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Abstract. We consider the complex Ginzburg-Laudau operator on a bounded domain.
We prove some estimates for the inverse of the linearized operator.

AMS classification : 34B40: Ordinary Differential Equations, Boundary value prob-
lems on infinite intervals. 35J60: Nonlinear PDE of elliptic type. 35P15: Estimation of
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1 Introduction.

We consider the Ginzburg-Landau equation on a bounded connected domain €2,

{ —Au = E%u(l — |ul?) in Q

u =g in 02 (1.1)

where € > 0 is a small parameter, u and g have complex values and degree (g,0) > 1.
This equation has been intensively studied, in [2], and many others.
Let us denote

1
Ne(u) = Au+ gu(l — |ul?)

and let us define f; as the only solution of the differential equation

é/"‘%_%fd:—fd(l_fg) (1'2)
fa(0) =0, lim,_ 1o fa(r) = 1.
The equation (1.2) is completely studied in [6]. And let up(x) = fd(%)eide. We have
Ng(uo) — 0.

We will always denote
r
£r) = fal®)

The linearized operator around any function u is given by
w 2 2 —
dN: (u)(w) = Aw + ;2(1 — |ul?) — ?u(uw + u.w).
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Let us consider the linearized operator around the solution wy, ie
2 o
dN=(uo)(w) = Aw + 2 (1 — f2) = SR
€

where w is any complex valued function and 2u.w = Tw + wu.
We will use the operator

L, = e_idedj\fs(uo)eide

instead of dA(ug) and we will use also the rescaled operator £1. These operators are of
importance for some technics of construction of solutions for the equation (1.1).
The invariance of the equation (1.1) wrt the translations and the rotations gives

0 0
0 = dN-(u) (i) = dN= (o) (220) = AN (ug)(Z22),
ox I ox X2
A calculus gives
Qo _ g
89 = 1auyg,

o—idd Oug 1 d. . r e 11,7 d . r i0
i =5 ( fd( )+ rfd(é_)) e 7+ B <6fd(€) - de(5)> €
and duy i (1 d
e_ide(%z = % <€f(/i(:;) + rfd(z)> 0 (_fd,( ) + T,de))
In [1], we have proved that

Theorem 1.1 For all d > 1 the set of the solutions of Liw = 0 which are defined
at 0 and bounded at +oo is reduced to the three functions provided by the invariance
of the equation (1.1) by the rotations and the translations of the coordinates, ie ify,

(fo+ 4fa)e ™ + (fy — 4fa)e and i(f)+ L fa)e ™ —i(f) — 4 fa)e™.

The case d = 1 was known by [11], chapter 3. In this book, Pacard and Riviere
construct some solutions for (1.1), having the degree one around each singularity. Before
that, the eigenvalue problem L.w = —A(g)w, had been studied in several papers, including
[7], [10], [8], [9]- It is used in many others, among them [4], [5].

In the present paper, we let

H:={w:B(0,1) > C, %we H}(B(0,1))},

endowed with the scalar product

. . f?
<w,m>= / (V(e’ew).V(e_ww) + S (w+w)(n +77)> dx
B(0,1) €

that makes it a Hibert vector space. We explain in the end of this part in which sense we
define an eigenvalue problem in H, the eigenvalues being denoted by p(g). And we let iy,
@, and iP5 be some functions in H, associated with ie~ @y, e~*40 g“;’ and e_ldeg%g, in a
sense that will be defined below in Theorem 1.4. We denote W the subspace of ‘H spanned

by i®g, ®; and i®y and we define W+ by : H = W @ WL. We denote by (W), and



(W) _ the subspaces of W, verifying : W+ = (W), @ (W+)_, associated respectively
to the eigenvalues u(g) > 1 and to the eigenvalues pu(e) < 1. For h € L*(B(0,1)) we

consider the equation
{ Lew =R (1.3)

w € H.

We will prove the following

Theorem 1.2 There exists M > 0 independent of € such that for all w € (VVL)+ U
(W) _ a solution of (1.3), we have

1
/ Pz < M/ (€2 + |2]2)|h|2dz (1.4)
( B01)

B(0,1) €2 + |[?

and
/ IV (ew)|?dx < M/ (€2 + |z|?)|h|?da. (1.5)
B(0,1) B(0,1)

Now, for every w € H we consider the Fourier expansion

w(@) =Y (an(r)e™™ + by(r)e™) + ag(r), an(r) €C, bu(r) €C, re€l0,1].

n>1

And we denote ' _
h = Z(ane_me + Bne™) + ap,

n>1

where the a; and 3; have complex values.

Remark 1.1 We can replace (1.4) by

1 1
fo |a0‘252ri7,:2 + anl fo (‘anP + ‘bn|2)gzrf;2

(1.6)
<O s fo r(E + ) (anl? + [Ba?)dr + [y (2 + 72)] g *dr
and we can replace (1.5) by
Jo (rlagl? + laol?)dr-+
1 712 /12 (n—d)2 2 (n+d)2 2
Yz Jo (Pl 4 rlbn [ + O a2 4 Db, 2) dr (1.7)

<C'Zn>1f0 e +1%)(|anl* + 8al) dr"‘fo e? +17)|ag|*dr.

Further, let us recall in which way the equation L.w = h is transformed into systems
of ordinary equations.
Letting, for n > 1, wy,(2) = an(r)e™™ + b, (r)e™ and, for n = 0, wo(x) = ao(r), we have

26" 00, = wy + T = (by + Tn)e™ + (b + an)e™ ™.



; ; d? 2d O
Moreover e_’dHA(e“ww) = Aw — ﬁw + Zﬁ%

Consequently

eiided./\/’s (uo)eidew —

. ’ _ 12 —
= Sz e (a5 = O+ - ) - B - )

r2

(1.8)
| s }
T ¢ (b4 = b+ (L ) - ) +

T

/ 2 —
+ag + %2 — g+ B (1 — f?) — wfio f2,

T

For n > 1, Separating the Fourier components of e*id(’d/\/g(uo)eidew, we can consider the

operators

/ _ )2 T .
forn>1, Lown) = (af + % — 0, 4+ 5(1—2f%) = by f2) 04

2
/ 2 _ .
_i_(bg_i_%_ (n+d) bn+%(1_2f2)_%f2> em@

r2

/ 2

d —
and, forn =0, L.(ap) = ay + % - 50 + g(l e ao +ao

2
g2 U
Separating the real part and the imaginary part of a,, and of b,,, we consider the following
operators, where, now, a, and b, are real valued function

r2

’ _ 2 .

(a'/r;+a7’n7(n d) an+§%(1*2f2)*g%f2)e_m9+
/ 2 .

+ (bx + by (n-:Qd) by + 2—5‘(1 . 2f2) _ %jﬂ) eme;

forn>1 L.: (ane_me + bneme) —

r

. / —d)? p
L. : (iane™ ™ + ibye™) — Z<a%+a7"—%an+‘;—g(1—2f2)+%f2)e ind |
£ - n n , ) |

and, for n =0, L. :iag+— i(aj + % - %ao + 81— f2);

! 2 2
Ee:a0|—>a8—|—a?0—%a0+gfg(1_f2)_%f2‘

Now, let us define

wr =Y _(Ran(r)e™™ + Rby(r)e™) + Rag(r)

n>1

and
wr = Z(Ian(r)e*me + by (r)e™) + Tag(r)
n>1
where, for any a € C, Ra is the real part and Za is the imaginary part of a.
We denote wy, = wp R + iwy 7. From the equation (1.3) we are led to the equations, for
each n € N,



Ee(wn,R) = hn,’R
{ L’s(iwn,z) = ihn,I (1'10)

and, in view of (1.9), when n > 1, (1.10) gives two second order ordinary differential sys-
tems, the both of them with two equations, and with two real valued unknown functions,
a and b. For n = 0, we have two ordinary second order ordinary differential equations,
each of them with one real valued unknown function.

In what follows in this section, unlike in Theorem 1.2, ¢ and b or a, and b, will be real
valued functions.

The first works on the question, quoted above, are considering the following eigenvalue
problem, for r € [0,1] and for n =0

g, a & 1 2
a +7—T—2a+€—2(1—f Ja=—X€)a, a(l)=0 (1.11)
and
a d? 2, 1 9
+ P L 2af" + .~ (1= f%a=-Ae)a, a(l)=0. (1.12)
And for r € [0, 1] and for n > 1
o 48Dt L2y L(1-2f%a = —A(e)a
b+ L — ol 1 Lfa+ L1 -2fb = -Ae) (1.13)

a(1) = b(1) =

The question of whether there exist some eigenvalues such that A(g) — 0 as ¢ — 0 is
related to the question of the existence of bounded solutions in [0, +oo] for the following
system, which is a rescaled form of (1.13), but with the interval [0, +oo[ instead of [0, 1]
forn>1

a4 % — ("7d2a—f2b+(1—2f§) =0 (1.14)
O R (23 =0
And for n =0
// CL, d2
+*—7a+(1_fd) (1.15)
and
" CL, d2 2 2
a +7—T7a—2afd+(1—fd)a:0- (1.16)

A bounded solution means that a and b are defined at 0 and that the both functions have
finite limits at +oo.

Since the 90’, some results on the behaviors of the eigenvalues A(¢), for n = 0 and
n = 1 are known and also for d =1 and all n.
And the following Theorem was proved in [8]

Theorem 1.3 For d > 1 and n > 2, If there are no bounded solution (a,b) of (1.14),
then |A(e)| > C, for some C > 0 independent of € and for every eigenvalue \(€) of the
problem (1.13).



In [1], we proved that there are no bounded solution of (1.14) when n > 2.
We claim that, making use of Theorem 1.1, we are able to give a completely different proof
of Theorem 1.3. But neither this technique nor that of [8] permits to obtain |e?A(e)| > C.
We associate the problem of the existence of bounded solutions of (1.14) with the following
eigenvalue problem, instead of (1.13), a and b being real valued. For r € [0,1] and for
n>1

’ n—d)?
o + 4 == Lo - 5% = —hu(e)(1- )
oY Ty g2y L2 = L) (1 - )b (1.17)
a(l)=5b(1) =0
and for r € [0,1] and for n =0
'+ % —Ba = —LuE)(1 - fa (118)
a(l) =0. '
and ) )
a’ + a? - %a - E%fza = _E%N(E)(l - f2)a (1 19)
a(l) = '

The more important advantage of using the eigenvalue problem (1.17) instead of (1.13) is
to have in the right hand side a behavior 1/7? as r — +o00. And we consider the problem
|1 — p(e)| > C instead of the insolved problem £2|\(g)| > C.

Let us remark that a result similar to Theorem 1.3 together with Theorem 1.1 gives the
following result (that we proved in [1]) :

For d > 1, for n > 2 and for any eigenvalue p(e) we have

uie) —1
e

for some C' independent of &.
In the present paper, we will see that actually |1 — u(e)| > C.

Let us turn first to the cases of the first eigenvalues for n = 0 and for n = 1. Let m,, 4
be defined in (1.21) and (1.22). We will prove the following properties, that are almost
the analogue properties of the eigenvalues A, 4(¢), n =0 and n = 1, but the proofs have
to be adapted. For all d > 1,

Theorem 1.4 (i) there exists ¢g > 0 such that, for all € < eo, moa(e) > 1+ &%;
mo,a(e) =1, ase = 0.

There exists an associated eigenvector i®y, ®y being a positive solution of (1.18) with
mo,q in place of p, such that (g — f)(r) = 0 as € — 0, uniformly in all [0, R], R > 0.
Moreover, ®y < f. And for the problem (1.18), u(e)—1 > M, for any eigenvalue, except
if b= my,q, for some M independent of .

(ii) For n =0 and for the problem (1.19), u(e) —1 > C, for every eigenvalue.

(iii) my a(g) > 1 and (my q(g) — 1) < Me?, with M independent of e.

(1v) My q(e) > my 4(e) for alln > 2d — 1.

And now



Theorem 1.5 (i) For all n > 2, there exists C' > 0 independent of € and there exists g
such that |1 — p(e)| > C for every eigenvalue y(e) for the problem (1.20) and for every
e <e€p.

(i) Forn =1, p(e) =1 > C, except if p=my 4.

(ii) We can chose the same C and the same €y for all n € N* and for all eigenvalue
().

(iv) For n = 1, there exists two functions ®1 = ae™ + be? and By = ae™ — be'? of
M, where a and b are real valued functions and associated to the eigenvalue my 4(¢), ie
Lo(®) + i®g) = (1 — myq)C(P1 + i) and such that [P D, — %HH%B(OJ/@) — 0, as

e — 0, for j = 1,2, where we use the notation ®;(x) = ®;(x/e).
On the other hand, we have some converse to Theorem 1.5.

Lemma 1.1 Let n > 1. If my 4(c) > 1 and if there exists some bounded solution (a,b)
of (1.14), then my 4(e) — 1 < Me?™, with M independent of e.

Now let us recall some notation for the eigenvalue problem (1.17).
We denote by H’ the dual space of H.
Let us define the embedding

I: H—-H
wr (n— fol rwidr)

Since the embedding HE(B(0,1)) x H}(B(0,1)) € L3(B(0,1)) x L?(B(0,1)) is compact,
then I is a compact operator.
Let us define C = €%(1 — f?). We define the operator T by

Le=—-T+CI.

The quantity
< Tw,n > m

is the scalar product on H, defined in the beginning of the present part. So, 7 is an
isomorphism, by the Riesz Theorem.

Since CI is a compact operator and thanks to the continuity of 7!, then 77!C is a
compact operator from H into itself, whose eigenvalues are denoted by 1/u. We use a
notion of C-eigenvalue, as in [3]. It is classical that p € R%.

For n > 1, w, g and wy 7 belong to the set

Hpa = {ae™™ +be™ € H, (a,b) : [0,1] — R x R}.
and wyr and wp 7 belong to
Hoa ={a € H;a:[0,1] — R}
If ae~™40 4 peindd ¢ Hna, with n > 1, we have

< T(aefindG + b€ind0), uefindé + Ueind& >7—[; Mo
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= i (v(ei(n—d)ea).v(e—i(n—d)9u> + V(ei(n—i_d)eb).V(e_i(n+d)6v)+

21 JB(0,1)

+6—12f2(a +b)(u+v))dx

—d)? (n+d)?

1
:/ (ra’'u’ +rb'v' + (n e+ bv + %fZ(a +b)(u + v))dr.
0

And, for a € Ho 4, we have

a  d? 2a
T(a)=—a" = —+ Ga+ 5 f?
and ;o
T(ZCL) = i(—a” — ? + ﬁa)

We can use the following form of the system (1.17)
Le(w) = (1= p(e))Cw

w = ae "0 4 peinf ¢ Hn.d-

(1.20)

It is clear that every eigenvalue in some H,, 4, n > 0 is an eigenvalue in H. Conversely,
in view of (1.10), for every eigenvalue in H, there exists an eigenvector in @®,>oH, 4 or

in @nzoi’Hn,d-

In the first case, there is an eigenvector in at least a subspace H,, 4, for some n > 0 and
in the second case, there exists an eigenvector in some iH,, 4, for at least some n > 0. In

the second case, if n > 1, by (1.9), if a and b are real valued, we have
L. (iae™™0 4 ibe™) = i(ae™™0 — Bei?)
where o« and 3 are defined by
L. (ae™™0 — pe™?) = qe= ™0 4 gei?,

Thus we have ' ' ' '
L. (iae™™ 4 ibe™) = (1 — p(e))C(iae ™™ + ibe'™?)

=
e — Betd — (1-— u(a))C(aeiine + be'™).

But this is equivalent to
ae—in@ + Being — (1 _ M(S))C(ae_me o beinG).
Finally, we have proved that
(£:tiae™™ +ibe™’) = (1 = p(e))Cliae™™" + ibe™)
= <£€(ae—m9 - bein@) — (1 _ M(é_))c(ae—ine _ beinQ)) )

8



And we conclude that the set of the eigenvalues for the problem in H
Low=(1-p(e))Cw

is the reunion of the sets of the eigenvalues for the eigenvalue problems in H,, 4 for n > 0
and in i?‘[o@.

Last, we define m, 4(¢) as the first eigenvalue for the above eigenvalue problem (1.17)
in ‘H,, 4, where we denote w = ae~ 0 4 bemg, that is

mnyd(s) =
1 (n—d)? (n+d)2 (1.21)
g fo(ra’2+rb’2+ nr) a2+ nT) b2+s%f§(£)(a+b)2)dr
Hwettn a\{0} 3 Iy A= T3 ) (@ b2)dr
and myp 4(¢) is the first eigenvalue for the problem (1.18) in Hg 4,
1 2 d2 a2
£a”)d
moa(e) = inf Jo (ra” + ra)dr (1.22)
a€Ho,g\{0} L fo (£))a’dr
and Mg q(¢) is the first eigenvalue for the problem (1.19) in Hg 4,
. (m’2—|— 4 q? +27“f (£)a?)dr
mo.q(€) = Jo d : (1.23)

in
a€Ho,a\{0} = fo L))a2dr

It is classical that these infimum are attained. Slnce, for n > 1, the quantity to
minimize decreases if we replace (a,b) by (max{|al|,|b|}, — min{|al, |b|}), we have some
infimum such that ¢ > —b > 0. And if n = 0, we have some infimum such that a > 0.
More, considering the rescaling (a,b)(r) = (a(er),b(er)) and an extension by 0 outside
[0,1/¢], we see that € — m,, 4(¢) decreases when € decreases. Thus lim._gmy, q(¢) exists.

The principal objective of the paper is the proof of Theorem 1.2. But the essential
tool is the result about the eigenvalues p(g), in Theorem 1.5 and Theorem 1.4. We have
to prove that the eigenvalues stay away from 1, as € tends to 0, with some exceptions
when n = 0 and n = 1. Let us present the idea of the proof. We consider the system
(1.17) involving u(e). Using the rescaling (a,b)(r) = (a,b)(er), for r €]0, 1] and writing

(a,b) instead of (@,b) we obtain the following system for r €]0, 1]

o + 2 — O 3 — fRa = —p(e)(1- fa
b + IZ«, n+d b — fd - fd =—p(e)(1 - fd2)b (1.24)
a(z) =b(z) =

Now, we consider the following system in |0, +oco[, where p is a real parameter.

{a,,+ o o 2 20 = —p(l— f2)a (1.25)
b//+g (n+d b— f2 —fd :_N(l_f(g)b

and we consider the system (1.25) as a perturbation of the system (1.14), with coefficients
depending continuously of the real parameter yu. When p — 1, the coefficients of (1.25)



tend to the coefficients of (1.14). Now, it is more clear in order to apply the principles
of the Cauchy-Lipschitz theory for the linear differential equations to reformulate the
system (1.25) as a differential system of degree one, ie we define the vector

X = (a,rad’,b,rb)"

and we rewrite the system (1.25) as

where M is the matrix
0 1 0 0
v | ra=2+ e o r? 0
- 0 0 0 1
r? 0 —r(1—2f2)+ a2 g

A supposed well known principle, from the Cauchy Lipshitz Theory, is that if R > 0
is given and if the initial Cauchy data at R, ie (a(R),ra’(R),b(R),7V'(R))! is a given
vector, that depends continuously on the parameter p, then we can conclude that the
vector (a(r),ra’(r),b(r),rt'(r))! depends continuously on y, for all 7 > 0 and also that
the continuity in g is uniform in all [rg, 7], 0 < ro < r1, in the sense that if © — o, then
(a,ra’,b,rb') tends to a limit in (L°°([rg,r1]))*.

In Part II, we give the proof of Theorem 1.4.

In Part III, we construct a base of four solutions of the system (1.25), determined by
they behaviors near 0. Two of them are well defined at 0 and two of them blow up at 0.
We prove the continuity of these four solutions wrt p, uniformly in all [rg, 1], 0 < ro < r1.
And we prove that when . — 1 the four solutions tend to a base of four solutions of (1.14),
determined by they behaviors near 0. The method is to construct the four solutions in
a determined interval |0, R] where R is proved to be independent of p. By the Cauchy
Lipschitz Theory, a solution defined in |0, R] has a unique extension by a solution defined
in |0, +oo[. And by the principle recalled above, if the vector (a,ra’,b,rb')(r) depends
continuously on the parameter u for all r €]0, R] then its extension to |0, +oo], that we
denote also by (a,ra’,b,70')!, depends also continuously on the parameter u, uniformly
in all [rg,r1], 0 < 79 < r;. We use the same principle to construct a base of solutions
of (1.25) determined by they behaviors at +00. Two of them are bounded as r — +oo
and two of them blow up as r — +00. We construct them in an interval [R, +oo[, where
R is proved to be independent of the parameter u, and we prove that the four solutions
depend continuously on g in this interval. Following the same principle as above, the
four solutions have extensions in ]0, +o00[, that depend continuously on p. And finally,
the both bases tend, as p tends to 1, to bases of solutions of (1.14), whose behaviors at
0 or at +o0 are determined.

In Part IV, we prove Theorem 1.5. We will use the results of Part III and two results
proved in [1], that are :

(i) there are no bounded solutions for the system (1.14);
(ii) the solution of (1.14) that have the most vanishing behavior at 0 is exponentially

10



blowing up at +o00 and the solution of (1.14) that has an exponentially vanishing behavior
at +o0o has the most blowing up behavior at 0.
The proof in Part IV is the following : using Part III and (ii), we prove that if there exists
some eigenvalue p(g) tending to 1, then the associated eigenspace is one dimensional and
an associated eigenvector tends to a bounded solution of (1.14). Further, (i) permits to
conclude the proof of Theorem 1.5.

In Part V, we prove Theorem 1.2.

In Part VI, we prove Lemma 1.1.

And we will use the expansions of fg, proved in [6].

d? 1
fa(r)y=1- 22 + O(r—4) near —+oo (1.27)
and 1
_ d_ L d+2 d+4
fa(r) = Aq(r i 1)7" )+ O(r*"™) near 0. (1.28)

Morover, f; increases in [0, 400 and

0<fi<1 in[0,4o00].

2 The proof of Theorem 1.4.

(i). Proof of mg4(g) — 1, of (mga(e) — 1) > €2, of the existence of an eigenvector a that
tends to fg uniformly in each [0, R], R > 0, that a < f; and that u(¢) — 1 > C, for any
other eigenvalue.
Using the Euler equation of the infimum problem (1.22), we have

a d? 1

" 2y,
a +?—T—2a+8—2(1—f)a—

_mo,d(€) —1

2 (1—fHa (2.29)

where r € [0,1], f(r) = fa(%) and a(r) > 0 and a(1) = 0.
Firstly, Multiplying the equation (2.29), by ¢ f and the equation of f by ta and integrating
by parts on [0, r], we find

rs'a—ra'fls = (maale) = 1/ [ 41~ Pafde.

Firstly, we let 7 = 1. Since a > 0 and since a(1) = 0, we have /(1) < 0 and we are led
to (mgq(e) — 1) > 0.

Secondly, we deduce that for all 0 < r < 1, —r f2(%)’ > 0. And consequently, af~!
decreases in [0,1]. But we can choose a(0) = f(0) = 1. This proves that af~! < 1 in
[0, 1].

Further, let us use a truncature of f as a test function for the infimum mg 4(¢). A real
number 0 < N < 1 being given, we let

a® = f; in [0, g], att = fd(g)h in [g, %]

11



where

h(r) =ee™™, u= (¥ -1)y/(r-1).

15 3 3

Using the rescaling a““*(r) = a®(r/e), we have a®* € Hg 4(B(0,1)). Consequently

foé (T‘((LCU’t)/Q + d72(acut)2 —r(1- fg)(acut)Q) dr
fO 1 _ f2 acut)2dT .

0<mggle) —1<

In what follows in this part, the notation M means some positive real number independent
of e
Now, the expansion of f; at 400 gives some M and some R > 0 such that

d2
for r > R, |17f3+—2| < Mr—4,
r

And a®“ being a bounded function, we deduce that

|/0l (‘f(acut)Q —r(l— de)(acut)2> dr| < M.

Now, we have to estimate

L = /8 r(a®)?dr and Iy :/ (1 — f2)(a®)2dr.

0 0

We have

N

b= [ o £ [k

0

But there exists M and R such that for » > R
0< fg<

We deduce that

N

/8 r(fé)er < M.
0

Now, let us estimate fN (R")2dr. Since we denote u = (g —1)/(r —1). We have

' = —u?e(N—-1)"!' and K = —uh.

1 1

B 1 B
/ r(R)2dr < / u' b dr,

N e JN

5 5

1 /% o2 [too
/ ' b dr = / u?e(N — 1)~ te 2.
g JN g N

€

We write

but
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We have proved that

AE r(h)2dr < M (2.30)

€

and since fd( ) = 1 as € — 0, we conclude that
I < M.

Now
N

I > / r(1— f2)f3dr.
0
But there exists R > 0 and M > 0 such that for all r > R

(1= f3)f7 = M/r*.

We deduce that

N
I, > Mn(=).
£

Finally
1, N
0< m07d(e) -1 M In (*)
€
This gives mg 4(g) — 1.
Secondly, let us prove the existence of a solution a tending to f; that spans the eigenspace

associated to mg q4(¢).
We are looking for a solution of the rescaled equation of (2.29)

/ 2
@+ = Lt (1 fa = ~(moate) ~ 1) - e (2.31)

of the form uf;. We write

/
u fy + 2u' f + fd —(moa(e) = 1)(1 = f7) fau,
that is
(W' (rf1)) = —(moa(e) = Vr(1 — f7) fiu. (2.32)
We define the fixed point problem
fd
u=1-(mogq(e) — 1) ) f2udsdt. (2.33)

We denote it by u = ®(u).
Each solution of this fixed point problem is a solution of (2.32).
We define the sequence (a;)jen by the induction

ap=1 and apr1 = P(ag)

and we write

fa*(

a1 — ao|(r) < (mo.(e —1/ / (1= £2) f2dsdt

13



and, using f; () < f;%(s) and 1 — f2 < 1 we get
2
|1 = aol(r) < (moa(e) — 1)
And for all k£ > 1,

fa

r 2 t
(t)
|aj1 — ayf(r) < (mo,ale) — 1)/0 " /0 sfidsdt]|aj — aj-1]l oo (0.

that gives
2

r
i1 — oyl (1) < (moale) — 1)z”%’ - O‘j—1HL°°([0,r])-

Consequently, if R > 0 is given, we have for all 0 <r < R

(moa(e) —DR®
o1 = gl < (TR

(2.34)

Since mg 4(¢) — 1 — 0, then for each R > 0, the sum

u="> (aj41 —a;) + ao.

j=0

is convergent for € small enough, depending on R. We define a by

a(r) = fa(r) + fa(r) Y (o1 — o).

7>0

It is is a solution of (2.31). Let us remark that if we fix R > 0 and if we fix ¢ < ¢(R)
sufficiently small to define a in [0, R], then the Cauchy-Lipschitz Theory permits to define
a prolongation of a, that we still name a, for all € [0, +o00], as the solution of (2.31) for
the initial Cauchy data (a(R),d'(R)).

Moreover, due to (2.34), the convergence of the serie u(r), for r < R and for ¢ <
e(R), is uniform wrt the values of the parameter mgq4(c). And clearely, for each k,
ay, depends continuously of the parameter mg 4(¢) too. For this reason, the sum w(r)
depends continously of the parameter mg 4(¢), for all 7 < R and € < ¢(R). This implies
that a(R), depends continously of the parameter mg 4(¢), for the norm L ([0, R]).

Let us prove that a/(R)) depends continuously on the parameter mg4(g), too. The
derivation of (2.33) gives

W (r) = —(moale) — Dr ' f72(r) /0 41— £2) fult)dt

We deduce that v/, and consequently a’, depend continuously on the parameter mg 4(¢).
Since the Cauchy data (a(R),a’(R)) in the initial point R, together with the coefficients
of the equation depend continously of the parameter mg 4(¢), so does also the extended
solution a(r), together with a/(r), for all € < ¢(R) and for all r > 0.

On the other hand, we can deduce from (2.34) that for all R > 0, for all € < e(R)

la — fal(R) < fa(R) Y ——K

14



with K = (mgq(g) — 1)R?/4. We can chose £(R) small enough to have 1/1 — K < 2, so

0 Ful(B) < fa(R) S S (moule) ~ DR,

=0
for all R > 0 and all ¢ < e(R).
This gives the behavior at 0 of a and this proves again that a(r) — fs(r) — 0, as
mo,q(e) — 1, for all r > 0 and uniformly in each [0, R].

Now, since the eigenspace associated to the first eigenvector is one dimensional, the a we
just constructed is a base of the eigenvector associated to mg 4(¢).

Now, let us prove that mg 4(¢) — 1 > Me2.
Returning to (2.32), where u = f; 'a, we deduce that for all ¢ € [0, 1],

tﬁ@fwwz—mw@—nésuaﬁmws

and we use the condition a(%) = 0 to obtain, for r € [0, %],

1

tfa ()

And using the rescaling, this gives, for all 0 < r <1,

mo.q(e) — 1 ¢
fla(r) = 04(¢) 1/ 1(t)/0 s(1 — f?)fadsdt.

fla(r) = —(moa(e) — 1) [T /0 s(1 — f3) faadsdt.

£

g2 tf2

Recalling that af~!' < 1, we are led to

m - ! !
() < M0d(E) 1/ 1(75)/0 s(1— f2) f2dsdt.

g2 tf2

But ¢+ tf2(t) increases and 1 — f2 < 1, so we obtain, for all r € [0, 1],

fﬁlé(T) < mO,d(e) -1

= (1—7r?%)/2.

But f < 1. Consequently, for all 0 <r <1

moq(e) — 1
g2 '

a(r) <
But a(0) = 1. We deduce that mqg(e) — 1 > &%

Now, if pu(e) > mgq(e) let us prove that p(e) —1 > M. Let us suppose that p(e)
tends to 1. We can construct an eigenvector for u(e), exactly as we constructed a, an
eigenvector for mg 4(¢), just above, but with p instead of mg q(¢). We are led to define

ar = fa+ fa ) _(aj — o)

Jj=0

15



where the sequence () ;>¢ verifies (2.34) and, letting K = |1 — u|R?/4, we choose R > 0
such that |1 — pu|R?/4 < 1 and 12 < 2. This gives

la1(R) = fa(R)| < fa(R)|p — 1|R?/2
and this is true for every 0 < r < R, in the place of R.
Now, if as is any solution of the equation (2.29), with p(e) instead of mg 4(¢), we can

combine the equation of a; and the equation of as and integrating by parts we are led
to, for all r1 > 0 and o > 0

[r(ajas — aras)(r)];2 =

We deduce that there exists C' and D such that a(r) = Day(r) + Cay(r) [ m‘zit(t). We
1
define

"od
as(r) = al(r)/l ta%zt)'

We verify that as is a solution and a calculus gives, for all 0 < r < R,
|as(r) — A;lr_d| < COr~dtt,

So, a1 and ay form a base of solutions for (2.29), for p instead of mg 4. And in view
of the behaviors at 0, this proves that a; spans the eigenvector space for u. But, since
p(e) — 1, p takes its values in the range of the map e — myg 4(¢), that is an increasing
continuous map. So, for € small enough a; is also an eigenvector for mg 4, maybe for
another value of e. Consequently, this eigenvector associated to p(e) is positive, for e
small enough. But this is in contradiction with the necessary condition

1
€

(u(E) — moa(e)) / (1 f2)aards =0,

0

unless p(e) —mg 4(e) = 0. We conclude that p(e) > 14 M, or pu(e) = mg 4(e).

(ii). Let us prove that mg4(e) > 1+ M, where myg 4 is defined in (1.23). It is clear
by their definitions that mg g < Mg q.
Now let us consider a solution b of the Euler equation

/ 2
Bt = b (1= b~ 2053 = ~(moule) 1)1~ F)b (2.35)

such that its rescaling b realizes Mg q. Since b is an eigenvector for a first eigenvalue, it is
defined up to a multiplicative constant and we can suppose b > 0 in [0, %] and b(0) = 1.
Since g q(€) tends to a limit as € — 0, then, as for a realizing mq q4(¢), we can construct
b of the form b = ufy, by a fixed point method to solve

(' (rf3)) = —(ga(e) — Vr(1 — f7) fiu+ 2ruf.

We skip the construction, since it is sufficient to follow the construction of a, an eigen-
vector for mg q.

16



And b tends to a limit b, as ¢ — 0, uniformly in all [0, R], R > 0.
Further, combining (2.31) with (2.35) we obtain

9 /0 “rf3badr = (mo a(e) — moa(e)) / “r(1 = f2)badr

0
that is )
/05 r(=2f3 + (mo.a(e) — moa(e))(1 — f3)) badr = 0. (2.36)
Now, since lim,_, 1 —2f§ +(1- fC%) = —2, we chose rg > 0 such that
r>rg,  —2f74(1— f3) < 1.

Using (2.36) we can write, if £ < 1/7r,

0< /07’0 r (_2f3 + (T?Lo@(&') — mo,d(f))(l - de)) badr+

1

+ /6 r (=14 (1= f(=1+ (oa(e) — mo,a(e))) badr.

0
Now, if we suppose that (g q(e) — mo.a(e)) = 0, we choose ¢y such that for all ¢ < e,
(=1 + (mo,a(e) — mo,a(e)) < 0. Consequently, the second integral is negative for e < &.
But the first integral tends to the limit fom r(—2f§)5fddr, so, for € small enough, the
second integral is negative, too.
This contradiction proves that mg q(¢) > 1+ M.

(iii). Proof of my 4(¢) > 1. The proof is almost the same as for A; 4 > 0, in [10].
Let (a,b), a > —b > 0 that realizes m; 4(¢). We write 2 = a +b and y = a — b. The
system (1.17), gives, for n =1 and r € [0, 1/¢]

’ 2
o'+ - e By 2f%r = —my (1 - fa
/ 2
P M (- @)

(1) =y(l) =o.
But if we let
xo = fq and yo = dfg/r

then zg and gy are solutions of

/ 2
g+ L By My ofly = —(1— fI)x
, . (2.38)
y'+ L -y Ay = (1 f2)y.

We multiply the first equation of (2.37) by rzy and we multiply the first equation of
(2.38) by rx and we integrate the difference in [0,1/¢]. We do the same thing with the
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second equations of (2.37) and of (2.38). And we sum the second result and the first one.
We obtain

=

1 :
[r(:ﬁ'ﬂ:o —zor + Yo — xéy)]g == —(m1q—1) / r(l— fg)(xxo + yyo)dr.
0

But (1 — f2)(zzo + yyo) > 0 and
1 1 1 1 1
[7”(33'300 — x4y wo — 9561/)}5 = g(fﬂ/(g)ﬂio(g) + y,(g)yo(g)) <O0.

This proves that m; 4(¢) > 1.
The proof of my 4(¢) — 1 < Me? follows from Lemma 1.1.

(iv). The proof is almost the same as for A\, 4 > A 4, for n > 2d — 1 in [10]. Let us
recall it.
If ae=" + be™ realizes my, 4 and if 6% fol r(1— f3)(a® 4+ b*)dr = 1, we write
—(d—-1)2 5, (d+n)?—(d+1)?

a” +
T r

(g )2
My, a(€) Zml,d(ﬁ)-l-/o ((d )

and since a > —b > 0, this gives, provided that (d —n)? —(d—1)? > 0,ie 2d—n—1 <0,

b?)dr

2
1
L

1
maal®) 2 @) +2 [ 1
0

that gives my, 4 > m1 4.

This terminates the proof of Theorem 1.4.

3 Two bases of solutions for (1.25), depending on the pa-
rameter .

3.1 A base defined near O.

In all this part, d > 1 and n > 1. The propositions below give a base of 4 solutions of
the system (1.25), involving the parameter p, provided p < ko, for some given kg > 1.
These solutions are determined by they behaviors at 0. The results are true also if g =1
and in this case, we have a base of solutions for the system (1.14). In the propositions
below, we let the condition on p be |u — 1| < 1, to be more clear.

Proposition 3.1 Let us suppose that |u— 1| < 1. There exist 2 independent solutions of
(1.25) defined at 0, that we denote by (a,b)) and (af,b5) and they are such that there
exists some R > 0 independent of the parameter p and some constant M depending only
on R, such that for all r € [0, R]

|a‘tf(7“) o A§K1T"+3d+2] < MT"+3d+4, |b’f(7“) o r"+d| < MT”+d+2,
(3.39)
where K1 = ((3d +n +2)% — |n — d|?)~!
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and

]a’g(r) — r|n7d|| < Mr\nfd\+27 \b’g(r) _ AZKST\nfd\+2d+2| < Mr\nfd\+2d+47
(3.40)
where Ks = ((In — d| +2d +2)* — (n + d)*) ™,

Ag being given in (1.28).

Proposition 3.2 There exist 2 independent solutions of (1.25) blowing up at 0, that we
denote by (ahy,bhy) and (a},by) and they are such that there exists some R > 0 independent
of the parameter p and some constant M also independent of u such that for all r € [0, R)

lay| < Mrln=dl ifn <d and |ah| < Mr—= 2 Ing| ifn>d+1
(3.41)
’bg _ T.fnfd‘ < M,,,fnfd+2

and

|al(r) — r=In=dl| < Mp=In=d 2| Inp|, || < Ml ifn#d andn < d — 1,
lal(r) — r=In=d| < Mr=In=dE 2 Ing|, || < M3 2 ne|, ifn>d+ 1,
lahf(r) +Inr| < Mr?|lnr|, |b) — A2ZKr?@ 2 Inr|| < Mr¥ | Inr|, ifn=d,

where Ky = ((4d + 2)(2d +2))~ L.
(3.42)

Proposition 3.3 Denoting X! = (a¥,r(al"),bl',r(b'))t, i = 1,...,4 the solutions of
(1.26), where (a;,b;) are defined in Propositions 3.1 and 3.2, we have

lim X/ = X;, i=1,....4
n—

where the notation X; is used for Xil. And the limit is in the sense of the topology of
(L>=([ro,m1]))4, for all 0 < ro < 71.

Proof of Proposition 3.1. In this part, we first remark that for all « € R, r* and

r~% are solutions of the equation

/ 2

"+ T —z =0.

roor
And we look for solutions (a, b) of (1.25) of the form a = hr®n=dl p = grEntd),
To construct (af, b)) and (af,by) in some interval [0, R], we use a fixed point problem
and we prove that we can choose R > 0 independent of the parameter u, provided that
| — 1| < 1. Letting a = hrl"= and b = kr"*¢, we write (1.25) on the form

noy 2n=dl+lar  r2p  r27 mtbd—|n—d| _ _ _r2
{h Aol g2y f2 (1= f2)h (3.43)

R4 20D p2g p2ppln—dioned — 1 2
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and we consider the following integral equation

h = ag+ [y t=2nd=t (2 2n=dl(£2 (1 — f2))h + faksntd-In=d)) dsat

kE =B+ fg t—2(n+d)-1 f(f g2(n+d)+1 ((fc% — (1 - fdQ))k + fghs\n—d\—n—d) dsdt
(3.44)
We define ®(h, k) as the rhs of the above integral equations and we have to solve the
fixed point problem (h, k) = ®(h,k). And we want (h, k) to depend continuously on the
parameter u, in the sense that (h, ', k, k")(r) tends to a limit, as u tends to a limit .
First, let us construct (af,bY).
For this purpose, we define two sequences by

ap=0 Fo=1
{ (41, Bj+1) = P(ay, Bj). (3.45)

And using (1.28) and supposing R > 0 is small enough in order that fg < A?lst for
s € [0, R], and since | f2 4+ pu(1 — f2)| < 3, we obtain
A3T3d+n+2—\n—d|

3 2
(Bd+n+2—|n—d)? and [B1 — fol < 57 (3.46)

4

la; — ap| <

and for all j > 1and all 0 <r < R,

A2 3d+n+2—|n—d|
i1 — oy (r) < 37°llay — ajillze o) + Grrmra—manz 18 — Bi-tllze (o)

and (3.47)

A2 d—n+2+|n—d|
1Bj+1 = Bil(r) < 37211Bj = Bi-1llzeeo.1) + @mrarmanzlos — @i-1llze (o)

Clearly, by an induction, every («y;, ;) depends continuously on the parameter p.
Now we remark that, since n > 1 and d > 1, we have

d—n+|n—d+2>2 and 3d+n+2—|n—d >2.
Letting
3 A2

C = maX{{Z, T s

an induction gives, for j > 0,
lej1 — il oo (o,m)) < 97 (J+1 R3dtn—|n—d/+2(j+1)

and (3.48)

18j41 — Bill oo (jo,mp) < 2/CIHIR2IHD),

We chose R small enough to have 2CR? < 1/2 and we may define

h(r) =ao+ Y (ajp1 —a;)(r) and ki(r) = Bo+ Y (Bjr1 = B;)(r). (3.49)

Jj=20 Jj=0
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The estimate (3.48) gives the convergence of the sums, for all 0 < r < R.

Moreover, the convergence of the sums in L*°([0, R]) is uniform wrt the parameter p, if
| — 1] < 1. Thanks to the continuity of each (v, 5;) remarked below, this gives the
continuity of h and k wrt u.

Last, we can derive the following estimates

W(R) — a1 (R)| <> llajyr — ogllpoeqo,py  and  [E(R) = 11 <) 11841 = Bill oo ((o,r)»
j>1 520
First, use (3.48) to obtain
k(R) —1] < MR* and |h(R)— a1 (R)| < 2/CIH R~ pidtn=in=dit4,
i1

or

’h(R) o al(R)\ < MR3d+n—|n—d|+4'

for some M independent of p.
Now, returning to the definition of a; in (3.44), we get

r t
an(r) = /0 t2|nd1/0 g2ln—dl+1 (f38n+df|nfd|> dsdt.
Using (1.28) there exists M depending only on R such that
|f3 _A382d| g M$2d+2

and consequently, for 0 < r < R,
A§T3d+n—|n—d|+2
3d4+n+2+|n—d)Bd+n+2—|n—d|)

| (r) — (

for some other M independent of x, provided |p — 1| < 1.
We deduce that

A§R3d+n—|n—d|+2
Bd+n+2+n—d)Bd+n+2—|n—d|)

|h(R) o | < MR3d+n—|n—d\+4.

This is true for the R chosen below and also for all real number smaller than it, with the
same M.

Letting @ (r) = r™=4h(r) and B¥(r) = "% (r) and returning to (3.50), we obtain the
desired property (3.39).

And we deduce from (3.44) that

n =r1 fg s (fc% —u(l— fHh+ f§k8”+d_‘”_d|) ds
(3.51)
¥ o =r1 fOT s (fc% — (1l — fd2)k: + fc%hS'”_d'_"_d) ds.

We infer that A'(r) and ¥'(r) depend continously on y for all r €]0, R].
Consequently X}'(r) depends continuously on y, for all r €]0, R].
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Secondly, let us construct (a4, b%).
We use (3.44) again and we construct («;, 3;) by the induction

=1 [=0
{ (041, Bjt1) = ®(ey, Bj)- (3.52)

We follow the same construction as for (af,by’) above. With the same condition on R,
we estimate

A§Td7n+|n7d\+2
(d—n+n—d +2)?

3
lap — ap| < 17“2 and |81 — Bo| <

And the estimate (3.47) is true again. And (3.48) is replaced by

o1 — ol oo (o, < 22CIHIRGTD
and (3.53)

Thus we can conclude to the construction of hg and k3 exactly as in (3.49). And we have,
with C' defined above

|hg(R) — 1] < Y 2CTT'R¥™2 and  |ks(R) — Bi(R)| < > _1IBi+1 — Billree(po,))-
320 i>1

So, we use (3.53) to have some M such that
|h3(R) — 1| < MR? and |k3(R) — f1(R)| < MR mHn—d+4,

where M is independent of i and is valid for the R chosen above, and also for any smaller
positive real number.
Now, as for a; above, we compute 1. Since

r t
,81 — / 75—2(71—0—d)—1 / 82(n+d)+1 f35|n—d|—n—dd5dt’
0 0

we have that for 0 < r < R
Agrd—n+|n—d|+2

< Mpd—ntin—di+4
Gdtnim—d+dd—ntm_dzy =M

81—

with M independent on p. We deduce that
A?le—n+|n—d\+2

< MRd7n+|n7d|+4’
(3d+n+|n—d|+2)(d—n+\n—d\—|—2)| -

k3(R) —

for some M independent of y and independent of R small enough.
Now we define
ay =rm=dp and b ="t

And we have proved the estimates (3.40).
The proof of the continuity of X% (r) wrt u, for r €]0, R], works exactly as for X1
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Proof of Proposition 3.2. To construct (ab, by) and (af,b}) in some interval ]0, R],
we are looking for a solution (a,b) of (1.25) of the form

a(r) = h(r)yr~m= 4 and  b(r) = k(r)r Y
That gives

" =2n—d|+1;, 27 2 —n—d+|n—d| _ _ _ f£2
{h + W= fgh = fgkr (1= f3)h (3.54)

g g 2T pag R pplnmdletd = (1 f2k
We will choose (h, k)(0) = (0,1) for (ab,bh) and (h, k)(0) = (1,0) for (af,b).
First, let us construct (a4, by). We have to distinguish the cases n < d and n > d+ 1.
(i) For n < d. We chose some R > 0. We will have to choose R small enough, but in
a way valid for all values of the parameter u, belonging to the desired range. We write
(3.54) on the form, for all 0 < r < R,
h =ap+ f(;“ $2ln—d|—1 j‘g g—2ln—d|+1 ((fg _ N(l _ fc%))th fgks—n—d+|n—d|) dsdt

k =06+ fOT‘ t2(n+d)*1 f]’; 872(n+d)+1 ((fc% _ M(l _ fj))k+ f3h37|nfd|+n+d) dsdt

(3.55)
We define
ap = 0 ,80 =1
3.56
{ (a1, Bj41) = ®(aj, B)). (3.56)
As above, for R small enough, we obtain that for all 0 < r < R
A2rd—n+|n—d|+2 3
- < d d = 3.57
’Oél 040‘(7“)* (d—n+‘n—d’+2>2 an |61 BO|( ) 4 ( )

And for all j > 1
Jajen = agl(r) < fy 27 [1(3s =2 (o — 1) oo o,m) +
+ AZsInmdl=ntd 3. =2(35 — B )| poo (0, mp) ) dsdlt

that gives

" —zN— A n— —
|atjp1—ay{(r) S/O <2t2|" A2l 0y — )| oo o, + 1 —d 2= =23 — B )| e [0R])>

and we are led to

2|n—d|+2

lovjr1 — agf(r) < 3m||7"_2|n 4

aj — aj-1)| pee(o,r)+
(3.58)

AQ 2|n—d|+4
o 17285 = Bi=1)ll L (o, )
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And

Bi41 = Byl(r) < Jy 2 D=L [F3sm 205531285 — B )| oo 0,5+

A2 in=dl L =2n=dl (o — )| poo g0, At

that gives
Bror - B1(r) < [T DD [12(8; — By | (0. +
+A3R2|n—d|+2”r—2‘”_d|(Ozj - ajfl)HL"o([O’R])]dt

where
(—2(n+d)+4

Dy(t) =
|Int| if (n,d) = (1,1).

And, since R < 1, we are led to

Bj+1 = Bil(r) < 3D(r)|[r=2(B; — Bj—1)|l o= 0.5+
(3.59)

r2ntd) o,
+AZR? ) H An=dl(q; i — aj—1)l Lo (po,m))

4

4(2(n:—d)—4) if (n,d) # (1,1)

r2(n+d)
2(n+d)

D(r) =
]lnr\ if (n,d) = (1,1).

We remark that in any case D(r)r=2 < r?|Inr|. So an induction gives, with C' =
2
max{3, %} defined as above, for j7 > 0,

72~ (a1 — aj) || oo (po,mp) < 27CITH(R?|In R|)?
(3.60)
and  [[r=2(Bj41 — Bj) | 1o (o,r)) < 2/CTTH(R?[In RI).

We choose R small enough to have 2CR?|In R| < 1. We define h and k by

h(r) = 2= Z rin=di(a; ) — ;) and  k(r) = Bo + 12 Z r“(Bj+1 — By)
j>0 j=0
and we obtain, for all 0 < r < R,

Ih(r)| < C(1 —2CR*|In R|) 2" and  |k(r) — 1] < C(1 — 2CR?|In R|)~'+?

We define ay = r~"~4p and by = r~"~%k. We deduce the proof of (3.41), when n < d.
And since for the same reason as in the construction of (a{,by), (h, k', k,k")(r) is contin-
uous wrt u, we have that X5 (r) is continuous wrt p, too, for all 0 < r < R.

This terminates the construction of (af,by), when n < d.
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(i) n > d+ 1. Now, let us examine the construction of (a},by), when n > d + 1.
We define again a = ="~k and b = "%, so we solve the system (3.54) again, but
not in the same Banach space. Instead of (3.55), we consider the following fixed point
problem, when R > 0 is chosen.

h = ap + fOT t2\n—d|—1 f}t% S—2|n—d|+1 ((fg _ ,u(l _ fg))h"i‘ fgks—n—dﬂn—d\) dsdt

k= B+ fOT $2(n+d)—1 f; g~ 2(n+d)+1 ((ﬁ _ ,u(l _ fg))k + fghsf\ndener) dsdt.

(3.61)
We define the sequence (v, 3;);j>0 by the same induction as for n < d, ie ap = 0 and
Bo = 1. We find the estimates

r R
‘041 _ a0|(r) < A3/ t2|nd|1/ 872\n7d\+182d87n7d+|n7d\dsdt.
0 t

But —2|n—d|+1+4+2d—n—d+ |n—d| = —2n+ 2d + 1 can be equal to —1, or is
< =3, that gives

o1 — aol(r) < AZDy(r) (3.62)
where
Dy(r) = r?/2(2n—2d —2) ifn>d+2
nr) = 2= Inr|/2(n —d) ifn=d+]1.
_ < 2. .
|ﬁ1 50|(T) —= 2(2(n + d) _ 2)7“ (3 63)
And, fOI' ] Z 17

r R
o1 — ayl(r) < /0 f2ln=dl-1 / (3% 2m=I I =2 I v~ oy — ety e 0.1+
t

+AZs 2D =2 (B, — By )| oo (o, st
that gives

|41 = ayf(r) < /0 A BC ()|l | (o — aj—1) oo go,m)

+AICo()Ir (85 — Bj—1) |z (o, rp )t
where
R?/2|lnR| ifn=d+1
Co(t) = |Int|> ifn=d+2 (3.64)
t—2In—d|+4 .

And we obtain

laji1 — aj|(r) < 3C(r)|lr 2 Inr|~ (e — aj—1) | oo (o, m) +
(3.65)
FAZC ()28 — Bi=0)llLee ([0, )
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where

R} InR|r?/4 ifn=d+1
s il o= (3.66)
4 .
Ty | | ifn>d+ 3.

Now
T R
By = Bylr) < [ 200t [T 02, — )+
+ AP 2= s~ | Inr (o — ag—1) || Lo po,r) ds]dt,
that gives
r 4—2(n+d)+4
|Bj41 — Bjl(r) < /0 t2(n+d)_1[3m”r—2(5j = Bj—llzeeo,r)+

+AGCo ()|~ | (0 — aj1) | poe o, r ldt,
where Cy(t) is defined in (3.64) above. And we obtain

1Bj+1 = Bjl(r) < 3Ww (85 = Bi—1)ll Lo (o,r)) +

(3.67)
+AZD () |2 e[~y — 1)l e (o, )
where
Rﬂlmgﬁj ifn=d+1
D(r) = ::j)\l rl> ifn=d+2
W[lnr\ ifn>d+3.

We define C' = max{3, A2}. We remark that in any case, for n > d+1, for 0 <r < R < 1,
r2D(r) < R* and r %|In7r|"'C(r) < R*|InR|.
Considering (3.62), (3.63), (3.65) and (3.67), an induction gives
lr=2 |~ (@41 — o)l oo o,m)y < 27C7HH(R? In R)Y

and (3.68)

17 2(Bj41 — Bj) | oo (po,m)) < 2/CTTH(R*In R)7.

We chose R such that 2CR?|In R| < 1/2 and we define h and k for r € [0, R] by

h(r) :r2|lnr|Zr_2|lnr]_1(aj+1 —oaj) and k(r ﬂo—i—TQZ (Bj+1 — By)-

Jj=0 >0

The convergence of the sums, for R > 0 small enough follows from (3.68) and we have
the continuity of h, h', k, k' wrt u, too. And we obtain, for all 0 <r < R,

h(r)] < Mr?[Inr| and  [k(r) — 1] < M7r?.
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We define a = r~ "= and by = 7"~k and we can recapitulate the cases n < d and
n>d+ 1 by (3.41).

Now, let us construct (al,by). We distinguish the cases n # d and n = d.

(i) n # d.
We use the fixed point problem (3.61), that is

h =ag+ f(]r $2In—d|-1 f}tZ g 2ln—d|+1 ((fg o ,u(l _ fc%))h+ fc%ks—n—dﬂn—d\) dsdt

k = 0(g+ fOT t2(n+d)*1 f}tf 872(n+d)+1 ((fj _ u(l _ th))k + fghsf\ndener) dsdt.

and we define

ap=1 Bo=0
{ (a1, Bjr1) = (o, By)- (3.69)

For R small enough as above, we obtain that for all 0 <7 < R

T R
lar — apl(r) < 3/ t2|"_d_1/ sT2An=d+ 1 ggqy,

0 t
that gives
3
|1 — @l () < 5 D1(r) (3.70)
where ,
D) ={ Zeamz iln—d =2
r?(—Inr) if |n—d| = 1.
And n
181 — Bo| < / {Antd)—1 / AZg—(nrd)=ln—dl+2d+1 59y
0 t
that gives
81 — Bol < AZDs(r), (3.71)
where e
%ﬁ”g_w if n Z d + 2
Dy(r) = T iy —d 41
R2 7.2(n+d) .
In view of (3.71), we have to distinguish the casesn <d—1and n > d+ 1.
(a) n<d-—1.

For all 7 > 1 we write

r R
o=yl < [ [T g 2 | g = ) e
t

+A357|n7d|+2d+n+d‘|T72(n+d)+1(Bj . /Bj—l)HLOQ([O,RD}detv
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that gives

,
\Oéj+1—aj\ﬁ/0 A BC (Ol | 7 (o — ag-1) oo (o, m)+

(3d+n+1—|n—d| 1
+Ad3d+n+ T — -2 DB = B 1) || Loe o, st

where C(t) is defined in (3.64) above. And we are led to

laj1 — aj] <3C()|lr 2 Inr] (o — ay1) || e (o,

2|n—d|

FAFRG 2 (B — i) e 0.k

where C(r) is defined in (3.66). But C(r) < r?R?|InR|. And since r < R < 1, we use
|In R| < |In7| to obtain C(r) < Rr?|Inr|. Moreover 2|n — d| > 2. We are led to

|laji1 — aj] < 3R Inr||lr=2| nr|~ (o — aj—1)|| oo (0,7 +
(3.72)
+AZRr? | Inr|||lr= 2T DB — 85 1)|| oo (0, R))-

And in the other hand
R
1Bi+1 — Bj] < / ¢2ntd)= /t [3[]r 2T D35 — B 1) || oo 0,71+

A O3 24) 1y 3 I (g — o) e o, sl

and since —(n +d) — |n — d| + 3 + 2d = 3, we deduce that

1Bj+1 — Bj] < /0 2 D=LB R =2 DT (B — B )| oo 0,1+

+Ad*!1nR\H7“ ||y — aj—1)l| oo (o, ldsdt
And we are led to

|Bj41 — Bj] < BRr2(F D=2t DT (3 — B 1) || poopo,m)) +
(3.73)
+A2RT2(”+d) Yr=2|Inr|~ 1( — oy 1)”L°°([0 R]»

Letting C' = max{3, A%}, we deduce from (3.70), (3.71), (3.72) and (3.73) that, for all
J=0,

| 7|~ r2ajp — aj| < 2PCTHIRI and r 20D B — 8| < PCIHIRI. (3.74)
We chose R small enough to have 2CR < % and we define
h = oy + |Inr|r? > >0l 7|~ 2 (a1 — ;)
and k= By + r2ntd)- 12 n+d)+1(5 i1 — B)-
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We conclude as usual to the continuity of A and k& wrt to p, when r < R and we estimate,
for r € [0, R],
Ih(r) — 1| < Mr?|Inr| and |k(r)| < Mp20td-1,

Letting a/f = hr~I"= and b} = kr—""%, we have proved (3.42), when n < d — 1.

(b) Let us examine the case n > d + 1.
For all 7 > 1 we write

r R
a1 — oy < / f2in=dl-1 / 3523 1 2 I |~ (o — ety )| e (o1 +
0 t
| 4B Im S| 1y 11142 L (8 — By | e (0. s,

that gives
.
lajt1 — o] < /0 A== 3CH () e In |~ (o — aj-1) || oo (0,

FAZC ()| 2 |71 (B — Bjm1) | oo jo, ) dsdlt,
where Cy(t) is defined above in (3.64] and

R|Int| if —2n+6d+4 >0
Cy(t) = |Int[* if —2n+6d +4 = —1
e Int| if —2n+6d+4 < —1.

And we are led to

laji1 — o] <3C(F)Ir=2||Inr| = oy — oj1) || Loe (po,m)+

+AZC3(r) lr= 42 In |1 (85 = Bj—1) || Lo (jo,m))>

where C(r) is defined in (3.66) and

2|n—d|

Cs(r) = 22‘:__;“ |Inr|? if —2n4+6d+4=—1
7,.4(14»4

But C(r) < r?R*|InR|. And since R < 1, we use |InR| < |In7| to obtain C(r) <
Rr?|Inr|. Moreover, if n = d + 1, we have —2n + 6d +4 > 0 and if n > d + 2, we have
2|n — d| > 4. We deduce, for all » < R and since n > d + 1,

|ji1 — o] < 3R Inrllr =2 Inr| " ay — 1) || Lo (o, r)+
(3.75)
+A2Rr? Inr||r—44=2| Inr|~1(B; — Bi—1)|l Lo (j0,Rr))-

And in the other hand
r R
1Bj+1— B4l < /O tz(n+d)1/t 35722043 n s [|r =472 Inr |71 (B — Bj—1) | 1o (0, 7) +
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A3 D=2 32 ] g — g 1) | o st

and since —(n+d) —|n —d|+3+2d = —2n+2d + 3 can be equal to 1, —1 or is < —3,
we deduce that

1Bj+1 — Bj] < /0 Ca(®)||r =2 Inr| 71 (B; — Bj—1) || L (o.r) +

+AGCH (O 2 Inr| ™ oy — aj-1) | = o, dsdlt

where ntadis ‘
Cy(t) = InR|? ifn=d+2
%Hnﬂ iftn>d+3.

And we are led to

|Bi41 — B;1 < 3C5(r)[lr 2| Inr| 7 (8; = Bj—1) ||z (0, 7))+

+A3Cs (1)l I vl e — 1) s o st

where
2(n+d)
R|ln R|r2t+d)  if n=d+1
Cs(r) = \lnR|2r% iftn=d+2
pad+d .
Br—2d=1)(ddT 1) |Inr| ifn>d+3.
In any case, we have Cs(r) < r4+2|Inr|R. We deduce that
Bj+1 — Bi] < 3RrA 2 Tnr||lr= 42 lnr| 71 (85 — Bj—1)l| Lo (0,71 +
(3.76)
HAGRA2 I f||lr =2 |~ ay — 1)l o< o,

Letting C' = max{3, A2}, we deduce from (3.70), (3.71), (3.75) and (3.76) that, for all
J=0

2 Inr| oy — aj| < 2CITRI and v Inr| T B4 — By < 2ICITIRIL (3.77)
We chose R small enough to have 2CR < % and we define
h=ag+r?lnr| >i>0 =2 Inr|Haj — )
and k= fo+ 2| 300 r 2 Inr| TN (B — By)-
We conclude as usual to the continuity of A and k wrt to u, when » < R and we estimate,

for r € [0, R],
|h(r) — 1| < Mr*|Inr| and |k(r)| < Mr*+2|Inr).

Letting a = hr~1"=4 and b} = kr~"~% we have proved (3.42), when n > d + 1.
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(ii) Now, if n = d we verify that Inr verifies the equation

/

a"—l—a—:O.
T

Consequently if we define @ = h|Inr| and b = kr—2?, then (a,b) is a solution of (1.25),
with n = d, if and only if (h, k) verifies

nr|~! - -
{ ! 2Ty 2 22 ) = (1 — f2)h (3.78)

K' 4 22 — [k — fihe? (= Inr) = —p(l - [k

We denote 7(r) = |Inr|. Since

h// +

Mh/ _ (TTQh/)/T_QT_l and K+ —2d + 1k‘/ _ (7’_2d+1k/)’r2d_1,
T T

we consider the following fixed point problem
h =ay+ for t—1r—2 fot sT? ((fg —u(l = fH)h+ fgksfszfl) dsdt

(3.79)
k= Po +fo t24- lft —2d+l ( f (1—fd))k+fdhs2d7') dsdt

We define (v, 5;) by the induction (3.69). Thus ap = 1 and Sy = 0. With the same
estimates for f; a above, there exists R small enough such that we have forall 0 <r < R

A2 4d+-2
(2d + 2)(4d + 2)

2

and |f1 — fol(r) <

lon — ap|(r) < (—Inr).

i co
=

Now, for all j > 1
|aj1 — ayf(r) <

< 32 ay — ol peeqog + Jo £ 2y Ads(—Ins)s¥dsdt|r=4(B; — Bj-1) |l L (jo.))-

We use (—Ins)~! <1 to obtain

3 7,2d+2 2d
Jvj1 = ajl(r) < Zr¥llag = ajoallpeqoa) + +Adm’\ - = Bi-)ll e (po.))-
And
|Bj+1=B5(r / 2= 1/ 3$H7“_2d — Bi—1)ll oo, + Ags” |y —Otj—1HLoo[o,r]> dsdt,
that gives
A2p4d+2

|Bj+1=Bjl(r) <

22| r =248 — B 1) || Lo (jo.7) + Gd+22d+ 2)T||aj — a1 Loo([0,r))-

=~
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We define C' = max{%, AT?I}. And finally, for all 7 > 0 and for all r € [0, R],

o1 — ol oo (o, < 27CTHIR2GHD
(3.80)
and [Ir=24(Bj11 — )|l oo (o,r)) < 27CTH (= In R) R24H20HD),

Now, we chose R small enough to have 2CR?|In R| < 1 and we define (h, k) by

h=a¢+ Z(aj+1 —aj) and k= 7"2er (Bj+1 — Bj)-

§>0 7>0

The convergence of the sums in L>°([0, R]), uniform wrt u is given by the estimate (3.80)
and we conclude to the continuity of A and k wrt u as above. Now we estimate

W(R)=1] < llajr1—ajll ooy and  [k(R)=Bi(R) < B2 [r = (Bj11-81) |l v ((0,)-
>0 7>1

We deduce from (3.80) that
|W(R) —1| < MR?> and |k(R) — Bi(R)| < MR**(—InR),

and this estimate is valid for all » < R, with the same M.

Now we estimate . .
51 :/ tZdl/ sfzdﬂfgsw(—lns)dsdt.
0 0

We have
A2 4d+2 s
|B]_ m(—lnTHSM'F .
We infer that
A2 RAd+2
|k(R) — (id +d2)(2d y (—=InR)| < MR***(—InR),

for another M independent of p and independent of R small enough. Now we define
af = h|lnr| and by =r 2%

and as for n # d, we conclude to (3.42). And we conclude as above to the continuity of
X4 wrt p, for all 0 <7 < R.

3.2 A base defined near infinity.

Now let us turn to a base of solutions of (1.25) defined at +oco.

The propositions 3.4 and 3.5 below are valid in particular for ;4 = 1, and in this case
they give a base of solutions of (1.14). In all what follows, we suppose that d > 1, n > 1.
We distinguish two independent solutions having exponential behaviors at +o0o and two
independent solutions having polynomial behavior at +co0. The four of them form a base
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of solutions.

We will denote
e\/ir e*\/ir
J+ ey = J, = .
T N

We will prove that J, and J_ are the exponentional behaviors at +o00. Let us enonce

Proposition 3.4 If |1 — p| < 1, there exist two solutions of (1.25) defined by there

ezponentional behaviors at +oo, that we denote by (uf',vl'), i = 1 and i = 2. They

are such that they exists some R > 0 independent of the parameter p and such that in
[R, o0

Juff — Jy| + ot — Ty < Mr— by, lub — J_| 4+ [vb —J_| < Mr—tJ_, (3.81)

where M is independent of i, too.

Now, we will suppose that p is sufficiently closed to 1, ie —% <d*(1—p) < % and for
all n > 1 we denote

ny = n?+d*(1 —p).

Let us enonce

Proposition 3.5 If —% <d*(1—p) < %, there exists two solutions of (1.25) defined by
there polynomial behaviors at +oo and denoted by (uf',v!"), i = 3 and i = 4. They are
such that, for some R > 0 and some M > 0 independent of p, they verify, in [R,+0o0]

|l — r| ok | < Mrm e |l — 7| ok T < M2 (3.82)
Proposition 3.6 Denoting Y = (uf',r(ul'), vl r(v!"))! the associated solution of (1.26),
we have that Y} — Y; as pu — 1, in (L>([ro,r1]))*, for all0 < ro < r1, where the notation
Y; is used in place of Y;*.

Before proving the first two propositions, we let x = a + b and y = a — b and we replace
the system (1.25) by the following system verified by (z,y)

/! 2 2
o = s 4 Tty — 2ffa 4 (1 - fe =0 (3.83)
" Yy n24d? 2nd 1— 12 =0 :
y'+ L -y + e+ p(l - £y = 0.
We let )
z(r) :=r2z(r)
Thanks to
x//_’_i/ . Lmzr—%xu
r 4r? ’

we can replace the first equation of (3.83) by

2 2,1

—n® —d° + = 2nd

i — 2%+ i+
T rz

y+2(1— fHi+p(l— f1)@ =0,
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that can be written as

(62\/§T(T%xe—\/§r)/)/ — eVor ((n2+dj—i —(u+2)(1 - fg))r%a: 2ndy>

T

or (3.84)

(72 (rae™ryY = eV (TR — (u 2)(1 - f))rie - 2y

72 s
The second equation of the system (3.83) can be written as

/ 2, 72 2
Yy n+d(1—p 2nd d

that gives
(TQnMJrl(r—nuy)/)/ _ rn;ﬁl( Q”ng; — (1 — fd Tz) )

or (3.85)

(=2t gy = e (2 — (1= £ = )y,
To prove Proposition 3.4 and Proposition 3.5, we are looking for solutions of the
system (3.83) of the form

x=hJy and y = kr"™ or x = hJ_ and y = kr="™#

and we will let limy(h,k) = (1,0) in Proposition 3.4 and limy(h,k) = (0,1) in
Proposition 3.5.

We use (3.84) and (3.85) to infer that (h, k) must verify the following systems,

when (z,y) = (hJy, kr')

(e2V2rp/) = eV2r (q(r)e\/iTh - %kr"“) (3.86)
(r2mt ) = et (=25 T b — (1 = £ — k) '
or, when (z,y) = (hJ_, kr—"™)
(e72V2HY = V2 (q(r)e 2 h — 2y =) (357
(r72n#+1k/)/ — Tfnqul(_anJ h — M(l _ fd T2) r*nu) .

where

D= (w0 1)

In what follows, we will need the following estimates, obtained by an integration by
part. Let v € R and > 0 be given. Then

o(r) = (n” + & -

T s 2.0 s 2y
/ sTe %ds < Ve % forall t > =L (3.88)
f 5 5
and . o st )
oy
o35 g < st7e forallt > R> =+ ify<0
/R steds < { et forallt>R>0 ify>0. (3.89)
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And we will use, for s > Rand t > R

C d? C C
\M\(l—fj)ﬁﬁ, \1—f3—772’ <3 and fg(s)f < 5 (3.90)

where C' is independent of R > 1 and independent of p, provided |p — 1] < 1.
We will fix R > 1, large enough to have (3.88), (3.89) and (3.90), for the desired v and
0 we will have to use.

3.2.1 Proof of Proposition 3.4.

We devide the proof into 3 steps. In Step 1, we construct solutions of (3.83) of the form

(z,y) = (hJy, kr™). In Step 2, we construct solutions of the form (z,y) = (hJ_, kr="). In

the both steps, lim (h, k) = (1,0). In step 3, we conclude the proof of the proposition.
Step 1. The exponentional blowing up behavior.

We prove the following

Lemma 3.2 For all p verifying | — 1| < 1, there exists a solution of (3.86), denoted by
(h1, k1), that is defined in some interval [R, +o00|, where R is independent of the parameter
w. It is continuous wrt the parameter p in the sense that (h,h', k,k")(r) tends to a limit
as | tends to a limit pg, for all v > R. Moreover, the behaviors at +00 are given by

lhi(r) — 1| < Mr=Y and |k (r)] < MeV2rp—m—3 (3.91)
for all v € [R,+oo[ and for some M independent of .
Proof Let R > 0 be given. We rewrite (3.86) as the fixed point problem
h =ao+ [{ g2V It eﬁs(—;%s”“k + q(s)eV2h)dsdt
(3.92)

kE =06+ f}gt—Qnu—l flt% 5"”+1(—28L2€ls_1/26‘/§5h —p(l—f2— Csl—z)s"”k)dsdt.

In what follows, we may choose R as large as necessary, but this choice will be always
valid for all u belonging to the desired range. We will denote each fixed point equation
by

(h,k) = ®(h, k), for (h,k) defined in [R, +o0].

We define a sequence (o, 5;) by the induction

(ajﬁr(chjﬁzl)) _ ((11),( g)j %) (3.93)

Using (3.88), (3.89) and (3.90), we estimate, for r > Ry,

+oo t +oo 1
lar — ag| < C/ 6_2‘@5/ 225 =2 st < C’/ eT2V2_~_4=2,2V2% gy
r R r \/§

that gives
log — ap| < Cr7 1t (3.94)
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In the same way,

r t r
81— Bol < / 2wt / 2nds™ 3/2eV2 dsdt < / gm0 372 o gy
R R R \/§

< 2" s 2 Bty
V2 Jr

that gives
181 — Bo| < dndr—m—5/2eV2r (3.95)

And we estimate, for all j > 1

“+o00 t
aj1 —aj] < / 62\@/5C V20V 573 r(ay — 1) | Lo (Roooh+
+2nds eV |3 eV (B — B 1) Lo (goap At

teo oo 4 ntB /3y
< / (ﬂt 3Jr(ay — ajo1) | oo((rpoop + V22ndt 1™V |pmt eV (5 —Bj_num(m,m[)) dt

that gives
|oji1 = o] < Cr2?|Ir(ey — ej—1)ll Lo (R oo+
(3.96)
5
Fndr eV "2 eV (B = Bi1) || s 1, 4oc)-

And we estimate

"o Ny — ! n,—2 s
|Bj+1 — Bj S/Rt 2 1/R[2nd$ nm3eV? 7 (cj — aj—1) | oo (R, +00]) T

5 5
OB ARV (G~ B, e il

That gives
" —2n,,—1 2 n,—2 \/it
1Bjy1 — Bl < | =" (2nd—\[t #2eV | r(ay — aj—1) || Loo((Ry4oo) T
R 2

1 _u 5 /o
HO MR R (B i)l (oo
And we obtain

|Bj+1 — Bj] < 4nd€\/§r7“_n”_7/2”7"(aj — 1)l oo ((Ry400]) T
(3.97)
+Cr‘”“_12*36\/§”Hr"’ﬁ%e*‘ﬁr(ﬁj - /Bj—l)HLOO([R,—i-oo[)'

We let K = max{2nd, C'} and we deduce from (3.94), (3.95), (3.96) and (3.97) that for
all j >0 o |
||7’(Oéj+1 - O[j)HLoo([R,+ooD < 2 KITIR—J
(3.98)
5 —Vor .o .
and ||’I”7lu+ze V2 (ﬁj+1 - BJ)HL"O([R,-i—oo[) < 2]K]+1R J.
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We chose R large enough to have 2K R~! < 1/2 and we define

h(T‘) =ap+ rt ZjZO T(aj+l - O‘j)(r)
5 5 (3.99)
and  k(r) = o+ eVZrt s S g e VIR (B4 — B))(r).

Thanks to (3.98), the sums converge in L*([R,+oo[). Morover, by its construction,
(h, k) is a solution of the fixed point problem (3.92). Let us remark that an induction
together with (3.96) and (3.97) leads to the continuity wrt the parameter p of o;(r) and

r”“+%e*‘/§rﬂj(r), for all j > 1 and for all » > R, by the Lebesgue Theorem. And since
K is independent of p, we deduce that h(r) and k(r) depend continuously on p, for all
r> R.

We can compute the behaviors at +00. We deduce from (3.98) that for » > R

\h(r) —1| <r'K(1-2KR™ 17!

and that ;
k(r)] < eV~ 3 K(1—2KR )L

This gives the proof of (3.91).
Now we can compute

B =2V f]g e‘/is(—;i/‘és”k + q(s)eﬂsh)ds

K =pr2nl f; s"“(%dsfl/%ﬁsh — (1 — f2)s"k)ds.

So, h'(r) and k'(r) depend continuously on u, too, for all r > R.
This terminates the proof of Lemma 3.2.

Step 2. The exponentional vanishing behavior.
We prove the following

Lemma 3.3 For all p verifyng |u — 1| < 1, there exists a solution of (3.87), denoted by
(ha, k2), that is defined in some interval [R, +0o0[, where R is independent of the parameter
w. It is continuous wrt the parameter p in the sense that (h,h', k,k')(r) tends to a limit
as p tends to a limit ug. Moreover, its behavior at +o0 is given by

lha(r) — 1] < MY and  |ko(r)| < Me V2rpmu—s (3.100)
for allr € [R, 400 and for some M independent of p.
Proof We return to the system (3.87) and we rewrite it as the fixed point problem
h =ao+ [{ 2V fioo e*ﬁs(—%s*”“k + q(s)e V2h)dsdt
k = 06y+ f;oo 2=l fioo s‘"““(—?—fs‘l/ze_ﬁsh —p(l— fd2 - f—j)s‘””k}dsdt.

(3.101)
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We define (aj, 8;) for all j > 0 by the induction (3.93) again.
Using (3.88), (3.89) and (3.90), we estimate

400 “+00 400
lan — | < / ezﬁt/ Cs™2e 2V dsqt < C/ t2dt
r t \/5 r

that gives
lag — ap| < Cr 1t (3.102)
And . .
181 — Bol < / t2"“_1/ s 3290 de V25 st
T t
+
< \%/ Oot”“_5/22nde_ﬁtdt
T

that gives

81 — Bol < Ande™VFym=0/2, (3.103)
And for all j > 1

+o00o +oo .
lojr1 — aj] < / 62ﬁt/t (2nds e 225 ||pmnt 3 V() — Bi—1)l Lo (R 400 T
T

+C573e7 2V |r(ay — aj1)|| oo (R poop ) dsdl
+OO 4nd _ _ _ 2
< / A Tt e T e (B = i)l e it

+o0 C
T / TS0 M (g — )l o)

and we are led to

na,.— —n,+3 r
gt — ] < A3 2V (B — B )| oo (oo +
(3.104)

—l—%T_QHT(O‘j — aj—l) HL°°([R’+°°D‘

Now, we estimate

+oo2 1 oo 1 7/2 —/2.
Byt — 65| < / 2 / s s~ 2V (o — o) | pe(rtoo)
T

+CS_4_%e—\/§sHr—nu—‘r%eﬁr(ﬂj _ /Bj—l) HLOO([R,—i-oo[))det’
that gives

O o 1 4nd s
|Bj+1 — By </ £ 1(ﬁt Hoze ﬁtHT(O‘j — 1)l ((R400) T+

2C —n, =i _ —n,+2 T
+\ﬁt LT3 e ﬂt”r “+2€\/§ (ﬁj_5j71)||L°°([R,+OOD)dt'
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We are led to

|Bj+1 — Bj| < 4nd7"”“*7/267‘/§r”7“(04j — 1)l Lo ((R400))
(3.105)
1
20 eV |t 3 VI (B Bi—1)l Lo (R +o00]) -

Letting R > 1 and K = max{4nd,2C}, we deduce from (3.102), (3.103), (3.104) and
(3.105) that for all j > 0,

Ir(aji1 — @)l oo ((R oo < 2V KITIRT

(3.106)
5 . . .
and  [|[r= 2V (8510 = B))l| oo (R soc) < 2EITIRT.
We chose R large enough to have 2K R~ < 1/2 and we define
h=1+ r1 ZjZO ’I“(Oéj+1 — Oéj)
(3.107)

and = eV N eV (B4 — ).

Moreover, by its construction, (h, k) is a solution of (3.101). As in Step 1, an induction
together with (3.104) and (3.105) leads to the continuity wrt the parameter p of a; and

of r‘"ue‘@”ﬁj, for all j > 1. And (3.106) gives the continuity of h(r) and k(r) wrt u,
for all » > R. Now let us verify the behaviors at +00. We use (3.106) to obtain, for all
r >R,

Ih(R) — 1] < r 'K(1—2KR™Y) " and |k(R)| < e VZrm 5 K(1 - 2KR™ )L,

This gives (3.100).
Now we write

W= eV . e*ﬁs(—ﬁ%s*”k + q(s)e V2 h)dsdt

= p2n—l f—:oo s—”+1(2:—2ds_1/26_‘/§sh —u(l— f3s™"k)dsdt

and we deduce that A’ and k" are continuous wrt pu, too.
This terminates the proof of Lemma 3.3.

Step 3 Let us conclude the proof of Proposition 3.4.

To construct the solution (uf,v{’), we first denote, for r € [R, 4+o0],

x1=hiJr and y; = kyr’™

where R, (h1,k1) are defined in Lemma 3.2. Thus, (x1,y1) is a solution of (3.83). By
(3.91), we obtain, with the same M independent of p and for all r € [R, +o0]

lzy — Jo| < Mr~tJy and |yi| < MJyr2 (3.108)

that there is a unique prolongation of (x1,y;) as a solution of (3.83) defined in 0, 4o0|.
And denoting also this prolongation by (z1,y1) we have that (z1,2),y1,¥}) is continuous

39



wrt p, in (L>([ro,71]))?, for all r; > g > 0.
Now we define
ui = (z1+y1)/2 and o} = (21 —y1)/2

to obtain that (uf,v]) is a solution of (1.25) and we use (3.108) to infer that in [R, 00|
uff — T+ o) = | < Crmty

with C independent of u. and we have that Y{(r) — Y{}(r) as p — 1, for all » > 0 in
(L>®([ro,m1]))%, for all 0 < 7o < 71.

Now, to construct the solution (ub,v4), we first denote, for r € [R, +o0],
p

To = hoJ_ and yo = kor™

where R, (ha,k2) are defined in Lemma 3.3. By (3.100), we obtain, with the same M
independent of p and for all r € [R, +00]

lzo — J_| < Mr~'J_ and |yo| < Me V2ry—2, (3.109)
We follow the same pattern of proof as for (uf, v)'). We denote
uy = (v2+y2)/2 and vy = (v2 —y2)/2
and we deduce that, in [R, +00]

lub —J_| < MJ_r~' and |o} —J_| < MJ_r

The prolongation of (uf,v) as a solution of (1.25) in ]0, 40|, and the continuity of this
solution wrt p follow from the same principle as above.

This terminates the proof of Proposition 3.4.

3.2.2 Proof of Proposition 3.5.

We are looking for solutions of the system (3.83) of the form
x = hJy and y = kr™ or x = hJ_ and y = kr~", with lim . (h, k) = (0,1).

Step 1 the polynomial blowing up behavior at +oc.
We are looking for (z,y) = (hJy, kr"™+), with limy. h = 0 and limy. &k = 1. We prove
the following

Lemma 3.4 For all pu verifyng —% < d*(1 — p) < %, there exists a solution of (3.86),
denoted by (hs, ks), that is defined in some interval [R,+oo[, where R is independent of
the parameter . It is continuous wrt the parameter p in the sense that (h,h' k, k') (r)
tends to a limit as p tends to a limit ug, for all r € [R,+oo[. Moreover, its behavior at
+o00 is given by

lhs(r)| < Me™VZr™=s  and |ks(r) — 1] < Mr~! (3.110)

for all r € [R,+o0[ and for some M independent of .
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Proof First, let us consider the case n > 2.
Let R > 0 be given. We rewrite (3.86) as the fixed point problem

h =ap+ f;oo e—2V2 flt% eﬁs(—;%s”“k + q(s)e\/ﬁsh)dsdt

k = 06o+ f—zoo t—2nu—1 f}t% Sn“+1(—28L2dS_1/26\/§8h _ N(l _ fg _ ‘j—;)s"“k)dsdt.
(3.111)
We define a sequence (a;, 5;) by the induction

(aji1, Bjr1) = ®(ay, B))
] (a0, B0) = (0, 1)j. ’ (3.112)

Using (3.88), (3.89) and (3.90), we estimate, for r > R,

+oo t
lan — ap] < / eQﬁt/ eV252nds™ 32 dsdt
r R

+oo
< 2nd / eiQﬂtit”“fg/Qeﬁtdt
- . V2

that gives
oy — a| < 2ndr™e 326~V (3.113)

Now, using (3.90), we obtain

+oo t
|81 — Bol S/ tQ”“l/ st IO g4 dsdt.
r R

Let us remark that when n > 2, we have 2n, — 3 > —1. Indeed, we have supposed that
d?|1 — p| < 1/2. So, when n > 2, we have 4ni > 14, so 2n, > 3 and we obtain

C +oco ) C
_ < t_ ?’L‘u‘—lt2nu—2dt < —2‘
B = Bol = 271#_2/7“ - 4nu—4T

that gives, when n > 2
C

181 — Bo| < —r™7.

. (3.114)

We estimate, for j > 1
“+o0 2\/5 t \/5 54
|aji1 — oyl S/ e t/R eV (2nds™ 27 |r (B — Bj—1)l| oo (R, 400 d5+
T

+Cs”“*2*% Hrfn“+%eﬁr(aj — aj—l)HL°°([R,+oo[)dS)dt

too dnd ,, _ 2C ,, 1. _poi3 /5
S/T e ﬂt(%t " 5/2"7'(/6]'_63'—1)”LOO([R,Jroo[)'i_Et O laias A8 (ej—aj—1) || Loo (R 4-00]) ) L.

And we obtain

|aj1 — | < Andr™e=52e=V211(8; — Bi_1) || Lo (R4 oeD +
(3.115)
+2Ce VI3 ||pmta eV (o — 1)l oo ([R,4-00])-
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Now we estimate

+o0 t 3
Bj+1 — Bl < / t_Q”“_l/R s 2nds" e 2 eV (0 — o 1) | Lo (R ereo)
T

F205™ (85 — Bj1) | e (e sl
Since 2n, — 3 > 0, we obtain

tQ”M_Q

‘6]+1—ﬁj’ S/ t 2n,,— 12nd7_2”7,,*n,u+ \[T‘(a — o 1)||L°° [R+OODdt+
ny
T g PP
o e e LR P
that gives
nd a3 3 2C _
‘ﬁj-l—l—ﬁj‘ < m’" 2||7’ “+2€\/§ (aj_aj—l)HL"O([R,+ooD+m 3”7’( —Bj— 1)z [R+OOD)
u Iz

We use nz > 7/2 to obtain

43
1Bj+1 = Bj| < 552l "t eV (a — aj)l|pos (R, ool +
(3.116)

+3(2\2/(573) =3 (8; = Bi=1)ll Lo (R +oo])-

We let K = max{2f 5 3(2\[ 5 ,4nd, 2C'} and we deduce from (3.113), (3.114), (3.115)
and (3.116) that for all » > R and for all j > 0, we have

3 N
P~ %2 eV (g — )| poo((Rotoop) < 2V KITIRT
(3.117)

and  [[r(Bj41 — Bj) || Lo ((Rtoop < P KITIRT.

We chose R large enough to have also 2KR~! < %
Now we may define (hg, k3) by

hy(r) = e V2rmes N i eV (a5 —ay) and ka(r) = 141ty r(By41 — By).
Jj=0 320
To prove (3.110), we write, for r € [R, 4o00|
| |
VP E hg(r)] < 3 I 2 e (0 = a1l (ool
Jj=0

that gives, for r > R,
|ha(r)| < Me™V2pmu=s,

And we write

rlks(r) —1] < K(1 —2KR™1)~1
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that gives
|k3(R) — 1| < Mr~1,

Thus, we obtain (3.110).
The continuity of «;, f;, of hg and k3 and further of h% and k% wrt the parameter p
follows as in the proof of Lemma 3.2. This terminates the proof of Lemma 3.4, for n > 2.

Now, when n = 1, we use Theorem 1.4 (iii) to see that only the case p > 1 and u closed
to 1 is of interest. In this case, letting 0 < d?(u — 1) < 1/2, we have \/1/2 < n, < 1.
Let us indicate what changes in the proof above. We keep using the fixed point problem
(3.111). The inequalities (3.113) and (3.115) remain inchanged. And since now

V1/2 < n, <1,
we estimate

“+o00 t
|61 — Bol < / =2l / 20 s%" 3 dsdt

R

and since 2n, — 3 < —1 and since R > 1, that gives (we use 5?3 < 571 to avoid to
divise by 2n,, — 2, for the sake of the continuity when y — 1, that implies n, — 1)

|81 — Pol < QT_Q"“ Inr
My

and that gives
81 — Bo| < CvV2r2™ Inr. (3.118)

And
“+o0 t 3

Bis1 — 5] < / 2 /R st 2nds™ A3V (0 — 05 1) | (oo
s

+2C5™ 2 |[r(8; — Bj-1)l| Lo (1,400 st

As above, we use R > 1 and we obtain
oo 2n,—1 3 V2
1Bj+1 — b5 < / t=2 2nd Int||lr="e T2 eV (o — 1) || oo ([, 400 dEF
T

+2C I t|r(B; — Bj—1)ll Lo (R o+oo)dt
that gives

nd _ _ 3
1Bj+1— B4 < o 20 et 2 V2 (o — 1)l oo ([R,4o0))
n

C o
= (8 — B-1)ll e+
n

We use 2n, > V2 to obtain

1841 — Bl < ndv2r=Y2Inr||lr= eV (0 — 1) || oo (R oo +
(3.119)

+CV2r V2 Inr||r(B) — Bj—1) | oo (roo)))-
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We let K = max{C+/2,ndv2}. We deduce from (3.113), (3.115), (3.118) and (3.119)
that

=2 V2 (g1 — )| (oo < P ETTH RV In R
(3.120)
and  [[r(8; = Bj—1)l| 1 (R ree < P KIH(RTVZ I R)I

We chose R large enough to have 2K RV2HIInR < % and we define
hg(?“) = e_ﬂrrn”_% Z ’r_”ﬂ""%eﬁr(ajqu — Oéj) and k‘3(1") =1+ ’l°_1 Z T‘(ﬁj+1 — ,6)])
>0 >0

and we conclude that the proof of Lemma 3.4, we have done above for n > 2, works also
when n = 1.
This terminates the proof of Lemma 3.4.

Step 2 The polynomial vanishing behavior at +oo.
We are looking for (z,y) = (hJ_, kr="#), with lim; . h = 0 and lim; . k = 1. We prove
the following

Lemma 3.5 For all u verifyng —% < d*(1—p) < %, there exists a solution of (3.87),
denoted by (hg, ks), that is defined in some interval [R,+oo[, where R is independent of
the parameter p. It is continuous wrt the parameter u in the sense that (h,h' k,k")(r)
tends to a limit as p tends to a limit pug. Moreover, its behavior at +0o are given by

|ha(r)] < MeV¥r—m=2  qnd |ka(r) — 1| < Mr~! (3.121)
for allr € [R,4+o0| and for some M independent of p.
Proof Let R > 0 be given. We rewrite (3.87) as the fixed point problem

h =ap+ f]; e2V2t ffroo e‘ﬁs(—%s_”ﬂk + q(s)e_‘/ish)dsdt

k =B+ floo 2=l fioo 5‘”““(%‘15_1/26_\5511 —u(l— f2— ﬁ—;)s_"ﬂkz)dsdt.
(3.122)
We define a sequence (o, §;) by the induction (3.112) again. Using (3.88), (3.89) and
(3.90), we estimate, for r > R,

r +o0o r
lan — ap| < / eQﬂt/ e~ V2o dsmu=3/2 s dt < 2nd/ ezﬂtit_”“_gme_ﬁtdt
R 3 R V2

that gives
lor — ap| < Andy =312V (3.123)

Now, using (3.90), we obtain

181 — Bo| < / th“_l/ s 30 dsdt < / =3 dt.
T t r 2nu + 2
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that gives

C

81— ol < 7% (3.124)

We estimate, for j > 1

T “+o00

o=l < [ (B s (B = By e o
t
—i—CSin“*%ei\/is”T’n“Jr%ei\/iT(Ozj — aj—l)”L°°([R,+oo[)d3)dt
" o dnd 2C | . 13 _ /3

< /R ety =5/2 (\/§||7”(5j = Bj—llLoe ([R4o0)) T ﬁ”r ntzemV? (o — ajl)HLOO([R,-i-oo[)) dt.
And we obtain

g1 — o] < dndr= 52V 1 (8; = By 1)l| oo (400 T

(3.125)

+2C eV 2= 2|t s V2 () — )| oo (R seD-

Now we estimate

Feo 2 1 oo 2 3 S V2
|Bi+1 — Bj] < / e /t (2nds ™22 [Pt 2 eV (o — ajo1) || oo (R, 4o0)) +
T

+Cs™ 2" e (B = Bi—1) || Loe (100 ) dsdt.
We deduce that

—2n,,—2

oo _ t 3 _
B =Bl < [ et e e (ay — ag e+
r n

400 9 1t_2n“_3
C T ————dt i — Bi_ o .
| s 3785 = Bl o)
And, since n,, > 0,

3 —V2r
841 — B5] < ndr=2||lret2e= V2 (o — 1) Loo ([R,400)) T
(3.126)

+Gr 31 (8) = Bi—1)ll Lo (1R 4ol

We let K = max{4nd,2C} and (3.123), (3.124), (3.125) and (3.126) give that for all
r>R ,
[t 2e ™2 (a1 = o)l oe(rorocp) < PKITRT

i 177 i 3.127
and I7(Bj+1 = Bi)ll Lo ((Rytoo) < 2VKITTR™I ( )

We chose R large enough to have 2K R~ < 1/2 and we define, for r > R

hya(r) = Ot P, Z r”“+%e_\/§T(aj —oj—1) and kg(r) =1+ ! Z r(Bj+1 — Bj)-
Jj=>0 Jj>0

45



Now we deduce that for all » > R,
r”“+%6_‘/§r|h4(r)| < K(1- QKR_I/Q)_1

and
rlky(r) — 1] < K(1 —2KR™Y/2)71,

We deduce the estimate (3.121), where M is independent of p and r.

Moreover, the continuity of (hg, h}, k4, k) (r) wrt p, for all » > R follows from (3.127) by
the same proof as for Lemma 3.2.

This terminates the proof of Lemma 3.5.

Step 3 The proof of Proposition 3.5.
To construct the solution (uf,v5), we first denote, for r € [R, +o0],

x3 = hgJy and y3 = ksr’™

where R, (hs,ks) are defined in Lemma 3.4. Thus, (z3,ys) is a solution of (3.83). By
(3.110), we obtain, with the same M independent of u and for all r € [R, 400

lzg] < Mr™ =2 and |y —r™| < Myl (3.128)

Moreover, in view of the properties of (h, k), we have that (x3, 2%, y3,y5)(r) is continuous
wrt p, for all r > R.
Now, exactly as in the proof of Proposition 3.4, we have a extension of of (z3,y3) as a
solution of (3.83) defined in ]0,4+o00[. And denoting also this extension by (x3,y3) we
have that (3, %, ys,y4) is continuous wrt p, in (L>([rg,71]))?, for all r; > o > 0.
Now we define

uf = (x3+ys3)/2 and v§ = (z3—ys3)/2

to obtain that (uf,v%) is a solution of (1.25) and to prove that in [R, +oo]
jub — ™) < Crmtand o 4| < Ot

with C independent of p and that Y§' — Y3 as p — 1 in (L>([ro,m1]))%, for all
0< 79 <.

Now, to construct the solution (u},v}), we first denote, for r € [R, +o0],
xrg=hgJ_ and yy4= kar— "

where R, (ha4,ks) is defined in Lemma 3.5. By (3.121), we obtain, with the same M
independent of p and for all r € [R, +o00]

|zq| < Mr~™=2  and lyg —r— ™| < My~ (3.129)
We follow the same pattern of proof as for (uf, v)'). We denote

ug:($4+y4)/2 and vf=($4—y4)/2
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and we deduce that, in [R, +00]
lulf — ™) < Mr~™~1 and  |off 47" < MyTe L

The prolongation of (uf,v}) as a solution of (1.25) in ]0, 40|, and the continuity of this
solution wrt p follow from the same principle as above.
This terminates the proof of Proposition 3.5.

Proof of Proposition 3.6. The arguments are exactly the same as in the proof of
Proposition 3.3.

4 Proof of Theorem 1.5.

Concerning the solutions of (1.14), we have proved in [1] that the least behavior at 0
is related to the exponentially increasing behavior at +o0o and that the exponentially
decreasing behavior at +oo is related to the stronger blowing up behavior at 0. Let us
quote it.

Theorem 4.6 (Theorem 1.6 in [1]). The solution (a1,by), that is the solution of (1.14)
defined in Proposition 3.2, for u =1, has the exponentially blowing up behavior at 400,
ie C(J4,Jy), for some C > 0. And the solution (uz,ve) of (1.14), that is defined in
Proposition 3.4, for n = 1, has the most blowing up behavior at 0, ie b > Cr—""¢, for
some C' > 0.

We will need also Theorem 1.1. Let us prove Theorem 1.5.

Proof of (i). Let d > 1 and n > 1. Let us suppose that pu(e) — 1, as ¢ — 0.
We will denote p instead of p(e) and we will use the solutions X!, i = 1,...,4 defined

near 0 in Propositions 3.2 and 3.1 and the solutions Yi”, i =1,...,4 defined near 400 in
Propositions 3.4 and 3.5. Recall that they tend respectively to X; and Y;, as u — 1.
Firstly, since Y, i = 1,...,4 form a base of solutions, we can write

4

b Py

XI_E CyY;
Jj=1

Each real number C]‘-L can be computed by means of a 4 x 4 determinant, for any fixed
r > 0, and consequently, since X{'(r) and each Yj“ (r) has a limit as u — 1, then, each
C’]‘-L has a limit too. And by Theorem 4.6, X7 has the exponentional blowing up behavior
at +oo and we deduce that Cy # 0, where C; = lim,,; CY'. Consequently, C}" # 0,
when p is closed to 1, and we can choose X} to represent a solution of (1.24) having the
exponentially blowing up behavior at +oo instead of Y{".

So, we can write X} as a combination of X} and Y}, i = 2,3,4. And consequently, we

write
4

X4 =Dixt+> Diyt (4.130)
j=2
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and, as explained above, each real number D;-‘ has a limit as y — 1. We are going to
prove that DY — 0 as p — 1.
Let (a,b) be an eigenvector associated to pu, ie (a,b) is any solution of (1.24) that is
defined at 0. We let X* = (a,ra’,b,7t')! the associated solution of (1.26). Since (a, b) is
defined at 0, there exists two real numbers (AY, AY) # (0,0) such that

XH=APXY{ + AL XY (4.131)
Now, the condition a(é) = b(%) = 0 leads us to the system

Afaf(3) + Afa5(2) =0

3
AROE (L) + ABbE(L) = 0.
Thus if we denote by A the determinant

A= (W) - B,

we have, A = 0.
We obtain firstly that the corresponding real eigenspace is one dimensional.

Now, we deduce from (4.130) that the determinant A defined above is
4
a’f(%) ijz Df“g(%)
A =
4
W) X Divi(2)
And we have proved above that A = 0. This implies either that there exists some real
number k. such that the first column of A is obtained by multiplying the second column
by k., either the second column is null. Let us prove that the first possibility cannot be
true.

In view of Propositions 3.4 and 3.5, there exists some R > 0 and some M > 0, the both
being independent of p, such that for all » > R

lai (r) — CYJ4| < MJJ’,T'_%’ bl (r) — CtJ, | < MJJFT_%,
|Z?:2 Dyuy(’l“) — DgJ_ — Dé‘rnu _ Dir—n” < M,’,.TLH—I
and
|Z?:2 Df”?(r) — DgJ_ =+ Dgrn# + DZT—”;L’ < MT’”*L_I,
And we apply these estimates for » = 1/¢, to obtain, for all £ small enough
V2 V2 vz /3
o (1) - Cfete®| < Mo, pi(d) - Cfiete®| < Mee?,
-3
S, Diu (L) — DYe ™ e — Dhemn — Dlfemn| < Memt!
and

—v2 1 _ —
Sty Diuk (L) — Dhe = e2 4+ Dhe™™ 4 Dl | < M1,
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M being independent of p and of e. And, as seen above Ct' — Cy > 0, as € — 0.
Thus, the first possibility to have A = 0 implies that for € small enough and for some M
independent of u and £ and for some real number k.,

N

(Dg‘e_s €3 + DEe™"n 4 Dife™n))
1

(DEe "2 + Dle=m 4 Dlenw))

k\J\»—‘ w\»—\
/-\

+ k.
+ ke

\as

3

|C“52e%— -(Dhe f{:ﬂ—D“ T — Dhemn)

|C“5%e§ — ke (D“e_TﬁS% + Die="™ 4 Dife™)| < M
<M

Let us prove that this cannot occur.

Recall that p stands for p(e) and that it tends to 1, as e tends to 0, and that each D!’

3
tends to a real limit as p tends to 1. Thus, if (D, DY) 4 (0,0), the term Dhe = “e3 is
very small behind D5e™"# 4+ D™ and consequently we can write

1

(Clese? — ko(Dlew + Die)| < Med(e
|Clie3e S + ko (Dhe—w + Die™)| < Meb (e

1
2e
1

2e

for another M independent of € and of u.
Soustraying the both double inequations (4.132) we obtain

.
|ke|(1 — Me2)|Die ™ 4+ Dl | < Mee'e .

Now we use this inequality into (4.132) and, since C1" — C7 > 0, we deduce that

1

§eg < Mleeg,
for some M; independent of € and of u. This contradiction proves that
(D§, DY) — (0,0) as pu— 1.
Further, we return to (4.130) and we let  — 1. We obtain
X3 =D1X1 + D5Ys.

But we know, by Proposition 3.1 (that we use for y = 1), that

A§T|n—d|+2d+2

las(r) — rln—d|| < Myln—di+2, |b3(r) — @ nind 2)2’ < Myln—di+2d+.
2
’al(T) — (3d+ +124d ’ d|)2,r,n+3d+2‘ < ]\4747L+3d+47 ‘bl(T) _ Tn+d’ < Mrn+d+2
n —|n—

and consequently
‘bg(T‘) — D1b1 (’f’)’ S MTn+d.

But we know by Proposition 4.6 that (ug,v2) have the most blowing up behavior at 0, ie
there exists C' > 0 such that
bo(r)| > Cr—

So we cannot have X3 = D1 X1+ D>Y5. We have proved that the first column of A cannot
be obtained by multiplying the second column by a real number k..
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So we are led to examine the second possibility to have A = 0, that is

In view of Propositions 3.4 and 3.5 we can deduce from 2?22 D;‘ ué‘ (%) = 0 that
1 1
|DYJ_(=) + De™" + Dije™| < M6%|D’;J,(f) + DEe ™ 4 Die™|,
5 5

where M is independent of y and of €.
This condition implies that D’; — 0 as ¢ — 0. And, more precisely, we can give the

estimate ]
IDY| < Mem (7 + J-(2), (4.133)

where M is independent of € and pu.
Returning to (4.130) and letting p — 1, we are led to

X3 — D1X1 = DsYs 4+ D4Yy, (4134)

that is bounded at 400 and bounded at 0. We deduce that if p(e) — 1, then there exists
a bounded solution of (1.14). If n > 2, by Theorem 1.1. This terminates the proof of (i).

Proof of (iv). Let us prove (iv) and we will be able to deduce (ii) from (iv). Let
us suppose that there exists a bounded solution of (1.14). It is true for n = 1. From
Lemma 1.1, we know that the first eigenvalue tends to 1. We proved in (i) just above
that if u(e) — 1, then the eigenspace associated to u(e) is one dimensional and that a
base of this eigenspace, given by (4.131) can be written as

XP = (A + ALDIYXI 4 AB(XE — DEXIY). (4.135)
Denoting A} = A} + AYDY, we may suppose that
max{A¥, AL} =1
and, since (A%, AL) tends to a limit denoted by (A1, A3) as pu — 1, we have that
XF = A1 X1 + A3(X3 — D1 X)), max{A;, A3} = 1. (4.136)
The condition a“(%) = 0 leads to
A} (2) = — A 2) - Daf ().

We use (4.130) and in view of the behaviors at +oo proved in Propositions 3.4, 3.5 and
Theorem 4.6, we infer that the principal parts as ¢ — 0 are

~ 1 1
MO (2) = —AB(DYI-(2) + D™ + Dje"),
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Since |A4| < 1 and since each D;‘ has a finite limit, we deduce that A¥ — 0, as & — 0.
And we can even give this precision, in view of (4.133)

5] < MU, (D) (D) + ™) (1137)

for some M idependent of € and p.
So, A1 = 0 and we can conclude from (4.136) that

X“*)Xg*Dle as €—0

and since we know from (4.134) that X3 — D; X, is bounded at +o00, we have proved that
the limit of the eigenvector is bounded at 400 and we have also that

X* — DYoo +D4sYy, as e — 0. (4.138)
Now, let us denote the eigenvector
Xt = (a" r(a"), b r(")) and Xz— D1X; = (a,rd,b,rt')
and let us prove that
JiE (1= )@ — a)dr + [ r(1— f2) (" — b)2dr — 0, ase 0. (4.139)

The convergence of the integral on [0, R], for all R > 0 is clear. And let us recall that for
r large, 0 < 1 — f2 < Cr=2. More, we use (4.135) to write

o = Al + Aol — DY)
and we use (4.130) to deduce that
at = Aot + AY(DYub + DYl + Diuly).

In view of (4.133) and of (4.137) and in view of the behaviors at +oo of af and uf, we
deduce that, for R < r < 1/e, R large and valid for all p,

At + 45D < M (D) )+ )
for some M independent of € and p. We deduce that for R large enough and for ¢ < 1/R,
/}j r(1— f2)| Al + AL DEWS 2dr — 0 as e — 0. (4.140)
And (4.138) gives a = Daug + Dyuy. We write

a—a = Allal'+ AL DY al+ A% (D (ul — ug) + DY (u}f — us) + (DY — Da)ug + (DY — Dy)uy))
Since DY — Dy — 0, D} — Dy — 0, uff —usg — 0, uh —uz — 0 and |uf] < MJ_,
luf| < Mr_”“ lug| < MJ_, |us| < Mr~" we conclude by the Lebesgue Theorem that

1 -
lime 0 [ 7(1 — f7)|A5]| DY (uh — uz) + DY (uf — ug) + (Dy — Da)us+ (4141)
141

+(D% — Dy)uy)?dr = 0.
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And we have exactly the same estimate for b* — b.

We deduce (4.139).

But combining the system (1.14) verifyed by (a,b) and the system (1.25) verified by
(a*,b*) we obtain (letting n = 1)

Ji Gty = a2+ (@) = V)2 + U 0 = )2 4 -

r2

+f2(a" — a)* + f2(b" — b)?] dr—ufo r(1—f3) ((a" — a)* + (b* — b)?) dr+

u—1) fo r(1— f2) ((a" — a)a + (b* — b)b) dr.

We use (4.139) and the Lebesgue Theorem as above to deduce that the rhs tends to 0, as
¢ tends to 0. Consequently, the lhs tends to 0, too. Combining this result with (4.139)
we infer that

J& 7 (@) =) 4 (0 = V) + (@ — a)? + (b — b)?) dr+
(4.142)

+f0(aua (b# b))dr—>0 as € — 0.

T T
If we return to the complex notation, ie

WM = ei(n—d)eau + ei(n—l—d)@bu and w = ei(n—dwa + ei(n—l—d)@b

we just proved that
[wH = wll g0, 1) —0 ase—0,

that terminates the proof of (iv).

Proof of (ii). Let us prove that at most one eigenvalue p can tend to 1. If p and fi
are two eigenvalues, then we have

1

(=) [ (1= lata + 95 )dr =0
0

where (a,b) and (a, b) are solutions of (1.24), respectively for x and for ji, and (a,b) and
(a, b) are defined at r = 0. Since r(1— fd)(|a|+|b|) < Mr—2, (4 139) gives the convergence

of (r(1— fd))QG”X[oé] to (r(1 — f3))2a and of (r(1 — fd))Qqu[O,g] o (r(1— £3))2b in
L?(]0, +00[). So we obtain that

im [ r(1— f2)(a " + o) dr = /m r(1— f2)(a® + b*)dr. (4.143)
0

e—0 0

Since the limit is not zero, we deduce that for € small enough

m |

/ r(1 = f3)(a"a" + b*o*)dr # 0.
0
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So if p and [ tend to 1 as € — 0, then u = [i.
We have proved (ii).

Proof of (iii). Let n be given. Let us recall that the operator 7 !C is compact and
its restriction to H,, 4 is compact too. By the standard theory of compact operators, the
eigenvalues 1/u are bounded and they cannot have any accumulation point except 0. We
can deduce there is at most a finite number of eigenvalues x in ]0,1[. So we can choose
the same C' and the same ¢ for all these eigenvalues, in order to have 0 < 1 — pu(e) < C
for all € < g9. By Theorem 1.4 (iv), there exists a finite number of n for which we have
some eigenvalues less than 1. So we can chose the same g9 and the same C for all the
eigenvalues less than 1 and for all n. Now, for n > d and for a given ¢, n — my, 4(¢) is
clearly increasing. So, we chose the same C' and the same ¢y for every n > 2d — 1 and
very eigenvalue p(e). Finally, we can chose some C' and some gy independent of n and
independent of the eigenvalue pu(e).

This terminates the proof of Theorem 1.5.

5 The proof of Theorem 1.2.

There exists a Hilbertian base ({;);je.s of H, such that

< CCZ',C]' >(L2><L2)(B(0,1)): 0 for 1 75] and < CCJ',C]' >(L2><L2)(B(0,1)): 1.

If we denote by p; the eigenvalue associated to (j, by Theorem 1.5 there exists some C' > 0
independent of ¢ and independent of the eigenvalue p; and some ¢q also independent of
i; such that

1—pie) <—=C or 1—pjle)>C foralle < ey.

We define the subsets I, and I_ of J by j € I if pj > 1 and j € I, if u; < 1. We
define (W), the subspace of W+ spanned by (¢j)jer, and (W)_ spanned by (;)jer_-
We divide the proof of Theorem 1.2 into two steps.

In Step 1, we prove the following inequality, for w € H N ((WL)+ U (WJ-),) ,

| < Lew,w >I12(B(0,1)) | > M < Cw,w > 12(B(0,1)) (5.144)
In Step 2, we prove (1.4), (1.6), (1.5) and (1.7).

Step 1
Let w =", (ane™ ™ +bye™?) + ag, belonging to H N (W), UWE).).

We write
W = Z ajCj.
e
From the definition of ({;);jcs, we infer that

Tw=) a;uCq;

jeJ
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and consequently

Ew_za] - Ky CC]a

jeJ

that gives

< Lew,w >pr2p Za (1 —py) <CG, ¢ >
jeJ

Ifwe (W), a; =0 unless j € I,. We deduce that

< Lew,w >r2poa) S —C < Cw,w >r2p0,) -
Ifwe (Wh)_, a; =0 unless j € I_. We deduce that

< Lew,w >12p0,1)> C < Cw,w >r2(B(0,1)) -

In any case, we have (5.144).

Step 2
We consider that w € (W) or w € (W+)_ and by Step 1 we have (5.144).
But we have
< Lew,w >L2(B(0,1)):< h,w >L2(B(O,1)) . (5145)

First, we write the Cauchy-Schwartz inequality
| < h,w >1250,0)) | < lle™ V1= fwllizsoayllev/ (T = £2) T hll2soay.  (5.146)
We deduce from (5.145) together with (5.144) that
| < hyw>r2po1)) | =M < Cw,w >r20B(0,1)) -

We use (5.146) to deduce that
1 2
< Cw,w >12(B0,1) < Ve / r—-s 72 |h|2dr. (5.147)
But since £ = =T 4 C, we use (5.145) to write
< Tw,w >r2Bo,1)= — < hsw >12(B(0,1) + < Cw,w >r2(B(0,1)) -
Using (5.146) again, that gives

1
2 2

1 € 2
< Tw,w >L2( (0 1))<< CW w >L2(B(0 1)) (/0 Tl — f2 ‘h|2d’f’> + < C(U,(A) >L2(B(0,1))

and using (5.147), we obtain
2

1_2

1
< Tw,w >L2(B(0,1)< (M + M~ )/ |h| dr.
0
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Now in view of (1.28) and (1.27), we have that lim, o(1 — f2(r))(1 + %) = 1 and
lim, 4+ 00(1 — f3(r))(1 +r?) = d?, and this is a positive function in [0, +0o[. We deduce
that there exists some C' > 0 such that 1 — f3(r) > C/(1 +r?), for all 7 > 0. So we use

2

9 €
with C independent of € to obtain
1
<Tw,w >L2(B(0,1))§ M/ 7’(82 + T2)|h|2d7“, (5149)
0

for some other M, independent of €. That gives in particular

/ IV (ew)Pdx < M/1 (g% 4 r%)|h|*dr.
(0,1) 0
We have proved (1.5).
Now, we use (5.148) in (5.147) to obtain
Lo 2 boa o
/0 kel drgM/O r(e2 + r2)||2dr. (5.150)
Thus we have proved (1.4).

Now, let us recall that

d)? n+d an + by |?
< TW’R,W’R >L2(B(0 1)= Z/ <T”an’2 + T‘b/ ‘2 (7’)’(1”’2 !‘b ’2 ’r‘f ) dr+

n>1

1 2
d
~|—/ (rlag|® + . |ao|? + 27 f4|ao|?)dr
0

and that

—d 2 d 2 n_bn2
< Tiwg, iwr >12(B(0,1)= Z/ (’r’|an‘2+r|b’ ’2 (n7ﬂ)|an|2+(nt)’bn‘2+|ar|f2> dr+

n>1
1 d?
+ [l + laor
0

We conclude that (1.5) and (1.7) are valid when a,, and b,, are complex valued.

6 The proof of Lemma 1.1.

We suppose that d > 1 and n > 1. Let us suppose that (a,b) is a bounded solution of
(1.14). Let N be chosen and 0 < N < 1. Let us define (a®“t, b by

cut pcut _ (a,b)(r) for0<r S
R R A T A

m\»—t ‘2



where, as in the beginning of the proof of Theorem 1.4, Part 2,

N _ 1
h(r)=e e, u= ;ff
£

We have a“e'® € H}(B(0,1)) and b*“'e® € H}(B(0,1)). We denote
W= aefinG + bein@ and wcut — acutefinﬁ + bcuteinG'

Using the usual rescaling, we have @' € H,, 4.
We have supposed that m,, 4(¢) > 1, so we deduce from the definition of m,, 4(¢) that

0 < maale) — 1< — LB E™ >0
> My, .

< Cw™t, M > s (o,1))
Now we have
< C@cm,(zjcut >12(B(0,1)=< (1- f(%)WCUta w >L2(B(0,1/¢)) -

But, in view of the possible bounded behaviors at +oo, (in Proposition 3.5 in which
i =1), there exists M and R such that for all r > R,

la| 4+ o] < Mr™™, |d/|+ V| < Mr~™ ' and 1 - f2< Mr 2 (6.151)
We use the Lebesgue Theorem to deduce that
< Ca™, @™ > papony) =< (1= fw,w >r2re)  ase — 0. (6.152)

Now let us estimate — < Lo, oeut >r2(B(0,1))- Since (a,b) verifies the system (1.14),
we have

— < EEcDC“t,cDC“t >L2(B(0,1)):

B2

=< Lw,w > 12(B(0,2) + [ra'a + Vbl +

+[5 1@ () + BRI = r(L = fR) + OS2 (Y) 4 ()

s € T
Jrrfgh?(a(g) + b(g))Q]dr
We deduce by (6.151) that

N

[ra’a + b'b] q < Me*",
Now we use the estimate (2.30) and (6.151) to obtain

é N N !/ n
/]Z (@3(2) + ()W) dr < Me™

On the other hand, by Proposition 3.5, we have

la +b| < Mr—"1
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and consequently

(a(2) + D)) < M2

We deduce that

1 1
: N N :
212 2 2n—+2 2
[v rfqh (a(;)+b(; ))2dr < Me A rh2dr.

£

But ) )
/NE rhdr < e te? /NE e~ 2dr
and A . -
/E e 2y = / e 2um2(= — =)du.

y 1 e €
And finally .

ﬁ\j rfc%hQ(a(g) + b(g))gdr < Me™.
Now

1 1

/6 r(1 = fhdr < M/E r~hdr
N N

that gives, using the estimate just above,

@y + 2 / r(1— f2)R2dr < Me2™.

€ € N
And we conclude that
—< ngcut,wCU’t >L2(B(O,é))§ M€2n,

while by (6.152)
< CWCUt,wCUt >L2(B(O,l))2 M

This gives
0 < mpa(e) — 1< Me*™,

We have proved Lemma 1.1.
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