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.
Abstract. We consider the complex Ginzburg-Laudau operator on a bounded domain.
We prove some estimates for the inverse of the linearized operator.

AMS classification : 34B40: Ordinary Differential Equations, Boundary value prob-
lems on infinite intervals. 35J60: Nonlinear PDE of elliptic type. 35P15: Estimation of
eigenvalues, upper and lower bound.

1 Introduction.

We consider the Ginzburg-Landau equation on a bounded connected domain Ω,{
−∆u = 1

ε2
u(1− |u|2) in Ω

u = g in ∂Ω
(1.1)

where ε > 0 is a small parameter, u and g have complex values and degree (g, ∂Ω) ≥ 1.
This equation has been intensively studied, in [4], and many others.
Let us denote

Nε(u) = ∆u+
1

ε2
u(1− |u|2)

and let us define fd as the only solution of the differential equation{
f ′′d +

f ′d
r −

d2

r2
fd = −fd(1− f2d )

fd(0) = 0, limr→+∞ fd(r) = 1.
(1.2)

The equation (1.2) is completely studied in [8]. And let u0(x) = fd(
|x|
ε )eidθ. We have

Nε(u0) = 0.

We will always denote

f(r) = fd(
r

ε
).

The linearized operator around any function u is given by

dNε(u)(ω) = ∆ω +
ω

ε2
(1− |u|2)− 2

ε2
u(u.ω + u.ω).
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Let us consider the linearized operator around the solution u0, ie

dNε(u0)(ω) = ∆ω +
ω

ε2
(1− f2)− 2

ε2
f2eidθeidθ.ω,

where ω is any complex valued function and 2u.ω = uω + ωu.
We will use the operator

Lε := e−idθdNε(u0)eidθ

instead of dNε(u0) and we will use also the rescaled operator L1. These operators are of
importance for some technics of construction of solutions for the equation (1.1).
The invariance of the equation (1.1) wrt the translations and the rotations gives

0 = dNε(u0)(iu0) = dNε(u0)(
∂u0
∂x1

) = dNε(u0)(
∂u0
∂x2

).

A calculus gives
∂u0
∂θ

= idu0,

e−idθ
∂u0
∂x1

=
1

2

(
1

ε
f ′d(

r

ε
) +

d

r
fd(

r

ε
)

)
e−iθ +

1

2

(
1

ε
f ′d(

r

ε
)− d

r
fd(

r

ε
)

)
eiθ

and

e−idθ
∂u0
∂x2

=
i

2

(
1

ε
f ′d(

r

ε
) +

d

r
fd(

r

ε
)

)
e−iθ +

i

2

(
−1

ε
f ′d(

r

ε
) +

d

r
fd(

r

ε
)

)
eiθ.

In [3], we have proved that

Theorem 1.1 For all d ≥ 1 the set of the solutions of L1ω = 0 which are defined
at 0 and bounded at +∞ is reduced to the three functions provided by the invariance
of the equation (1.1) by the rotations and the translations of the coordinates, ie ifd,
(f ′d + d

rfd)e
−iθ + (f ′d −

d
rfd)e

iθ and i(f ′d + d
rfd)e

−iθ + i(f ′d −
d
rfd)e

iθ.

The case d = 1 was known by [13], chapter 3. In this book, Pacard and Rivière
construct some solutions for (1.1), having the degree one around each singularity. Before
that, the eigenvalue problem Lεω = −λ(ε)ω, had been studied in several papers, including
[9], [12], [10], [11]. It is used in [6], [7]...

In the present paper, we let

H := {ω : B(0, 1)→ C, e−idθω ∈ H1
0 (B(0, 1))}.

And we let Φ0, Φ1 and Φ2 be functions in H, associated with e−idθu0, e
−idθ ∂u0

∂x1
and

e−idθ ∂u0∂x2
, in a sense that will be defined below in Theorem 1.5. We denote W the

subspace of H spanned by Φ0, Φ1 and Φ2 and we define W⊥ by H = W ⊕W⊥. Last, for
every ω ∈ H we consider the Fourier expansion

ω(x) =
∑
n≥1

(an(r)e−inθ + bn(r)einθ) + a0(r), an(r) ∈ C, bn(r) ∈ C, r ∈]0, 1]

and we denote
ωR :=

∑
n≥1

(Ran(r)e−inθ +Rbn(r)einθ) +Ra0(r)
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and
ωI :=

∑
n≥1

(Ian(r)e−inθ + Ibn(r)einθ) + Ia0(r)

where, for any a ∈ C, Ra is the real part and Ia is the imaginary part of a. For
h ∈ L2(B(0, 1)) we consider the equation

Lεω = h. (1.3)

We will prove the following

Theorem 1.2 There exists M > 0 independent of ε such that for all ω ∈ W⊥, and
denoting ω = ωR + iωI , we have

| < Lε(ωR), ωR >L2(B(0,1)) | ≥M < CωR, ωR >L2(B(0,1))

and
| < Lε(iωI), iωI >L2(B(0,1)) | ≥M < CωI , ωI >L2(B(0,1))

(1.4)

where C = 1
ε2

(1− f2),

that gives, when ω is a solution of (1.3), verifying ω = 0 in ∂B(0, 1),∫
B(0,1)

1

ε2 + |x|2
|ω|2dx ≤M

∫
B(0,1)

(ε2 + |x|2)|h|2dx (1.5)

and ∫
B(0,1)

|∇(eidθω)|2dx ≤M
∫
B(0,1)

(ε2 + |x|2)|h|2dx. (1.6)

Now, if we denote

h =
∑
n≥1

(αne
−inθ + βne

inθ) + α0,

where the αj and βj have complex values, let us remark that we can replace (1.5) by∫ 1
0 |a0|

2 rdr
ε2+r2

+
∑

n≥1
∫ 1
0 (|an|2 + |bn|2) rdr

ε2+r2

≤ C
∑

n≥1
∫ 1
0 r(ε

2 + r2)(|αn|2 + |βn|2)dr +
∫ 1
0 r(ε

2 + r2)|α0|2dr
(1.7)

and we can replace (1.6) ,∫ 1
0 (r|a′0|2 + d2

r |a0|
2)dr +

∑
n≥1

∫ 1
0

(
r|a′n|2 + r|b′n|2 + (n−d)2

r |an|2 + (n+d)2

r |bn|2
)
dr

≤ C
∑

n≥1
∫ 1
0 r(ε

2 + r2)(|αn|2 + |βn|2)dr +
∫ 1
0 r(ε

2 + r2)|α0|2dr.
(1.8)

Now let us recall in which way the equation Lεω = h is transformed into systems of
ordinary equations.
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Letting, for n ≥ 1 ωn(x) = an(r)e−inθ + bn(r)einθ, and for n = 0, ω0(x) = a0(r), we
have

2eidθ.eidθωn = ωn + ωn = (bn + an)einθ + (bn + an)e−inθ.

Moreover e−idθ∆(eidθω) = ∆ω − d2

r2
ω + i

2d

r2
∂ω

∂θ
.

Consequently

e−idθdNε(u0)eidθω =
∑

n≥1 e
−inθ

(
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− f2)− an
ε2
f2 − bn

ε2
f2
)

+

+
∑

n≥1 e
inθ
(
b′′n + b′n

r −
(n+d)2

r2
bn + bn

ε2
(1− f2)− bn

ε2
f2 − an

ε2
f2
)

+

+a′′0 +
a′0
r −

d2

r2
a0 + a0

ε2
(1− f2)− a0+a0

ε2
f2.

(1.9)
For n ≥ 1, Separating the Fourier components of e−idθdNε(u0)eidθω, we can consider the
operators

for n ≥ 1, Lε(ωn) =
(
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− 2f2)− bn
ε2
f2
)
e−inθ+

+
(
b′′n + b′n

r −
(n+d)2

r2
bn + bn

ε2
(1− 2f2)− an

ε2
f2
)
einθ

and, for n = 0, Lε(a0) = a′′0 +
a′0
r
− d2

r2
a0 +

a0
ε2

(1− f2)− a0 + a0
ε2

f2.

Separating the real part and the imaginary part of an and of bn, we consider the following
operators, where an and bn are real valued function

for n ≥ 1 Lε : (ane
−inθ + bne

inθ) 7→


(
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− 2f2)− bn
ε2
f2
)
e−inθ+

+
(
b′′n + b′n

r −
(n+d)2

r2
bn + bn

ε2
(1− 2f2)− an

ε2
f2
)
einθ;

Lε : (iane
−inθ + ibne

inθ) 7→

 i
(
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− 2f2) + bn
ε2
f2
)
e−inθ+

+i
(
b′′n + b′n

r −
(n+d)2

r2
bn + bn

ε2
(1− 2f2) + an

ε2
f2
)
einθ;

and, for n = 0, Lε : ia0 7→ i(a′′0 +
a′0
r −

d2

r2
a0 + a0

ε2
(1− f2)) ;

Lε : a0 7→ a′′0 +
a′0
r −

d2

r2
a0 + a0

ε2
(1− f2)− 2a0

ε2
f2.

(1.10)
Let us consider the equation (1.3). We denote ωn = ωn,R + iωn,I .
For n ≥ 1, ωn,R and ωn,I belong to the set

Hn,d = {ae−inθ + beinθ, (a, b) : [0, 1] 7→ R× R; aei(d−n)θ + bei(n+d)θ ∈ H1
0 (B(0, 1))}.

and ω0,R and ω0,I belong to

H0,d = {a : [0, 1] 7→ R, eidθa ∈ H1
0 (B(0, 1))}.

We endow Hn,d with the scalar product

< (a, b)|(u, v) >=

∫ 1

0
(ra′u′ + rb′v′ +

(n− d)2

r
au+

(n+ d)2

r
bv +

f2

ε2
(a+ b)(u+ v))dr
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and we endow H0,d with the scalar product

< a|u >=

∫ 1

0
(ra′u′ +

d2

r
au)dr.

From (1.3), we are led to the equations , for n ∈ N{
Lε(ωn,R) = hn,R
Lε(iωn,I) = ihn,I

(1.11)

and, in view of (1.10), when n ≥ 1, (1.11) gives two second order ordinary diifferential
systems, the both of them with two equations, and with two real valued unknown func-
tions. For n = 0, we have two ordinary second order ordinary diifferential equations,
each of them with one real valued unknown function.
In what follows in this section, unlike in Theorem 1.2, a and b or an and bn will be real
valued functions.
The first works on the question, quoted above, are considering the following eigenvalue
problem in each Hilbert space Hn,d, that is, for r ∈ [0, 1] and for n = 0

a′′ +
a′

r
− d2

r2
a+

1

ε2
(1− f2)a = −λ(ε)a, a(1) = 0 (1.12)

and

a′′ +
a′

r
− d2

r2
a− 2af2 +

1

ε2
(1− f2)a = −λ(ε)a, a(1) = 0. (1.13)

And for r ∈ [0, 1] and for n ≥ 1
a′′ + a′

r −
(n−d)2
r2

a− 1
ε2
f2b+ 1

ε2
(1− 2f2)a = −λ(ε)a

b′′ + b′

r −
(n+d)2

r2
b− 1

ε2
f2a+ 1

ε2
(1− 2f2)b = −λ(ε)b

a(1) = b(1) = 0

(1.14)

The question of whether there exist some eigenvalues such that λ(ε) → 0 as ε → 0 is
related to the question of the existence of bounded solutions in [0,+∞[ for the following
system, which is a rescaled form of (1.14), but with the domain [0,+∞[ instead of [0, 1ε ]
for n ≥ 1 {

a′′ + a′

r −
(n−d)2
r2

a− f2d b+ (1− 2f2d )a = 0

b′′ + b′

r −
(n+d)2

r2
b− f2da+ (1− 2f2d )b = 0.

(1.15)

And for n = 0

a′′ +
a′

r
− d2

r2
a+ (1− f2d )a = 0 (1.16)

and

a′′ +
a′

r
− d2

r2
a− 2af2d + (1− f2d )a = 0. (1.17)

A bounded solution means that a and b are defined in [0,+∞[ and that the both func-
tions have finite limits at +∞.

Let us quote what is known untill the 90’
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Theorem 1.3 (i) For any d ≥ 1 and for n = 1 the system (1.15) has a one dimentional
real vector space of bounded solutions, spanned by (f ′d + d

rfd, f
′
d −

d
rfd).

(ii) For d ≥ 1 and n = 1, the first eigenvalue λ1(ε), for the eigenvalue problem (1.14)
verifies λ1(ε) > 0 and λ1(ε) → 0 as ε → 0 and there are no other eigenvalue tending to
0.
(iii) For d ≥ 1 and n = 0, there exists C > 0 independent of ε such that for any eigenvalue
of the problems (1.12) and (1.13) we have λ(ε) ≥ C, for some C > 0 independent of ε.

And the following Theorem was proved in [10]

Theorem 1.4 For d ≥ 1 and n ≥ 2, If there are no bounded solution (a, b) of (1.15),
then |λ(ε)| > C, for some C > 0 independent of ε and for every eigenvalue λ(ε) of the
problem (1.14).

In [1], we proved that the converse of Theorem 1.4 is true.
In [3], we proved that there are no bounded solution of (1.15) when n ≥ 2.
We claim that, making use of Theorem 1.1, we are able to give a completely different
proof of Theorem 1.4. But neither this technique nor that of [10] permits to obtain
|ε2λ(ε)| ≥ C.

In [3], we associated the problem of the existence of bounded solutions of (1.15) with
the following eigenvalue problem, for r ∈ [0, 1] and for n ≥ 1

a′′ + a′

r −
(n−d)2
r2

a− 1
ε2
f2a− 1

ε2
f2b = − 1

ε2
µ(ε)(1− f2)a

b′′ + b′

r −
(n+d)2

r2
b− 1

ε2
f2b− 1

ε2
f2a = − 1

ε2
µ(ε)(1− f2)b

a(1) = b(1) = 0

(1.18)

and for r ∈ [0, 1] and for n = 0{
a′′ + a′

r −
d2

r2
a = − 1

ε2
µ(ε)(1− f2)a

a(1) = 0.
(1.19)

and {
a′′ + a′

r −
d2

r2
a− 2

ε2
f2a = − 1

ε2
µ(ε)(1− f2)a

a(1) = 0.
(1.20)

We can also use the following form of the system (1.18)
Lε(ω) = (1− µ(ε))Cω

ω = ae−inθ + beinθ ∈ Hn,d,
(1.21)

where

C :=
1

ε2
(1− f2).

We use a notion of C-eigenvalue, as in [5].

If ae−inθ + beinθ ∈ Hn,d, we remark that(
Lε(ae−inθ + beinθ) = (1− µ(ε))C(ae−inθ + beinθ)

)
6



⇔
(
Lε(iae−inθ − ibeinθ) = (1− µ(ε))C(iae−inθ − ibeinθ)

)
.

let us recall the cases of the first eigenvalues, for n = 0 and n = 1. Let mn,d be
defined in (1.22) and (1.23). We have

Theorem 1.5 For all d ≥ 1,
(i) there exists C > 0 and ε0 > 0 such that, for all ε < ε0, m0,d(ε) ≥ 1+Cε2; m0,d(ε)→ 1
and there exists an associated eigenvector Φ0, solution of (1.19) with m0,d in place of µ,
such that (Φ0 − f)(r)→ 0 as ε→ 0, for all r ≥ 0.

(ii) m1,d(ε) > 1 and
m1,d(ε)−1

ε2
→ 0 as ε→ 0.

(iii) There exists an eigenvector Φ1 = ae−iθ + beiθ ∈ Hn,d associated to the eigenvalue

m1,d(ε), ie Lε(Φ1) =
1−m1,d

ε2
CΦ1, such that ‖ (1−f

2)
1
2

ε (Φ1 − e−idθ ∂u0∂x1
)‖L2(B(0,1)) → 0, as

ε → 0 and Φ2 = iae−iθ − ibeiθ is also an eigenvector, ie Lε(Φ2) =
1−m1,d

ε2
CΦ2, and

‖ (1−f
2)

1
2

ε (Φ2 − e−idθ ∂u0∂x2
)‖L2(B(0,1)) → 0, as ε→ 0.

In the present paper, we prove the following

Theorem 1.6 For any d ≥ 1, there exists C > 0 independent of ε such that
(i) for any n ≥ 2, |1 − µ(ε)| ≥ C for every eigenvalue µ(ε) for the problem (1.21) and
for every ε.
(ii) For n = 0 and for the problem (1.19), µ(ε) − 1 ≥ C, for any eigenvalue, except if
µ = m0,d and for the problem (1.20), µ(ε) − 1 ≥ C, for every eigenvalue. For n = 1,
µ(ε)− 1 ≥ C except if µ = m1,d.

More generally, Theorem 1.6 is valid for every function g > 0 defined in [0,+∞[ in
place of 1− f2d , as long as g(t) ≤ K

1+t2
for some K and for any ε2γ(ε) instead of µ(ε)− 1.

On the other hand, Lemma 5.2 of our unpublished preprint [2] gives some converse
to Theorem 1.6. Indeed, we have

Lemma 1.1 (Lemma 5.2 in [2]). If there exists some bounded solution (a, b) of (1.15),
then there exists an eigenvalue µ(ε) verifying µ(ε)− 1→ 0.

Last, let us recall that we defined mn,d(ε) as the first eigenvalue for the above eigen-
value problem (1.18) in Hn,d, that is

mn,d(ε) = inf
(a,b)∈Hn,d×Hn,d\{(0,0)}

∫ 1
0 (ra′2 + rb′2 + (n−d)2

r a2 + (n+d)2

r b2 + r
ε2
f2d ( rε)(a+ b)2)dr

1
ε2

∫ 1
0 r(1− f

2
d ( rε))(a2 + b2)dr

(1.22)
and m0,d(ε) is the first eigenvalue for the problem (1.19) in H0,d

m0,d(ε) = inf
a∈H0,d\{0}

∫ 1
0 (ra′2 + d2

r a
2)dr

1
ε2

∫ 1
0 r(1− f

2
d ( rε))a2dr

(1.23)

and m̃0,d(ε) is the first eigenvalue for the problem (1.20) in H0,d

m̃0,d(ε) = inf
a∈H0,d\{0}

∫ 1
0 (ra′2 + d2

r a
2 + 2rfd(

r
ε)a2)dr

1
ε2

∫ 1
0 r(1− f

2
d ( rε))a2dr

. (1.24)

And that the eigenvalue problem (1.14) leads to the following definitions
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λn,d(ε) =

inf
(a,b)∈Hn,d×Hn,d\{(0,0)}

∫ 1
0 (ra′2 + rb′2 + (n−d)2

r a2 + (n+d)2

r b2 + r
ε2
f2d ( rε)(a+ b)2 − r

ε2
(1− f2d ( rε))(a2 + b2))dr∫ 1

0 r(a
2 + b2)dr

and

λ0,d(ε) = inf
a∈H0,d\{0}

∫ 1
0 (ra′2 + d2

r a
2 − r

ε2
(1− f2d ( rε))a2)dr∫ 1

0 ra
2dr

.

These infimum are attained. Considering the rescaling (ã, b̃)(r) = (a(εr), b(εr)) and an
extension by 0 outside [0, 1/ε], we see that ε 7→ mγ1,γ2(ε) decreases when ε decreases.
Then limε→0mγ1,γ2(ε) exists.
What is new is essentially Theorem 1.6 (i) and its consequence Theorem 1.2. We claim
that we are able to prove Theorem 1.6 (i) as well as Theorem 1.4 by use of a resolvent
matrix for the system (1.15) with known behaviors at 0 and at +∞ and by considering
the system (1.18) as a ”second member”system. But we choose to present a proof of
Theorem 1.6 that does not involve to inverse two 4 × 4 matrices. But the other point
of view is to construct two bases of solutions for the linear system (1.18) involving the
parameter ε. It is what we do in the second part. In the third part, we prove Theorem
1.6. This third part contains some parts of the proof of Theorem 1.5. In the fourth part,
we prove Lemma 1.1 and in the firth part we prove Theorem 1.2.

In all the paper, we use the following notation, if x 7→ f(x) and x 7→ g(x) are given
function, f = O(g) if |f(x)| ≤M |g(x)|, with M independent of x.

2 Two bases of solutions for the system (1.18) and (1.19).

First let us recall the expansions of fd

fd(r) = 1− d2

2r2
+O(

1

r4
) near +∞ (2.25)

and

fd(r) = Ad(r
d − 1

4(d+ 1)
rd+2) +O(rd+4) near 0. (2.26)

We suppose that d ≥ 1 and that n ≥ 1.
In [3], we gave two independent solutions bounded at 0 and two independent solutions
that blow up at 0, and the same thing at +∞, for the system (1.15).
Let us recall that we can rewrite the system (1.15) as

X ′ = MX (2.27)

with

M =


0 1

r 0 0

−r(1− 2f2d ) + (n−d)2
r 0 rf2d 0

0 0 0 1
r

rf2d 0 −r(1− 2f2d ) + (n+d)2

r 0

 .
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and that a base of solutions is formed by four vector solutions of the formX = (a, ra′, b, rb′)t.
In [3] and in [2], there is γ1 instead of |n−d| and γ2 instead of n+d. The continuity and
the derivability of the solutions of the differential system wrt (γ1, γ2) was important and
the determination of some suitable ranges for the parameters was necessary. Here, n and
d are integers, so the continuity wrt to (γ1, γ2) doesn’t exist anymore. The Theorem 1.4
and the Theorem 1.5 in [3] give, when n ≥ 1 and d ≥ 1 are some integers

Proposition 2.1 For d ≥ 1 and n ≥ 1, there exist four independent solutions of (1.15)
having the following behavior at 0 :

(a1(r), b1(r)) ∼0

(
O(rn+3d+2), rn+d

)
, (a3(r), b3(r)) ∼0

(
r|n−d|, O(r|n−d|+2d+2)

)

(a2(r), b2(r)) ∼0


(
O(r2+d−n), r−n−d

)
n ≥ d+ 2(

O(r ln r)), r−n−d
)

n = d+ 1(
O(r2), r−n−d

)
n = d(

O(rd−n), r−n−d
)

1 ≤ n ≤ d− 1

and

(a4(r), b4(r)) ∼0


(
r−n+d, O(r−n+3d+2)

)
n ≥ d+ 2(

r−n+d, O(−rn+d log r)
)

n = d+ 1(
− ln r,O(r2d+2 ln r)

)
n = d(

rn−d, O(rn+d)
)

1 ≤ n ≤ d− 1.

We have four independent solutions having the following behaviors at +∞ :

(u1(r), v1(r)) ∼+∞ (J+(r), J+(r))
(
1 +O(r−2)

)
,

(u2(r), v2(r)) ∼+∞ (J−(r), J−(r))
(
1 +O(r−2)

)
,

(u3(r), v3(r)) ∼+∞ (rn,−rn)
(
1 +O(r−2)

)
,

(u4(r), v4(r)) ∼+∞
(
r−n,−r−n

) (
1 +O(r−2)

)
,

with the notation

J+(r) =
e
√
2r

√
r
, J−(r) =

e−
√
2r

√
r
.

The proof of Proposition 2.1 for the behaviors at 0 is contained in the proof of Propo-
sition 2.2 below and the proof for the behaviors at +∞ is contained in the proof of
Proposition 2.3 below. The only difference is that in Proposition 2.1, µ = 1 and conse-
quently there is no dependence anymore of the solutions wrt ε.

Let us denote by Xi, i = 1, . . . , 4 the four independent solutions defined near 0 and
by Yi, i = 1, . . . , 4 the four solutions defined near +∞, for the system (1.15), which are
defined in Proposition 2.1. We have proved in [3], Theorem 1.6 that the least behavior at
0 is related to the exponentially increasing behavior at +∞ and that the exponentially
decreasing behavior at +∞ is related to the stronger blowing up behavior at 0. Let us
quote it.
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Theorem 2.7 (Theorem 1.6 in [3]). The solution X1 has the exponentially blowing up
behavior at +∞, like the solution Y1. And the solution Y2 has the more blowing up
behavior at 0, like the solution X2.

Now we define a base of four solutions at 0 for the perturbated system{
a′′ + a′

r −
(n−d)2
r2

a− f2d b+ (1− 2f2d )a = (1− µ(ε))(1− f2d )a

b′′ + b′

r −
(n+d)2

r2
b− f2da+ (1− 2f2d )b = (1− µ(ε))(1− f2d )b.

(2.28)

Proposition 2.2 Let us suppose that d ≥ 1 and n ≥ 1 and that µ(ε)→ 1,
(i) there exist four independent solutions of (1.18), having the behaviors at 0 enonced in
Proposition 2.1, more precisely, for all r ∈ [0, R]

|aε1(r)|| ≤ Crn+3d+2, |bε1(r)− rn+d| ≤ Crn+d+2,

|aε3(r)− r|n−d|| ≤ Crn−d+2, |bε3(r)| ≤ Cr|n−d|+2d+2,

|aε2(r)|| ≤ Cr2ζ
(j=2)
1 (r), |bε2(r)− r−n−d| ≤ Cr2r−n−d,

|aε4(r)− r|n−d|| ≤ Cr|n−d|r, |bε4(r)| ≤ Crζ
(j=4)
2 (r), if n 6= d,

|aε4(r) + ln r| ≤ Cr2(− ln r), |bε4(r)| ≤ Cr2d+2(− ln r), if n = d

(2.29)

for some C > 0 and some 0 < R < 1, the both being independent of ε.
and
(ii) denoting Xε

i , i = 1, . . . , 4 these solutions, we have limε→0X
ε
i = Xi, i = 1, . . . , 4,

where Xi is defined in Proposition 2.1.

Let us indicate what are the suitable maps (ζ1, ζ2) for each of the four solutions
(aεj , b

ε
j).

(ζ1, ζ2)(r) =

{
(rn+3d, rn+d) for j = 1

(r|n−d|, r|n−d|+2d) for j = 3.

For j = 2, ζ1(r) =


r−|n−d| if n ≥ d+ 2

r|n−d|−2 if n ≤ d− 1
−r−1 ln r if n = d+ 1

1 if n = d

ζ2(r) = r−n−d

and for j = 4, ζ1(r) =

{
r−|n−d| if n 6= d
− ln r if n = d

ζ2(r) =


r−n+3d if n ≥ d+ 2
rn+d−2 if n ≤ d− 1

−rn+d−2 ln r if n = d+ 1
−r2d ln(r) if n = d.

Proof of Proposition 2.2. We use the same proof as in [3] and for more details, in
[2], but we involve the term (1− µ(ε))(1− f2d ).
The proof below is valid for µ = 1 and gives the proof of the first part of Proposition 2.1.
For (aε1, b

ε
1) and (aε3, b

ε
3) we use the following form of the system (2.28){

(r2|n−d|+1(ar−|n−d|)′)′ = r|n−d|+1(f2d b+ f2da− µ(ε)(1− f2d )a)

(r2(n+d)+1(br−(n+d))′)′ = rn+d+1(f2d b+ f2da− µ(ε)(1− f2d )b).
(2.30)
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To construct (aε1, b
ε
1) and (aε3, b

ε
3) , we consider the following integral equation

a = αr|n−d| + r|n−d|
∫ r
0 t
−2(|n−d|−1 ∫ t

0 s
|n−d|+1(f2d b+ f2da− µ(ε)(1− f2d )a)dsdt

b = βrn+d + rn+d
∫ r
0 t
−2(n+d)−1 ∫ t

0 s
n+d+1(f2da+ f2d b− µ(ε)(1− f2d )b)dsdt

(2.31)
with (α, β) = (0, 1) for (aε1, b

ε
1) and with (α, β) = (1, 0) for (aε3, b

ε
3).

For (aε2, b
ε
2) and (aε4, b

ε
4) for n 6= d we consider the following form of the system (2.28),

when n 6= d.{
(r−2|n−d|+1(ar|n−d|)′)′ = r−|n−d|+1(f2d b+ f2da− µ(ε)(1− f2d )a)

(r−2(n+d)+1(brn+d)′)′ = r−(n+d)+1(f2d b+ f2da− µ(ε)(1− f2d )b).
(2.32)

But for (aε4, b
ε
4) and for n = d, we let

τ(r)− ln r.

and consider the system{
(rτ2(τ−1a)′)′ = rτ(f2d b+ f2da− µ(ε)(1− f2d )a)

(r−2(n+d)+1(brn+d)′)′ = r−(n+d)+1(f2d b+ f2da− µ(ε)(1− f2d )b).
(2.33)

To construct (aε2, b
ε
2) and (aε4, b

ε
4) for n 6= d we consider the following integral equation

a = αr−|n−d| + r−|n−d|
∫ r
0 t

2|n−d|−1 ∫ t
R s
−|n−d|+1(f2d b+ f2da− µ(ε)(1− f2d )a)dsdt

b = βr−(n+d) + r−(n+d)
∫ r
0 t

2(n+d)−1 ∫ t
R s
−(n+d)+1(f2d b+ f2da− µ(ε)(1− f2d )b)dsdt

(2.34)
where (α, β) = (0, 1) for (aε2, b

ε
2) and (α, β) = (1, 0) for (aε4, b

ε
4), n 6= d.

Here 0 < R < 1 is a real number, but we replace R by 0 in the first equation, for (aε2, b
ε
2),

when 1 ≤ n ≤ d.

And for (aε4, b
ε
4), n = d, we consider the following integral equation

a = τ(r) + τ(r)
∫ r
0

1
t τ
−2(t)

∫ t
0 sτ(s)(f2d b+ f2da− µ(1− f2d )a)dsdt

b = r−n−d
∫ r
0 t

2(n+d)−1 ∫ t
0 s
−n−d+1(f2da+ f2d b− µ(1− f2d )b)dsdt.

(2.35)

Let us explain the pattern of proof.
We define Φ(a, b) as the rhs of the above integral equations and we consider the two
maps r 7→ ζ1(r) and r 7→ ζ2(r) defined above for each j. We want to construct solutions
(aj , bj), j = 1, ..., 4, verifying, for some R independent of ε and some C independent of ε

for j = 1 and j = 2 |a(r)ζ−11 (r)|+ |b(r)ζ−12 (r))− 1| ≤ Cr2,

for j = 3 and j = 4 |a(r)ζ−11 (r)− 1|+ |b(r)ζ−12 (r))| ≤ Cr2
(2.36)
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for all 0 < r ≤ R. For j = 4 and n 6= d, we replace r2 in the rhs by r.
For this purpose, we define two sequences whose initial data depends of the desired
solution (aj , bj).

For j = 1, 2 α0 = 0 β0 = ζ2 and for j = 3, 4 α0 = ζ1 β0 = 0 (2.37)

and in any case (αk+1, βk+1) = Φ(αk, βk). We will denote ν : r 7→ r.
Now we will prove that for a given 0 < R < 1 all 0 < r < R we have

ζ−1ν−2|αk+1−αk|(r) ≤Mr2(‖ν−2ζ−11 (αk−αk−1)‖L∞([0,R])+‖ζ−12 ν−2(βk−βk−1)‖L∞([0,R])),
(2.38)

ζ−12 ν−2|βk+1−βk|(r) ≤Mr2(‖ζ−11 ν−2(αk−αk−1)‖L∞([0,R])+‖ζ−12 ν−2(βk−βk−1)‖L∞([0,R]))
(2.39)

and
|α1 − α0|(r) ≤Mr2ζ1(r), |β1 − β0|(r) ≤Mr2ζ2(r) (2.40)

where M does not depend on ε and does not depend on R.
For j = 4 and n 6= d, we have to replace ν−2 by ν−1 and r2 in the rhs by r.
Next, we choose R < 1 such that CR < 1 and we define, for all 0 < r < R

aεj(r) = ζ1(r)r
2
∑k=+∞

k=0 (ν−2ζ−11 (αk+1 − αk))(r) + α0(r),

bεj(r) = ζ2(r)r
2
∑k=+∞

k=0 (ν−2ζ−12 (βk+1 − βk))(r) + β0(r),

(2.41)

j = 1, 2, 3 and the suitable adaptation for j = 4.
Thus we have (aεj , b

ε
j) = Φ(aεj , b

ε
j) and consequently we have defined a solution Xε

j defined
in ]0, R].
By the Cauchy-Lipschitz Theorem for the linear ordinary equations, the solution is de-
fined in ]0,+∞[. By induction, αk and βk have limits as ε → 0. Moreover, thanks to
the inequalities just above, the sums in (2.41) are convergent uniformly wrt ε. Conse-
quently, aε1(r) and bε1(r) have limits as ε → 0, for every r ∈]0, R], and, in view of the
integral equation, also ra′ε1 (r) and rb′ε1 (r) have limits as ε → 0. So we can consider
(aε1(R), Ra′ε1 (R), bε1(R), Rb′ε1 (R))t as an intial value for the solution Xε

1 , and a supposed
well known principle in the Cauchy-Lipschitz Theory gives that a continuous initial
value wrt ε, together with the continuous dependence of the coefficients of the equa-
tion wrt ε lead to a continous solution wrt ε. And we deduce that for all r ∈]0,+∞[,
limε→0X

ε
j (r) = Xj(r), where Xj(r) is defined in Proposition 2.1. And by the definition

of aεj and bεj in (2.41), we have the desired behavior at 0 (2.36) for (aεj , b
ε
j).

For the estimates, we use

f2d (t) ≤Mt2d and |1− f2d − µ(ε)| ≤M,

This terminates the proof of Proposition 2.2.

Now let us turn to a base of solutions defined at +∞. To make the proof clear, let
us suppose that µ is sufficiently closed to 1 to have −1

2 ≤ d2(1− µ) ≤ 1
2 and, for n ≥ 1,

let us define
nε =

√
n2 + d2(1− µ(ε)).

We note that for n = 1 we have µ(ε) > 1 for every eigenvalue µ, so, nε ≥ 1 in any case.
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Proposition 2.3 Let us suppose that d ≥ 1 and n ≥ 1 and that µ(ε) − 1 → 0, there
exists a base of four solutions of (2.28) defined by there behaviors at +∞ and denoted by
Y ε
i , i = 1, . . . , 4. They verify, in [R,+∞[

|uε1 − J+|+ |vε1 − J+| ≤ Cr−1J+, |uε2 − J−|+ |vε2 − J−| ≤ Cr−1J− (2.42)

and

|uε3 − rnε |+ |vε3 + rnε | ≤ Cr−1rnε , |uε4 − r−nε |+ |vε4 + r−nε | ≤ Cr−1r−nε

and
|uε3 + vε3| ≤ Crnεr−1, |uε4 + vε4| ≤ Cr−nεr−1

where the both constants R > 0 and C > 0 are independent of ε. Moreover Y ε
i (r)→ Yi(r)

as ε→ 0, for all r > 0, where Yi are defined in Proposition 2.1.

Proof The proof below is valid also when µ = 1 and that gives the proof of the second
part of Proposition 2.1.
Let us recall that we let x = a+b and y = a−b. The system (2.28) becomes the following
system verified by (x, y){

x′′ + x′

r −
n2+d2

r2
x+ 2nd

r2
y + (1− 3f2d )x+ (µ− 1)(1− f2d )x = 0

y′′ + y′

r −
n2+d2

r2
y + 2nd

r2
x+ (1− f2d )y + (µ− 1)(1− f2d )y = 0.

(2.43)

We let

J+ :=
e
√
2r

√
r
, J− :=

e−
√
2r

√
r

and x̃(r) := r
1
2x(r).

Thanks to

x′′ +
x′

r
− 1

4r2
x = r−

1
2 x̃′′,

we can replace the first equation of (2.43) by

x̃′′ − 2x̃+
−n2 − d2 + 1

4

r2
x̃+ 3(1− f2d )x̃+

2nd

r
3
2

y + (µ− 1)(1− f2d )x̃ = 0,

that is

(e2
√
2r(x̃e−

√
2r)′)′ = e

√
2r

(
q(r)x̃− 2nd

r
3
2

y

)
or

(e−2
√
2r(x̃e

√
2r)′)′ = e−

√
2r

(
q(r)x̃− 2nd

r
3
2

y

)
,

where

q(r) =
n2 + d2 − 1

4

r2
− 3(1− f2d )− (µ− 1)(1− f2d ).

The second equation of the system (2.43) can be written as

y′′ +
y′

r
− n2 + d2(1− µ)

r2
y +

2nd

r2
x+ µ(1− f2d −

d2

r2
)y = 0,

13



that is also

(r2nε+1(r−nεy)′)′ = rnε+1(−2nd

r2
x− µ(1− f2d −

d2

r2
y)

or

(r−2nε+1(rnεy)′)′ = r−nε+1(−2nd

r2
x− µ(1− f2d −

d2

r2
)y).

Eventually, the system (2.43) can be written as{
(e±2

√
2r(r

1
2 e∓

√
2rx)′)′ = r

1
2 e±

√
2r
(
q(r)x− 2nd

r2
y
)

(r±2nε+1(r∓nεy)′)′ = r±nε+1(−2nd
r2
x− µ(1− f2d −

d2

r2
)y)

(2.44)

We will construct four independent solutions (xj , yj), j = 1, ..., 4. Let us indicate the
four fixed point equations we have to solve.

The exponential blowing up behavior at +∞ : the solution (x1, y1).
We consider the fixed point problem

x = J+ + J+
∫ r
+∞ e

−2
√
2t
∫ t
R e
√
2ss

1
2 (−2nd

s2
y + q(s)x)dsdt

y = rnε
∫ r
R t
−2nε−1

∫ t
R s

nε+1(2nd
s2
x− µ(ε)(1− f2d −

d2

s2
)y)dsdt.

The intermediate blowing up behavior at +∞ : the solution (x3, y3). We consider
the fixed point problem

x = J+
∫ r
+∞ e

−2
√
2t
∫ t
R e
√
2ss

1
2 (−2nd

s2
y + q(s)x)dsdt

y = rnε + rnε
∫ r
+∞ t

−2nε−1
∫ t
R s

nε+1(2nd
s2
x− µ(ε)(1− f2d −

d2

s2
)y)dsdt.

The least behavior at +∞ : the solution (x2, y2). We consider the fixed point problem
x = J− + J−

∫ r
+∞ e

2
√
2t
∫ t
+∞ e

−
√
2ss

1
2 (−2nd

s2
y + q(s)x)dsdt

y = r−nε
∫ r
+∞ t

2nε−1
∫ t
+∞ s

−nε+1(2nd
s2
x− µ(ε)(1− f2d −

d2

s2
)y)dsdt.

The intermediate vanishing behavior at +∞ : the solution (x4, y4). We consider the
fixed point problem

x = J−
∫ r
R0
e2
√
2t
∫ t
+∞ e

−
√
2ss

1
2 (−2nd

s2
y + q(s)x)dsdt

y = r−nε + r−nε
∫ r
+∞ t

2nε−1
∫ t
+∞ s

−nε+1(2nd
s2
x− µ(ε)(1− f2d −

d2

s2
)y)dsdt.

Let us explain the pattern of proof. We denote each fixed point equation by

(x, y) = Φ(x, y), for (x, y) defined in [R,+∞[.

Then we give a map ζ, that will be ζ(r) =


J+(r) for (x1, y1)
rnε for (x3, y3)
J−(r) for (x2, y2)
r−nε for (x4, y4).

And we want to prove, for a chosen R large enough and independent of ε, the existence of
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a fixed point (xj , yj) verifying the estimate, for all r ∈]R,+∞[ and for some C depending
only of R,

|xj(r)− ζ(r)|+ |yj(r)| ≤ Cζ(r)r−1 if j = 1, 3, (2.45)

or
|xj(r)|+ |yj(r)− ζ(r)| ≤ Cζ(r)r−1 if j = 2, 4. (2.46)

For this purpose, we define by induction, for (x1, y1) and for (x3, y3)

(α0, β0) = (ζ, 0) and (αk+1, βk+1) = Φ(αk, βk). (2.47)

For (x2, y2) and for (x4, y4), we exchange the role of x and y, that gives

(α0, β0) = (0, ζ) and (αk+1, βk+1) = Φ(αk, βk). (2.48)

We denote ν : r 7→ r.
Now we prove that there exists M > 0 independent of ε, independent of k, and indepen-
dent of R > 1, such that for all r ≥ R and all k ≥ 1,
for j = 1, 2

|(αk+1 − αk)ζ−1ν|(r) ≤Mr−1(‖(αk − αk−1)ζ−1ν‖∞,[R,+∞[

+‖(βk − βk−1)ζ−1ν)‖∞,[R,+∞[) (2.49)

and
|(βk+1 − βk)ζ−1ν|(r) ≤Mr−1(‖(αk − αk−1)ζ−1ν‖∞,[R,+∞[

+‖(βk − βk−1)ζ−1ν)‖∞,[R,+∞[) (2.50)

and for j = 3, 4

|(αk+1 − αk)ζ−1ν2|(r) ≤Mr−1(‖(αk − αk−1)ζ−1ν2‖∞,[R,+∞[

+‖(βk − βk−1)ζ−1ν‖∞,[R,+∞[) (2.51)

and
|(βk+1 − βk)ζ−1ν|(r) ≤Mr−1(‖(αk − αk−1)ζ−1ν2‖∞,[R,+∞[

+‖(βk − βk−1)ζ−1ν‖∞,[R,+∞[). (2.52)

We have to verify also, for j = 1, 2

|α1 − α0| ≤Mr−1ζ(r) and |β1 − β0| ≤Mr−1ζ(r) (2.53)

and for j = 3, 4

|α1 − α0| ≤Mr−2ζ(r) and |β1 − β0| ≤Mr−1ζ(r). (2.54)

with M independent of R and independent of ε.
Next we choose R > 1 such that MR−1 < 1 and we are allowed to define xj(r) and yj(r),
for j = 1, 2 by

xj(r) = α0(r) + r−1ζ
∑
k≥0

rζ−1(αk+1 − αk)(r) (2.55)
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and
yj(r) = β0(r) + r−1ζ

∑
k≥0

rζ−1(βk+1 − βk)(r)

and, for j = 3, 4, xj(r) = α0(r) + r−2ζ
∑

k≥0 r
2ζ−1(αk+1 − αk)(r).

The sums converge, uniformly wrt ε, for all r > R0. Consequently, arguing as for
the solutions near 0, we get the existence of a solution (x, y) having the desired behavior
(2.45) or (2.46) at +∞ and we get also the limit of (x, y)(r) as ε → 0 to a solution of
the same system as (2.43) but with µ = 1, for each r ∈]0,+∞[ and having the same
behavior (2.45) or (2.46) at +∞. The proof of Proposition 2.3 follows, with uε = x+ y
and vε = x− y.
For the estimates above, we need the following estimates, obtained by an integration by
part. Let α ∈ R and β > 0 be given. Then∫ +∞

t
sαe−βsds ≤ 2

β
tαe−βt for all t ≥ 2α

β
(2.56)

and ∫ t

R
sαeβsds ≤

{
2
β t
αeβt for all t ≥ R ≥ −2αβ if α < 0

1
β t
αeβt for all t ≥ R > 0 if α ≥ 0.

(2.57)

We will fix R > 1, large enough to have (2.57) for the desired α and β and we will use,
for s ≥ R,

|1− µ|(1− f2d ) ≤ C

r2
, |1− f2d −

d2

r2
| ≤ C

r4
and |q(s)| ≤ C

r2
(2.58)

where C is independent of R > 1.

This terminates the proof of Proposition 2.3.

We turn now to the case n = 0, ie to the equation (1.20) and to the equation (1.19).
We write the rescaled form of (1.19) as

a′′ +
a′

r
− d2

r2
a+ (1− f2d )a+ (µ(ε)− 1)(1− f2d )a = 0. (2.59)

Proposition 2.4 (i) There exists a function gd such that fd and gd form a base of
solutions of the equation (1.16) and we have

|gd(r) +
1

2dAd
r−d| ≤ Cr−d+2 at r = 0 and |gd(r)− log r| ≤ Cr−2 log r at r = +∞

(2.60)
where Ad > 0 is defined by fd = Adr

d +O(rd+2) near r = 0.
(ii) If µ(ε)→ 1, there exists a base of two solutions aε1 and aε2 of (2.59) with the following
behaviors at 0 : there exist R > 0 and C > 0 verifying for all 0 < r < R

|aε1(r)− fd(r)| ≤ C|1− µ(ε)|r2fd(r) and |aε2(r)− r−d| ≤ Cr−d+1 (2.61)
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where R and C are independent of ε. Moreover, letting ε→ 0, for all r > 0 aε1(r)→ fd(r)
and aε2(r)→ − 1

2dAd
gd +Afd, for some A ∈ R.

Proof (i) If g is any solution of the equation (1.16) we can combine the equation of g
and the equation of fd and integrating by parts we are led to, for all r1 > 0 and r2 > 0

[r(f ′dg − fdg′)(r)]r2r1 = 0.

We deduce that there exists C such that rf2d

(
gd
fd

)′
= C. This gives, for some D ∈ R,

g(r) = Dfd(r) + Cfd(r)

∫ r

1

dt

tf2d (t)
.

We define

gd(r) := fd(r)

∫ r

1

dt

tf2d (t)
.

A calculus gives (2.60).

(ii) We take advantage of the identity, valid for any function u(
ru2(au−1)′

)′
= (ra′)′u− a(ru′)′. (2.62)

Firstly, we choose u = fd.
Letting g = af−1d , we infer that (2.59) is equivalent to(

rf2dg
′)′ = (1− µ)r(1− f2d )f2dg.

We define the fixed point problem, for g

g = 1 + (1− µ)

∫ r

0

f−2d
t

∫ t

0
s(1− f2d )f2dgdsdt. (2.63)

We denote it by g = Φ(g).

Considering that t2d

1+t2d
f−2d , (1−f2d )(1+t2) and f2d (1+t2d)t−2d have positive limits together

at 0 and at +∞, we will use the following estimates, in ]0,+∞[[, for some M > 0

f−2d ≤M 1 + t2d

t2d
, 1− f2d ≤M

1

1 + t2
and f2d ≤M

t2d

1 + t2d
.

We define by induction
α0 = 1, αk+1 = Φ(αk).

We define ζ(r) := r2. A calculus gives, for r > 0

|α1 − α0| ≤ C|1− µ|r2 and r−2|αk+1 − αk| ≤ C|1− µ|r2‖ζ−1(αk − αk−1‖L∞([0,r]
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where C is independent of r and independent of ε. We choose R > 0 such that CR2 < 1
and we define, for all r ∈ [0, R]

g = 1 + ζ
∑
k≥0

ζ−1(αk+1 − αk).

Thus aε1 = fdg verifies (2.61).
Secondly, we choose u(r) = r−d.
We compute

(r−2d+1(ar−d)′)′ = −r−d+1µ(1− f2d )a

We let g(r) := a(r)rd and we solve the fixed point problem

g(r) = 1 +

∫ r

0
t2d−1

∫ t

R
−µ(1− f2d )s−2d+1gds

where R > 0. The same method as above , with α0 = 1 and ζ(r) = r leads to

r−1|αk+1−αk| ≤ Cr‖ζ−1(αk−αk−1)‖L∞([0,R]) and r−1|α1−α0| ≤ C
{
r ln r if d = 1
r if d ≥ 2

with C independent of ε and independent of R. Choosing R such that CR < 1, we
conclude as above. This terminates the proof of (2.61).

We turn now to the equation (1.17), for n = 0. Its rescaled form is

a′′ +
a′

r
− d2

r2
a− 2fda+ µ(ε)(1− f2d )a = 0. (2.64)

Proposition 2.5 (i)There exists a base of two solutions a1 and a2 defined near 0, for
(1.17) verifying respectivly

|a1 − fd| ≤ Cr2fd and |a2 − r−d| ≤ Cr−d+2.

And if µ(ε)→ 1, there exists a solution aε1 of (2.64) such that

|aε1(r)− fd(r)| ≤ Cr2fd(r)

for all r ∈ [0, R] and for some R and some C independent of ε. Moreover aε1 → a1 as
ε→ 0. And there exists a second solution that blows up at 0.
(ii) There exists a base of two solutions of (1.17), b1 and b2, defined near +∞ and there
exists some R > 0 verifying

|b1 − e
√
2r√
r | ≤ Cr−1e

√
2r√
r and |b1 − e

−
√
2r√
r | ≤ Cr−1e

−
√
2r√
r ,

for all r ∈ [R,+∞[.
And if µ(ε)→ 1, there exists a base of two solutions bε1 and bε2 of (2.64) verifying

|bε1 − e
√
2r√
r | ≤ Cr−1e

√
2r√
r and |bε1 − e

−
√
2r√
r | ≤ Cr−1e

−
√
2r√
r

for all r ∈ [R,+∞[, R and C being independent of ε.
(iii) The solution a1 defined at 0 blows up exponentially at +∞, like Ab1, for some A > 0.
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Proof (i) Let us give a sketch of the proof. We can adapt the proof of (ii) in Proposition
2.4. Using (2.62) again, we choose firstly u = fd and secondly u = r−d. We are led
successively to the following forms of (2.64)

(rf2d (af−1d )′)′ = 2rf2da+ (1− µ)afd(1− f2d )

and
(r−2d+1(ard)′)′ = 2fdar

1−d − µar−d+1(1− f2d ).

And we solve the both integral equations, where g = af−1d and next g = ard,

g = 1 +

∫ r

0

f−1d
t

∫ t

0

(
(1− µ)(1− f2d ) + 2fd)sf

2
dg
)
dsdt.

and

g(r) = 1 +

∫ r

0
t2d−1

∫ t

R

(
−µ(1− f2d ) + 2fd

)
s−2d+1gds.

And we let µ = 1, for the equation (1.17).
(ii) The same trick as above, in the proof of Proposition 2.3 leads to replace (2.64) by

(e2
√
2r(r

1
2ae−

√
2r)′)′ = e

√
2rr

1
2 (

1

4r2
− µ(1− f2d ))

or

(e−2
√
2r(r

1
2ae
√
2r)′)′ = e−

√
2rr

1
2 (− 1

4r2
+
d2

r2
− µ(1− f2d )).

And as above we solve the following fixed point problems, for µ = 1 or for µ closed to 1
and for R large enough

a = J+ + J+

∫ r

+∞
e−2
√
2t

∫ t

R
e
√
2ss

1
2a(− 1

4r2
+
d2

r2
− µ(1− f2d ))ds

and

a = J− + J−

∫ r

+∞
e2
√
2t

∫ t

+∞
e−
√
2ss

1
2a(− 1

4r2
+
d2

r2
− µ(1− f2d ))ds.

And the method for the construction is the same as for Proposition 2.3.
(iii) Multiplying the equation of a1 and the equation of fd and integrating by parts, we
obtain

r(a′1fd − f ′da1)(r) =

∫ r

0
2tf2d (t)a1(t)dt.

This gives

rf2d

(
a1
fd

)′
(r) =

∫ r

0
2tf3d (t)

a1
fd

(t)dt

and consequently a1(r) > 0 for all r and the only convenient behavior at +∞ for a1
fd

is
the blowing up one.
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3 Proof of Theorem 1.6.

Let n ≥ 1. Let us suppose that µ(ε) → 1. Let (a, b) be any solution of (1.18), we let
X = (a, ra′, b, rb′)t. Considering the behavior of (a, b) at 0, there exists two real numbers
(Aε1, A

ε
3) 6= (0, 0) such that

X = Aε1X
ε
1 +Aε3X

ε
3 .

Now, the condition a(1ε ) = b(1ε ) = 0 leads us to the system{
Aε1a

ε
1(

1
ε ) +Aε3a

ε
3(

1
ε ) = 0

Aε1b
ε
1(

1
ε ) +Aε3b

ε
3(

1
ε ) = 0.

Thus if we denote the determinant

∆ := aε1(
1

ε
)bε3(

1

ε
)− bε1(

1

ε
)aε3(

1

ε
),

then ∆ = 0.
We obtain firstly that the corresponding real eigenspace is one dimensional.
Now, we can write

Xε
1 =

4∑
j=1

CεjY
ε
j .

Each real number Cεj can be computed by means of a 4 × 4 determinant, for any fixed
r > 0 and consequently, since Xε

1(r) and each Y ε
j (r) has a limit as ε→ 0, then, each Cεj

has a limit too, denoted by Cj . By Theorem 2.7, X1 has the exponentional blowing up
behavior at +∞ and we deduce that C1 6= 0. Consequently, we can choose Xε

1 to represent
a solution of (2.28) having the exponentially blowing up behavior at +∞ instead of Y ε

1 .
We can write

Xε
3 = Dε

1X
ε
1 +

4∑
j=2

Dε
jY

ε
j .

As explained above, each real number Dε
j has a limit as ε→ 0. Moreover,

∆ =

∣∣∣∣∣ aε1(1ε )
∑4

j=2D
ε
ju
ε
j(

1
ε )

bε1(
1
ε )

∑4
j=2D

ε
jv
ε
j (

1
ε )

∣∣∣∣∣ .
In view of Proposition 2.3, ∆ 6= 0, unless

4∑
j=2

Dε
ju
ε
j(

1

ε
) =

4∑
j=2

Dε
jv
ε
j (

1

ε
) = 0.

This condition implies that Dε
3 → 0 as ε→ 0. We are led to to X3−D1X1 = D2Y2+D4Y4,

that is bounded at +∞ and bounded at 0. We deduce that if µ(ε)→ 1, then there exists
a bounded solution. Moreover, since we have proved just above that the eigenspace
associated to µ(ε) is one dimensional, a base of this eigenspace is

∑4
j=2D

ε
jY

ε
j = Xε

3 −
Dε

1X
ε
1 , that tends to D2Y2 +D4Y4. If n ≥ 2, by Theorem 1.1, we have the proof of (i).

Now, when there exists some bounded solution of (2.1) and if µ(ε) → 1, let us denote
ωε = aεe−inθ + bεeinθ a given associated eigenvector and ω the bounded solution such
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that ωε → ω, as ε→ 0. We denote ωε =
∑4

j=2D
ε
jω

ε
j = ωε3 −Dε

1ω
ε
1. We have, for a given

A > 0,

‖ωε − ω‖L2(B(0, 1
ε
)) ≤ ‖

4∑
j=2

Dε
jω

ε
j −

4∑
j=2

Djωj‖L2(B(0, 1
ε
)\B(0,A))+

+‖ωε3 −Dε
1ω

ε
1 − ω3 +D1ω1‖L2(B(0,A)).

The second term of the rhs tends obviously to 0, and, since D3 = 0, the first term can
be estimated as

‖
4∑
j=2

Dε
jω

ε
j −

4∑
j=2

Djωj‖L2(B(0, 1
ε
)\B(0,A)) ≤ ‖D

ε
2ω

ε
2 −D2ω2‖L2(B(0, 1

ε
)\B(0,A))+

+‖Dε
4ω

ε
4 −D4ω4‖L2(B(0, 1

ε
)\B(0,A)) + ‖Dε

3ω
ε
3‖L2(B(0, 1

ε
)\B(0,A)).

The first two terms tend to 0 by the Lebesgue Theorem and for the third term we estimate

‖ωε3‖L2(B(0, 1
ε
)B(0,A)) ≤ Cε

−n+1

with C independent of ε, while the condition
∑4

j=2D
ε
ju
ε
j(

1
ε ) = 0 gives

Dε
3 = O(ε2n).

Eventually, we conclude that

‖ωε − ω‖L2(B(0, 1
ε
)) → 0 as ε→ 0.

Now, to complete the proof of (ii), we consider n = 0 and n = 1. The proof of m0,d > 1
and the proof of m1,d > 1 are the same as for λ0,d > 0 and λ1,d > 0, in [12]. Indeed,
multiplying the equation (1.19), by f and integrating by parts on [0, 1], we obtain m0,d >
1. Then, using a truncation of f , with value 0 for r ≥ 1, as a test function for the infimum
m0,d, and since we know the existence of the limit, we obtain that limε→0m0,d(ε) ≤ 1.
And the proof of m1,d > 1 uses a trick involving the system (2.43). The only difference
is the positive factor 1 − f2d . The proof of limε→0m1,d(ε) = 1 follows from Lemma 1.1.
Indeed, it must exist µ(ε) → 1, but m1,d(ε) > 1 is the least eigenvalue, so m1,d(ε) → 1.
And thanks to the proof above, the limit of an eigenvector for µ(ε) → 1 has to be the
bounded solution of (1.15) and the norm ‖ωε − ω‖L2([0, 1

ε
]) → 0. But since the eigenvalue

problem is, with the suitable rescaling, T ω̃ε = µ(ε)Cω̃ε and in view of the scalar product
forHn,d, we have < Cω̃ε, η̃ε >L2([0,1])= 0 when ηε and ωε are two independent eigenvectors
that gives< (1−fd)ωε, ηε >L2([0, 1

ε
])= 0, this is in contradiction with ‖ωε−ηε‖L2([0, 1

ε
]) → 0.

This proves that there is at most one eigenvalue tending to 1. We deduce (ii) for n = 1.
Now, for n = 0, if µ(ε) > m0,d(ε) and if µ(ε) → 1, we consider aε a solution of (2.59)
with µ(ε) = m0,d(ε) and we consider bε a solution for µ(ε). Thanks to Proposition 2.4,
we can chose aε(0) = bε(0) = 1 and combining the equations of aε and of bε, we find that
for all r > 0

r((aε)′bε − aε(bε)′)(r) =

∫ r

0
s(µ(ε)−m0,d(ε))a

εbε(1− f2d )ds.
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Since aε > 0, this proves that
(
aε

bε

)′
(r) > 0 as soon as aε

bε > 0 in [0, r[ and consequently

bε(r) > 0 for all r ≥ 0. But this is in contradiction with
∫ 1
ε
0 (1 − f2d )aεbεsds = 0. Thus,

if µ(ε) > m0,d(ε) is an eigenvalue for n = 0, we have |µ(ε)− 1| ≥ C, with C independent
of ε.
Now let us prove that m̃0,d(ε) ≥ 1 + C, with C > 0 independent of ε, where m̃0,d is
defined in (1.24). If ãε0 realizes m̃0,d, we can estimate

m̃0,d(ε) ≥ m0,d(ε) + ε2
∫ 1
ε
0 2rfd(a

ε
0)

2dr∫ 1
ε
0 r(1− f2d )(aε0)

2dr
.

But, with the notations of Proposition 2.5, we can write aε0 = Aε1b
ε
1 +Aε2b

ε
2, and, as above

Aε1 → A1, A
ε
2 → A2, for some real numbers A1 and A2. And since aε0 → a0, that can be

supposed to be equal to a1, we have A1 6= 0. Since 1− f2d = d2

r2
+O( 1

r4
), a calculus gives

some M > 0 independent of ε such that

m̃0,d(ε) ≥ m0,d(ε) +M.

4 The proof of Lemma 1.1.

To begin with, let us recall some notation for the eigenvalue problem (1.18). We consider
the operator Tn,d : Hn,d → H′n,d defined by

< −Tn,d(a, b), (u, v) >H′n,d,Hn,d :=

∫ 1

0
(ra′u′+rb′v′+

(n− d)2

r
au+

(n+ d)2

r
bv+

r

ε2
f2(a+b)(u+v))dr.

We remark that
((a, b), (u, v)) 7→< Tn,d(a, b), (u, v) >H′n,d,Hn,d

is a scalar product on Hn,d. So, Tn,d is an isomorphism, by the Riesz Theorem.
Last, let us define the embedding

I : Hn,d → H′n,d
(a, b) 7→ ((u, v) 7→

∫ 1
0 r(au+ bv)dr)

Since the embedding H1
0 (B(0, 1))×H1

0 (B(0, 1)) ⊂ L2(B(0, 1))×L2(B(0, 1)) is compact,
then I is compact.
Let us define C = 1

ε2
(1 − f2)I. Since C is a compact operator and thanks to the conti-

nuity of T −1n,d , then T −1n,d C is a compact operator from Hn,d into itself. By the standard
theory of self adjoint compact operators, there exists a Hilbertian base of Hn,d formed of
eigenvectors of T −1n,d C. We will consider (ζi)i∈J such a base. We can write the eigenvalue
problem as Tn,d(a, b) = µ(ε)C(a, b). We can normalized the base (ζj) in order to have

< Cζi, ζj >(L2×L2)(B(0,1))= 0 for i 6= j and < Cζj , ζj >(L2×L2)(B(0,1))= 1.

Let us suppose that (a, b) is a bounded solution of (1.15). Let 1
2 < N < 1 be given, let

us define (acut, bcut) by

(acut, bcut)(r) =

{
(a, b)(r) for 0 ≤ r ≤ N

ε

((a, b)(r)(1− h(r)) for N
ε ≤ r ≤

1
ε
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where

h(r) =
(r − N

ε )3

(1ε −
N
ε )3

.

We have acuteidθ ∈ (H2 ∩ H1
0 )(B(0, 1ε )) and bcuteidθ ∈ (H2 ∩ H1

0 )(B(0, 1ε )), since this is
true for a and b and since moreover the first two derivatives of acuteidθ and bcuteidθ are
continuous.
In view of the possible behaviors at +∞ given in Proposition 2.1, we have, for ε small
enough

|a(r)| ≤ Cr−n for
N

ε
< r <

1

ε
, |acut| ≤ |a| and r(1− f2d ) = O(

1

r
) at +∞

and we verify that

< (acut − a, bcut − b), (1− f2d )(acut − a, bcut − b) >(L2×L2)(B(0, 1
ε
))=∫ 1

ε

N
ε

r(1− f2d )((a− acut)2 + (b− bcut)2)dr = O(ε2n) as ε→ 0. (4.65)

Then, let us define

(ãcut, b̃cut)(r) = (acut, bcut)(
r

ε
) 0 < r < 1.

We write
(ãcut, b̃cut) =

∑
i∈J

αi(ε)ζi

and
< (1− f2d )(acut, bcut), (acut, bcut) >(L2×L2)(B(0, 1

ε
))

=< C
∑
j∈J

αjζj ,
∑
j∈J

αj(ε)ζj >(L2×L2)(B(0,1))=
∑
i∈J

α2
j (ε).

By (4.65),

< (1− f2d )(acut, bcut), (acut, bcut) >L2(B(0, 1
ε
))−→

∫ +∞

0
r(1− f2d )(a2 + b2)dr as ε→ +∞.

Consequently there exists I ⊂ J , such that

I 6= ∅ and for all i ∈ I, α2
i (ε) 6→ 0, as ε→ 0. (4.66)

Now we write
(T − C)(ãcut, b̃cut) =

∑
i∈J

αi(ε)(µi(ε)− 1)Cζi

that gives

< (T − C)(ãcut, b̃cut),
∑
i∈J

αi(ε)(µi(ε)− 1)ζi >H′n,d,Hn,d=
∑
i∈J

α2
i (ε)(µi(ε)− 1)2. (4.67)
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But (T − C)(ãcut, b̃cut) is represented by a function of L2(B(0, 1)) × L2(B(0, 1)). Using
this identification, we can estimate the rhs of (4.67) as follows,

< (T − C)(ãcut, b̃cut),
∑
i∈J

αi(µi(ε)− 1)ζi >H′n,d,Hn,d=

=< (T − C)(ãcut, b̃cut), ε2

1− f2
(T − C)(ãcut, b̃cut) >(L2×L2)(B(0,1))

=

∫ 1

N

rε2

1− f2
[

(
(ãcut)′′ +

(ãcut)′

r
− (n− d)2

r2
ãcut − 1

ε2
f2(ãcut + b̃cut)− 1

ε2
(1− f2)ãcut

)2

+

(
(b̃cut)′′ +

(b̃cut)′

r
− (n+ d)2

r2
b̃cut − 1

ε2
f2(ãcut + b̃cut)− 1

ε2
(1− f2)b̃cut)

)2

]dr.

=

∫ 1
ε

N
ε

r

1− f2d
[

(
((acut)′′ +

(acut)′

r
− (n− d)2

r2
acut − f2d (acut + bcut)− (1− f2d )acut

)2

+

(
(bcut)′′ +

(bcut)′

r
− (n+ d)2

r2
bcut − f2d (acut + bcut)− (1− f2d )bcut

)2

]dr.

Let us estimate each term, as ε→ 0.
We use

r

1− f2d
= O(r3) at +∞

to get ∫ 1
ε

N
ε

r

1− f2
(acut)2

r4
dr = O(ε2n).

Taking advantage that a+ b = O(r−n−2) at +∞, a similar estimate for acut + bcut gives∫ 1
ε

N
ε

r

1− fd2
f2d (acut + bcut)2dr = O(ε2n).

Now

acut
′
= a′(1− h) + ah′ and |a′| ≤ Cr−n−1 and

∫ 1
ε

N
ε

h′2dr = O(ε).

We deduce that ∫ 1
ε

N
ε

r

1− f2d
(acut

′
)2

r2
dr = O(ε2n).

Now, since

|a′′| ≤ Cr−n−2 and

∫ 1
ε

N
ε

h′′2dr = O(ε3)

we get ∫ 1
ε

N
ε

r

1− fd2
(acut

′′
)2dr = O(ε2n).
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We have proved that∫ 1
ε

N
ε

r

1− f2d
(acut

′′
+
acut

′

r
− (n− d)2

r2
acut − f2d (acut + bcut)− (1− f2d )acut)2dr = O(ε2n)

and with the same proof we have∫ 1
ε

N
ε

r

1− fd2
(bcut

′′
+
bcut
′

r
− (n+ d)2

r2
bcut − f2d (acut + bcut)− (1− f2d )bcut)2dr = O(ε2n)

and eventually

< (T − C)(ãcut, b̃cut),
∑
i∈J

αi(ε)(µi(ε)− 1)ζi >H′n,d,Hn,d= O(ε2n) (4.68)

But (4.68) and (4.67) give ∑
i∈J

α2
i (ε)(µi(ε)− 1)2 = O(ε2n).

So, for all i ∈ J we have
|αi(ε)(µi(ε)− 1)| = O(εn).

Since n ≥ 1, we are led to

µi(ε)− 1→ 0 as ε→ 0, for all i ∈ I,

where the set I is defined in (4.66).
We have proved Lemma 1.1, for n ≥ 1.

5 The proof of Theorem 1.2 completed.

First, let ω =
∑

n≥1(ane
−inθ + bne

inθ) + a0, where an and bn are real valued functions.
We are going to prove that

| < Lε(ω), ω >L2(B(0,1)) | ≥ C < Cω, ω >L2(B(0,1)) . (5.69)

The second inequality of (1.4) will follow, since we remark that if we define
η :=

∑
n≥1(ane

−inθ − bneinθ) + a0 and if αn, βn are the real valued functions defined by

Lε(η) =
∑
n≥1

(αne
−inθ + βne

inθ) + α0,

we have

Lε(iω) =
∑
n≥1

i(αne
−inθ − βneinθ) + iα0 + i

f2

ε2
2a0.

Consequently, we have

< C(iω), iω >L2(B(0,1))=< Cη, η >L2(B(0,1))
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and

< Lε(iω), iω >L2(B(0,1))=< Lε(η), η >L2(B(0,1)) +2
f2

ε2
|a0|2.

Thus, the inequality

< Lε(iω), iω >L2(B(0,1))≥ C < C(iω), iω >L2(B(0,1))

follows from the inequality

< Lε(η), η >L2(B(0,1))≥ C < Cη, η >L2(B(0,1)) .

We define the operator T by
Lε = −T + C

where Cω = ω
ε2

(1− f2).
We consider the Hilbert space

⊕n≥1Hn,d,

that is

⊕n≥1Hn,d := {ω ∈ H, ω =
∑
n≥1

(ane
−inθ+bne

inθ), an and bn real valued, an(1) = bn(1) = 0},

We may endow ⊕n≥1Hn,d with that scalar product

< ω, ω̃ >:=< T ω, ω̃ >L2(B(0,1))

and this scalar product let ⊕n≥1Hn,d be a Hilbert space.
We let (ζj)j∈J be a Hilbertian base, each ζj being an eigenvector for the operator T −1C.
We let the eigenvalue µi(ε) be defined by T ζj = µj(ε)Cζj . This implies that

< Cζi, ζj >L2(B(0,1))= 0 for i 6= j.

We define (W⊥)1 the subspace of W⊥1 corresponding to the eigenvalues µj(ε) > 1 and
(W⊥)2 corresponding to the eigenvalues µj(ε) < 1. And we define J = J1 ∪ J2. By
Theorem 1.6 there exists some C > 0 independent of ε such that

1− µj(ε) > C for j ∈ J1 and 1− µj(ε) < −C for j ∈ J1.

We write
ω =

∑
i∈J

αjζj

From the definition of (ζj)j∈J , we infer that

T ω =
∑
j∈J

αjµjCζj

and consequently

Lεω =
∑
j∈J

αj(1− µj)Cζj ,
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that gives

< Lεω, ω >L2(B(0,1))=
∑
j∈J

α2
j (1− µj) < Cζj , ζj > .

If ω ∈ (W⊥)1, αj = 0 unless j ∈ J1. We deduce that

< Lεω, ω >L2(B(0,1))≤ −C < Cω, ω >L2(B(0,1)) .

If ω ∈ (W⊥)2, αj = 0 unless j ∈ J1. We deduce that

< Lεω, ω >L2(B(0,1))≥ C < Cω, ω >L2(B(0,1)) .

In any case, we have (5.69) and this proves (1.4), for ω ∈ ⊕n≥1Hn,d.
As remarked in the beginning of this section, we obtain (1.4) for ωR ∈ ⊕n≥1Hn,d and for
ωI ∈ ⊕n≥1Hn,d.
Now, we know from Theorem 1.6 (ii) that if a0 ∈ H0,d is real valued, then

< Lεa0, a0 >L2(B(0, 1
ε
))≥ C < Ca0, a0 >L2(B(0, 1

ε
)

and if ia0 ∈< iΦ0 >
⊥, then

< Lεia0, ia0 >L2(B(0, 1
ε
)≥ C < Ca0, a0 >L2(B(0, 1

ε
)

where, in the both cases, C is independent of ε. That terminates the proof of (1.4).

Now, if ω ∈ W⊥ ∩ H is a solution of (1.3), as claimed in (1.11), if we denote h =
hR + ihI , we have

(Lεω = h)⇔ (LεωR = hR,LεiωI = ihI) .

We consider first ωR and hR.
The equality

< LεωR, ωR >L2(B(0,1))=< hR, ωR >L2(B(0,1))

together with (1.4) gives

| < hR, ωR >L2(B(0,1)) | ≥M < CωR, ωR >L2(B(0,1)) .

We deduce that

< CωR, ωR >L2(B(0,1))≤M < CωR, ωR >
1
2

L2(B(0,1))

(∫ 1

0
r

ε2

1− f2
|hR|2dr

) 1
2

and consequently

< CωR, ωR >L2(B(0,1))≤M
∫ 1

0
r

ε2

1− f2
|hR|2dr. (5.70)

But since L = −T + C, we are led to

< T ωR, ωR >L2(B(0,1))= − < hR, ωR >L2(B(0,1) + < CωR, ωR >L2(B(0,1)) .
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That gives

< T ωR, ωR >L2(B(0,1))≤< CωR, ωR >
1
2

L2(B(0,1))

(∫ 1

0
r

ε2

1− f2
|hR|2dr

) 1
2

+ < CωR, ωR >L2(B(0,1))

and using (5.70), we obtain

< T ωR, ωR >L2(B(0,1))≤M
∫ 1

0
r

ε2

1− f2
|hR|2dr.

Now we use

1− f2 ≥ C ε2

ε2 + r2
for all r ≥ 0 (5.71)

with C independent of ε to obtain

< T ωR, ωR >L2(B(0,1))≤M
∫ 1

0
r(ε2 + r2)|hR|2dr. (5.72)

that gives (1.6). Moreover, we use (5.71) in (5.70) to obtain∫ 1

0

r

ε2 + r2
|ωR|2dr ≤M

∫ 1

0
r(ε2 + r2)|hR|2dr. (5.73)

Now (5.72) and (5.73) are valid for iωI instead of ωR and ihI instead of hR.
Thus (5.73) gives∫ 1

0

r

ε2 + r2
(|ωR|2 + |ωI |2dr ≤M

∫ 1

0
r(ε2 + r2)(|hR|2 + |hI |2)dr

that gives (1.5) and (1.7).

Now, let us recall that

< T ωR, ωR >L2(B(0,1)=
∑
n≥1

∫ 1

0

(
r|a′n|2 + r|b′n|2 +

(n− d)2

r
|an|2 +

(n+ d)2

r
|bn|2 +

|an + bn|2

r
f2
)
dr+

+

∫ 1

0
(r|a′0|2 +

d2

r
|a0|2)dr

and that

< T iωI , iωI >L2(B(0,1)=
∑
n≥1

∫ 1

0

(
r|a′n|2 + r|b′n|2 +

(n− d)2

r
|an|2 +

(n+ d)2

r
|bn|2 +

|an − bn|2

r
f2
)
dr+

+

∫ 1

0
(r|a′0|2 +

d2

r
|a0|2 + 2rfd|a0|2)dr

We conclude that (1.6) and (1.8) are valid when an and bn are complex valued.
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