as 

an elastic medium in the form curvature =K x a linear strain energy density U/L: 

1

𝑅2 =
2

𝐸𝐼
(

𝑈

𝐿
)                                                                                                                                                                   (18) 

With U the strain energy of the beam (See Figure.1). 
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Figure 1: Definition of a Timoshenko’s beam in pure bending – 

 

The second, we study it in this article, it is the curvature created by the difference in temperature 

between the two extreme fibers of the beam. The beam is then subjected to a thermal gradient T 

which leads to an elongation of the heated fibers and a shortening of the cooled fibers. These 

differences in elongation create a curvature without internal forces of the beam if this one is not 

constrained in displacement somewhere along its surface. 

T. Damour tells us in his various conferences and publications [9] [11] that curvature in the sense of 

Einstein is an angle divided by a surface (see also C. F Gauss work [21]). We will show that is indeed the 

case of a beam requested by a thermal gradient (temperature difference T between the lower and 

upper fibers of the beam 𝑇 = 𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛𝑡) 

Let us now consider the case of an identical beam in pure bending undergoing a thermal gradient (Cf. 

figure. 2): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Strain of a beam in bending under a thermal gradient T – 

𝑑𝑥 + 𝛼𝑇𝑒𝑥𝑡𝑑𝑥  

𝑇𝑒𝑥𝑡 

𝑇𝑖𝑛𝑡 

𝑑𝑥 

𝑅 

dβ 

𝑑𝑥 + 𝛼𝑇𝑖𝑛𝑡𝑑𝑥  

𝑇𝑒𝑥𝑡 > 𝑇𝑖𝑛𝑡 

𝑇𝑖𝑛𝑡 
𝑅 

dβ 

h 

L 

E,I,m 

h 
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The strain energy U is always with M a bending moment for a beam of span L and rigidity EI: 

𝑈 =
1

2
∫

𝑀2

𝐸𝐼
𝑑𝑥

𝐿

0
                                                                                                                                                              (19) 

Figure 2 and formula (20) allows us to write the following geometric relations between the angle  

(radiant) and the curvature (1/R) of the beam with h the height of the beam,  its expansion coefficient 

and T the thermal gradient applied to this beam: 

𝑡𝑎𝑛(𝑑𝛽) =
𝑑𝑥

𝑅
=

(𝑑𝑥+𝛼𝑇𝑒𝑥𝑡𝑑𝑥)−(𝑑𝑥+𝛼𝑇𝑖𝑛𝑡𝑑𝑥)

ℎ
=

(𝛼𝑇𝑒𝑥𝑡−𝛼𝑇𝑖𝑛𝑡)𝑑𝑥

ℎ
=

𝛼𝑇𝑑𝑥

ℎ
                                                    (20) 

Given the figure. 2, from the relation between the curvature of a beam under a thermal gradient and 

the second derivative of its deformation 𝑦(𝑥), we obtain the expression (21): 

𝑑2𝑦

𝑑𝑥2 =
𝑀

𝐸𝐼
=

1

𝑅
=

𝑡𝑎𝑛(𝑑𝛽)

𝑑𝑥
=

𝑑𝛽

𝑑𝑥
=

𝛼𝑇

ℎ
                                                                                                                     (21) 

Considering the new expression of the moment M from (21): 

𝑀 = 𝐸𝐼
𝑑𝛽

𝑑𝑥
                                                                                                                                                                   (22) 

By replacing the moment M by its expression above (22) in the expression of the strain energy U of the 

beam (19), we then obtain: 

𝑈 =
1

2
∫

(𝐸𝐼
𝑑𝛽

𝑑𝑥
)

2

𝐸𝐼
𝑑𝑥

𝐿

0
                                                                                                                                                  (23) 

So, after simplification (EI =constant along the beam): 

𝑈 =
𝐸𝐼

2
(

𝑑𝛽

𝑑𝑥
)

2
𝐿                                                                                                                                                           (24) 

After some mathematical calculations: 

(
𝒅𝜷

𝒅𝒙
)

𝟐
=

𝟐

𝑬𝑰

𝑼

𝑳
                                                                                                                                                               (25) 

That can be compared with the expression recalled above in the case of the beam in pure bending (18). 

We therefore have an angle on a surface as the definition of the curvature (1/R) squared of the beam 

(26). 

(
𝒅𝜷

𝒅𝒙
)

𝟐
=

𝒅𝜷𝟐

𝒅𝒙×𝒅𝒙
= (

𝟏

𝑹
)

𝟐
                                                                                                                                               (26) 

This corroborates the expression of T. Damour from the differential geometry of Gauss developed by 

Riemann [21] and given again in the formula (27): 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
𝛼+𝛽+𝛾−180°

𝐴𝑟𝑒𝑎
                                                                                                                                         (27) 

The strain energy of a beam of span L, rigidity EI=YI for a constant thermal gradient T is given by 

formula (28): 

𝑈𝑇 =
𝐸𝐼

2
(

𝑑𝛽

𝑑𝑥
)

2
𝐿 =

𝐸𝐼

2
(

𝛼𝑇

ℎ
)

2
𝐿                                                                                                                              (28) 

So: 
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(
𝜶𝑻

𝒉
)

𝟐
=

𝟐

𝑬𝑰

𝑼𝑻

𝑳
                                                                                                                                                               (29) 

As we are in elasticity, we can superimpose the load cases and thus superimpose the case of the beam 

in pure bending (due to the 2 moments M at each extremity see Figure1.) with the case of the beam 

under thermal gradient uniform constant T see Figure 2.), we then obtain the formula (30) of the 

generalized curvature of a beam under load and thermal gradient: 

1

𝑅2 + (
𝜶𝑻

𝒉
)

𝟐
=

2

𝐸𝐼
(

𝑈𝑀

𝐿
) +

𝟐

𝑬𝑰
(

𝑼𝑻

𝑳
)  =

2

𝐸𝐼
(

𝑊𝑒𝑥𝑡(𝑡𝑜𝑡𝑎𝑙(𝑀+𝑇)

𝐿
)                                                                              (30) 

This expression is compatible from the point of view of the elastic analogy with the expression (17) of 

the Einstein field equation with cosmological constant according to the correspondences (31) and (32) 

if one assumes (hypothesis of this article) that the cosmological constant is by analogy correlated with 

a thermal gradient applied in all space: 

𝑅 −
1

2
𝑔𝑅 →

1

𝑅2                                                                                                                                                        (31) 

𝑔 →  (
𝜶𝑻

𝒉
)

𝟐
                                                                                                                                                          (32) 

About the formula (31), indeed, for memory, it can be proven that the Ricci tensor for a classical 

2sphere is 2/R² (see book what is space-time made of? of D. Izabel). 

 

3.2 Analogy of space as an elastic medium with the thermal curvature of a thin plate associated 

according to Timoshenko's theory 

Considering space as a fabric made up of thin sheets has already been explored as we have said above 

by many authors. Let us quote Melissinos [17], T.G Tenev and M.F Horstemeyer [12] D. Izabel [16], H A 

Perko [22]. 

It is therefore quite natural that we take up this hypothesis on the structure of the fabric of space. 

Moreover, if we take a piece of the universe locally, its surface will be considered almost flat according 

to the value of k=0 obtained by measurements from the Planck satellite [23]. In these publications, it 

is proven that the joint constraint with BAO measurements on space curvature is consistent with a flat 

universe, 

Ωk=−𝑘𝑐2(𝑟0𝐻0)−2 = -0.0010 +0.0018 / -0.0019.” 

As a reminder, the space expansion scale factor is written 𝑎(𝑡) =
𝑟(𝑡)

𝑟0
. 𝑟0 is the radius of reference and 

the radius of the 3sphere in the metric of Friedmann-Lemaitre-Robertson Walker. 

The Hubble constant (1/s²) squared is: 𝐻0
2 =

8𝐺

3


𝑐
 with 

𝑐
 the critical density of the medium. 

So, the curvature k (unit 1/m²) of the universe can be considered as flat (33). 

𝑘 = −𝑘𝑐2(𝑟0𝐻0)−2 = −
3𝑘𝑐2

8𝐺𝐶𝑎2                                                                                                                          (33) 

𝑘is therefore the dimensionless curvature parameter of space (34): 

1

𝑚2×
𝑚2

𝑠2

𝑚3

𝑘𝑔𝑠2×
𝑘𝑔

𝑚3×1
= 1                                                                                                                                                             (34) 
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It is therefore not absurd to consider space as an infinitely long thin plate superposition given the very 

large radius of curvature of the universe associated with its gigantic size [24]. 

In this case the curvature of a thin plate under a thermal gradient is well known and is given in S. 

Timoshenko in his book [25] in chapter 14 formula 50. We give the expression below (formula 35) 

similar to that obtained in the case of a beam: 

𝑇

𝑒
=

1

𝑅
                                                                                                                                                                           (35) 

Or squared to stay consistent with the previous paragraph regarding beam theory (36): 

(
𝑇

𝑒
)

2
= (

1

𝑅
)

2
                                                                                                                                                             (36) 

In these two expressions the curvature of the plate (
1

𝑅
)

2
 is therefore linked to the thickness of the 

considered plate e, to the coefficient of thermal expansion  associated with the elastic material and 

to the thermal temperature gradient T between the extreme fibers of the plate. 

It is therefore this model that we will consider later in the continuity of the authors cited above [12], 

[16]. We must therefore establish the different parameters involved in this model. Namely, what 

thickness e of the sheets? what intensity of the thermal gradient T? what value of the curvature 1/R? 

This is what we will study in the next chapter. 

 

4. Search for certain scientific data that can feed this mechanical model of thermal curvature of the 

fabric of space 

4.1 What plate thickness consider? 

We know from A. Sakharov [5] that the potential quantum nature of vacuum can generate an elastic 

metric of space. T.G Tenev and M.F Horstemeyer in [12] consider Planck’s thickness sheets. D. Izabel in 

[16] manages to find the Young’s moduli of the different authors by considering a Planck’s length P.A 

Millette [13] does the same. 

Consequently, we will consider within the framework of this publication a thickness e of plate or fiber 

of the elastic fabric of space equal to 𝑙𝑝 the Planck’s length (35). 

𝑒 = 𝑒𝑝 = 𝑙𝑝 = √
 ℏ𝐺

𝑐3                                                                                                                                                      (35) 

4.2 Which thermal gradient consider? 

New data show a temperature gradient between the absolute vacuum at 2.73 K and the cosmic web 

see [26] “The Cosmic Thermal History Probed by Sunyaev–Zeldovich Effect Tomography”. In this article 

we can read: 

"We estimate Te, the density-weighted electron temperature of the universe, which goes from 7 × 105 

K at z=1 to 2 × 106 K today" The cosmic thermal history probed by Sunyaev-Zeldovich effect tomography 

YI-KUAN CHIANG , RYU MAKIYA, BRICE MÉNARD ET EIICHIRO KOMATSU [26]. 

In this paper, the authors therefore highlight a certain thermal gradient between the cold zones of the 

universe and the very hot zones at the level of the cosmic web. So, this recent article suggests that the 
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average temperature of the gas present in the large structures of the observable Universe has been 

multiplied by 10 during the last ten billion years. to reach about two million Kelvin today. 

We will therefore retain this hypothesis: T=2,000,000 °K 

 

4.3 What curvature of space associated with this thermal gradient consider? 

P. J. E. Peebles in his paper [19] reviews the different approaches for linking the cosmological constant 

and dark energy. 

Emilio Santos in [20] his paper studies the dark energy induced by the curvature of space-time by 

quantum vacuum fluctuations. 

On the basis of his two articles in particular, we will therefore postulate that the cosmological constant 

is the source of a curvature of space linked to a thermal gradient acting on the thin sheets of space of 

quantum thickness equal to the Planck’s length. 

To be consistent with the approaches of A. Sakharov [5] and T.G Tenev and M.F Horstemeyer [12], we 

consider in this study the cosmological constant resulting from vacuum fluctuations (quantum field 

theory). We will see in chapter 6 to explore all the scientific options, what gives the other value of the 

cosmological constant - resulting from cosmological observations. 

We make this hypothesis based on quantum field theory taking into account all of the previous 

paragraphs: 

1) The analogy of the fabric of space as an elastic medium works well with the general relativity 

equation for mass/energy [5] to [17], 

2) The elastic analogy suggests two possible curvatures and only two: one resulting from the 

masses/energy acting in the medium and one resulting from the thermal gradient acting on the 

medium [16], 

3) There is obviously a thermal gradient present in space [26], 

4) Many authors [12],[16],[22] and gravitational waves [3] [4] suggest plane deformations of elastic 

media (spatial fabric), 

5) A. Sakharov [5] showed that general relativity is correlated with an elastic metric resulting from 

quantum fluctuation of space. 
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4.4 Final model retained to estimate a coefficient of thermal expansion of the fabric of the equivalent 

space 

Considering the previous paragraphs, we therefore arrive at the simplified model given in Figure 3 

below. 

 

Figure 3: Simplified mechanical model of elastic space undergoing a curvature by a thermal 

gradient between a very hot zone and a very cold zone of the universe– 

 

Thus, the almost flat thin sheets of space (k=0, T of space curvature tending towards infinity [12],[23] 

and [24]) of Planck’s thickness (Lp) according to the reasoning by A. Sakharov [5] T.G Tenev and M.F 

Horstemeyer [12] undergo a thermal gradient resulting from the differences in average temperature 

between the cosmic web and the space vacuum, [26] this causes their curvature. It is this curvature 

that the cosmological constant  [19] [20] can represent. By placing ourselves in the analogy of space 

functioning as a medium, an elastic fabric, the mechanics of continuous media by the theory of plates 

of Timoshenko [25] allows us to model its behavior in a simplified way and to extract a coefficient of 

thermal expansion  of the space fabric. 

 

5. Consequence of considering the cosmological constant as a generalized thermal curvature 

5.1 Determination of the coefficient of expansion of the space fabric 

From the expression (36) of Timoshenko [5] of the curvature of a spatial plate (k=0) see [23] and [24] 

in pure bending requested by a thermal gradient T [26] and in considering the cosmological constant 

 as an additional curvature (and not a dark energy) associated with the thermal gradient acting in 

space [19] [20] we postulate: 

(
𝑇

𝑒
)

2
= (

1

𝑅0
)

2
=                                                                                                                                                     (37) 

We deduce from the above expression the coefficient of thermal expansion  of the spatial fabric: 

 =
𝒆√

𝑻
                                                                                                                                                                          (38) 

By definition of the cosmological constant: 

𝑐4

8𝐺
= 

𝑣𝑎𝑐𝑢𝑢𝑚
𝑐2                                                                                                                                                        (39) 
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So: 

 =
8𝐺𝑣𝑎𝑐𝑢𝑢𝑚

𝑐2                                                                                                                                                               (40) 

By transferring this expression to the formula for the coefficient of thermal expansion of the fabric of 

space (38), we obtain the expression for the coefficient of thermal expansion of space  from the 

density of the vacuum: 

 =
𝒆√

𝟖𝑮𝒗𝒂𝒄𝒖𝒖𝒎
𝒄𝟐

𝑻
=

𝒆√

𝑻
                                                                                                                                              (41) 

If we consider a space plate thickness e of Planck dimension (35) like Tenev and Horstemeyer [12] and 

the associated vacuum energy, we obtain a first approximation of this coefficient of thermal expansion 

. 

 =
√

 ℎ𝐺

2𝑐3
√

8𝐺𝑣𝑎𝑐𝑢𝑢𝑚,𝑄𝐹𝑇

𝑐2

𝑇
                                                                                                                                             (42) 

So, all calculations performed:  

 =
𝟐𝑮√

𝒉𝒗𝒂𝒄𝒖𝒖𝒎,𝑸𝑭𝑻

𝒄𝟓

𝑻
                                                                                                                                                    (43) 

With ℏ the reduced Planck constant (h/2),  the quantum vacuum density according to quant um field 

theory, G the gravitational constant, c the speed of light and T the thermal gradient applied to these 

sheets of space. 

Consider the expression of the coefficient of thermal expansion : 

We check that the dimensional equation is satisfied: 

 =

𝑚3

𝑘𝑔𝑠2√

𝑘𝑔𝑚2

𝑠 ×
𝑘𝑔

𝑚3

𝑚5

𝑠5

𝐾
= 𝐾−1                                                                                                                                           (44) 

Numerical application using the constants of physics and using the same assumptions as P.A Millette 

[13] and T.G Tenev and M.F Horstemeyer [12] gives: 

G =6.6743015 × 10-11 m3/kg.s² 

h = 6.62607004 × 10-34 m2.kg/s 


𝑣𝑎𝑐𝑢𝑢𝑚,𝑄𝐹𝑇

=1.11×1096 kg/m3 

∆𝑇 = 2000000 𝐾 

c = 299,792,458 m/s 

We obtain: 

𝑄𝐹𝑇=1.16317 x 10-6 K-1 

For the record, the coefficient of expansion of steel is worth 12x10-6 K-1 

We therefore obtain a result that seems realistic since the space is rather rigid if we refer to the value 

of  which represents the flexibility (1/rigidity) of the space and which is equal to 2.076610-43 N-1. 
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We find this result directly from equation (41) with the following data by considering  from quantum 

field theory: 

QFT=2.0717x1070 m-2 

𝑒 = 𝑙𝑝 =1.61626x10-35 m 

∆𝑇 = 2000000 𝐾 

 

6. Discussion of the representativeness of the mechanical model of thermal curvature of space 

It is well known that one of the greatest challenges of physics today is this problem of the cosmological 

constant which, depending on the hypothesis adopted to establish it (vacuum energy resulting from 

quantum fluctuations in the ground state provided by quantum field theory or cosmological 

observations via the Planck’s satellite in particular) leads to a ratio of 10120 between the two values of 

! We do not claim in this paper to solve this problem, simply from a scientific point of view it is 

important to explore what these two values of the cosmological constant imply on the coefficient of 

potential thermal expansion of the fabric of space. 

In this case, the application of formula (41) with the following numerical values: 

𝑙𝑝 = 𝑒 =1.61626x10-35 m 

= 1.088 × 10−52m-2 

∆𝑇 = 2000000 𝐾 

Leads to an extremely small coefficient of thermal expansion… 

𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑦𝑠𝑖𝑐𝑠=8.42936x10-68K-1 

 

7. Discussion of the additional verifications necessary to validate or not this model 

To really validate our model, it would of course be necessary to solve this problem of the possible 

variation of values of the cosmological constant. A model of the universe reproducing the construction 

of the cosmic web from general relativity and observations exists, however these models do not 

integrate any mechanical behavior such as the analogy of space as a deformable elastic medium 

suggests. 

It would undoubtedly be necessary to model the space, containing and contained in a structure in 

sheets, to set up the cosmic web and to impose the thermal gradient between the hot and cold zones 

to check or not if a curvature of thermal origin appears curving in mean the whole universe, what is its 

intensity and thus took advantage of it to evaluate the true value of the cosmological constant  and 

therefore the true value of the coefficient of thermal expansion of the fabric of space. 
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8. Presentation of the possible consequences of this model concerning the interpretation of dark 

energy 

The publications of [19] and [20] in particular and many others seem to indicate that the dark energy 

source of expansion of the universe is connected to the cosmological constant in particular when this 

one is positioned on the right of the equations (15) and (16). We are interested in this article in a 

cosmological constant placed on the left of the equation (17) that is to say in an additional curvature 

present in all space. This more mechanistic approach makes it possible to no longer have recourse to 

an energy of unknown origin and is closer to a functioning of the universe as a structure "charged" 

within it by the cosmic web and undergoing the thermal gradient of this one. But raises other questions 

(which thermal gradient considered? does space really have a sheets structure deforming relative to 

each other as the deformations associated with the polarizations 𝑨+ and 𝑨× seem to suggest 

gravitational waves? What is the real thickness of these sheets? how to integrate the anisotropy of 

space suggested by a Poisson's ratio of 1? The quantum field theory approach seems more coherent 

because it leads to a coefficient of thermal expansion compatible with materials on Earth, nevertheless 

the difference with the astrophysical value of the cosmological constant raises a real fundamental 

question. Moreover, the values of the Young's moduli that we recalled at the beginning of the article 

of on the one hand and the vacuum energy densities on the other hand being so outside the usual 

values of elastic materials on Earth that it is advisable to be particularly careful with respect to this 

"quasi-normal" value of the coefficient of expansion thermal that we propose in this study. 

Einstein said God isn't playing dice when talking about quantum mechanics, but maybe God is playing 

structural engineer with dark energy acting throughout the universe—at least that's the question this 

article likes to ask. 

 

9. Conclusions 

We explore in this study the analogy of space as an elastic medium by focusing on one of the 

mechanical parameters associated with any elastic fabric, its coefficient of thermal expansion . The 

state of the art is rather poor or even non-existent on its definition and its intensity within the 

framework of an elastic model of space. By taking inspiration from models of space fabric in the form 

of thin sheets, placing ourselves within the framework of quantum field theory both on the value of 

the cosmological constant  and on the thickness of these sheets of the order of the Planck length, 

considering the recent measurements making it possible to establish the orders of magnitude of the 

thermal gradients between the hot and cold zones of the universe and finally considering that these 

sheets bend under this thermal gradient by analogy with mechanics plates, we propose a formulation 

and a value of the expansion coefficient of the fabric constituting the space. This study remains a first 

approach which somehow clears this path given the great variability of the intensity of the cosmological 

constant depending on whether one considers its value from quantum field theory or its value from 

cosmological measurements. Other models are certainly necessary to fine-tune the value of this 

coefficient of thermal expansion of the spatial fabric and this study remains only a first approach. The 

potential impact of this thermal approach on time (because Einstein's equation requires considering 

space-time and not just space) should also be studied. 
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