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Abstract. We consider the complex Ginzburg-Laudau operator on a bounded domain.
We prove some estimates for the inverse of the linearized operator.

AMS classification : 34B40: Ordinary Differential Equations, Boundary value prob-
lems on infinite intervals. 35J60: Nonlinear PDE of elliptic type. 35P15: Estimation of
eigenvalues, upper and lower bound.

1 Introduction.

We consider the Ginzburg-Landau equation on a bounded connected domain (2,

(1.1)

where € > 0 is a small parameter, u and g have complex values and degree (g,09) > 1.
This equation has been intensively studied, in [4], and many others.
Let us denote

—Au = E%U(l — |ul?) in Q
u = g in OS2

1

Ne(u) = Au+ gu(l — |ul?)

and let us define f; as the only solution of the differential equation
no fa &2y 1 2

fd + T Tzfd - fd( fd) (1‘2)

fa(0) =0, lim, 400 fa(r) = 1.
The equation (1.2) is completely studied in [8]. And let ug(x) = fd(%)eide. We have

Ng(uo) - 0.

We will always denote
r
1) = fal®).

The linearized operator around any function u is given by

AN (1) @) = A+ (1= [uf?) - E%U(m +uw).
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Let us consider the linearized operator around the solution wug, ie
w 2 o
ANz () (W) = Aw + (1= /%) = 52w,

where w is any complex valued function and 2u.w = Tw + wu.

We will use the operator ‘ .
Le = e PN (ug)e'®

instead of dN(ug) and we will use also the rescaled operator £1. These operators are of
importance for some technics of construction of solutions for the equation (1.1).
The invariance of the equation (1.1) wrt the translations and the rotations gives

. ou ou
0 = dN(uo) (in) = dN=(uo) (5—) = dN=(uo) (5-)-
ox I ox X2
A calculus gives
Oug .
o Mo

i 8u0
e idf

e =3 (A0 00 ) (A0~ D))

0 Z (O + L) e 5 (<1 + D)) e

In [3], we have proved that

and

Theorem 1.1 For all d > 1 the set of the solutions of Liw = 0 which are defined
at 0 and bounded at +o0o is reduced to the three functions provided by the invariance
of the equation (1.1) by the rotations and the translations of the coordinates, ie ify,

(Fi+ 2fa)e™ + (Fy = 4 fa)e® and i(fy+ & fa)e™ + (5 — L f)e.

The case d = 1 was known by [13], chapter 3. In this book, Pacard and Riviere
construct some solutions for (1.1), having the degree one around each singularity. Before
that, the eigenvalue problem L.w = —A(g)w, had been studied in several papers, including
[9], [12], [10], [11]. It is used in [6], [7]...

In the present paper, we let

H:={w:B(0,1) = C, ey e H}(B(0,1))}.

And we let ®p, ®; and ®5 be functions in H, associated with e ¥y, e*id(’g—g‘; and
e_id‘)g%g, in a sense that will be defined below in Theorem 1.5. We denote W the

subspace of H spanned by ®g, ®; and 5 and we define W+ by H = W @ W. Last, for
every w € H we consider the Fourier expansion

w(x) = Z(an(r)e_me + bu(r)e™) + ag(r), an(r) €C, by(r)eC, r€l0,1]
n>1

and we denote ' ‘
wr = ) (Ran(r)e™™ + Rby(r)e™”) + Rao(r)

n>1



and
Wz = Z(Ian(r)efme + Zby(r)e™?) + Zao(r)

n>1

where, for any a € C, Ra is the real part and Za is the imaginary part of a. For
h € L?(B(0,1)) we consider the equation

Low = h. (1.3)
We will prove the following

Theorem 1.2 There exists M > 0 independent of € such that for all w € W=, and
denoting w = wr + twg, we have

‘ < ,CE(WR),LU’R >12(B(0,1)) | > M < Cwgr,wr >12(B(0,1))

und (1.4)
’ < Eg(iwz),iwz >12(B(0,1)) ’ > M < Cwz,wr >12(B(0,1))
where C = a%(1 - f?),
that gives, when w is a solution of (1.3), verifying w =0 in 0B(0,1),
1 2 / 2 24172
— |wlfde < M e* + |z|?)|h|*dz (1.5)
/B(O,l) €2+|95|2| | B(O,l)( %) 1A
and
/ IV (€400) 2dar < M/ (2 + [o2)|h[2da. (1.6)
B(0,1) B(0,1)

Now, if we denote

h = Z zn@ zn@) + ayp,

n>1

where the a; and (; have complex values, let us remark that we can replace (1.5) by

1 1
fo ‘a0‘2€;i7;2 + anl fo (\anP + ‘bn|2)6§i:2

(1.7)
<O st Jo 1€+ ) (loml? + 1Bal?)dr + [y 1(e% + r2)|aol2dr
and we can replace (1.6) ,
Jo (rlabl? + Llaol®ydr + 5,51 fy (rlail? + 710 1? + 5 anf? 4+ O by ) dr
<C’Z:n>1 fo e2 4+ 12)(Jan|? + |8n? dr—i—fol (€2 4+ 12) || ?dr.
(1.8)

Now let us recall in which way the equation £.w = h is transformed into systems of
ordinary equations.



Letting, for n > 1 wy(z) = a,(r)e™™ + b, (r)e™, and for n = 0, wo(x) = ag(r), we
have

26" 00, = wy + Ty = (by + n)e™ + (by + an)e™ ™.
, . d? 2d Ow
—idf idf _ _ : ]
Moreover e "PA(e""w) = Aw W +1 230

Consequently

] ] ; ’ _ 2 _
e—zd9d/\/’g(uo)€ld9w = Zn21 g~ ind (a;; + ‘ITW _ ("ﬂd) an + a'n, 2 (1 — f2) _ %fz _ %fg) "
A , )
*Zwﬂww@%+%—‘ﬁ@%-+%@—f%—ﬁf”—%ﬂ)+
ol 4 % gy 81— ) - i p?
(1.9)

0, we can consider the

For n > 1, Separating the Fourier components of e ¥ dN; (ug)e
operators

’ 72 - .
forn>1, Le(wn)= (aii + - O, + % (1 - 2f%) — Z—zfQ) e "0
/ 2 _
+ (b;_; + b, (n+d) b, + 2%(1 _ 2f2) _ (;721 f2> em@

al d2 ap + ag

and, for n =0, L.(ag) = 0—1— %o _ 0+ (1—f) ——

Separating the real part and the imaglnary part of an and of b, we con81der the following
operators, where a,, and b,, are real valued function

’ 02 .
<a;; + aTn _ (nr2d) an + (ln( 2f2) bg f2) e*l’ﬂ@_’_
/ 2
(o - 5, 1 Y (1 - 2f%) - ) e
/ _1\2 3
i (o + % — 0, + (1 2f2) + B f7) emin04

forn>1 L.:(a,e™™ +b,e0) 1~

r2
/ 2
+ (b% +0% - 0 4 (1 - 2f2) + ‘;—ng) e’
and, for n =0, L. ‘iao'—ﬂ(a/o/-i-%—ﬁ 0+ %(1- /)
Lovag s af + 50— B+ B(1— ) = P,

L. : (iane™™0 + ib,e)
Y

(1.10)
Let us consider the equation (1.3). We denote wy, = w, g + iwp, 1.
For n > 1, w, ®r and w, 7 belong to the set

Hpg = {ae™™ 4 0™ (a,b) : [0,1] = R x R; ae’@"™0 4 peim+0 ¢ [1(B(0,1))}.
and wor and wp z belong to
Hoa={a:[0,1] = R, e%a € HL(B(0,1))}.
We endow H,, ¢ with the scalar product

< (a,b)|(u,v) >= /Ol(m’u’ + v + Mau—i- M() + o r 5 (a+b)(u+v))dr

T T



and we endow Hg 4 with the scalar product

1 d2
<alu>= / (ra'v’ + —au)dr.
0 r

From (1.3), we are led to the equations , for n € N

Es(wn,’R) = hn,R
{ Lo(iwnz) = ihnz (1.11)

and, in view of (1.10), when n > 1, (1.11) gives two second order ordinary diifferential
systems, the both of them with two equations, and with two real valued unknown func-
tions. For n = 0, we have two ordinary second order ordinary diifferential equations,
each of them with one real valued unknown function.

In what follows in this section, unlike in Theorem 1.2, a and b or a,, and b,, will be real
valued functions.

The first works on the question, quoted above, are considering the following eigenvalue
problem in each Hilbert space H,, 4, that is, for € [0,1] and for n =0

" a d 1 2
@+ - gat 8—2(1 — fa=—-Xe)a, a(l)=0 (1.12)
and
J' a & 24 1 2
+ Pl 2af° + .~ (1= f%a=-Ae)a, a(l)=0. (1.13)
And for r € [0, 1] and for n > 1

o 44D L2y L1 2% = —A(e)a
b + L _ Dy, 1 Lfa+ L1~ 2f2) = —A(e)b (1.14)

a(1) = b(1) =

The question of whether there exist some eigenvalues such that A(g) — 0 as ¢ — 0 is
related to the question of the existence of bounded solutions in [0, +oo] for the following
system, which is a rescaled form of (1.14), but with the domain [0, +oo[ instead of [0, 1]
forn>1

a//+a7’_(” d)? a—fib+(1—2fHa =0 (1.15)
b//+b?,_(n+d)b_fda+(1—2fd) =0.
And for n=0
a d?
a’/+?—7a+(1_fd) =0 (1.16)
and / d2
sl e g0 fha=o (1.17)

A bounded solution means that a and b are defined in [0, +oc[ and that the both func-
tions have finite limits at +o0.

Let us quote what is known untill the 90’



Theorem 1.3 (i) For any d > 1 and for n =1 the system (1.15) has a one dimentional
real vector space of bounded solutions, spanned by (f, + %fd, 1 — %fd).

(ii) For d > 1 and n = 1, the first eigenvalue \1(g), for the eigenvalue problem (1.14)
verifies Ai(g) > 0 and Ai(¢) = 0 as € — 0 and there are no other eigenvalue tending to
0.

(iii) Ford > 1 andn = 0, there ezists C > 0 independent of € such that for any eigenvalue
of the problems (1.12) and (1.13) we have \(€) > C, for some C > 0 independent of .

And the following Theorem was proved in [10]

Theorem 1.4 For d > 1 and n > 2, If there are no bounded solution (a,b) of (1.15),
then |[A(e)| > C, for some C > 0 independent of € and for every eigenvalue \(¢) of the
problem (1.14).

In [1], we proved that the converse of Theorem 1.4 is true.

In [3], we proved that there are no bounded solution of (1.15) when n > 2.

We claim that, making use of Theorem 1.1, we are able to give a completely different
proof of Theorem 1.4. But neither this technique nor that of [10] permits to obtain
|2\ (e)| > C.

In [3], we associated the problem of the existence of bounded solutions of (1.15) with
the following eigenvalue problem, for r € [0, 1] and for n > 1

’ n—d)?
o + % == L ffa— 5% = —hu(E)(1- )
oY Dy g2y L2 = L) (1 - )b (1.18)
a(1) = b(1) = 0

and for r € [0,1] and for n =0

@+ ¢ —Ba =—SuE) (1 fa
{ kAN (1.19)
and , d2 2 9 1 2
"+ % —Ga- 2% =-LuE) - fAa
{ o (1.20)

We can also use the following form of the system (1.18)

Le(w) = (1= p(e))Cw
(1.21)
w = ae” " 4 be? € H,, 4,

where 1

We use a notion of C-eigenvalue, as in [5].
If ae= ™0 4 pe™? ¢ Hp.a4, we remark that

(EE(ae—me + beme) _ (1 _ u(s))C(ae_me + beme))
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& (Cg(z’ae_me - zbeme) (1 —u(e ))C(iae_me - z’bem@)> .

let us recall the cases of the first eigenvalues, for n = 0 and n = 1. Let m, 4 be
defined in (1.22) and (1.23). We have

Theorem 1.5 For alld > 1,

(i) there exists C > 0 and g9 > 0 such that, for all e < ¢, mo.q(€) > 1+Ce?; mg 4(e) — 1
and there exists an associated eigenvector ®q, solution of (1.19) with mg 4 in place of p,
such that (g — f)(r) = 0 ase — 0, for all 7 > 0.

(11) my q(e) > 1 andwﬁo ase — 0.

(iii) There exists an ezgen’uector D) = ae™ + be? 6 Hn,a associated to the eigenvalue
myq(e), ie Lo(P1) = : —5-4CPy, such that H%(@l - e_’deﬂ)HLz(B(m)) — 0, as

o1
. 4 .7 4 . . . 1—
e — 0 and Oy = iae ™ — ibe? is also an eigenvector, ie Lo(Pg) = ;”’dCCI)g, and

1— 2 % o

I9U=L02 (@ — e~ 0540 || 15 g 1)) — 0, as € — 0.

In the present paper, we prove the following
Theorem 1.6 For any d > 1, there exists C' > 0 independent of € such that
(1) for anyn > 2, |1 — p(e)| > C for every eigenvalue u(e) for the problem (1.21) and
for every .
(i) For n = 0 and for the problem (1.19), u(e) —1 > C, for any eigenvalue, except if
i = mggq and for the problem (1.20), u(e) —1 > C, for every eigenvalue. For n = 1,
pu(e) = 1> C except if p=mq 4.

More generally, Theorem 1.6 is valid for every function g > 0 defined in [0, 4+o00[ in

place of 1 — f2, as long as g(t) < th for some K and for any e2v(¢) instead of u(e) — 1.

On the other hand, Lemma 5.2 of our unpublished preprint [2] gives some converse
to Theorem 1.6. Indeed, we have

Lemma 1.1 (Lemma 5.2 in [2]). If there exists some bounded solution (a,b) of (1.15),
then there exists an eigenvalue p(e) verifying p(e) —1 — 0.

Last, let us recall that we defined m,, 4(¢) as the first eigenvalue for the above eigen-
value problem (1.18) in H,, 4, that is

fol(m’2+7“b’2 (n— d) 2+ (”+d) b2+ fd( )(a—i—b) )d

Mp,d(€) = inf
(a,0)€Hn,a % Hn,a\{(0,0)} fo r(1— f3(t )(a2 + b2)d
(1.22)
and mg q(¢) is the first eigenvalue for the problem (1.19) in H 4
1 2 d2 a2
d
moa(e) = inf Jo (ra”+ ra”) a (1.23)
a€H, d\{o} fO ))a dr
and g q(¢) is the first eigenvalue for the problem (1.20) in Hoq
1. 12
~ ra? + ¢ a + 2rfa(L)a®)dr
mo.4(€) = Jo (2)a) : (1.24)

inf
actHoa\(0} L [ 1 — f2(Z))a2dr
And that the eigenvalue problem (1.14) leads to the followmg definitions



)\n,d(f) =
Johra b 4 O 2y (kA2 20y 4p)2 - 51— f(2)) (a2 + B2))dr

fol r(a? + b2)dr

inf
(a,b)E’Hn,d x?—tn,d\{(0,0)}

and

Jo (ra” + Fa* — B(1— f3(5))a")dr

Mogle) = in
04(€) a€Ho,qa\{0} folm2d7‘

These infimum are attained. Considering the rescaling (a,b)(r) = (a(er),b(er)) and an
extension by 0 outside [0,1/¢], we see that € — m., ,,(¢) decreases when € decreases.
Then lim_0 M+, 4, (€) exists.

What is new is essentially Theorem 1.6 (i) and its consequence Theorem 1.2. We claim
that we are able to prove Theorem 1.6 (i) as well as Theorem 1.4 by use of a resolvent
matrix for the system (1.15) with known behaviors at 0 and at +oo and by considering
the system (1.18) as a ”second member”system. But we choose to present a proof of
Theorem 1.6 that does not involve to inverse two 4 X 4 matrices. But the other point
of view is to construct two bases of solutions for the linear system (1.18) involving the
parameter . It is what we do in the second part. In the third part, we prove Theorem
1.6. This third part contains some parts of the proof of Theorem 1.5. In the fourth part,
we prove Lemma 1.1 and in the firth part we prove Theorem 1.2.

In all the paper, we use the following notation, if z — f(z) and x — g(x) are given
function, f = O(g) if |f(x)| < M|g(x)|, with M independent of z.

2 Two bases of solutions for the system (1.18) and (1.19).

First let us recall the expansions of fy

d? 1
fd(’l") =1- ﬁ + O(Tj) near +oo (225)
and 1
_ d_ L+ dt2 d+4
fa(r) = Ag(r T+ 1)7“ )+ O(r®™*) near 0. (2.26)

We suppose that d > 1 and that n > 1.

In [3], we gave two independent solutions bounded at 0 and two independent solutions
that blow up at 0, and the same thing at +oo, for the system (1.15).

Let us recall that we can rewrite the system (1.15) as

X' =MX (2.27)
with
0 1 0 0
M= —r(1—2f%) + (n:,d)Q 0 rf3 0
0 0 0 1
rf2 0 —r(1—2f2)+ &2 g

oo



and that a base of solutions is formed by four vector solutions of the form X = (a,ra’, b, rb’ )t.
In [3] and in [2], there is v; instead of |n — d| and 75 instead of n+ d. The continuity and
the derivability of the solutions of the differential system wrt (y1,72) was important and
the determination of some suitable ranges for the parameters was necessary. Here, n and
d are integers, so the continuity wrt to (y1,72) doesn’t exist anymore. The Theorem 1.4
and the Theorem 1.5 in [3] give, when n > 1 and d > 1 are some integers

Proposition 2.1 Ford > 1 and n > 1, there exist four independent solutions of (1.15)
having the following behavior at 0 :

((Il(?“), by (’l“)) ~0 (O(rn+3d+2)77ﬂn+d) ’ (a3(,,4)7 bg(T‘)) ~0 <r|n—d\’ O(T'n_d|+2d+2))

(O(r2+d_”), r_"_d) n>d+ 2

(O(r Inr)), r*”*d) n=d+1

(a2(r), b2(r)) ~o (0(r2), r~7=1) n—d

(O(rd*”), r*”*d) 1<n<d-1

and

(Tfner O fn+3d+2)) n > d+2
(r=td, O(—r"tlogr)) n=d+1
(CL4(T’), b4(’l")) ~0 (_ Inr, O 2d+2 1, T)) n=d
("dO(”+d)) 1<n<d-1.

We have four independent solutions having the following behaviors at +o0o :
(U1(7’),1}1(7‘)) ~+o0 (J+<7"), J+(7“)) (1 + 0(7*2)) ,

(ua(r), v2(r)) ~too (J-(r), J-(r)) (L + O(r7?)),
(u3(r), v3(r)) ~poo (", —1™) (1+O(r™?)),
(ua(r),va(r)) ~400 (7‘_", —r" ) (1 + O(r_z)) ,

with the notation

eV2r e~ V2r
Ji(r) = v J_(r) = N

The proof of Proposition 2.1 for the behaviors at 0 is contained in the proof of Propo-
sition 2.2 below and the proof for the behaviors at 4oco is contained in the proof of
Proposition 2.3 below. The only difference is that in Proposition 2.1, 4 = 1 and conse-
quently there is no dependence anymore of the solutions wrt €.

Let us denote by X;, ¢ = 1,...,4 the four independent solutions defined near 0 and
by Y;, i = 1,...,4 the four solutions defined near +oo, for the system (1.15), which are
defined in Proposition 2.1. We have proved in [3], Theorem 1.6 that the least behavior at
0 is related to the exponentially increasing behavior at +oco and that the exponentially
decreasing behavior at +oo is related to the stronger blowing up behavior at 0. Let us
quote it.



Theorem 2.7 (Theorem 1.6 in [3]). The solution X has the exponentially blowing up
behavior at +oo, like the solution Yi. And the solution Yo has the more blowing up
behavior at 0, like the solution Xs.

Now we define a base of four solutions at 0 for the perturbated system

(1= p(e)d = fia
(1= p(e)) (X = f)b.
Proposition 2.2 Let us suppose that d > 1 and n > 1 and that u(e) — 1,

(i) there exist four independent solutions of (1.18), having the behaviors at 0 enonced in
Proposition 2.1, more precisely, for all r € [0, R]

(2.28)

a” + %/ - L;Qd)za — [+ (1—2f%)a
b4 Y Ty 20 41— 2f2)h

r2

0 ()| < Crn32, b () — 4] < Ot
a5 (r) — ri=dl| < Crn=d42, - Jbg(r)| < Crplndi2iez,
a5 ()l < Cr2¢ =2 (), [b5(r) =] < OrPrnd, (2.29)
a5 (r) = rin=dl| < Crln=dly o5 ()] < Cred =), ifn £,

lag(r) +1Inr| < Cr%(—Inr), 1b5(r)| < Cr2d+2(—lnr), fn=d

for some C' > 0 and some 0 < R < 1, the both being independent of €.
and

(i1) denoting X7, i = 1,...,4 these solutions, we have lim._,0 X7 = X;, i = 1,...,4,
where X; is defined in Proposition 2.1.

Let us indicate what are the suitable maps ((1,(2) for each of the four solutions

(a5, b5).
T.n+3d77,n+d) for ] =1
(C1,G2)(r) = { (r|n—d|’ rln—d\+2d) for j = 3.
prin=dl i > d 42
n=dl=2 §f p<d-—1
. B r if n< _o—n—d
Forj =2, Gi(r)= —r~tnr if n=d+1 Gr) =r
1 if n=d
pE3d G o > d 42
“In=dlif p£d ntd=2 if o <d—1
. r if n r o n=
and for j = 4, Cl(r)_{ —Inr if n=d Galr) = —rHd=21nr if n=d+1

—rXn(r) if n=d.
Proof of Proposition 2.2. We use the same proof as in [3] and for more details, in
[2], but we involve the term (1 — u(e))(1 — f3).
The proof below is valid for 4 = 1 and gives the proof of the first part of Proposition 2.1.
For (af,b7) and (a, b5) we use the following form of the system (2.28)

{ (2= (=Y = A2 4 20— ()1~ f3)a)

(rem s -ty s (g o ey - gy B
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To construct (af, b]) and (a3, b5) , we consider the following integral equation
a = arln=d 4 pln- d‘f = 2(n—d|~ 1f sl d|+1(f2l)+fda— u(e )(1—fd2)a)dsdt

b = Brotdpntd [ ¢t 2(ntd)—1 fg s (f2a + f2b — pu(e)(1 — £3)b)dsdt
(2.31)
with («, 8) = (0, 1) for (af, b]) and with (o, 8) = (1,0) for (a3, b5).

For (a5, b5) and (a3, b3) for n # d we consider the following form of the system (2.28),
when n # d.

(r*2‘”*d|+1(ar|”7d‘)’)' = 7"7|n7d|+1(f§b + fga —pu(e)(1 - fi)a) 2.32
{ (rm 2t DF by ) = = (DT (f30 4 fRa — p(e) (1~ f)D). .

But for (a3, b7) and for n = d, we let
7(r) —Inr.
and consider the system

{ (r2(r~1a))' = rr(f3b+ f3a — u()(1 ~ fDa)
(720D () = RO T2 4 20— u(e)(1 - F)D).

To construct (a, b5) and (ag, b]) for n # d we consider the following integral equation

(2.33)

a = ar-n=d 4 p=in=d N t2ln—di=1 f}t2 sTn=dH L (12h 4 f20 — p(e)(1 — f2)a)dsdt

h — Br—(n—i—d) + p—(ntd) fOT $2(n+d)—1 f; S—(n+d)+1(fd2b+ fd2a —pu(e)(1 - fj)b)dsdt
(2.34)
where (a, 8) = (0,1) for (a§,b5) and (o, 8) = (1,0) for (ag,b3), n # d.
Here 0 < R < 1 is a real number, but we replace R by 0 in the first equation, for (a3, b5),
when 1 <n <d.

And for (a3, b3), n = d, we consider the following integral equation

a=1(r) +7(r) T 1 —2 fO s7( fdb+fda — (1l — fg)a)dsdt
(2.35)
b= o 7 R 1 (30 | 3 (1~ byt

Let us explain the pattern of proof.
We define ®(a,b) as the rhs of the above integral equations and we consider the two
maps 7 — (1(r) and 7 — (2(r) defined above for each j. We want to construct solutions
(aj,b5), 3 =1,..., 4, verifying, for some R independent of ¢ and some C' independent of €

for j=1andj=2 |a(r)¢ " (r)] + [b(r)¢ ' (r) — 1] < O,

(2.36)
for j=3andj=4 |a(r)¢;"(r) — 1] +[b(r)¢ " (r))] < Cr?
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for all 0 < r < R. For j = 4 and n # d, we replace 72 in the rhs by 7.
For this purpose, we define two sequences whose initial data depends of the desired
solution (a;,b;).

FOI‘j:LQ CM():O ,Bo:CQ and forj:3,4 OZO:CI 60:0 (237)

and in any case (ag+1, Bk+1) = ®(ag, Bi). We will denote v : 7+ r.
Now we will prove that for a given 0 < R < 1 all 0 < r < R we have

¢ |ager—onl (r) < MrP(lv 2 ak—on—1) [l e o,m) 16 v 2 (Br—Bre—1) 2 (0.7) )
(2.38)
G T B =Bl (r) < M2 (¢ v (aw—an—1) | e o,.r) G V2 (Bre—Br—1)ll L (0. 7]))
(2.39)

and
o1 — aol(r) < Mr*Cu(r),  |B1— Bol(r) < Mr?(a(r) (2.40)

where M does not depend on € and does not depend on R.
For j = 4 and n # d, we have to replace v~2 by v~! and 72 in the rhs by 7.
Next, we choose R < 1 such that CR < 1 and we define, for all 0 <7 < R

a5(r) = Gu(r)r? =g ™ (v 2G angr — on)) () + ao(r),
(2.41)

b (r) = Ca(r)r? Sop=g > (v 25 (Brar — Br)) () + Bo(r),

j =1,2,3 and the suitable adaptation for j = 4.

Thus we have (a5, b3) = ®(a5, b5) and consequently we have defined a solution X? defined
in |0, R].

By the Cauchy-Lipschitz Theorem for the linear ordinary equations, the solution is de-
fined in ]0,4o0o[. By induction, oy and Sj have limits as ¢ — 0. Moreover, thanks to
the inequalities just above, the sums in (2.41) are convergent uniformly wrt €. Conse-
quently, aj(r) and b5(r) have limits as ¢ — 0, for every r €]0, R], and, in view of the
integral equation, also raf(r) and rbf(r) have limits as ¢ — 0. So we can consider
(a5(R), Ra¥(R),b5(R), RV (R))! as an intial value for the solution X¢, and a supposed
well known principle in the Cauchy-Lipschitz Theory gives that a continuous initial
value wrt e, together with the continuous dependence of the coefficients of the equa-
tion wrt e lead to a continous solution wrt €. And we deduce that for all r €]0, +o0],
lim. 0 X5 (r) = Xj(r), where X;(r) is defined in Proposition 2.1. And by the definition
of a5 and b5 in (2.41), we have the desired behavior at 0 (2.36) for (a5, b5).

For the estimates, we use

fit) <M and |1 - fF - p(e)| < M,
This terminates the proof of Proposition 2.2.
Now let us turn to a base of solutions defined at +00. To make the proof clear, let

us suppose that p is sufficiently closed to 1 to have —% < d*(1—p) < % and, for n > 1,
let us define

ne = /n2 + d2(1 — p(e)).
We note that for n = 1 we have p(e) > 1 for every eigenvalue u, so, n. > 1 in any case.

12



Proposition 2.3 Let us suppose that d > 1 and n > 1 and that u(e) — 1 — 0, there
exists a base of four solutions of (2.28) defined by there behaviors at +00 and denoted by
Ye, i=1,...,4. They verify, in [R,+oo[

|u§ — Jo| + [vf — Jy| < Cr g, lus — J_|+ o5 —J_| < Cr i (2.42)
and
lu§ — 77| + |v§ + 7| < Cr et lu§ — 7" + v + | < Cr e
and
lu§ 4 v§| < Crer—t, |u§ 4 v5| < Cr—mer!

where the both constants R > 0 and C > 0 are independent of . Moreover Y (r) — Y;(r)
as € — 0, for all T > 0, where Y; are defined in Proposition 2.1.

Proof The proof below is valid also when p = 1 and that gives the proof of the second
part of Proposition 2.1.
Let us recall that we let z = a+b and y = a—b. The system (2.28) becomes the following
system verified by (x,y)

/ 2 2
2 S = e By (=3 + (n-1)(1 - [Pz =0 (2.43)
g+ L -y Indy (1 Ry 4 (u-1)(1 - f2)y  =0.
We let
6\/§T e—\/§7‘ 1
= So e S wd ()= )
Thanks to
" + £/ i — _%NH
v r a2t T
we can replace the first equation of (2.43) by
2 2,1
~ o nf—=d 47 ., 2nd 7
=20 a3 - fE+ Ty + (- )1 - [ =0,
r2
that is ond
(eQﬁr(je—\/@“)’)’ — eV2r (q(?“)f — ng y>
rz
or 2nd
(e 2V2r(zeV2r)y = e V2 (q(r)ir -5 y) :
r2
where 9 o 1
n®+d— 3
q(r) = ——5—" =30 = f) = (p = (1 - f3).

The second equation of the system (2.43) can be written as

/ 2 72 2
y o n +d(1—p 2nd d
y”+—§)y+742:r+u(1—f3—702)y—0,

r r
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that is also

_ 2nd d?
()Y = T 1 £ )
or
—on n n 2nd d?
(e ey = - (- = D)

Eventually, the system (2.43) can be written as

(6i2\/§r(r%eq:\/§rx)/)/ _ réei\/ir (q(r)x 2;12dy)
(P2 ey = e 2 — (1 L g - By

We will construct four independent solutions (z;,y;), 7 = 1,...,4. Let us indicate the
four fixed point equations we have to solve.

(2.44)

The exponential blowing up behavior at +o00 : the solution (z1,y1).
We consider the fixed point problem

ro=Jy+Jy [ em2V2 f;e‘/ﬁssz( 2ndy+q( )z)dsdt

y =rhe f;t*%fl fés”fﬂ(%m u(e)(1 —fd & ) )dsdt.

The intermediate blowing up behavior at +o0o : the solution (z3,y3). We consider
the fixed point problem

v =[] eV [ Vi (- 2y i g(s)a)dsde

y = ple 4 phe floo t—2ne—1 f; Sne—&-l(%ix ( )(1 _ fd — S—) )det
The least behavior at +oco : the solution (x2,y2). We consider the fixed point problem

vo= T [T eV [ eV (< 2y 4 g(s)w)dsd

y = e f—:oo $2ne—1 fioo 3*”6*1(%37 —p(e)(1— f2 - ?) )dsdt.

The intermediate vanishing behavior at +oo : the solution (z4,y4). We consider the
fixed point problem

vo= T [ eV [ e Vs (= Byly + q(s)7)dsd

y = [L et [ s (2 — (o) (1 - fF - G )y)dsdr.
Let us explain the pattern of proof. We denote each fixed point equation by
(z,y) = ®(z,y), for (x,y) defined in [R, +o0].

Ji(r)  for (z1,y1)

Then we give a map ¢, that will be {(r) = Jr (Er) fi;(?; Z/Z))
- 2, Y2
r~"  for (x4,y4).

And we want to prove, for a chosen R large enough and independent of ¢, the existence of

14



a fixed point (x;,y;) verifying the estimate, for all » €] R, +o00[ and for some C' depending
only of R,

|2j(r) = C(r)| + [y (r)] < CClryr™t if j = 1,3, (2.45)
or
|25 (P)] + [y (r) = ¢(r)| < C¢ryr™" i j = 2,4. (2.46)
For this purpose, we define by induction, for (z1,y;) and for (x3,ys)
(a0, B0) = (¢,0) and  (apy1, Brs1) = Plag, Br)- (2.47)

For (z2,y2) and for (x4,y4), we exchange the role of z and y, that gives

(@0, B0) = (0,¢) and (apy1,Bri1) = ®(ar, Br)- (2.48)

We denote v : 1+ r.
Now we prove that there exists M > 0 independent of ¢, independent of k, and indepen-
dent of R > 1, such that for all » > R and all k > 1,

for j = 1,2
(k1 — ar)|(r) < Mr= ([ (i — ar—1)¢ Voo (R 400]
(B = Bre-1)¢ ™ )l oo, R, +00]) (2.49)
and
| (Brar = Br)CVI(r) < Mr([|(an — ar—1)¢ W lloo (R 4o00]
(B = Bre-1)¢ ™ )l oo R, +00]) (2.50)
and for j = 3,4
(k1 — ar)¢2(r) < Mr([|(aw — a—1)¢ VPl so, (R o0l
Bk = Be=1)C Voo, (1, 4+-00[) (2.51)
and

| (Brar = Br)¢ vl (r) < Mr=([[(ax — ak—l)C_1V2||oo,[R,+oo[
1Bk = Br-1)¢ Voo, R, +00D)- (2.52)
We have to verify also, for j = 1,2
lag — ag| < Mr7Y¢(r) and |B1 — Bo| < MrY(r) (2.53)
and for j = 3,4
o1 — aol < Mr72¢(r) and |81 — Bol < Mr~'((r). (2.54)

with M independent of R and independent of .
Next we choose R > 1 such that M R~! < 1 and we are allowed to define z;(r) and y;(r),
for j =1,2 by

zj(r) = ao(r) +771¢ Y ¢ ok — ag)(r) (2.55)

k>0
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and

y;(r) = r 1Y T (Brgr — Br)(r)

k>0

and, for j = 3,4, z;(r) = ag(r) + 7% > k>0 r2¢ Ny — ag)(r).

The sums converge, uniformly wrt e, for all » > Ry. Consequently, arguing as for
the solutions near 0, we get the existence of a solution (x,y) having the desired behavior
(2.45) or (2.46) at +oo and we get also the limit of (z,y)(r) as € — 0 to a solution of
the same system as (2.43) but with p = 1, for each r €]0,4+o00[ and having the same
behavior (2.45) or (2.46) at +o0o. The proof of Proposition 2.3 follows, with v = x + y
and v* =z —y.

For the estimates above, we need the following estimates, obtained by an integration by
part. Let & € R and 8 > 0 be given. Then

Foo 2 200
/ s% Pds < St%e Pt forallt > — (2.56)

¢ B B

and
t 240,06t —2a :
t%e forallt>R> =% ifa<0
agfsgs < ) B =z

/R sheds < { %taeﬁt forallt> R>0 ifa>0. (2.57)

We will fix R > 1, large enough to have (2.57) for the desired « and 5 and we will use,
for s > R,

d2 _C C
c P =fi- 5l < 5 and fg(s)] <

1= pul(1—f3) < ; = (2.58)

Tl Q

where C' is independent of R > 1.
This terminates the proof of Proposition 2.3.

We turn now to the case n = 0, ie to the equation (1.20) and to the equation (1.19).
We write the rescaled form of (1.19) as

a’ + “? —Sat(1- fHa+ (ue) - 1)(1 - fHa=0. (2.59)

Proposition 2.4 (i) There exists a function ggq such that fq and gq form a base of
solutions of the equation (1.16) and we have

1
lga(r) + 574 r < Cr 2 gt r =0 and |gg(r) —logr| < Cr—2logr atr = +oo
d

(2.60)
where Ag > 0 is defined by fq = Agr® 4+ O(r**?) near r = 0.
(11) If p(e) — 1, there exists a base of two solutions a5 and a5 of (2.59) with the following
behaviors at 0 : there exist R > 0 and C > 0 verifying for all0 <r < R

lai(r) = fa(r)| < C|1 = p(e)lrfar)  and |a5(r) — ™9 < Or=H (2.61)
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where R and C' are independent of €. Moreover, lettinge — 0, for allr > 0 aj(r) — fqa(r)
and a5(r) — —ﬁgd + Afy, for some A € R.

Proof (i) If g is any solution of the equation (1.16) we can combine the equation of g
and the equation of f; and integrating by parts we are led to, for all r; > 0 and ro > 0

[r(fag — fag')(r)];2 = 0.
/
We deduce that there exists C' such that r fc% (%) = (C. This gives, for some D € R,

dt

9(r) = Dfa(r) + Cha(r) / ' 0

ga(r) == fa(r) /; tfgt(t)'

We define

A calculus gives (2.60).

(ii) We take advantage of the identity, valid for any function u
(ruQ(au_l)/)l = (ra)u—a(ru'). (2.62)

Firstly, we choose u = fy.
Letting g = af; ', we infer that (2.59) is equivalent to

(rf3g) = (1 — pr - f3)f3g.

We define the fixed point problem, for g

(1—p /fd / — ) f2gdsdt. (2.63)

We denote it by g = ‘I>(g).
Considering that 1+t2d £7% (1= £2)(14+42) and f2(1+t>4)t=24 have positive limits together
at 0 and at +oo, we will use the following estimates, in |0, +oo][, for some M > 0

—2<M71+t2d 2 < d <M—7F &
Ji¥ S Mgy 1= Jis My and fi< My

We define by induction
Qo = 1, Ot = @(ak).

We define ¢(r) := r2. A calculus gives, for r > 0

lar —ag| S CJ1—plr®  and 7% |ogq — ai| < L= plr? (| (o — b1l Lo (0,11
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where C' is independent of r and independent of €. We choose R > 0 such that CR? < 1
and we define, for all r € [0, R]

g=1+4¢> ¢ Hapm — ).

k>0
Thus aj = fqg verifies (2.61).
Secondly, we choose u(r) = r~.
We compute
(=2 ar =YY = (1~ [

We let g(r) := a(r)r? and we solve the fixed point problem

r t
g(r) =1 +/0 tzdl/R —p(1 — f3)s > gds

where R > 0. The same method as above , with ag = 1 and {(r) = r leads to

rlnr ifd=1

rHagp—ag| < Crl[¢Har—ar—1) Lo qo.ry and 7 ar—ag| < C{ . ifd>9

with C' independent of ¢ and independent of R. Choosing R such that CR < 1, we
conclude as above. This terminates the proof of (2.61).

We turn now to the equation (1.17), for n = 0. Its rescaled form is
" a’ § 2
a +?—T—Za—2fda—|—u(5)(1—fd)a20. (2.64)

Proposition 2.5 (i)There exists a base of two solutions a; and ag defined near 0, for
(1.17) verifying respectivly

01— Jd SOPfa and Jay — 4] < O
And if p(e) — 1, there exists a solution aj of (2.64) such that
a5 (r) — fa(r)| < Cr2 falr)

for all r € [0, R] and for some R and some C independent of €. Moreover aj — a1 as
e — 0. And there exists a second solution that blows up at 0.

(ii) There exists a base of two solutions of (1.17), by and by, defined near +o0o and there
exists some R > 0 verifying

Var WV Vo .
by —evT | <Cr eVt and |bp—e v7 | <Cr e V7,

for all r € [R,4o0|.
And if u(e) — 1, there exists a base of two solutions b5 and b§ of (2.64) verifying

I L, Y, - Ly =Y
b —evT | <Cr evr and [b]—e V7 | <Cr e V&

for allr € [R,4+o0[, R and C being independent of .
(iii) The solution ay defined at 0 blows up exponentially at +o00, like Aby, for some A > 0.
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Proof (i) Let us give a sketch of the proof. We can adapt the proof of (ii) in Proposition
2.4. Using (2.62) again, we choose firstly u = f; and secondly u = r—%. We are led
successively to the following forms of (2.64)

(rfilafyt)) =2rfia+ (1 - pafa(l - £7)

and
(r*2d+1(ard)/)/ = 2fdar1’d - HCLT*dH(l - fc%)‘
d

And we solve the both integral equations, where g = a fd_1 and next g = ar?,

r =1 rt
o=t [ [0 i)+ 2fsrta) dse

and

_1+/t2d1/ p(1 = f3) +2fa) s> gds.

And we let p = 1, for the equation (1.17).
(ii) The same trick as above, in the proof of Proposition 2.3 leads to replace (2.64) by
1
(V2 (r2aeT)) = eVrd (g — u(1 - £3))
or )
_ 1 _ 1 1 d
(V¥ (r2ae™rYY = VP2 (= 5 5 —u(1 = 1)),

And as above we solve the following fixed point problems, for ;= 1 or for p closed to 1
and for R large enough

r B 1 1 d2
a=Jitdy [ m/ VEsha(— s+ S5 = (1 - f3)ds
+00

and

r t 1 2
a=J_+ J/ eMt/ e V2 saa(—— 3 d u(1 = f7))ds
+o00

+oo 4r?
And the method for the construction is the same as for Proposition 2.3.
(iii) Multiplying the equation of a; and the equation of f; and integrating by parts, we
obtain

r(ayfa — faa1)(r) = / "ot F2(t)ay(t)dt.

0
This gives

(@) M@
rfd( fd) 0= [ 250y

and consequently a1 (r) > 0 for all » and the only convenient behavior at oo for i is
the blowing up one.
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3 Proof of Theorem 1.6.

Let n > 1. Let us suppose that pu(e) — 1. Let (a,b) be any solution of (1.18), we let
X = (a,rd’,b,rb')t. Considering the behavior of (a,b) at 0, there exists two real numbers
(A5, A5) # (0,0) such that

X = ATXT + A5XS.

Now, the condition a(1) = b(1) = 0 leads us to the system

{ Afa5(2) —|—A3a3(%) =0
ATHS(2) + Asb5(2) = 0.

Thus if we denote the determinant

A= (DB - K6,
then A = 0.

We obtain firstly that the corresponding real eigenspace is one dimensional.
Now, we can write
4
— € €
=Y G5}
j=1

Each real number C5 can be computed by means of a 4 x 4 determinant, for any fixed
7> 0 and consequently, since X7(r) and each Y (r) has a limit as € — 0, then, each C§
has a limit too, denoted by C;. By Theorem 2.7, X; has the exponentional blowing up
behavior at +o00 and we deduce that C; # 0. Consequently, we can choose X| to represent
a solution of (2.28) having the exponentially blowing up behavior at +oo instead of Y.

We can write
4

X5 =DiX{+> DYy
j=2

As explained above, each real number ng has a limit as € — 0. Moreover,

a_ | el i Do)
i) S o)

In view of Proposition 2.3, A # 0, unless

ZDE ; ZD

This condition implies that D5 — 0 ase — 0. We are led to to X3—D1X1 = DoYo+D4Yy,
that is bounded at 400 and bounded at 0. We deduce that if () — 1, then there exists
a bounded solution. Moreover, since we have proved just above that the eigenspace
associated to p(e) is one dimensional, a base of this eigenspace is 2?22 DjY; = X5 —
D5 X%, that tends to DaYs + D4Yy. If n > 2, by Theorem 1.1, we have the proof of (i).

Now, when there exists some bounded solution of (2.1) and if u(¢) — 1, let us denote
—inb + baeine

we = a‘e a given associated eigenvector and w the bounded solution such
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that w® — w, as e = 0. We denote w® = Z?:Q Diw; = w§ — Djwi. We have, for a given
A >0,

lw® — wHLQ(B(O,%)) <| ZDE i ZDJWJHH INB(0,4) T

+lws — Dijw] —ws + D1W1||L2 B(0,A))-

The second term of the rhs tends obviously to 0, and, since D3 = 0, the first term can
be estimated as

4
Z Wi — ZDJ%HB IN\B(0,4)) < [[D3w; — D2W2HL2(B(0,§)\B(0,A))+
7j=2

H[Diwi — Dawall s, 0\B(o,4)) + 10593l 250,20\ 5(0,4))-
The first two terms tend to 0 by the Lebesgue Theorem and for the third term we estimate

HWEHLQ(B(()%)B(O’A)) < 06_n+1

with C' independent of ¢, while the condition Z? o D5 ’3( ) =0 gives
D5 = O(*").
Eventually, we conclude that
||lw® — w||L2(B(0’é)) —0 as e£—0.

Now, to complete the proof of (i), we consider n = 0 and n = 1. The proof of mg 4 > 1
and the proof of mj 4 > 1 are the same as for Agg > 0 and A\ 4 > 0, in [12]. Indeed,
multiplying the equation (1.19), by f and integrating by parts on [0, 1], we obtain mg 4 >
1. Then, using a truncation of f, with value 0 for r > 1, as a test function for the infimum
mo,4, and since we know the existence of the limit, we obtain that lim._,gmgq(c) < 1.
And the proof of mj g > 1 uses a trick involving the system (2.43). The only difference
is the positive factor 1 — f‘%. The proof of lim._,gm; 4(¢) = 1 follows from Lemma 1.1.
Indeed, it must exist pu(e) — 1, but my g(¢) > 1 is the least eigenvalue, so m; 4(¢) — 1.
And thanks to the proof above, the limit of an eigenvector for p(e) — 1 has to be the
bounded solution of (1.15) and the norm ||w® — WHLQ([O,%]) — 0. But since the eigenvalue
problem is, with the suitable rescaling, T@&® = pu(e)Co® and in view of the scalar product
for Hy, 4, we have < Cw®,7)° >r2(j0,1))= 0 when n° and w® are two independent eigenvectors
that gives < (1— fg)w®,n° > 20,1 = 0, this is in contradiction with ||w5—775\|L2([0é]) — 0.
This proves that there is at most one eigenvalue tending to 1. We deduce (ii) for n = 1.
Now, for n = 0, if u(e) > moq(e) and if p(e) — 1, we consider a® a solution of (2.59)
with p(e) = mg 4(¢) and we consider b° a solution for p(e). Thanks to Proposition 2.4,
we can chose a®(0) = b°(0) = 1 and combining the equations of a® and of b°, we find that
forall r >0

r((a®)0" = a*(b7))(r) = /OT s(p(e) — mo.a(e))a"b (1 — f7)ds
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a

Since a® > 0, this proves that (‘Z—z)/ (r) > 0 as soon as b—j > 0 in [0, 7] and consequently

1
b*(r) > 0 for all r > 0. But this is in contradiction with [iF (1 — f7)a®b°sds = 0. Thus,
if pu(e) > moq(e) is an eigenvalue for n = 0, we have |u(e) — 1| > C, with C independent
of e.
Now let us prove that mgq(e) > 1+ C, with C > 0 independent of &, where mg 4 is
defined in (1.24). If & realizes my 4, we can estimate

1
9 foe 2r fq(ag)?dr
fo (1- fd a0)2d7“

But, with the notations of Proposition 2.5, we can write af = Ajb] + A505, and, as above
A7 — Ay, A5 — Ay, for some real numbers A; and Az. And since ag — ap, that can be

mo,q(e) > moale) +e

supposed to be equal to aj, we have A; # 0. Since 1 — f2 = f—s + O(r%l), a calculus gives
some M > 0 independent of ¢ such that

io.a(e) > moale) + M.

4 The proof of Lemma 1.1.

To begin with, let us recall some notation for the eigenvalue problem (1.18). We consider
the operator T, 4 : Hpq — . , defined by

_ 72 n 2 ,
(n—d) au—i—( td) bv+5—2f2(a+b)(u+v))dr.

1
< —Tnala,b), (u,v) >H§L,dv7{n,d::/0 (ra'u'+rb'v' + "

We remark that
((CL, b)? (u7 U)) =< %,d(av b)) (u7 U) >’H;L,dv”"[n,d

is a scalar product on H,, 4. So, 7T, 4 is an isomorphism, by the Riesz Theorem.
Last, let us define the embedding

I: ,HTL,d — H;’L,d
(a,b) = ((u, ) = [ 7(au + bv)dr)

Since the embedding HE(B(0,1)) x H}(B(0,1)) € L?(B(0,1)) x L?(B(0,1)) is compact,
then I is compact.

Let us deﬁne C = %( — fA)I. Since C is a compact operator and thanks to the conti-
nuity of T 4> then T, 4 ¢ is a compact operator from Hy,q into itself. By the standard
theory of self adjoint cbmpact operators, there exists a Hilbertian base of H,, 4 formed of
eigenvectors of ’7;L_dIC . We will consider ({;);es such a base. We can write the eigenvalue
problem as ﬁlvd(a: b) = u(e)C(a,b). We can normalized the base (¢;) in order to have

< CG, ¢ >(L2xL2)(B(0,1))= 0 for 1#j5 and <Cg,¢; >(L2xL2)(B(0,1))= 1.

Let us suppose that (a,b) is a bounded solution of (1.15). Let 3 < N < 1 be given, let
us define (a““, b¥) by

cut 7cut _ (a,b)(r) for
@ = G - hey o X
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where

(r— 8y
h(r) = @

We have a®e'™ € (H? N H})(B(0,1)) and b°“'e' € (H?> N HY)(B(0, 1)), since this is
true for a and b and since moreover the first two derivatives of a®®e¥ and b“*e'¥ are
continuous.

In view of the possible behaviors at +o0o given in Proposition 2.1, we have, for £ small
enough

N 1 1
la(r)| < Cr™" for . <r< o |aC“t\ <la| and r(1-— fc%) =0(-) at+oo
r

and we verify that

< (a®™ — a, b —b), (1 — f3)(a™ — a, bt — b) Z(L2xL2)(B(0,1) =

£

=

/N r(1 = £2)((a — a2 + (b— b")2)dr = O(c2") as = — 0. (4.65)

Then, let us define

(dCUt’[;C“t)(r) _ (acut,bcut)(g) 0<r<l1.

We write
cut bcut Zal
icJ
and
< (1 _ fc%)(acut7 bcut)’ (acut’ bcut) >(L2><L2)(B(0,é))
=<CY ;G Y oi()G >rexr2y(Bo1y= D _ @3 (e)
jeJ jeJ ieJ

By (4.65),

+00
< (1 - fdQ)(aCUtv bCUt)v (aCUtv bCUt) >L2(B(O,l))—> / ?”(1 - fc%)(aQ + b2)dT as € — +o0.
€ 0
Consequently there exists I C J, such that

I#0Qandforallic I, a?(e) A0, ase— 0. (4.66)

Now we write

(7- C cut bcut Z az z - 1)C<z

i€
that gives

< (T =C)(@™,5),> " ai(e)(mi(e) — 1) >4 Ho => ai(e) —1)2. (4.67)

ieJ ieJ
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But (7 — C)(a®™, be") is represented by a function of L%(B(0,1)) x L2(B(0,1)). Using
this identification, we can estimate the rhs of (4.67) as follows,
<(T =)@, 0", Y ailpile) = VG >wr 1, ,=
i€J
~cut pcut e ~cut 7cut

=< (T =)@, b™), — 7 (T = C)(@™, b%) >(r2xr2)(B(0,1))
(n — d)2 ~cu 1 ~cu 7cu 1 ~cu ?

R R O

! T€2 ~cut\/ (dcut)/
e
Teut\ (ECUt)/ (n+ d)2 7cut 1 2/ ~cut 7 cut 1 2\ 7 cut i
+ ()" + T2 b ——Qf(a +b )—6—2(1—f)b )| ldr.
2 cuty/ 2 2
€ r cu a n—d cu cu cu cu
= [}ttty L B g e - - e
= d
CU bcut ' n + d 2 CU cu CU CU 2
+<(b t)”+( r) _{ 3 ) bt — f2 (a4 by — (1 — fHb t) Jdr.
Let us estimate each term, as ¢ — 0.
We use ,
> =0@3) at +o0o
—Jd
to get
1
G r (QCUt)Q 2n
/N 1_7')027,746&7’ = 0(5 )

€

Taking advantage that a +b = O(r~""2) at +oo, a similar estimate for a“ + v gives

1
€ r 2/ cu cut\2 2n
/];] 1—fd2fd(a P b 2dr = O(e™™).

1

Now
a =d'(1—=h)+ah’ and |d|<Cr ™' and /Ng h%dr = O(e)
We deduce that L ,
= r (acut )2 9
[V 7 dr = O(e™").
Now, since
1
ld"| < Cr~™"2 and /NE R"dr = O(e%)
we get
1
€ r cut!’\2 2n
/N 1_fd2(a )2dr = O(e™").
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We have proved that

1 cut/ 2
ST @ (n—d)* ., cut | eu o .
/N 1—f3(“ U = ™ — [ 0™ = (L [a) dr = O(e™")

and with the same proof we have

1 cut! 2
€ r cut!! bt (n+d) cut 2/ cut cut 2\ pcut2 2n
/Nl_fd2(b o R R ) — (1 SRy = O(e)

and eventually

< (T =0)@™", 6,y ai(e) (uile) = VG >3, 1, .= O™) (4.68)
icJ
But (4.68) and (4.67) give
Y ai@) (i) = 1) = 0(™).
e

So, for all ¢+ € J we have
|lai(e)(pi(e) — 1) = O(").

Since n > 1, we are led to
pi(e) =1 —=0ase—0, foralliel,

where the set [ is defined in (4.66).
We have proved Lemma 1.1, for n > 1.

5 The proof of Theorem 1.2 completed.

First, let w = Zn>1(an6_m9 + bneme) + ag, where a,, and b,, are real valued functions.
We are going to prove that

| < Le(w),w >r2B0,1)) | = C < Cw,w >r2B0,1)) - (5.69)

The second inequality of (1.4) will follow, since we remark that if we define
n = En21(ane_i”9 - bneme) + ag and if «y, B, are the real valued functions defined by

ﬁa(ﬁ) = Z(O‘neime + /Bneine) + ayp,
n>1

we have )

L (iw) = E i(anefme — 6nem9) + 100 + if—22a0.
€
n>1

Consequently, we have
< C(iw),iw >r2(B(0,1)=< C1:1 >12(B(0,1))
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and 7
< Le(iw),iw >12(B0,1)=< L)1 >L2(B(0,1)) +2€7|ao|2-

Thus, the inequality
< Es(iw), W >L2(B(0,1))2 C< C(’L'U.)),Z'OJ >L2(B(O,1))
follows from the inequality

< L:(m),n >r2B00,1)= C < Cn,n >r2(B(0,1)) -
We define the operator T by
L.=-T+¢C

where Cw = 4(1 — f?).
We consider the Hilbert space
@n21Hn7d7

that is

Gn>1Hpd ={weH,w= Z(ane*me—kbneme), ap, and by, real valued, a,(1) = b,(1) = 0},
n>1

We may endow ©,>1H, ¢ with that scalar product
<w,0>=<Tw,w >IL2(B(0,1))

and this scalar product let ®,>1H, 4 be a Hilbert space.
We let (;);es be a Hilbertian base, each ¢; being an eigenvector for the operator 7 ~'C.
We let the eigenvalue yi;(e) be defined by 7¢; = pj(€)C{;. This implies that

< CCz‘,Cj >L2(B(0,1)): 0 for 275 j

We define (W+); the subspace of Wi corresponding to the eigenvalues p;(¢) > 1 and
(W)s corresponding to the eigenvalues () < 1. And we define J = J; U Jo. By
Theorem 1.6 there exists some C' > 0 independent of € such that

1—pj(e)>C forje i and 1-—p(e)<—C forjeJi.

We write

W=y

icJ
From the definition of ({;);jcs, we infer that
Tw= Z ozj,ujCCj
j€J

and consequently

Low=) aj(l—p)CG,

jeJ
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that gives

< Lew,w >r2(B(0,1)= 2%2'(1 = 15) <CG, G >
jeJ

If we (Wh)1, a; =0 unless j € J;. We deduce that

< Lew,w >rapoa) < —C < Cw,w >r2p,) -
If w e (W), a; = 0 unless j € J;. We deduce that

< Lew,w >r2(p(0,1)> C < Cw,w >r2(B(0,1)) -

In any case, we have (5.69) and this proves (1.4), for w € @p>1Hp 4

As remarked in the beginning of this section, we obtain (1.4) for wg € ®p>1Hy g and for
wz € @nZIHn,d‘

Now, we know from Theorem 1.6 (ii) that if ag € Hg 4 is real valued, then

< Leag, ag >L2(B(0,§))Z C < Cag, agp > L2(B(0,1)
and if iag €< i®y >, then
< Letag, iag >2(B(0,1)2 C < Cag, ag >12(B(0,1)
where, in the both cases, C' is independent of €. That terminates the proof of (1.4).

Now, if w € W+ N#H is a solution of (1.3), as claimed in (1.11), if we denote h =
hr + ihz, we have
(ﬁgw = h) = ([:ELUR = hg, Loiwr = th) .

We consider first wgr and hg.
The equality

< Lowr, wr >12(B(0,1)=< AR, WR >12(B(0,1))
together with (1.4) gives

| < hr,wr >r2(B(0,1)) | > M < Cwr,wr >12(B(0,1)) -

We deduce that

=

1 1 52 2
< Cwr,wr >L2(B(0,1))§ M < Cwr,wr >22(B(0’1)) </ 7‘1 72 ’hRIQdT>
0 _

and consequently

1 2
£ 2
< Cwr,wr >12(B(01) < M/O 7“1 — |hr |“dr. (5.70)
But since £ = —T +C, we are led to
< Twr,wr >12(B0,1)= — < hrR,WR >12(B(0,1) T < CWr,WR >12(B(0,1)) -
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That gives
1

l 1 52 2
< Twr,wr >L2(B(0,1))§< Cwr,wr >22(B(0,1)) (/0 Tl_lehR’er) + < Cwr,wr >12(B(0,1))

and using (5.70), we obtain

< Twr,wr >12(B(0,1)) M/ f2 |hr|dr.
Now we use )
9 €
with C independent of € to obtain
1
< Twr, WR >12(B(0,1) < M/ 7‘(62 + T2)|hR|2dT. (5.72)
0

that gives (1.6). Moreover, we use (5.71) in (5.70) to obtain

1 1
/ ﬁ\wnﬁdr < M/ r(e? +1?)|hg|*dr. (5.73)
0 0

Now (5.72) and (5.73) are valid for iwz instead of wg and ihz instead of hg.
Thus (5.73) gives

1
/ 75” 5 (Jwr|? + wz|?dr < M/ r(e® + ) (|hr|* + |hz|*)dr
0
that gives (1.5) and (1.7).

Now, let us recall that

d)? +d n 4 b |?
< Twr,WR >12(B(0,1)= Z/ (r!anlz—l—rb’\z (74)!(1”!2 u\b 2+ Mf2>dr+

n>1
1 d2
+ [l + laoar
0 r
and that

2 2
< Tiwz, iwz >12(B(0,1)= Z/ <r|a 1> 4 r|bl |2 + (rd)|an|2 MV) ”+ wf2> dr+

n>1

1 2
d
+/ (rlagl® + —~laol* + 27 falao|*)dr
0

We conclude that (1.6) and (1.8) are valid when a,, and b,, are complex valued.
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