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Abstract. We consider the complex Ginzburg-Laudau operator on a bounded domain.
We prove some estimates for the inverse of the linearized operator.

AMS classification : 34B40: Ordinary Differential Equations, Boundary value prob-
lems on infinite intervals. 35J60: Nonlinear PDE of elliptic type. 35P15: Estimation of
eigenvalues, upper and lower bound.

1 Introduction.

We consider the Ginzburg-Landau equation on a bounded connected domain Ω,{
−∆u = 1

ε2
u(1− |u|2) in Ω

u = g in ∂Ω
(1.1)

where ε > 0 is a small parameter, u and g have complex values and degree (g, ∂Ω) ≥ 1.
This equation has been intensively studied, in [2], and many others.
Let us denote

Nε(u) = ∆u+
1

ε2
u(1− |u|2)

and let us define fd as the only solution of the differential equation{
f ′′d +

f ′d
r −

d2

r2
fd = −fd(1− f2d )

fd(0) = 0, limr→+∞ fd(r) = 1.
(1.2)

The equation (1.2) is completely studied in [6]. And let u0(x) = fd(
|x|
ε )eidθ. We have

Nε(u0) = 0.

We will always denote

f(r) = fd(
r

ε
).

The linearized operator around any function u is given by

dNε(u)(ω) = ∆ω +
ω

ε2
(1− |u|2)− 2

ε2
u(u.ω + u.ω).
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Let us consider the linearized operator around the solution u0, ie

dNε(u0)(ω) = ∆ω +
ω

ε2
(1− f2)− 2

ε2
f2eidθeidθ.ω,

where ω is any complex valued function and 2u.ω = uω + ωu.
We will use the operator

Lε := e−idθdNε(u0)eidθ

instead of dNε(u0) and we will use also the rescaled operator L1. These operators are of
importance for some technics of construction of solutions for the equation (1.1).
The invariance of the equation (1.1) wrt the translations and the rotations gives

0 = dNε(u0)(iu0) = dNε(u0)(
∂u0
∂x1

) = dNε(u0)(
∂u0
∂x2

).

A calculus gives
∂u0
∂θ

= idu0,

e−idθ
∂u0
∂x1

=
1

2

(
1

ε
f ′d(

r

ε
) +

d

r
fd(

r

ε
)

)
e−iθ +

1

2

(
1

ε
f ′d(

r

ε
)− d

r
fd(

r

ε
)

)
eiθ

and

e−idθ
∂u0
∂x2

=
i

2

(
1

ε
f ′d(

r

ε
) +

d

r
fd(

r

ε
)

)
e−iθ +

i

2

(
−1

ε
f ′d(

r

ε
) +

d

r
fd(

r

ε
)

)
eiθ.

In [1], we have proved that

Theorem 1.1 For all d ≥ 1 the set of the solutions of L1ω = 0 which are defined
at 0 and bounded at +∞ is reduced to the three functions provided by the invariance
of the equation (1.1) by the rotations and the translations of the coordinates, ie ifd,
(f ′d + d

rfd)e
−iθ + (f ′d −

d
rfd)e

iθ and i(f ′d + d
rfd)e

−iθ − i(f ′d −
d
rfd)e

iθ.

The case d = 1 was known by [11], chapter 3. In this book, Pacard and Rivière
construct some solutions for (1.1), having the degree one around each singularity. Before
that, the eigenvalue problem Lεω = −λ(ε)ω, had been studied in several papers, including
[7], [10], [8], [9]. It is used in many others, among them [4], [5].

In the present paper, we let

H := {ω : B(0, 1)→ C, eidθω ∈ H1
0 (B(0, 1))},

endowed with the scalar product

< ω, η >=

∫
B(0,1)

(
∇(eiθω).∇(e−iθω) +

f2

ε2
(ω + ω)(η + η)

)
dx

that makes it a Hibert vector space. We explain in the end of this part in which sense we
define an eigenvalue problem inH, the eigenvalues being denoted by µ(ε). And we let iΦ0,
Φ1 and iΦ2 be some functions in H, associated with ie−idθu0, e

−idθ ∂u0
∂x1

and e−idθ ∂u0∂x2
, in a

sense that will be defined below in Theorem 1.4. We denote W the subspace ofH spanned
by iΦ0, Φ1 and iΦ2 and we define W⊥ by : H = W ⊕W⊥. We denote by (W⊥)+ and
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(W⊥)− the subspaces of W⊥, verifying : W⊥ = (W⊥)+⊕(W⊥)−, associated respectively
to the eigenvalues µ(ε) > 1 and to the eigenvalues µ(ε) < 1. For h ∈ L2(B(0, 1)) we
consider the equation {

Lεω = h
ω ∈ H. (1.3)

We will prove the following

Theorem 1.2 There exists M > 0 independent of ε such that for all ω ∈
(
W⊥

)
+
∪(

W⊥
)
− a solution of (1.3), we have∫

B(0,1)

1

ε2 + |x|2
|ω|2dx ≤M

∫
B(0,1)

(ε2 + |x|2)|h|2dx (1.4)

and ∫
B(0,1)

|∇(eidθω)|2dx ≤M
∫
B(0,1)

(ε2 + |x|2)|h|2dx. (1.5)

Now, for every ω ∈ H we consider the Fourier expansion

ω(x) =
∑
n≥1

(an(r)e−inθ + bn(r)einθ) + a0(r), an(r) ∈ C, bn(r) ∈ C, r ∈]0, 1].

And we denote
h =

∑
n≥1

(αne
−inθ + βne

inθ) + α0,

where the αj and βj have complex values.

Remark 1.1 We can replace (1.4) by∫ 1
0 |a0|

2 rdr
ε2+r2

+
∑

n≥1
∫ 1
0 (|an|2 + |bn|2) rdr

ε2+r2

≤ C
∑

n≥1
∫ 1
0 r(ε

2 + r2)(|αn|2 + |βn|2)dr +
∫ 1
0 r(ε

2 + r2)|α0|2dr
(1.6)

and we can replace (1.5) by ∫ 1
0 (r|a′0|2 + d2

r |a0|
2)dr+

+
∑

n≥1
∫ 1
0

(
r|a′n|2 + r|b′n|2 + (n−d)2

r |an|2 + (n+d)2

r |bn|2
)
dr

≤ C
∑

n≥1
∫ 1
0 r(ε

2 + r2)(|αn|2 + |βn|2)dr +
∫ 1
0 r(ε

2 + r2)|α0|2dr.

(1.7)

Further, let us recall in which way the equation Lεω = h is transformed into systems
of ordinary equations.
Letting, for n ≥ 1, ωn(x) = an(r)e−inθ + bn(r)einθ and, for n = 0, ω0(x) = a0(r), we have

2eidθ.eidθωn = ωn + ωn = (bn + an)einθ + (bn + an)e−inθ.
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Moreover e−idθ∆(eidθω) = ∆ω − d2

r2
ω + i

2d

r2
∂ω

∂θ
.

Consequently

e−idθdNε(u0)eidθω =

=
∑

n≥1 e
−inθ

(
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− f2)− an
ε2
f2 − bn

ε2
f2
)

+

+
∑

n≥1 e
inθ
(
b′′n + b′n

r −
(n+d)2

r2
bn + bn

ε2
(1− f2)− bn

ε2
f2 − an

ε2
f2
)

+

+a′′0 +
a′0
r −

d2

r2
a0 + a0

ε2
(1− f2)− a0+a0

ε2
f2.

(1.8)

For n ≥ 1, Separating the Fourier components of e−idθdNε(u0)eidθω, we can consider the
operators

for n ≥ 1, Lε(ωn) =
(
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− 2f2)− bn
ε2
f2
)
e−inθ+

+
(
b′′n + b′n

r −
(n+d)2

r2
bn + bn

ε2
(1− 2f2)− an

ε2
f2
)
einθ

and, for n = 0, Lε(a0) = a′′0 +
a′0
r
− d2

r2
a0 +

a0
ε2

(1− f2)− a0 + a0
ε2

f2.

Separating the real part and the imaginary part of an and of bn, we consider the following
operators, where, now, an and bn are real valued function

for n ≥ 1 Lε : (ane
−inθ + bne

inθ) 7→

(
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− 2f2)− bn
ε2
f2
)
e−inθ+

+
(
b′′n + b′n

r −
(n+d)2

r2
bn + bn

ε2
(1− 2f2)− an

ε2
f2
)
einθ;

Lε : (iane
−inθ + ibne

inθ) 7→
i
(
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− 2f2) + bn
ε2
f2
)
e−inθ+

+i
(
b′′n + b′n

r −
(n+d)2

r2
bn + bn

ε2
(1− 2f2) + an

ε2
f2
)
einθ;

and, for n = 0, Lε : ia0 7→ i(a′′0 +
a′0
r −

d2

r2
a0 + a0

ε2
(1− f2));

Lε : a0 7→ a′′0 +
a′0
r −

d2

r2
a0 + a0

ε2
(1− f2)− 2a0

ε2
f2.

(1.9)
Now, let us define

ωR :=
∑
n≥1

(Ran(r)e−inθ +Rbn(r)einθ) +Ra0(r)

and
ωI :=

∑
n≥1

(Ian(r)e−inθ + Ibn(r)einθ) + Ia0(r)

where, for any a ∈ C, Ra is the real part and Ia is the imaginary part of a.
We denote ωn = ωn,R + iωn,I . From the equation (1.3) we are led to the equations, for
each n ∈ N,
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{
Lε(ωn,R) = hn,R
Lε(iωn,I) = ihn,I

(1.10)

and, in view of (1.9), when n ≥ 1, (1.10) gives two second order ordinary differential sys-
tems, the both of them with two equations, and with two real valued unknown functions,
a and b. For n = 0, we have two ordinary second order ordinary differential equations,
each of them with one real valued unknown function.
In what follows in this section, unlike in Theorem 1.2, a and b or an and bn will be real
valued functions.
The first works on the question, quoted above, are considering the following eigenvalue
problem, for r ∈ [0, 1] and for n = 0

a′′ +
a′

r
− d2

r2
a+

1

ε2
(1− f2)a = −λ(ε)a, a(1) = 0 (1.11)

and

a′′ +
a′

r
− d2

r2
a− 2af2 +

1

ε2
(1− f2)a = −λ(ε)a, a(1) = 0. (1.12)

And for r ∈ [0, 1] and for n ≥ 1
a′′ + a′

r −
(n−d)2
r2

a− 1
ε2
f2b+ 1

ε2
(1− 2f2)a = −λ(ε)a

b′′ + b′

r −
(n+d)2

r2
b− 1

ε2
f2a+ 1

ε2
(1− 2f2)b = −λ(ε)b

a(1) = b(1) = 0

(1.13)

The question of whether there exist some eigenvalues such that λ(ε) → 0 as ε → 0 is
related to the question of the existence of bounded solutions in [0,+∞[ for the following
system, which is a rescaled form of (1.13), but with the interval [0,+∞[ instead of [0, 1ε ]
for n ≥ 1 {

a′′ + a′

r −
(n−d)2
r2

a− f2d b+ (1− 2f2d )a = 0

b′′ + b′

r −
(n+d)2

r2
b− f2da+ (1− 2f2d )b = 0.

(1.14)

And for n = 0

a′′ +
a′

r
− d2

r2
a+ (1− f2d )a = 0 (1.15)

and

a′′ +
a′

r
− d2

r2
a− 2af2d + (1− f2d )a = 0. (1.16)

A bounded solution means that a and b are defined at 0 and that the both functions have
finite limits at +∞.

Since the 90’, some results on the behaviors of the eigenvalues λ(ε), for n = 0 and
n = 1 are known and also for d = 1 and all n.
And the following Theorem was proved in [8]

Theorem 1.3 For d ≥ 1 and n ≥ 2, If there are no bounded solution (a, b) of (1.14),
then |λ(ε)| > C, for some C > 0 independent of ε and for every eigenvalue λ(ε) of the
problem (1.13).
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In [1], we proved that there are no bounded solution of (1.14) when n ≥ 2.
We claim that, making use of Theorem 1.1, we are able to give a completely different proof
of Theorem 1.3. But neither this technique nor that of [8] permits to obtain |ε2λ(ε)| ≥ C.
We associate the problem of the existence of bounded solutions of (1.14) with the following
eigenvalue problem, instead of (1.13), a and b being real valued. For r ∈ [0, 1] and for
n ≥ 1 

a′′ + a′

r −
(n−d)2
r2

a− 1
ε2
f2a− 1

ε2
f2b = − 1

ε2
µ(ε)(1− f2)a

b′′ + b′

r −
(n+d)2

r2
b− 1

ε2
f2b− 1

ε2
f2a = − 1

ε2
µ(ε)(1− f2)b

a(1) = b(1) = 0

(1.17)

and for r ∈ [0, 1] and for n = 0{
a′′ + a′

r −
d2

r2
a = − 1

ε2
µ(ε)(1− f2)a

a(1) = 0.
(1.18)

and {
a′′ + a′

r −
d2

r2
a− 2

ε2
f2a = − 1

ε2
µ(ε)(1− f2)a

a(1) = 0.
(1.19)

The more important advantage of using the eigenvalue problem (1.17) instead of (1.13) is
to have in the right hand side a behavior 1/r2 as r → +∞. And we consider the problem
|1− µ(ε)| ≥ C instead of the insolved problem ε2|λ(ε)| ≥ C.
Let us remark that a result similar to Theorem 1.3 together with Theorem 1.1 gives the
following result (that we proved in [1]) :
For d ≥ 1, for n ≥ 2 and for any eigenvalue µ(ε) we have

|µ(ε)− 1

ε2
| ≥ C

for some C independent of ε.
In the present paper, we will see that actually |1− µ(ε)| ≥ C.

Let us turn first to the cases of the first eigenvalues for n = 0 and for n = 1. Let mn,d

be defined in (1.21) and (1.22). We will prove the following properties, that are almost
the analogue properties of the eigenvalues λn,d(ε), n = 0 and n = 1, but the proofs have
to be adapted. For all d ≥ 1,

Theorem 1.4 (i) there exists ε0 > 0 such that, for all ε < ε0, m0,d(ε) ≥ 1 + ε2;
m0,d(ε)→ 1, as ε→ 0.
There exists an associated eigenvector iΦ0, Φ0 being a positive solution of (1.18) with
m0,d in place of µ, such that (Φ0 − f)(r) → 0 as ε → 0, uniformly in all [0, R], R > 0.
Moreover, Φ0 ≤ f . And for the problem (1.18), µ(ε)−1 ≥M , for any eigenvalue, except
if µ = m0,d, for some M independent of ε.
(ii) For n = 0 and for the problem (1.19), µ(ε)− 1 ≥ C, for every eigenvalue.
(iii) m1,d(ε) > 1 and (m1,d(ε)− 1) ≤Mε2, with M independent of ε.
(iv) mn,d(ε) ≥ m1,d(ε) for all n ≥ 2d− 1.

And now
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Theorem 1.5 (i) For all n ≥ 2, there exists C > 0 independent of ε and there exists ε0
such that |1 − µ(ε)| ≥ C for every eigenvalue µ(ε) for the problem (1.20) and for every
ε < ε0.
(ii) For n = 1, µ(ε)− 1 ≥ C, except if µ = m1,d.
(iii) We can chose the same C and the same ε0 for all n ∈ N? and for all eigenvalue
µ(ε).
(iv) For n = 1, there exists two functions Φ1 = ae−iθ + beiθ and Φ2 = ae−iθ − beiθ of
H, where a and b are real valued functions and associated to the eigenvalue m1,d(ε), ie
Lε(Φ1 + iΦ2) = (1 −m1,d)C(Φ1 + iΦ2) and such that ‖eidθΦ̃j − ∂ũ0

∂xj
‖H1(B(0,1/ε)) → 0, as

ε→ 0, for j = 1, 2, where we use the notation Φ̃j(x) = Φj(x/ε).

On the other hand, we have some converse to Theorem 1.5.

Lemma 1.1 Let n ≥ 1. If mn,d(ε) ≥ 1 and if there exists some bounded solution (a, b)
of (1.14), then mn,d(ε)− 1 ≤Mε2n, with M independent of ε.

Now let us recall some notation for the eigenvalue problem (1.17).
We denote by H′ the dual space of H.
Let us define the embedding

I : H → H′

ω 7→ (η 7→
∫ 1
0 rωηdr)

Since the embedding H1
0 (B(0, 1))×H1

0 (B(0, 1)) ⊂ L2(B(0, 1))×L2(B(0, 1)) is compact,
then I is a compact operator.
Let us define C = 1

ε2
(1− f2). We define the operator T by

Lε = −T + CI.

The quantity
< T ω, η >H′,H

is the scalar product on H, defined in the beginning of the present part. So, T is an
isomorphism, by the Riesz Theorem.
Since CI is a compact operator and thanks to the continuity of T −1, then T −1C is a
compact operator from H into itself, whose eigenvalues are denoted by 1/µ. We use a
notion of C-eigenvalue, as in [3]. It is classical that µ ∈ R?+.
For n ≥ 1, ωn,R and ωn,I belong to the set

Hn,d = {ae−inθ + beinθ ∈ H, (a, b) : [0, 1] 7→ R× R}.

and ω0,R and ω0,I belong to

H0,d = {a ∈ H; a : [0, 1] 7→ R}.

If ae−indθ + beindθ ∈ Hn,d, with n ≥ 1, we have

< T (ae−indθ + beindθ), ue−indθ + veindθ >H′n,d,Hn,d
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=
1

2π

∫
B(0,1)

(∇(ei(n−d)θa).∇(e−i(n−d)θu) +∇(ei(n+d)θb).∇(e−i(n+d)θv)+

+
1

ε2
f2(a+ b)(u+ v))dx

=

∫ 1

0
(ra′u′ + rb′v′ +

(n− d)2

r
au+

(n+ d)2

r
bv +

r

ε2
f2(a+ b)(u+ v))dr.

And, for a ∈ H0,d, we have

T (a) = −a′′ − a′

r
+
d2

r2
a+

2a

ε2
f2,

and

T (ia) = i(−a′′ − a′

r
+
d2

r2
a).

We can use the following form of the system (1.17)
Lε(ω) = (1− µ(ε))Cω

ω = ae−inθ + beinθ ∈ Hn,d.
(1.20)

It is clear that every eigenvalue in some Hn,d, n ≥ 0 is an eigenvalue in H. Conversely,
in view of (1.10), for every eigenvalue in H, there exists an eigenvector in ⊕n≥0Hn,d or
in ⊕n≥0iHn,d.
In the first case, there is an eigenvector in at least a subspace Hn,d, for some n ≥ 0 and
in the second case, there exists an eigenvector in some iHn,d, for at least some n ≥ 0. In
the second case, if n ≥ 1, by (1.9), if a and b are real valued, we have

Lε(iae−inθ + ibeinθ) = i(αe−inθ − βeinθ)

where α and β are defined by

Lε(ae−inθ − beinθ) = αe−inθ + βeinθ.

Thus we have
Lε(iae−inθ + ibeinθ) = (1− µ(ε))C(iae−inθ + ibeinθ)

⇔

αe−inθ − βeinθ = (1− µ(ε))C(ae−inθ + beinθ).

But this is equivalent to

αe−inθ + βeinθ = (1− µ(ε))C(ae−inθ − beinθ).

Finally, we have proved that(
Lε(iae−inθ + ibeinθ) = (1− µ(ε))C(iae−inθ + ibeinθ)

)
⇔
(
Lε(ae−inθ − beinθ) = (1− µ(ε))C(ae−inθ − beinθ)

)
.
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And we conclude that the set of the eigenvalues for the problem in H

Lεω = (1− µ(ε))Cω

is the reunion of the sets of the eigenvalues for the eigenvalue problems in Hn,d for n ≥ 0
and in iH0,d.

Last, we define mn,d(ε) as the first eigenvalue for the above eigenvalue problem (1.17)
in Hn,d, where we denote ω = ae−inθ + beinθ, that is

mn,d(ε) =

infω∈Hn,d\{0}

∫ 1
0 (ra′2+rb′2+ (n−d)2

r
a2+

(n+d)2

r
b2+ r

ε2
f2d (

r
ε
)(a+b)2)dr

1
ε2

∫ 1
0 r(1−f

2
d (
r
ε
))(a2+b2)dr

(1.21)

and m0,d(ε) is the first eigenvalue for the problem (1.18) in H0,d,

m0,d(ε) = inf
a∈H0,d\{0}

∫ 1
0 (ra′2 + d2

r a
2)dr

1
ε2

∫ 1
0 r(1− f

2
d ( rε))a2dr

(1.22)

and m̃0,d(ε) is the first eigenvalue for the problem (1.19) in H0,d,

m̃0,d(ε) = inf
a∈H0,d\{0}

∫ 1
0 (ra′2 + d2

r a
2 + 2rf2d ( rε)a2)dr

1
ε2

∫ 1
0 r(1− f

2
d ( rε))a2dr

. (1.23)

It is classical that these infimum are attained. Since, for n ≥ 1, the quantity to
minimize decreases if we replace (a, b) by (max{|a|, |b|},−min{|a|, |b|}), we have some
infimum such that a ≥ −b ≥ 0. And if n = 0, we have some infimum such that a ≥ 0.
More, considering the rescaling (ã, b̃)(r) = (a(εr), b(εr)) and an extension by 0 outside
[0, 1/ε], we see that ε 7→ mn,d(ε) decreases when ε decreases. Thus limε→0mn,d(ε) exists.

The principal objective of the paper is the proof of Theorem 1.2. But the essential
tool is the result about the eigenvalues µ(ε), in Theorem 1.5 and Theorem 1.4. We have
to prove that the eigenvalues stay away from 1, as ε tends to 0, with some exceptions
when n = 0 and n = 1. Let us present the idea of the proof. We consider the system
(1.17) involving µ(ε). Using the rescaling (a, b)(r) = (ã, b̃)(εr), for r ∈]0, 1ε ] and writing

(a, b) instead of (ã, b̃) we obtain the following system for r ∈]0, 1ε ]
a′′ + a′

r −
(n−d)2
r2

a− f2d b− f2da = −µ(ε)(1− f2d )a

b′′ + b′

r −
(n+d)2

r2
b− f2da− f2d b = −µ(ε)(1− f2d )b

a(1ε ) = b(1ε ) = 0.

(1.24)

Now, we consider the following system in ]0,+∞[, where µ is a real parameter.{
a′′ + a′

r −
(n−d)2
r2

a− f2d b− f2da = −µ(1− f2d )a

b′′ + b′

r −
(n+d)2

r2
b− f2da− f2d b = −µ(1− f2d )b

(1.25)

and we consider the system (1.25) as a perturbation of the system (1.14), with coefficients
depending continuously of the real parameter µ. When µ → 1, the coefficients of (1.25)
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tend to the coefficients of (1.14). Now, it is more clear in order to apply the principles
of the Cauchy-Lipschitz theory for the linear differential equations to reformulate the
system (1.25) as a differential system of degree one, ie we define the vector

X = (a, ra′, b, rb′)t

and we rewrite the system (1.25) as

X ′ = MX − (1− µ)(1− f2d )(0, a, 0, b)t (1.26)

where M is the matrix

M =


0 1

r 0 0

−r(1− 2f2d ) + (n−d)2
r 0 rf2d 0

0 0 0 1
r

rf2d 0 −r(1− 2f2d ) + (n+d)2

r 0

 .

A supposed well known principle, from the Cauchy Lipshitz Theory, is that if R > 0
is given and if the initial Cauchy data at R, ie (a(R), ra′(R), b(R), rb′(R))t is a given
vector, that depends continuously on the parameter µ, then we can conclude that the
vector (a(r), ra′(r), b(r), rb′(r))t depends continuously on µ, for all r > 0 and also that
the continuity in µ is uniform in all [r0, r1], 0 < r0 < r1, in the sense that if µ→ µ0, then
(a, ra′, b, rb′) tends to a limit in (L∞([r0, r1]))

4.

In Part II, we give the proof of Theorem 1.4.
In Part III, we construct a base of four solutions of the system (1.25), determined by

they behaviors near 0. Two of them are well defined at 0 and two of them blow up at 0.
We prove the continuity of these four solutions wrt µ, uniformly in all [r0, r1], 0 < r0 < r1.
And we prove that when µ→ 1 the four solutions tend to a base of four solutions of (1.14),
determined by they behaviors near 0. The method is to construct the four solutions in
a determined interval ]0, R] where R is proved to be independent of µ. By the Cauchy
Lipschitz Theory, a solution defined in ]0, R] has a unique extension by a solution defined
in ]0,+∞[. And by the principle recalled above, if the vector (a, ra′, b, rb′)t(r) depends
continuously on the parameter µ for all r ∈]0, R] then its extension to ]0,+∞[, that we
denote also by (a, ra′, b, rb′)t, depends also continuously on the parameter µ, uniformly
in all [r0, r1], 0 < r0 < r1. We use the same principle to construct a base of solutions
of (1.25) determined by they behaviors at +∞. Two of them are bounded as r → +∞
and two of them blow up as r → +∞. We construct them in an interval [R,+∞[, where
R is proved to be independent of the parameter µ, and we prove that the four solutions
depend continuously on µ in this interval. Following the same principle as above, the
four solutions have extensions in ]0,+∞[, that depend continuously on µ. And finally,
the both bases tend, as µ tends to 1, to bases of solutions of (1.14), whose behaviors at
0 or at +∞ are determined.

In Part IV, we prove Theorem 1.5. We will use the results of Part III and two results
proved in [1], that are :
(i) there are no bounded solutions for the system (1.14);
(ii) the solution of (1.14) that have the most vanishing behavior at 0 is exponentially
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blowing up at +∞ and the solution of (1.14) that has an exponentially vanishing behavior
at +∞ has the most blowing up behavior at 0.
The proof in Part IV is the following : using Part III and (ii), we prove that if there exists
some eigenvalue µ(ε) tending to 1, then the associated eigenspace is one dimensional and
an associated eigenvector tends to a bounded solution of (1.14). Further, (i) permits to
conclude the proof of Theorem 1.5.

In Part V, we prove Theorem 1.2.
In Part VI, we prove Lemma 1.1.

And we will use the expansions of fd, proved in [6].

fd(r) = 1− d2

2r2
+O(

1

r4
) near +∞ (1.27)

and

fd(r) = Ad(r
d − 1

4(d+ 1)
rd+2) +O(rd+4) near 0. (1.28)

Morover, fd increases in [0,+∞[ and

0 ≤ fd ≤ 1 in [0,+∞[ .

2 The proof of Theorem 1.4.

(i). Proof of m0,d(ε)→ 1, of (m0,d(ε)− 1) ≥ ε2, of the existence of an eigenvector a that
tends to fd uniformly in each [0, R], R > 0, that a ≤ fd and that µ(ε) − 1 ≥ C, for any
other eigenvalue.
Using the Euler equation of the infimum problem (1.22), we have

a′′ +
a′

r
− d2

r2
a+

1

ε2
(1− f2)a = −

m0,d(ε)− 1

ε2
(1− f2)a (2.29)

where r ∈ [0, 1], f(r) = fd(
r
ε) and a(r) ≥ 0 and a(1) = 0.

Firstly, Multiplying the equation (2.29), by tf and the equation of f by ta and integrating
by parts on [0, r], we find

[rf ′a− ra′f ]r0 = (m0,d(ε)− 1)/ε2
∫ r

0
t(1− f2)afdt.

Firstly, we let r = 1. Since a > 0 and since a(1) = 0, we have a′(1) < 0 and we are led
to (m0,d(ε)− 1) > 0.
Secondly, we deduce that for all 0 < r ≤ 1, −rf2( af )′ > 0. And consequently, af−1

decreases in [0, 1]. But we can choose a(0) = f(0) = 1. This proves that af−1 ≤ 1 in
[0, 1].
Further, let us use a truncature of f as a test function for the infimum m0,d(ε). A real
number 0 < N < 1 being given, we let

acut = fd in [0, Nε ], acut = fd(
N
ε )h in [Nε ,

1
ε ]

11



where

h(r) = ee−u, u = (Nε −
1
ε )/(r − 1

ε ).

Using the rescaling ãcut(r) = acut(r/ε), we have ãcut ∈ H0,d(B(0, 1)). Consequently

0 < m0,d(ε)− 1 ≤

∫ 1
ε
0

(
r(acut)′2 + d2

r (acut)2 − r(1− f2d )(acut)2
)
dr∫ 1

ε
0 r(1− f2d )(acut)2dr

.

In what follows in this part, the notationM means some positive real number independent
of ε
Now, the expansion of fd at +∞ gives some M and some R > 0 such that

for r ≥ R, |1− f2d +
d2

r2
| ≤Mr−4.

And acut being a bounded function, we deduce that

|
∫ 1

ε

0

(
d2

r
(acut)2 − r(1− f2d )(acut)2

)
dr| ≤M.

Now, we have to estimate

I1 =

∫ 1
ε

0
r(acut)′2dr and I2 =

∫ 1
ε

0
r(1− f2d )(acut)2dr.

We have

I1 =

∫ N
ε

0
r(f ′d)

2dr + f2(
N

ε
)

∫ 1
ε

N
ε

r(h′)2dr.

But there exists M and R such that for r ≥ R

0 < f ′d ≤
M

r3
.

We deduce that ∫ N
ε

0
r(f ′d)

2dr ≤M.

Now, let us estimate
∫ 1
ε
N
ε

r(h′)2dr. Since we denote u = (Nε −
1
ε )/(r − 1

ε ). We have

u′ = −u2ε(N − 1)−1 and h′ = −u′h.

We write ∫ 1
ε

N
ε

r(h′)2dr ≤ 1

ε

∫ 1
ε

N
ε

u′h2u′dr,

but
1

ε

∫ 1
ε

N
ε

u′h2u′dr =
e2

ε

∫ +∞

1
u2ε(N − 1)−1e−2udu.
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We have proved that ∫ 1
ε

N
ε

r(h′)2dr ≤M (2.30)

and since f2d (Nε )→ 1 as ε→ 0, we conclude that

I1 ≤M.

Now

I2 ≥
∫ N

ε

0
r(1− f2d )f2ddr.

But there exists R > 0 and M > 0 such that for all r ≥ R

(1− f2d )f2d ≥M/r2.

We deduce that

I2 ≥M ln(
N

ε
).

Finally

0 ≤ m0,d(ε)− 1 ≤M ln−1(
N

ε
).

This gives m0,d(ε)→ 1.
Secondly, let us prove the existence of a solution a tending to fd that spans the eigenspace
associated to m0,d(ε).
We are looking for a solution of the rescaled equation of (2.29)

a′′ +
a′

r
− d2

r2
a+ (1− f2d )a = −(m0,d(ε)− 1)(1− f2d )a (2.31)

of the form ufd. We write

u′′fd + 2u′fd +
u′f ′d
r

= −(m0,d(ε)− 1)(1− f2d )fdu,

that is
(u′(rf2d ))′ = −(m0,d(ε)− 1)r(1− f2d )f2du. (2.32)

We define the fixed point problem

u = 1− (m0,d(ε)− 1)

∫ r

0

f−2d
t

∫ t

0
s(1− f2d )f2dudsdt. (2.33)

We denote it by u = Φ(u).
Each solution of this fixed point problem is a solution of (2.32).
We define the sequence (αj)j∈N by the induction

α0 = 1 and αk+1 = Φ(αk)

and we write

|α1 − α0|(r) ≤ (m0,d(ε)− 1)

∫ r

0

f−2d (t)

t

∫ t

0
s(1− f2d )f2ddsdt
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and, using f−2d (t) ≤ f−2d (s) and 1− f2d ≤ 1 we get

|α1 − α0|(r) ≤ (m0,d(ε)− 1)
r2

4
.

And for all k ≥ 1,

|αj+1 − αj |(r) ≤ (m0,d(ε)− 1)

∫ r

0

f−2d (t)

t

∫ t

0
sf2ddsdt‖αj − αj−1‖L∞([0,r]),

that gives

|αj+1 − αj |(r) ≤ (m0,d(ε)− 1)
r2

4
‖αj − αj−1‖L∞([0,r]).

Consequently, if R > 0 is given, we have for all 0 ≤ r ≤ R

‖αj+1 − αj‖L∞([0,R]) ≤ (
(m0,d(ε)− 1)R2

4
)j+1. (2.34)

Since m0,d(ε)− 1→ 0, then for each R > 0, the sum

u =
∑
j≥0

(αj+1 − αj) + α0.

is convergent for ε small enough, depending on R. We define a by

a(r) = fd(r) + fd(r)
∑
j≥0

(αj+1 − αj).

It is is a solution of (2.31). Let us remark that if we fix R > 0 and if we fix ε < ε(R)
sufficiently small to define a in [0, R], then the Cauchy-Lipschitz Theory permits to define
a prolongation of a, that we still name a, for all r ∈ [0,+∞[, as the solution of (2.31) for
the initial Cauchy data (a(R), a′(R)).
Moreover, due to (2.34), the convergence of the serie u(r), for r < R and for ε <
ε(R), is uniform wrt the values of the parameter m0,d(ε). And clearely, for each k,
αk depends continuously of the parameter m0,d(ε) too. For this reason, the sum u(r)
depends continously of the parameter m0,d(ε), for all r < R and ε < ε(R). This implies
that a(R), depends continously of the parameter m0,d(ε), for the norm L∞([0, R]).
Let us prove that a′(R)) depends continuously on the parameter m0,d(ε), too. The
derivation of (2.33) gives

u′(r) = −(m0,d(ε)− 1)r−1f−2d (r)

∫ r

0
t(1− f2d )f2du(t)dt.

We deduce that u′, and consequently a′, depend continuously on the parameter m0,d(ε).
Since the Cauchy data (a(R), a′(R)) in the initial point R, together with the coefficients
of the equation depend continously of the parameter m0,d(ε), so does also the extended
solution a(r), together with a′(r), for all ε < ε(R) and for all r ≥ 0.
On the other hand, we can deduce from (2.34) that for all R > 0, for all ε < ε(R)

|a− fd|(R) ≤ fd(R)
∑
j≥0

1

1−K
K
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with K = (m0,d(ε)− 1)R2/4. We can chose ε(R) small enough to have 1/1−K < 2, so

|a− fd|(R) ≤ fd(R)
∑
j≥0

1

2
(m0,d(ε)− 1)R2,

for all R > 0 and all ε < ε(R).
This gives the behavior at 0 of a and this proves again that ã(r) − fd(r) → 0, as
m0,d(ε)→ 1, for all r > 0 and uniformly in each [0, R].
Now, since the eigenspace associated to the first eigenvector is one dimensional, the a we
just constructed is a base of the eigenvector associated to m0,d(ε).

Now, let us prove that m0,d(ε)− 1 ≥Mε2.
Returning to (2.32), where u = f−1d a, we deduce that for all t ∈ [0, 1ε ],

tf2d (f−1d a)′(t) = −(m0,d(ε)− 1)

∫ t

0
s(1− f2d )fdads

and we use the condition a(1ε ) = 0 to obtain, for r ∈ [0, 1ε ],

f−1d a(r) = −(m0,d(ε)− 1)

∫ r

1
ε

1

tf2d (t)

∫ t

0
s(1− f2d )fdadsdt.

And using the rescaling, this gives, for all 0 ≤ r ≤ 1,

f−1ã(r) =
m0,d(ε)− 1

ε2

∫ 1

r

1

tf2(t)

∫ t

0
s(1− f2)fãdsdt.

Recalling that ãf−1 ≤ 1, we are led to

f−1ã(r) ≤
m0,d(ε)− 1

ε2

∫ 1

r

1

tf2(t)

∫ t

0
s(1− f2)f2dsdt.

But t 7→ tf2(t) increases and 1− f2 ≤ 1, so we obtain, for all r ∈ [0, 1],

f−1ã(r) ≤
m0,d(ε)− 1

ε2
(1− r2)/2.

But f ≤ 1. Consequently, for all 0 ≤ r ≤ 1

ã(r) ≤
m0,d(ε)− 1

ε2
.

But ã(0) = 1. We deduce that m0,d(ε)− 1 ≥ ε2.

Now, if µ(ε) > m0,d(ε) let us prove that µ(ε) − 1 ≥ M . Let us suppose that µ(ε)
tends to 1. We can construct an eigenvector for µ(ε), exactly as we constructed a, an
eigenvector for m0,d(ε), just above, but with µ instead of m0,d(ε). We are led to define

a1 = fd + fd
∑
j≥0

(αj+1 − αj)
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where the sequence (αj)j≥0 verifies (2.34) and, letting K = |1−µ|R2/4, we choose R > 0
such that |1− µ|R2/4 < 1 and 1

1−K < 2. This gives

|a1(R)− fd(R)| ≤ fd(R)|µ− 1|R2/2

and this is true for every 0 < r ≤ R, in the place of R.

Now, if a2 is any solution of the equation (2.29), with µ(ε) instead of m0,d(ε), we can
combine the equation of a1 and the equation of a2 and integrating by parts we are led
to, for all r1 > 0 and r2 > 0

[r(a′1a2 − a1a′2)(r)]r2r1 = 0.

We deduce that there exists C and D such that a2(r) = Da1(r) + Ca1(r)
∫ r
1

dt
ta21(t)

. We

define

a2(r) := a1(r)

∫ r

1

dt

ta21(t)
.

We verify that a2 is a solution and a calculus gives, for all 0 < r ≤ R,

|aε2(r)−A−1d r−d| ≤ Cr−d+1.

So, a1 and a2 form a base of solutions for (2.29), for µ instead of m0,d. And in view
of the behaviors at 0, this proves that a1 spans the eigenvector space for µ. But, since
µ(ε) → 1, µ takes its values in the range of the map ε 7→ m0,d(ε), that is an increasing
continuous map. So, for ε small enough a1 is also an eigenvector for m0,d, maybe for
another value of ε. Consequently, this eigenvector associated to µ(ε) is positive, for ε
small enough. But this is in contradiction with the necessary condition

(µ(ε)−m0,d(ε))

∫ 1
ε

0
(1− f2d )aa1ds = 0,

unless µ(ε)−m0,d(ε) = 0. We conclude that µ(ε) ≥ 1 +M , or µ(ε) = m0,d(ε).

(ii). Let us prove that m̃0,d(ε) ≥ 1 + M , where m̃0,d is defined in (1.23). It is clear
by their definitions that m0,d < m̃0,d.
Now let us consider a solution b of the Euler equation

b′′ +
b′

r
− d2

r2
b+ (1− f2d )b− 2bf2d = −(m̃0,d(ε)− 1)(1− f2d )b (2.35)

such that its rescaling b̃ realizes m̃0,d. Since b is an eigenvector for a first eigenvalue, it is
defined up to a multiplicative constant and we can suppose b ≥ 0 in [0, 1ε ] and b(0) = 1.
Since m̃0,d(ε) tends to a limit as ε→ 0, then, as for a realizing m0,d(ε), we can construct
b of the form b = ufd, by a fixed point method to solve

(u′(rf2d ))′ = −(m̃0,d(ε)− 1)r(1− f2d )f2du+ 2ruf3d .

We skip the construction, since it is sufficient to follow the construction of a, an eigen-
vector for m0,d.
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And b tends to a limit b, as ε→ 0, uniformly in all [0, R], R > 0.
Further, combining (2.31) with (2.35) we obtain

−2

∫ 1
ε

0
rf2d badr = (m0,d(ε)− m̃0,d(ε))

∫ 1
ε

0
r(1− f2d )badr

that is ∫ 1
ε

0
r
(
−2f2d + (m̃0,d(ε)−m0,d(ε))(1− f2d )

)
badr = 0. (2.36)

Now, since limr→+∞−2f2d + (1− f2d ) = −2, we chose r0 > 0 such that

r > r0, −2f2d + (1− f2d ) < −1.

Using (2.36) we can write, if ε < 1/r0,

0 <

∫ r0

0
r
(
−2f2d + (m̃0,d(ε)−m0,d(ε))(1− f2d )

)
badr+

+

∫ 1
ε

r0

r
(
−1 + (1− f2d )(−1 + (m̃0,d(ε)−m0,d(ε))

)
badr.

Now, if we suppose that (m̃0,d(ε) −m0,d(ε)) → 0, we choose ε0 such that for all ε < ε0,
(−1 + (m̃0,d(ε)−m0,d(ε)) < 0. Consequently, the second integral is negative for ε < ε0.
But the first integral tends to the limit

∫ r0
0 r(−2f2d )bfddr, so, for ε small enough, the

second integral is negative, too.
This contradiction proves that m̃0,d(ε) ≥ 1 +M .

(iii). Proof of m1,d(ε) > 1. The proof is almost the same as for λ1,d > 0, in [10].
Let (ã, b̃), a ≥ −b ≥ 0 that realizes m1,d(ε). We write x = a + b and y = a − b. The
system (1.17), gives, for n = 1 and r ∈ [0, 1/ε]

x′′ + x′

r −
1+d2

r2
x+ 2d

r2
y − 2f2dx = −m1,d(1− f2d )x

y′′ + y′

r −
1+d2

r2
y + 2d

r2
x = −m1,d(1− f2d )y

x(1ε ) = y(1ε ) = 0.

(2.37)

But if we let
x0 = f ′d and y0 = dfd/r

then x0 and y0 are solutions of
x′′ + x′

r −
1+d2

r2
x+ 2d

r2
y − 2f2dx = −(1− f2d )x

y′′ + y′

r −
1+d2

r2
y + 2d

r2
x = −(1− f2d )y.

(2.38)

We multiply the first equation of (2.37) by rx0 and we multiply the first equation of
(2.38) by rx and we integrate the difference in [0, 1/ε]. We do the same thing with the
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second equations of (2.37) and of (2.38). And we sum the second result and the first one.
We obtain[

r(x′x0 − x′0x+ y′x0 − x′0y)
] 1
ε
0

== −(m1,d − 1)

∫ 1
ε

0
r(1− f2d )(xx0 + yy0)dr.

But (1− f2d )(xx0 + yy0) > 0 and[
r(x′x0 − x′0x+ y′x0 − x′0y)

] 1
ε
0

=
1

ε
(x′(

1

ε
)x0(

1

ε
) + y′(

1

ε
)y0(

1

ε
)) < 0.

This proves that m1,d(ε) > 1.

The proof of m1,d(ε)− 1 ≤Mε2 follows from Lemma 1.1.

(iv). The proof is almost the same as for λn,d > λ1,d, for n ≥ 2d− 1 in [10]. Let us
recall it.
If ae−inθ + beinθ realizes mn,d and if 1

ε2

∫ 1
0 r(1− f

2
d )(a2 + b2)dr = 1, we write

mn,d(ε) ≥ m1,d(ε) +

∫ 1

0
(
(d− n)2 − (d− 1)2

r
a2 +

(d+ n)2 − (d+ 1)2

r
b2)dr

and since a ≥ −b ≥ 0, this gives, provided that (d−n)2− (d− 1)2 ≥ 0, ie 2d−n− 1 ≤ 0,

mn,d(ε) ≥ m1,d(ε) + 2

∫ 1

0

n2 − 1

r
b2dr,

that gives mn,d ≥ m1,d.

This terminates the proof of Theorem 1.4.

3 Two bases of solutions for (1.25), depending on the pa-
rameter µ.

3.1 A base defined near 0.

In all this part, d ≥ 1 and n ≥ 1. The propositions below give a base of 4 solutions of
the system (1.25), involving the parameter µ, provided µ ≤ k0, for some given k0 > 1.
These solutions are determined by they behaviors at 0. The results are true also if µ = 1
and in this case, we have a base of solutions for the system (1.14). In the propositions
below, we let the condition on µ be |µ− 1| ≤ 1, to be more clear.

Proposition 3.1 Let us suppose that |µ−1| ≤ 1. There exist 2 independent solutions of
(1.25) defined at 0, that we denote by (aµ1 , b

µ
1 ) and (aµ3 , b

µ
3 ) and they are such that there

exists some R > 0 independent of the parameter µ and some constant M depending only
on R, such that for all r ∈ [0, R]

|aµ1 (r)−A2
dK1r

n+3d+2| ≤Mrn+3d+4, |bµ1 (r)− rn+d| ≤Mrn+d+2,

where K1 = ((3d+ n+ 2)2 − |n− d|2)−1
(3.39)
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and

|aµ3 (r)− r|n−d|| ≤Mr|n−d|+2, |bµ3 (r)−A2
dK3r

|n−d|+2d+2| ≤Mr|n−d|+2d+4,

where K3 = ((|n− d|+ 2d+ 2)2 − (n+ d)2)−1,

(3.40)

Ad being given in (1.28).

Proposition 3.2 There exist 2 independent solutions of (1.25) blowing up at 0, that we
denote by (aµ2 , b

µ
2 ) and (aµ4 , b

µ
4 ) and they are such that there exists some R > 0 independent

of the parameter µ and some constant M also independent of µ such that for all r ∈ [0, R]

|aµ2 | ≤Mr|n−d| if n ≤ d and |aµ2 | ≤Mr−|n−d|+2| ln r| if n ≥ d+ 1

|bµ2 − r−n−d| ≤Mr−n−d+2
(3.41)

and

|aµ4 (r)− r−|n−d|| ≤Mr−|n−d|+2| ln r|, |bµ4 | ≤Mrn+d−1, if n 6= d and n ≤ d− 1,

|aµ4 (r)− r−|n−d|| ≤Mr−|n−d|+2| ln r|, |bµ4 | ≤Mr3d−n+2| ln r|, if n ≥ d+ 1,

|aµ4 (r) + ln r| ≤Mr2| ln r|, |bµ4 −A2
dK4r

2d+2| ln r|| ≤Mr2d+4| ln r|, if n = d,

where K4 = ((4d+ 2)(2d+ 2))−1.
(3.42)

Proposition 3.3 Denoting Xµ
i = (aµi , r(a

µ
i )′, bµi , r(b

µ
i )′)t, i = 1, . . . , 4 the solutions of

(1.26), where (ai, bi) are defined in Propositions 3.1 and 3.2, we have

lim
µ→1

Xµ
i = Xi, i = 1, . . . , 4,

where the notation Xi is used for X1
i . And the limit is in the sense of the topology of

(L∞([r0, r1]))
4, for all 0 < r0 < r1.

Proof of Proposition 3.1. In this part, we first remark that for all α ∈ R, rα and
r−α are solutions of the equation

x′′ +
x′

r
− α2

r2
x = 0.

And we look for solutions (a, b) of (1.25) of the form a = hr±|n−d|, b = kr±(n+d).
To construct (aµ1 , b

µ
1 ) and (aµ3 , b

µ
3 ) in some interval [0, R], we use a fixed point problem

and we prove that we can choose R > 0 independent of the parameter µ, provided that
|µ− 1| ≤ 1. Letting a = hr|n−d| and b = krn+d, we write (1.25) on the form{

h′′ + 2|n−d|+1
r h′ − f2dh− f2dkrn+d−|n−d| = −µ(1− f2d )h

k′′ + 2(n+d)+1
r k′ − f2dk − f2dhr|n−d|−n−d = −µ(1− f2d )k

(3.43)
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and we consider the following integral equation
h = α0 +

∫ r
0 t
−2|n−d|−1 ∫ t

0 s
2|n−d|+1

(
(f2d − µ(1− f2d ))h+ f2dks

n+d−|n−d|) dsdt
k = β0 +

∫ r
0 t
−2(n+d)−1 ∫ t

0 s
2(n+d)+1

(
(f2d − µ(1− f2d ))k + f2dhs

|n−d|−n−d) dsdt
(3.44)

We define Φ(h, k) as the rhs of the above integral equations and we have to solve the
fixed point problem (h, k) = Φ(h, k). And we want (h, k) to depend continuously on the
parameter µ, in the sense that (h, h′, k, k′)(r) tends to a limit, as µ tends to a limit µ0.

First, let us construct (aµ1 , b
µ
1 ).

For this purpose, we define two sequences by{
α0 = 0 β0 = 1

(αj+1, βj+1) = Φ(αj , βj).
(3.45)

And using (1.28) and supposing R > 0 is small enough in order that f2d ≤ A2
ds

2d for
s ∈ [0, R], and since |f2d + µ(1− f2d )| ≤ 3, we obtain

|α1 − α0| ≤
A2
dr

3d+n+2−|n−d|

(3d+ n+ 2− |n− d|)2
and |β1 − β0| ≤

3

4
r2 (3.46)

and for all j ≥ 1 and all 0 ≤ r ≤ R,

|αj+1 − αj |(r) ≤ 3
4r

2‖αj − αj−1‖L∞([0,r]) +
A2
dr

3d+n+2−|n−d|

(3d+n+2−|n−d|)2 ‖βj − βj−1‖L∞([0,r])

and

|βj+1 − βj |(r) ≤ 3
4r

2‖βj − βj−1‖L∞([0,r]) +
A2
dr
d−n+2+|n−d|

(d−n+2+|n−d|)2 ‖αj − αj−1‖L∞([0,r]).

(3.47)

Clearly, by an induction, every (αj , βj) depends continuously on the parameter µ.
Now we remark that, since n ≥ 1 and d ≥ 1, we have

d− n+ |n− d|+ 2 ≥ 2 and 3d+ n+ 2− |n− d| ≥ 2.

Letting

C = max{{3

4
,
A2
d

4
},

an induction gives, for j ≥ 0,

‖αj+1 − αj‖L∞([0,R]) ≤ 2jCj+1R3d+n−|n−d|+2(j+1)

and

‖βj+1 − βj‖L∞([0,R]) ≤ 2jCj+1R2(j+1).

(3.48)

We chose R small enough to have 2CR2 < 1/2 and we may define

h1(r) = α0 +
∑
j≥0

(αj+1 − αj)(r) and k1(r) = β0 +
∑
j≥0

(βj+1 − βj)(r). (3.49)
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The estimate (3.48) gives the convergence of the sums, for all 0 < r ≤ R.
Moreover, the convergence of the sums in L∞([0, R]) is uniform wrt the parameter µ, if
|µ − 1| ≤ 1. Thanks to the continuity of each (αj , βj) remarked below, this gives the
continuity of h and k wrt µ.
Last, we can derive the following estimates

|h(R)− α1(R)| ≤
∑
j≥1
‖αj+1 − αj‖L∞([0,R]) and |k(R)− 1| ≤

∑
j≥0
‖βj+1 − βj‖L∞([0,R]),

First, use (3.48) to obtain

|k(R)− 1| ≤MR2 and |h(R)− α1(R)| ≤
∑
j≥1

2jCj+1R2(j−1)R3d+n−|n−d|+4,

or
|h(R)− α1(R)| ≤MR3d+n−|n−d|+4.

for some M independent of µ.
Now, returning to the definition of α1 in (3.44), we get

α1(r) =

∫ r

0
t−2|n−d|−1

∫ t

0
s2|n−d|+1

(
f2d s

n+d−|n−d|
)
dsdt.

Using (1.28) there exists M depending only on R such that

|f2d −A2
ds

2d| ≤Ms2d+2

and consequently, for 0 ≤ r ≤ R,

|α1(r)−
A2
dr

3d+n−|n−d|+2

(3d+ n+ 2 + |n− d|)(3d+ n+ 2− |n− d|)
| ≤Mr3d+n−|n−d|+4 (3.50)

for some other M independent of µ, provided |µ− 1| ≤ 1.
We deduce that

|h(R)−
A2
dR

3d+n−|n−d|+2

(3d+ n+ 2 + |n− d|)(3d+ n+ 2− |n− d|)
| ≤MR3d+n−|n−d|+4.

This is true for the R chosen below and also for all real number smaller than it, with the
same M .
Letting aµ1 (r) = r|n−d|h(r) and bµ1 (r) = rn+dk(r) and returning to (3.50), we obtain the
desired property (3.39).
And we deduce from (3.44) that

h′ = r−1
∫ r
0 s
(
f2d − µ(1− f2d )h+ f2dks

n+d−|n−d|) ds
k′ = r−1

∫ r
0 s
(
f2d − µ(1− f2d )k + f2dhs

|n−d|−n−d) ds. (3.51)

We infer that h′(r) and k′(r) depend continously on µ for all r ∈]0, R].
Consequently Xµ

1 (r) depends continuously on µ, for all r ∈]0, R].
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Secondly, let us construct (aµ3 , b
µ
3 ).

We use (3.44) again and we construct (αj , βj) by the induction{
α0 = 1 β0 = 0

(αj+1, βj+1) = Φ(αj , βj).
(3.52)

We follow the same construction as for (aµ1 , b
µ
1 ) above. With the same condition on R,

we estimate

|α1 − α0| ≤
3

4
r2 and |β1 − β0| ≤

A2
dr
d−n+|n−d|+2

(d− n+ |n− d|+ 2)2
.

And the estimate (3.47) is true again. And (3.48) is replaced by

‖αj+1 − αj‖L∞([0,R]) ≤ 2jCj+1R2(j+1)

and

‖βj+1 − βj‖L∞([0,R]) ≤ 2jCj+1Rd−n+|n−d|+2(j+1).

(3.53)

Thus we can conclude to the construction of h3 and k3 exactly as in (3.49). And we have,
with C defined above

|h3(R)− 1| ≤
∑
j≥0

2jCj+1R2j+2 and |k3(R)− β1(R)| ≤
∑
j≥1
‖βj+1 − βj‖L∞([0,R]).

So, we use (3.53) to have some M such that

|h3(R)− 1| ≤MR2 and |k3(R)− β1(R)| ≤MRd−n+|n−d|+4,

where M is independent of µ and is valid for the R chosen above, and also for any smaller
positive real number.
Now, as for α1 above, we compute β1. Since

β1 =

∫ r

0
t−2(n+d)−1

∫ t

0
s2(n+d)+1f2d s

|n−d|−n−ddsdt,

we have that for 0 < r ≤ R

|β1 −
A2
dr
d−n+|n−d|+2

(3d+ n+ |n− d|+ 2)(d− n+ |n− d|+ 2)
| ≤Mrd−n+|n−d|+4

with M independent on µ. We deduce that

|k3(R)−
A2
dR

d−n+|n−d|+2

(3d+ n+ |n− d|+ 2)(d− n+ |n− d|+ 2)
| ≤MRd−n+|n−d|+4,

for some M independent of µ and independent of R small enough.
Now we define

aµ3 = r|n−d|h and bµ3 = rn+dk.

And we have proved the estimates (3.40).
The proof of the continuity of Xµ

3 (r) wrt µ, for r ∈]0, R], works exactly as for Xµ
1 .
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Proof of Proposition 3.2. To construct (aµ2 , b
µ
2 ) and (aµ4 , b

µ
4 ) in some interval ]0, R],

we are looking for a solution (a, b) of (1.25) of the form

a(r) = h(r)r−|n−d| and b(r) = k(r)r−n−d.

That gives {
h′′ + −2|n−d|+1

r h′ − f2dh− f2dkr−n−d+|n−d| = −µ(1− f2d )h

k′′ + −2(n+d)+1
r k′ − f2dk − f2dhr−|n−d|+n+d = −µ(1− f2d )k

(3.54)

We will choose (h, k)(0) = (0, 1) for (aµ2 , b
µ
2 ) and (h, k)(0) = (1, 0) for (aµ4 , b

µ
4 ).

First, let us construct (aµ2 , b
µ
2 ). We have to distinguish the cases n ≤ d and n ≥ d+ 1.

(i) For n ≤ d. We chose some R > 0. We will have to choose R small enough, but in
a way valid for all values of the parameter µ, belonging to the desired range. We write
(3.54) on the form, for all 0 < r < R,

h = α0 +
∫ r
0 t

2|n−d|−1 ∫ t
0 s
−2|n−d|+1

(
(f2d − µ(1− f2d ))h+ f2dks

−n−d+|n−d|) dsdt
k = β0 +

∫ r
0 t

2(n+d)−1 ∫ t
R s
−2(n+d)+1

(
(f2d − µ(1− f2d ))k + f2dhs

−|n−d|+n+d) dsdt
(3.55)

We define {
α0 = 0 β0 = 1

(αj+1, βj+1) = Φ(αj , βj).
(3.56)

As above, for R small enough, we obtain that for all 0 < r ≤ R

|α1 − α0|(r) ≤
A2
dr
d−n+|n−d|+2

(d− n+ |n− d|+ 2)2
and |β1 − β0|(r) ≤

3

4
r2. (3.57)

And for all j ≥ 1

|αj+1 − αj |(r) ≤
∫ r
0 t

2|n−d|−1 ∫ t
0 (3s‖r−2|n−d|(αj − αj−1)‖L∞([0,R])+

+A2
ds
−|n−d|−n+d+3‖r−2(βj − βj−1)‖L∞([0,R]))dsdt

that gives

|αj+1−αj |(r) ≤
∫ r

0

(
3

2
t2|n−d|+1‖r−2|n−d|(αj − αj−1)‖L∞([0,R]) +

A2
d

4
t2|n−d|+3‖r−2(βj − βj−1)‖L∞([0,R])

)
dt

and we are led to

|αj+1 − αj |(r) ≤ 3 r2|n−d|+2

2(2|n−d|+2)‖r
−2|n−d|(αj − αj−1)‖L∞([0,R])+

+
A2
dr

2|n−d|+4

4(2|n−d|+4)‖r
−2(βj − βj−1)‖L∞([0,R]).

(3.58)
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And

|βj+1 − βj |(r) ≤
∫ r
0 t

2(n+d)−1 ∫ R
t [3s−2(n+d)+3‖r−2(βj − βj−1)‖L∞([0,R])+

+A2
ds
−n+d+|n−d|+1‖r−2|n−d|(αj − αj−1)‖L∞([0,R])]dsdt,

that gives

|βj+1 − βj |(r) ≤
∫ r
0 t

2(n+d)−1[3D0(t)‖r−2(βj − βj−1)‖L∞([0,R])+

+A2
dR

2|n−d|+2‖r−2|n−d|(αj − αj−1)‖L∞([0,R])]dt

where

D0(t) =


t−2(n+d)+4

(2(n+d)−4) if (n, d) 6= (1, 1)

| ln t| if (n, d) = (1, 1).

And, since R ≤ 1, we are led to

|βj+1 − βj |(r) ≤ 3D(r)‖r−2(βj − βj−1)‖L∞([0,R])+

+A2
dR

2 r2(n+d)

2(n+d) ‖r
−2|n−d|(αj − αj−1)‖L∞([0,R])

(3.59)

D(r) =


r4

4(2(n+d)−4) if (n, d) 6= (1, 1)

r2(n+d)

2(n+d) | ln r| if (n, d) = (1, 1).

We remark that in any case D(r)r−2 ≤ r2| ln r|. So an induction gives, with C =

max{3, A
2
d
2 } defined as above, for j ≥ 0,

‖r−2|n−d|(αj+1 − αj)‖L∞([0,R]) ≤ 2jCj+1(R2| lnR|)j

and ‖r−2(βj+1 − βj)‖L∞([0,R]) ≤ 2jCj+1(R2| lnR|)j .
(3.60)

We choose R small enough to have 2CR2| lnR| < 1
2 . We define h and k by

h(r) = r2|n−d|
∑
j≥0

r−2|n−d|(αj+1 − αj) and k(r) = β0 + r2
∑
j≥0

r−2(βj+1 − βj)

and we obtain, for all 0 ≤ r ≤ R,

|h(r)| ≤ C(1− 2CR2| lnR|)−1r2|n−d| and |k(r)− 1| ≤ C(1− 2CR2| lnR|)−1r2

We define aµ2 = r−|n−d|h and bµ2 = r−n−dk. We deduce the proof of (3.41), when n ≤ d.
And since for the same reason as in the construction of (aµ1 , b

µ
1 ), (h, h′, k, k′)(r) is contin-

uous wrt µ, we have that Xµ
2 (r) is continuous wrt µ, too, for all 0 < r ≤ R.

This terminates the construction of (aµ2 , b
µ
2 ), when n ≤ d.
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(ii) n ≥ d + 1. Now, let us examine the construction of (aµ2 , b
µ
2 ), when n ≥ d + 1.

We define again a = r−|n−d|h and b = r−n−dk, so we solve the system (3.54) again, but
not in the same Banach space. Instead of (3.55), we consider the following fixed point
problem, when R > 0 is chosen.

h = α0 +
∫ r
0 t

2|n−d|−1 ∫ t
R s
−2|n−d|+1

(
(f2d − µ(1− f2d ))h+ f2dks

−n−d+|n−d|) dsdt
k = β0 +

∫ r
0 t

2(n+d)−1 ∫ t
R s
−2(n+d)+1

(
(f2d − µ(1− f2d ))k + f2dhs

−|n−d|+n+d) dsdt.
(3.61)

We define the sequence (αj , βj)j≥0 by the same induction as for n ≤ d, ie α0 = 0 and
β0 = 1. We find the estimates

|α1 − α0|(r) ≤ A2
d

∫ r

0
t2|n−d|−1

∫ R

t
s−2|n−d|+1s2ds−n−d+|n−d|dsdt.

But −2|n − d| + 1 + 2d − n − d + |n − d| = −2n + 2d + 1 can be equal to −1, or is
≤ −3, that gives

|α1 − α0|(r) ≤ A2
dD1(r) (3.62)

where

D1(r) =

{
r2/2(2n− 2d− 2) if n ≥ d+ 2

r2(n−d)| ln r|/2(n− d) if n = d+ 1.

while

|β1 − β0|(r) ≤
3

2(2(n+ d)− 2)
r2. (3.63)

And, for j ≥ 1,

|αj+1 − αj |(r) ≤
∫ r

0
t2|n−d|−1

∫ R

t
(3s3−2|n−d|| ln s|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R])+

+A2
ds
−2(n−d)+3‖r−2(βj − βj−1)‖L∞([0,R]))dsdt,

that gives

|αj+1 − αj |(r) ≤
∫ r

0
t2|n−d|−1[3C0(t)‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R])+

+A2
dC0(t)‖r−2(βj − βj−1)‖L∞([0,R])]dt

where

C0(t) =


R2/2| lnR| if n = d+ 1
| ln t|2 if n = d+ 2

t−2|n−d|+4

2|n−d|−4 | ln t| if n ≥ d+ 3

(3.64)

And we obtain

|αj+1 − αj |(r) ≤ 3C(r)‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R])+

+A2
dC(r)‖r−2(βj − βj−1)‖L∞([0,R])

(3.65)
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where

C(r) =


R2| lnR|r2/4 if n = d+ 1
r4

4 | ln r|
2 if n = d+ 2

r4

4(2|n−d|−4) | ln r| if n ≥ d+ 3.

(3.66)

Now

|βj+1 − βj |(r) ≤
∫ r

0
t2(n+d)−1

∫ R

t
[3s−2(n+d)+3‖r−2(βj − βj−1)‖L∞([0,R])+

+A2
ds

3−2|n−d|| ln s|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R])ds]dt,

that gives

|βj+1 − βj |(r) ≤
∫ r

0
t2(n+d)−1[3

t−2(n+d)+4

2(n+ d)− 4
‖r−2(βj − βj−1)‖L∞([0,R])+

+A2
dC0(t)‖r−2| ln r|(αj − αj−1)‖L∞([0,R])]dt,

where C0(t) is defined in (3.64) above. And we obtain

|βj+1 − βj |(r) ≤ 3 r4

4(2(n+d)−4)‖r
−2(βj − βj−1)‖L∞([0,R])+

+A2
dD(r)‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]),

(3.67)

where

D(r) =


R2| lnR| r2(n+d)4(n+d) if n = d+ 1
r2(n+d)

2(n+d) | ln r|
2 if n = d+ 2

r4

4(2|n−d|−4) | ln r| if n ≥ d+ 3.

We define C = max{3, A2
d}. We remark that in any case, for n ≥ d+1, for 0 ≤ r ≤ R < 1,

r−2D(r) ≤ R2 and r−2| ln r|−1C(r) ≤ R2| lnR|.

Considering (3.62), (3.63), (3.65) and (3.67), an induction gives

‖r−2| ln r|−1(αj+1 − αj)‖L∞([0,R]) ≤ 2jCj+1(R2 lnR)j

and

‖r−2(βj+1 − βj)‖L∞([0,R]) ≤ 2jCj+1(R2 lnR)j .

(3.68)

We chose R such that 2CR2| lnR| < 1/2 and we define h and k for r ∈ [0, R] by

h(r) = r2| ln r|
∑
j≥0

r−2| ln r|−1(αj+1 − αj) and k(r) = β0 + r2
∑
j≥0

r−2(βj+1 − βj).

The convergence of the sums, for R > 0 small enough follows from (3.68) and we have
the continuity of h, h′, k, k′ wrt µ, too. And we obtain, for all 0 < r ≤ R,

|h(r)| ≤Mr2| ln r| and |k(r)− 1| ≤Mr2.
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We define aµ2 = r−|n−d|h and bµ2 = r−n−dk and we can recapitulate the cases n ≤ d and
n ≥ d+ 1 by (3.41).

Now, let us construct (aµ4 , b
µ
4 ). We distinguish the cases n 6= d and n = d.

(i) n 6= d.
We use the fixed point problem (3.61), that is

h = α0 +
∫ r
0 t

2|n−d|−1 ∫ t
R s
−2|n−d|+1

(
(f2d − µ(1− f2d ))h+ f2dks

−n−d+|n−d|) dsdt
k = β0 +

∫ r
0 t

2(n+d)−1 ∫ t
R s
−2(n+d)+1

(
(f2d − µ(1− f2d ))k + f2dhs

−|n−d|+n+d) dsdt.
and we define {

α0 = 1 β0 = 0
(αj+1, βj+1) = Φ(αj , βj).

(3.69)

For R small enough as above, we obtain that for all 0 < r ≤ R

|α1 − α0|(r) ≤ 3

∫ r

0
t2|n−d|−1

∫ R

t
s−2|n−d|+1dsdt,

that gives

|α1 − α0|(r) ≤
3

2
D1(r) (3.70)

where

D1(r) =

{
r2

2|n−d|−2 if |n− d| ≥ 2

r2(− ln r) if |n− d| = 1.

And

|β1 − β0| ≤
∫ r

0
t2(n+d)−1

∫ R

t
A2
ds
−(n+d)−|n−d|+2d+1dsdt,

that gives
|β1 − β0| ≤ A2

dD2(r), (3.71)

where

D2(r) =


r4d+2

(2|n−d|−2)(4d+2) if n ≥ d+ 2
r4d+2(− ln r)

4d+2 if n = d+ 1
R2

2
r2(n+d)

2(n+d) if n ≤ d− 1.

In view of (3.71), we have to distinguish the cases n ≤ d− 1 and n ≥ d+ 1.
(a) n ≤ d− 1.
For all j ≥ 1 we write

|αj+1 − αj | ≤
∫ r

0
t2|n−d|−1

∫ R

t
[3s−2|n−d|+3| ln s|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]+

+A2
ds
−|n−d|+2d+n+d‖r−2(n+d)+1(βj − βj−1)‖L∞([0,R])]dsdt,
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that gives

|αj+1 − αj | ≤
∫ r

0
t2|n−d|−1[3C0(t)‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]+

+A2
d

t3d+n+1−|n−d|

3d+ n+ 1− |n− d|
‖r−2(n+d)−1(βj − βj−1)‖L∞([0,R])]dsdt,

where C0(t) is defined in (3.64) above. And we are led to

|αj+1 − αj | ≤ 3C(r)‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]+

+A2
dR

r2|n−d|

2|n−d| ‖r
−2(n+d)+1(βj − βj−1)‖L∞([0,R]),

where C(r) is defined in (3.66). But C(r) ≤ r2R2| lnR|. And since r ≤ R < 1, we use
| lnR| ≤ | ln r| to obtain C(r) ≤ Rr2| ln r|. Moreover 2|n− d| ≥ 2. We are led to

|αj+1 − αj | ≤ 3Rr2| ln r|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]+

+A2
dRr

2| ln r|‖r−2(n+d)+1(βj − βj−1)‖L∞([0,R]).

(3.72)

And in the other hand

|βj+1 − βj | ≤
∫ r

0
t2(n+d)−1

∫ R

t
[3‖r−2(n+d)+1(βj − βj−1)‖L∞([0,R])+

+A2
ds
−(n+d)−|n−d|+3+2d| ln s|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]]dsdt

and since −(n+ d)− |n− d|+ 3 + 2d = 3, we deduce that

|βj+1 − βj | ≤
∫ r

0
t2(n+d)−1[3R‖r−2(n+d)+1(βj − βj−1)‖L∞([0,R])+

+A2
d

R4

4
| lnR|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]]dsdt

And we are led to

|βj+1 − βj | ≤ 3Rr2(n+d)−1‖r−2(n+d)+1(βj − βj−1)‖L∞([0,R])+

+A2
dRr

2(n+d)−1‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R],

(3.73)

Letting C = max{3, A2
d}, we deduce from (3.70), (3.71), (3.72) and (3.73) that, for all

j ≥ 0,

| ln r|−1r−2|αj+1 − αj | ≤ 2jCj+1Rj and r−2(n+d)+1|βj+1 − βj | ≤ 2jCj+1Rj . (3.74)

We chose R small enough to have 2CR < 1
2 and we define

h = α0 + | ln r|r2
∑

j≥0 | ln r|−1r−2(αj+1 − αj)

and k = β0 + r2(n+d)−1
∑

j≥0 r
−2(n+d)+1(βj+1 − βj).
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We conclude as usual to the continuity of h and k wrt to µ, when r ≤ R and we estimate,
for r ∈ [0, R],

|h(r)− 1| ≤Mr2| ln r| and |k(r)| ≤Mr2(n+d)−1.

Letting aµ4 = hr−|n−d| and bµ4 = kr−n−d, we have proved (3.42), when n ≤ d− 1.

(b) Let us examine the case n ≥ d+ 1.
For all j ≥ 1 we write

|αj+1 − αj | ≤
∫ r

0
t2|n−d|−1

∫ R

t
[3s−2|n−d|+3| ln s|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]+

+A2
ds
−|n−d|+6d−n−d+3| ln s|‖r−4d−2| ln r|−1(βj − βj−1)‖L∞([0,R])]dsdt,

that gives

|αj+1 − αj | ≤
∫ r

0
t2|n−d|−1[3C0(t)‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]+

+A2
dC2(t)‖r−4d−2| ln r|−1(βj − βj−1)‖L∞([0,R])]dsdt,

where C0(t) is defined above in (3.64] and

C2(t) =


R| ln t| if −2n+ 6d+ 4 ≥ 0
| ln t|2 if −2n+ 6d+ 4 = −1

t−2n+6d+4

2n−6d+4 | ln t| if −2n+ 6d+ 4 < −1.

And we are led to

|αj+1 − αj | ≤ 3C(r)‖r−2|| ln r|−1(αj − αj−1)‖L∞([0,R]+

+A2
dC3(r)‖r−4d−2| ln r|−1(βj − βj−1)‖L∞([0,R]),

where C(r) is defined in (3.66) and

C3(r) =


R r2|n−d|

2|n−d| | ln r| if −2n+ 6d+ 4 ≥ 0
r2|n−d|

2|n−d| | ln r|
2 if −2n+ 6d+ 4 = −1

r4d+4

(4d+4)(2n−6d+4) | ln r| if −2n+ 6d+ 4 < −1.

But C(r) ≤ r2R2| lnR|. And since R < 1, we use | lnR| ≤ | ln r| to obtain C(r) ≤
Rr2| ln r|. Moreover, if n = d + 1, we have −2n + 6d + 4 ≥ 0 and if n ≥ d + 2, we have
2|n− d| ≥ 4. We deduce, for all r ≤ R and since n ≥ d+ 1,

|αj+1 − αj | ≤ 3R2r2| ln r|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]+

+A2
dRr

2| ln r|‖r−4d−2| ln r|−1(βj − βj−1)‖L∞([0,R]).
(3.75)

And in the other hand

|βj+1 − βj | ≤
∫ r

0
t2(n+d)−1

∫ R

t
[3s−2n+2d+3| ln s|‖r−4d−2| ln r|−1(βj − βj−1)‖L∞([0,R])+
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+A2
ds
−(n+d)−|n−d|+3+2d| ln s|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]]dsdt

and since −(n+ d)− |n− d|+ 3 + 2d = −2n+ 2d+ 3 can be equal to 1, −1 or is ≤ −3,
we deduce that

|βj+1 − βj | ≤
∫ r

0
C4(t)‖r−4d−2| ln r|−1(βj − βj−1)‖L∞([0,R])+

+A2
dC4(t)‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]]dsdt

where

C4(t) =


R−2n+2d+3

−2n+2d+3 | lnR| if n = d+ 1

| lnR|2 if n = d+ 2
t−2n+2d+4

(2n−2d−4) | ln t| if n ≥ d+ 3.

And we are led to

|βj+1 − βj | ≤ 3C5(r)‖r−4d−2| ln r|−1(βj − βj−1)‖L∞([0,R])+

+A2
dC5(r)‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R]]dsdt

where

C5(r) =


R| lnR|r

2(n+d)
2(n+d) if n = d+ 1

| lnR|2r
2(n+d)
2(n+d) if n = d+ 2

r4d+4

(2n−2d−4)(4d+4) | ln r| if n ≥ d+ 3.

In any case, we have C5(r) ≤ r4d+2| ln r|R. We deduce that

|βj+1 − βj | ≤ 3Rr4d+2| ln r|‖r−4d−2| ln r|−1(βj − βj−1)‖L∞([0,R])+

+A2
dRr

4d+2| ln r|‖r−2| ln r|−1(αj − αj−1)‖L∞([0,R],
(3.76)

Letting C = max{3, A2
d}, we deduce from (3.70), (3.71), (3.75) and (3.76) that, for all

j ≥ 0

r−2| ln r|−1|αj+1 − αj | ≤ 2jCj+1Rj and r−4d−2| ln r|−1|βj+1 − βj | ≤ 2jCj+1Rj . (3.77)

We chose R small enough to have 2CR < 1
2 and we define

h = α0 + r2| ln r|
∑

j≥0 r
−2| ln r|−1(αj+1 − αj)

and k = β0 + r4d+2| ln r|
∑

j≥0 r
−4d−2| ln r|−1(βj+1 − βj).

We conclude as usual to the continuity of h and k wrt to µ, when r ≤ R and we estimate,
for r ∈ [0, R],

|h(r)− 1| ≤Mr2| ln r| and |k(r)| ≤Mr4d+2| ln r|.

Letting aµ4 = hr−|n−d| and bµ4 = kr−n−d, we have proved (3.42), when n ≥ d+ 1.
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(ii) Now, if n = d we verify that ln r verifies the equation

a′′ +
a′

r
= 0.

Consequently if we define a = h| ln r| and b = kr−2d, then (a, b) is a solution of (1.25),
with n = d, if and only if (h, k) verifies{

h′′ + 2| ln r|−1+1
r h′ − f2dh− f2dkr−2d(− ln r)−1 = −µ(1− f2d )h

k′′ + −2d+1
r k′ − f2dk − f2dhr2d(− ln r) = −µ(1− f2d )k

(3.78)

We denote τ(r) = | ln r|. Since

h′′ +
2| ln r|−1 + 1

r
h′ = (rτ2h′)′τ−2r−1 and k′′ +

−2d+ 1

r
k′ = (r−2d+1k′)′r2d−1,

we consider the following fixed point problem
h = α0 +

∫ r
0 t
−1τ−2

∫ t
0 sτ

2
(
(f2d − µ(1− f2d ))h+ f2dks

−2dτ−1
)
dsdt

k = β0 +
∫ r
0 t

2d−1 ∫ t
0 s
−2d+1

(
(f2d − µ(1− f2d ))k + f2dhs

2dτ
)
dsdt

(3.79)

We define (αj , βj) by the induction (3.69). Thus α0 = 1 and β0 = 0. With the same
estimates for fd a above, there exists R small enough such that we have for all 0 < r ≤ R

|α1 − α0|(r) ≤
3

4
r2 and |β1 − β0|(r) ≤

A2
dr

4d+2

(2d+ 2)(4d+ 2)
(− ln r).

Now, for all j ≥ 1

|αj+1 − αj |(r) ≤

≤ 3
4r

2‖αj − αj−1‖L∞([0,r]) +
∫ r
0 t
−1τ−2

∫ t
0 A

2
ds(− ln s)s2ddsdt‖r−2d(βj − βj−1)‖L∞([0,r]).

We use (− ln s)−1 ≤ 1 to obtain

|αj+1 − αj |(r) ≤
3

4
r2‖αj − αj−1‖L∞([0,r]) + +A2

d

r2d+2

(2d+ 2)2
‖r−2d(βj − βj−1)‖L∞([0,r]).

And

|βj+1−βj |(r) ≤
∫ r

0
t2d−1

∫ t

0

(
3s‖r−2d(βj − βj−1)‖L∞[0,r] +A2

ds
2d+1τ‖αj − αj−1‖L∞[0,r]

)
dsdt,

that gives

|βj+1−βj |(r) ≤
3

4
r2d+2‖r−2d(βj−βj−1)‖L∞([0,r])+

A2
dr

4d+2

(4d+ 2)(2d+ 2)
τ‖αj−αj−1‖L∞([0,r]).
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We define C = max{34 ,
A2
d
4 }. And finally, for all j ≥ 0 and for all r ∈ [0, R],

‖αj+1 − αj‖L∞([0,R]) ≤ 2jCj+1R2(j+1)

and ‖r−2d(βj+1 − βj)‖L∞([0,R]) ≤ 2jCj+1(− lnR)R2d+2(j+1).

(3.80)

Now, we chose R small enough to have 2CR2| lnR| < 1 and we define (h, k) by

h = α0 +
∑
j≥0

(αj+1 − αj) and k = r2d
∑
j≥0

r−2d(βj+1 − βj).

The convergence of the sums in L∞([0, R]), uniform wrt µ is given by the estimate (3.80)
and we conclude to the continuity of h and k wrt µ as above. Now we estimate

|h(R)−1| ≤
∑
j≥0
‖αj+1−αj‖L∞([0,R]) and |k(R)−β1(R)| ≤ R2d

∑
j≥1
‖r−2d(βj+1−βj)‖L∞([0,R]).

We deduce from (3.80) that

|h(R)− 1| ≤MR2 and |k(R)− β1(R)| ≤MR2d+4(− lnR),

and this estimate is valid for all r ≤ R, with the same M .
Now we estimate

β1 =

∫ r

0
t2d−1

∫ t

0
s−2d+1f2d s

2d(− ln s)dsdt.

We have

|β1 −
A2
dr

4d+2

(4d+ 2)2
(− ln r)| ≤Mr4d+4.

We infer that

|k(R)−
A2
dR

4d+2

(4d+ 2)(2d+ 2)
(− lnR)| ≤MR4d+4(− lnR),

for another M independent of µ and independent of R small enough. Now we define

aµ4 = h| ln r| and bµ4 = r−2dk

and as for n 6= d, we conclude to (3.42). And we conclude as above to the continuity of
Xµ

4 wrt µ, for all 0 < r ≤ R.

3.2 A base defined near infinity.

Now let us turn to a base of solutions of (1.25) defined at +∞.
The propositions 3.4 and 3.5 below are valid in particular for µ = 1, and in this case
they give a base of solutions of (1.14). In all what follows, we suppose that d ≥ 1, n ≥ 1.
We distinguish two independent solutions having exponential behaviors at +∞ and two
independent solutions having polynomial behavior at +∞. The four of them form a base
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of solutions.

We will denote

J+ :=
e
√
2r

√
r
, J− :=

e−
√
2r

√
r
.

We will prove that J+ and J− are the exponentional behaviors at +∞. Let us enonce

Proposition 3.4 If |1 − µ| ≤ 1, there exist two solutions of (1.25) defined by there
exponentional behaviors at +∞, that we denote by (uµi , v

µ
i ), i = 1 and i = 2. They

are such that they exists some R > 0 independent of the parameter µ and such that in
[R,+∞[

|uµ1 − J+|+ |v
µ
1 − J+| ≤Mr−1J+, |uµ2 − J−|+ |v

µ
2 − J−| ≤Mr−1J−, (3.81)

where M is independent of µ, too.

Now, we will suppose that µ is sufficiently closed to 1, ie −1
2 ≤ d

2(1−µ) ≤ 1
2 and for

all n ≥ 1 we denote

nµ :=
√
n2 + d2(1− µ).

Let us enonce

Proposition 3.5 If −1
2 ≤ d

2(1− µ) ≤ 1
2 , there exists two solutions of (1.25) defined by

there polynomial behaviors at +∞ and denoted by (uµi , v
µ
i ), i = 3 and i = 4. They are

such that, for some R > 0 and some M > 0 independent of µ, they verify, in [R,+∞[

|uµ3 − r
nµ |+ |vµ3 + rnµ | ≤Mr−2rnµ , |uµ4 − r

−nµ |+ |vµ4 + r−nµ | ≤Mr−2r−nµ (3.82)

Proposition 3.6 Denoting Y µ
i = (uµi , r(u

µ
i )′, vµi , r(v

µ
i )′)t the associated solution of (1.26),

we have that Y µ
i → Yi as µ→ 1, in (L∞([r0, r1]))

4, for all 0 < r0 < r1, where the notation
Yi is used in place of Y 1

i .

Before proving the first two propositions, we let x = a+ b and y = a− b and we replace
the system (1.25) by the following system verified by (x, y){

x′′ + x′

r −
n2+d2

r2
x+ 2nd

r2
y − 2f2dx+ µ(1− f2d )x = 0

y′′ + y′

r −
n2+d2

r2
y + 2nd

r2
x+ µ(1− f2d )y = 0.

(3.83)

We let
x̃(r) := r

1
2x(r).

Thanks to

x′′ +
x′

r
− 1

4r2
x = r−

1
2 x̃′′,

we can replace the first equation of (3.83) by

x̃′′ − 2x̃+
−n2 − d2 + 1

4

r2
x̃+

2nd

r
3
2

y + 2(1− f2d )x̃+ µ(1− f2d )x̃ = 0,
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that can be written as

(e2
√
2r(r

1
2xe−

√
2r)′)′ = e

√
2r
(

(
n2+d2− 1

4
r2

− (µ+ 2)(1− f2d ))r
1
2x− 2nd

r
3
2
y
)

or

(e−2
√
2r(r

1
2xe
√
2r)′)′ = e−

√
2r
(

(
n2+d2− 1

4
r2

− (µ+ 2)(1− f2d ))r
1
2x− 2nd

r
3
2
y
)
.

(3.84)

The second equation of the system (3.83) can be written as

y′′ +
y′

r
− n2 + d2(1− µ)

r2
y +

2nd

r2
x+ µ(1− f2d −

d2

r2
)y = 0,

that gives

(r2nµ+1(r−nµy)′)′ = rnµ+1(−2nd
r2
x− µ(1− f2d −

d2

r2
)y)

or

(r−2nµ+1(rnµy)′)′ = r−nµ+1(−2nd
r2
x− µ(1− f2d −

d2

r2
)y).

(3.85)

To prove Proposition 3.4 and Proposition 3.5, we are looking for solutions of the
system (3.83) of the form

x = hJ+ and y = krnµ or x = hJ− and y = kr−nµ

and we will let lim+∞(h, k) = (1, 0) in Proposition 3.4 and lim+∞(h, k) = (0, 1) in
Proposition 3.5.
We use (3.84) and (3.85) to infer that (h, k) must verify the following systems,
when (x, y) = (hJ+, kr

nµ){
(e2
√
2rh′)′ = e

√
2r
(
q(r)e

√
2rh− 2nd

r3/2
krnµ

)
(r2nµ+1k′)′ = rnµ+1(−2nd

r2
J+h− µ(1− f2d −

d2

r2
)krnµ)

(3.86)

or, when (x, y) = (hJ−, kr
−nµ){

(e−2
√
2rh′)′ = e−

√
2r
(
q(r)e−

√
2rh− 2nd

r3/2
kr−nµ

)
(r−2nµ+1k′)′ = r−nµ+1(−2nd

r2
J−h− µ(1− f2d −

d2

r2
)kr−nµ)

(3.87)

where

q(r) = (n2 + d2 − 1

4
)r−2 − (µ+ 2)(1− f2d ).

In what follows, we will need the following estimates, obtained by an integration by
part. Let γ ∈ R and δ > 0 be given. Then∫ +∞

t
sγe−δsds ≤ 2

δ
tγe−δt for all t ≥ 2γ

δ
(3.88)

and ∫ t

R
sγeδsds ≤

{
2
δ t
γeδt for all t ≥ R ≥ −2γδ if γ < 0

1
δ t
γeδt for all t ≥ R > 0 if γ ≥ 0.

(3.89)
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And we will use, for s ≥ R and t ≥ R

|µ|(1− f2d ) ≤ C

r2
, |1− f2d −

d2

r2
| ≤ C

r4
and |q(s)| ≤ C

r2
(3.90)

where C is independent of R > 1 and independent of µ, provided |µ− 1| ≤ 1.
We will fix R > 1, large enough to have (3.88), (3.89) and (3.90), for the desired γ and
δ we will have to use.

3.2.1 Proof of Proposition 3.4.

We devide the proof into 3 steps. In Step 1, we construct solutions of (3.83) of the form
(x, y) = (hJ+, kr

n). In Step 2, we construct solutions of the form (x, y) = (hJ−, kr
−n). In

the both steps, lim+∞(h, k) = (1, 0). In step 3, we conclude the proof of the proposition.
Step 1. The exponentional blowing up behavior.

We prove the following

Lemma 3.2 For all µ verifying |µ− 1| ≤ 1, there exists a solution of (3.86), denoted by
(h1, k1), that is defined in some interval [R,+∞[, where R is independent of the parameter
µ. It is continuous wrt the parameter µ in the sense that (h, h′, k, k′)(r) tends to a limit
as µ tends to a limit µ0, for all r ≥ R. Moreover, the behaviors at +∞ are given by

|h1(r)− 1| ≤Mr−1 and |k1(r)| ≤Me
√
2rr−nµ−

5
2 (3.91)

for all r ∈ [R,+∞[ and for some M independent of µ.

Proof Let R > 0 be given. We rewrite (3.86) as the fixed point problem
h = α0 +

∫ r
+∞ e

−2
√
2t
∫ t
R e
√
2s(− 2nd

s3/2
snµk + q(s)e

√
2sh)dsdt

k = β0 +
∫ r
R t
−2nµ−1

∫ t
R s

nµ+1(−2nd
s2
s−1/2e

√
2sh− µ(1− f2d −

d2

s2
)snµk)dsdt.

(3.92)

In what follows, we may choose R as large as necessary, but this choice will be always
valid for all µ belonging to the desired range. We will denote each fixed point equation
by

(h, k) = Φ(h, k), for (h, k) defined in [R,+∞[.

We define a sequence (αj , βj) by the induction

(αj+1, βj+1) = Φ(αj , βj)
(α0, β0) = (1, 0).

(3.93)

Using (3.88), (3.89) and (3.90), we estimate, for r ≥ R0,

|α1 − α0| ≤ C
∫ +∞

r
e−2
√
2t

∫ t

R
e2
√
2ss−2dsdt ≤ C

∫ +∞

r
e−2
√
2t 1√

2
t−2e2

√
2tdt

that gives
|α1 − α0| ≤ Cr−1. (3.94)
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In the same way,

|β1 − β0| ≤
∫ r

R
t−2nµ−1

∫ t

R
2ndsnµ−3/2e

√
2sdsdt ≤

∫ r

R
t−2nµ−1

4nd√
2
tnµ−3/2e

√
2tdt

≤ 4nd√
2

∫ r

R
t−nµ−5/2e

√
2tdt

that gives

|β1 − β0| ≤ 4ndr−nµ−5/2e
√
2r. (3.95)

And we estimate, for all j ≥ 1

|αj+1 − αj | ≤
∫ +∞

r
e−2
√
2t

∫ t

R
e
√
2s[Ce

√
2ss−3‖r(αj − αj−1)‖L∞([R,+∞[)+

+2nds−4e
√
2s‖rnµ+

5
2 e−

√
2r(βj − βj−1)‖L∞([R,+∞[)]dsdt

≤
∫ +∞

r

(
C√

2
t−3‖r(αj − αj−1)‖L∞([R,+∞[) +

√
22ndt−4e−

√
2t‖rnµ+

5
2 e−

√
2r(βj − βj−1)‖L∞([R,+∞[)

)
dt

that gives
|αj+1 − αj | ≤ Cr−2‖r(αj − αj−1)‖L∞([R,+∞[)+

+4ndr−4e−
√
2r‖rnµ+

5
2 e−

√
2r(βj − βj−1)‖L∞([R,+∞[).

(3.96)

And we estimate

|βj+1 − βj | ≤
∫ r

R
t−2nµ−1

∫ t

R
[2ndsnµ−

5
2 e
√
2s‖r(αj − αj−1)‖L∞([R,+∞[)+

+Csnµ−3−
5
2 e
√
2s‖rnµ+

5
2 e−

√
2r(βj − βj−1)‖L∞([R,+∞[)]dsdt.

That gives

|βj+1 − βj | ≤
∫ r

R
t−2nµ−1(2nd

2√
2
tnµ−

5
2 e
√
2t‖r(αj − αj−1)‖L∞([R,+∞[)+

+C
1√
2
tnµ−

11
2 e
√
2t‖rnµ+

5
2 e−

√
2r(βj − βj−1)‖L∞([R,+∞[))dt.

And we obtain

|βj+1 − βj | ≤ 4nde
√
2rr−nµ−7/2‖r(αj − αj−1)‖L∞([R,+∞[)+

+Cr−nµ−
13
2 e
√
2r‖rnµ+

5
2 e−

√
2r(βj − βj−1)‖L∞([R,+∞[).

(3.97)

We let K = max{2nd,C} and we deduce from (3.94), (3.95), (3.96) and (3.97) that for
all j ≥ 0

‖r(αj+1 − αj)‖L∞([R,+∞[) ≤ 2jKj+1R−j

and ‖rnµ+
5
2 e−

√
2r(βj+1 − βj)‖L∞([R,+∞[) ≤ 2jKj+1R−j .

(3.98)
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We chose R large enough to have 2KR−1 < 1/2 and we define

h(r) = α0 + r−1
∑

j≥0 r(αj+1 − αj)(r)

and k(r) = β0 + e
√
2rr−nµ+

5
2
∑

j≥0 e
−
√
2rrnµ−

5
2 (βj+1 − βj)(r).

(3.99)

Thanks to (3.98), the sums converge in L∞([R,+∞[). Morover, by its construction,
(h, k) is a solution of the fixed point problem (3.92). Let us remark that an induction
together with (3.96) and (3.97) leads to the continuity wrt the parameter µ of αj(r) and

rnµ+
5
2 e−

√
2rβj(r), for all j ≥ 1 and for all r ≥ R, by the Lebesgue Theorem. And since

K is independent of µ, we deduce that h(r) and k(r) depend continuously on µ, for all
r ≥ R.
We can compute the behaviors at +∞. We deduce from (3.98) that for r ≥ R

|h(r)− 1| ≤ r−1K(1− 2KR−1)−1

and that
|k(r)| ≤ e

√
2rr−nµ−

5
2K(1− 2KR−1)−1.

This gives the proof of (3.91).
Now we can compute

h′ = e−2
√
2r
∫ r
R e
√
2s(− 2nd

s3/2
snk + q(s)e

√
2sh)ds

k′ = r−2n−1
∫ r
R s

n+1(2nd
s2
s−1/2e

√
2sh− µ(1− f2d )snk)ds.

So, h′(r) and k′(r) depend continuously on µ, too, for all r ≥ R.
This terminates the proof of Lemma 3.2.

Step 2. The exponentional vanishing behavior.
We prove the following

Lemma 3.3 For all µ verifyng |µ− 1| ≤ 1, there exists a solution of (3.87), denoted by
(h2, k2), that is defined in some interval [R,+∞[, where R is independent of the parameter
µ. It is continuous wrt the parameter µ in the sense that (h, h′, k, k′)(r) tends to a limit
as µ tends to a limit µ0. Moreover, its behavior at +∞ is given by

|h2(r)− 1| ≤Mr−1 and |k2(r)| ≤Me−
√
2rrnµ−

5
2 (3.100)

for all r ∈ [R,+∞[ and for some M independent of µ.

Proof We return to the system (3.87) and we rewrite it as the fixed point problem
h = α0 +

∫ r
+∞ e

2
√
2t
∫ t
+∞ e

−
√
2s(− 2nd

s3/2
s−nµk + q(s)e−

√
2sh)dsdt

k = β0 +
∫ r
+∞ t

2nµ−1
∫ t
+∞ s

−nµ+1(−2nd
s2
s−1/2e−

√
2sh− µ(1− f2d −

d2

r2
)s−nµk)dsdt.

(3.101)
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We define (αj , βj) for all j ≥ 0 by the induction (3.93) again.
Using (3.88), (3.89) and (3.90), we estimate

|α1 − α0| ≤
∫ +∞

r
e2
√
2t

∫ +∞

t
Cs−2e−2

√
2sdsdt ≤ C√

2

∫ +∞

r
t−2dt

that gives
|α1 − α0| ≤ Cr−1. (3.102)

And

|β1 − β0| ≤
∫ +∞

r
t2nµ−1

∫ +∞

t
s−nµ−3/22nde−

√
2sdsdt

≤ 2√
2

∫ +∞

r
tnµ−5/22nde−

√
2tdt

that gives

|β1 − β0| ≤ 4nde−
√
2rrnµ−5/2. (3.103)

And for all j ≥ 1

|αj+1 − αj | ≤
∫ +∞

r
e2
√
2t

∫ +∞

t
(2nds−4e−2

√
2s‖r−nµ+

5
2 e
√
2r(βj − βj−1)‖L∞([R,+∞[)+

+Cs−3e−2
√
2s‖r(αj − αj−1)‖L∞([R,+∞[))dsdt

≤
∫ +∞

r
e2
√
2t 4nd

2
√

2
t−4e−2

√
2t‖r−nµ+

5
2 e
√
2r(βj − βj−1)‖L∞([R,+∞[)dt+

+

∫ +∞

r
e2
√
2t C√

2
t−3e−2

√
2t‖r(αj − αj−1)‖L∞([R,+∞[))dt

and we are led to

|αj+1 − αj | ≤ 4nd√
2
r−3‖r−nµ+

5
2 e
√
2r(βj − βj−1)‖L∞([R,+∞[)+

+ C√
2
r−2‖r(αj − αj−1)‖L∞([R,+∞[).

(3.104)

Now, we estimate

|βj+1 − βj | ≤
∫ +∞

r
t2nµ−1

∫ +∞

t
s−nµ+1(2nds−7/2e−

√
2s‖r(αj − αj−1)‖L∞([R,+∞[)+

+Cs−4−
5
2 e−

√
2s‖r−nµ+

5
2 e
√
2r(βj − βj−1)‖L∞([R,+∞[))dsdt,

that gives

|βj+1 − βj | ≤
∫ +∞

r
t2nµ−1(

4nd√
2
t−nµ−

5
2 e−

√
2t‖r(αj − αj−1)‖L∞([R,+∞[)+

+
2C√

2
t−nµ−

11
2 e−

√
2t‖r−nµ+

5
2 e
√
2r(βj − βj−1)‖L∞([R,+∞[))dt.
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We are led to

|βj+1 − βj | ≤ 4ndrnµ−7/2e−
√
2r‖r(αj − αj−1)‖L∞([R,+∞[)+

+2Crnµ−
13
2 e−

√
2r‖r−nµ+

5
2 e
√
2r(βj − βj−1)‖L∞([R,+∞[).

(3.105)

Letting R > 1 and K = max{4nd, 2C}, we deduce from (3.102), (3.103), (3.104) and
(3.105) that for all j ≥ 0,

‖r(αj+1 − αj)‖L∞([R,+∞[) ≤ 2jKj+1R−j

and ‖r−nµ+
5
2 e
√
2r(βj+1 − βj)‖L∞([R,+∞[) ≤ 2jKj+1R−j .

(3.106)

We chose R large enough to have 2KR−1 < 1/2 and we define

h = 1 + r−1
∑

j≥0 r(αj+1 − αj)

and k = e−
√
2rrnµ−

5
2
∑

j≥0 e
√
2rr−nµ+

5
2 (βj+1 − βj).

(3.107)

Moreover, by its construction, (h, k) is a solution of (3.101). As in Step 1, an induction
together with (3.104) and (3.105) leads to the continuity wrt the parameter µ of αj and

of r−nµe
√
2rβj , for all j ≥ 1. And (3.106) gives the continuity of h(r) and k(r) wrt µ,

for all r ≥ R. Now let us verify the behaviors at +∞. We use (3.106) to obtain, for all
r ≥ R,

|h(R)− 1| ≤ r−1K(1− 2KR−1)−1 and |k(R)| ≤ e−
√
2rrnµ−

5
2K(1− 2KR−1)−1.

This gives (3.100).
Now we write

h′ = e2
√
2r
∫ r
+∞ e

−
√
2s(− 2nd

s3/2
s−nk + q(s)e−

√
2sh)dsdt

k′ = r2n−1
∫ r
+∞ s

−n+1(2nd
s2
s−1/2e−

√
2sh− µ(1− f2d )s−nk)dsdt

and we deduce that h′ and k′ are continuous wrt µ, too.
This terminates the proof of Lemma 3.3.

Step 3 Let us conclude the proof of Proposition 3.4.
To construct the solution (uµ1 , v

µ
1 ), we first denote, for r ∈ [R,+∞[,

x1 = h1J+ and y1 = k1r
nµ

where R, (h1, k1) are defined in Lemma 3.2. Thus, (x1, y1) is a solution of (3.83). By
(3.91), we obtain, with the same M independent of µ and for all r ∈ [R,+∞[

|x1 − J+| ≤Mr−1J+ and |y1| ≤MJ+r
−2. (3.108)

that there is a unique prolongation of (x1, y1) as a solution of (3.83) defined in ]0,+∞[.
And denoting also this prolongation by (x1, y1) we have that (x1, x

′
1, y1, y

′
1) is continuous
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wrt µ, in (L∞([r0, r1]))
4, for all r1 > r0 > 0.

Now we define
uµ1 = (x1 + y1)/2 and vµ1 = (x1 − y1)/2

to obtain that (uµ1 , v
µ
1 ) is a solution of (1.25) and we use (3.108) to infer that in [R,+∞[

|uµ1 − J+|+ |v
µ
1 − J+| ≤ Cr

−1J+

with C independent of µ. and we have that Y µ
1 (r) → Y 1

1 (r) as µ → 1, for all r > 0 in
(L∞([r0, r1]))

4, for all 0 < r0 < r1.

Now, to construct the solution (uµ2 , v
µ
2 ), we first denote, for r ∈ [R,+∞[,

x2 = h2J− and y2 = k2r
−nµ

where R, (h2, k2) are defined in Lemma 3.3. By (3.100), we obtain, with the same M
independent of µ and for all r ∈ [R,+∞[

|x2 − J−| ≤Mr−1J− and |y2| ≤Me−
√
2rr−2. (3.109)

We follow the same pattern of proof as for (uµ1 , v
µ
1 ). We denote

uµ2 = (x2 + y2)/2 and vµ2 = (x2 − y2)/2

and we deduce that, in [R,+∞[

|uµ2 − J−| ≤MJ−r
−1 and |vµ2 − J−| ≤MJ−r

−1.

The prolongation of (uµ2 , v
µ
2 ) as a solution of (1.25) in ]0,+∞[, and the continuity of this

solution wrt µ follow from the same principle as above.
This terminates the proof of Proposition 3.4.

3.2.2 Proof of Proposition 3.5.

We are looking for solutions of the system (3.83) of the form

x = hJ+ and y = krnµ or x = hJ− and y = kr−nµ , with lim+∞(h, k) = (0, 1).

Step 1 the polynomial blowing up behavior at +∞.
We are looking for (x, y) = (hJ+, kr

nµ), with lim+∞ h = 0 and lim+∞ k = 1. We prove
the following

Lemma 3.4 For all µ verifyng −1
2 ≤ d2(1 − µ) ≤ 1

2 , there exists a solution of (3.86),
denoted by (h3, k3), that is defined in some interval [R,+∞[, where R is independent of
the parameter µ. It is continuous wrt the parameter µ in the sense that (h, h′, k, k′)(r)
tends to a limit as µ tends to a limit µ0, for all r ∈ [R,+∞[. Moreover, its behavior at
+∞ is given by

|h3(r)| ≤Me−
√
2rrnµ−

3
2 and |k3(r)− 1| ≤Mr−1 (3.110)

for all r ∈ [R,+∞[ and for some M independent of µ.
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Proof First, let us consider the case n ≥ 2.
Let R > 0 be given. We rewrite (3.86) as the fixed point problem

h = α0 +
∫ r
+∞ e

−2
√
2t
∫ t
R e
√
2s(− 2nd

s3/2
snµk + q(s)e

√
2sh)dsdt

k = β0 +
∫ r
+∞ t

−2nµ−1
∫ t
R s

nµ+1(−2nd
s2
s−1/2e

√
2sh− µ(1− f2d −

d2

s2
)snµk)dsdt.

(3.111)
We define a sequence (αj , βj) by the induction

(αj+1, βj+1) = Φ(αj , βj)
(α0, β0) = (0, 1).

(3.112)

Using (3.88), (3.89) and (3.90), we estimate, for r ≥ R,

|α1 − α0| ≤
∫ +∞

r
e−2
√
2t

∫ t

R
e
√
2s2ndsnµ−3/2dsdt

≤ 2nd

∫ +∞

r
e−2
√
2t 2√

2
tnµ−3/2e

√
2tdt

that gives

|α1 − α0| ≤ 2ndrnµ−3/2e−
√
2r. (3.113)

Now, using (3.90), we obtain

|β1 − β0| ≤
∫ +∞

r
t−2nµ−1

∫ t

R
snµ+1Csnµ−4dsdt.

Let us remark that when n ≥ 2, we have 2nµ − 3 > −1. Indeed, we have supposed that
d2|1− µ| < 1/2. So, when n ≥ 2, we have 4n2µ ≥ 14, so 2nµ > 3 and we obtain

|β1 − β0| ≤
C

2nµ − 2

∫ +∞

r
t−2nµ−1t2nµ−2dt ≤ C

4nµ − 4
r−2.

that gives, when n ≥ 2

|β1 − β0| ≤
C

2
r−2. (3.114)

We estimate, for j ≥ 1

|αj+1 − αj | ≤
∫ +∞

r
e−2
√
2t

∫ t

R
e
√
2s(2ndsnµ−

3
2
−1‖r(βj − βj−1)‖L∞([R,+∞[)ds+

+Csnµ−2−
3
2 ‖r−nµ+

3
2 e
√
2r(αj − αj−1)‖L∞([R,+∞[)ds)dt

≤
∫ +∞

r
e−
√
2t(

4nd√
2
tnµ−5/2‖r(βj−βj−1)‖L∞([R,+∞[)+

2C√
2
tnµ−

7
2 ‖r−nµ+

3
2 e
√
2r(αj−αj−1)‖L∞([R,+∞[))dt.

And we obtain

|αj+1 − αj | ≤ 4ndrnµ−5/2e−
√
2r‖r(βj − βj−1)‖L∞([R,+∞[)+

+2Ce−
√
2rrnµ−

7
2 ‖r−nµ+

3
2 e
√
2r(αj − αj−1)‖L∞([R,+∞[).

(3.115)
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Now we estimate

|βj+1 − βj | ≤
∫ +∞

r
t−2nµ−1

∫ t

R
snµ+1(2ndsnµ−4‖r−nµ+

3
2 e
√
2r(αj − αj−1)‖L∞([R,+∞[)+

+2Csnµ−5‖r(βj − βj−1)‖L∞([R,+∞[))dsdt.

Since 2nµ − 3 > 0, we obtain

|βj+1 − βj | ≤
∫ +∞

r
t−2nµ−12nd

t2nµ−2

2nµ − 2
‖r−nµ+

3
2 e
√
2r(αj − αj−1)‖L∞([R,+∞[)dt+

+2C

∫ +∞

r
t−2nµ−1

t2nµ−3

2nµ − 3
‖r(βj − βj−1)‖L∞([R,+∞[dt

that gives

|βj+1−βj | ≤
nd

(2nµ − 2)
r−2‖r−nµ+

3
2 e
√
2r(αj−αj−1)‖L∞([R,+∞[)+

2C

3(2nµ − 3)
r−3‖r(βj−βj−1)‖L∞([R,+∞[)).

We use n2µ ≥ 7/2 to obtain

|βj+1 − βj | ≤ nd
2
√
3−2r

−2‖r−nµ+
3
2 e
√
2r(αj − αj−1)‖L∞([R,+∞[+

+ 2C
3(2
√
3−3)r

−3‖r(βj − βj−1)‖L∞([R,+∞[).

(3.116)

We let K = max{ nd
2
√
3−2 ,

2C
3(2
√
3−3) , 4nd, 2C} and we deduce from (3.113), (3.114), (3.115)

and (3.116) that for all r ≥ R and for all j ≥ 0, we have

‖r−nµ+
3
2 e
√
2r(αj+1 − αj)‖L∞([R,+∞[) ≤ 2jKj+1R−j

and ‖r(βj+1 − βj)‖L∞([R,+∞[) ≤ 2jKj+1R−j .

(3.117)

We chose R large enough to have also 2KR−1 < 1
2 .

Now we may define (h3, k3) by

h3(r) = e−
√
2rrnµ−

3
2

∑
j≥0

r−nµ+
3
2 e
√
2r(αj+1 − αj) and k3(r) = 1 + r−1

∑
j≥0

r(βj+1 − βj).

To prove (3.110), we write, for r ∈ [R,+∞[

e
√
2rr−nµ+

3
2 |h3(r)| ≤

∑
j≥0
‖r−nµ+

3
2 e
√
2r(αj − αj−1)‖L∞([R,+∞[),

that gives, for r ≥ R,

|h3(r)| ≤Me−
√
2rrnµ−

3
2 .

And we write
r|k3(r)− 1| ≤ K(1− 2KR−1)−1,
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that gives
|k3(R)− 1| ≤Mr−1.

Thus, we obtain (3.110).
The continuity of αj , βj , of h3 and k3 and further of h′3 and k′3 wrt the parameter µ
follows as in the proof of Lemma 3.2. This terminates the proof of Lemma 3.4, for n ≥ 2.

Now, when n = 1, we use Theorem 1.4 (iii) to see that only the case µ ≥ 1 and µ closed
to 1 is of interest. In this case, letting 0 < d2(µ− 1) < 1/2, we have

√
1/2 < nµ ≤ 1.

Let us indicate what changes in the proof above. We keep using the fixed point problem
(3.111). The inequalities (3.113) and (3.115) remain inchanged. And since now√

1/2 < nµ ≤ 1,

we estimate

|β1 − β0| ≤
∫ +∞

r
t−2nµ−1

∫ t

R
2Cs2nµ−3dsdt

and since 2nµ − 3 < −1 and since R > 1, that gives (we use s2nµ−3 ≤ s−1, to avoid to
divise by 2nµ − 2, for the sake of the continuity when µ→ 1, that implies nµ → 1)

|β1 − β0| ≤
C

nµ
r−2nµ ln r

and that gives
|β1 − β0| ≤ C

√
2r−2nµ ln r. (3.118)

And

|βj+1 − βj | ≤
∫ +∞

r
t−2nµ−1

∫ t

R
snµ+1(2ndsnµ−4‖r−nµ+

3
2 e
√
2r(αj − αj−1)‖L∞([R,+∞[)+

+2Csnµ−5‖r(βj − βj−1)‖L∞([R,+∞[))dsdt.

As above, we use R > 1 and we obtain

|βj+1 − βj | ≤
∫ +∞

r
t−2nµ−1(2nd ln t‖r−nµ+

3
2 e
√
2r(αj − αj−1)‖L∞([R,+∞[)dt+

+2C ln t‖r(βj − βj−1)‖L∞([R,+∞[)dt

that gives

|βj+1 − βj | ≤
nd

nµ
r−2nµ ln r‖r−nµ+

3
2 e
√
2r(αj − αj−1)‖L∞([R,+∞[)+

+
C

nµ
r−2nµ ln r‖r(βj − βj−1)‖L∞([R,+∞[)).

We use 2nµ ≥
√

2 to obtain

|βj+1 − βj | ≤ nd
√

2r−
√
2 ln r‖r−nµ+1e

√
2r(αj − αj−1)‖L∞([R,+∞[)+

+C
√

2r−
√
2 ln r‖r(βj − βj−1)‖L∞([R,+∞[)).

(3.119)
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We let K = max{C
√

2, nd
√

2}. We deduce from (3.113), (3.115), (3.118) and (3.119)
that

‖r−nµ+
3
2 e
√
2r(αj+1 − αj)‖L∞([R,+∞[) ≤ 2jKj+1(R−

√
2+1 lnR)j

and ‖r(βj − βj−1)‖L∞([R,+∞[) ≤ 2jKj+1(R−
√
2+1 lnR)j

(3.120)

We chose R large enough to have 2KR−
√
2+1 lnR < 1

2 and we define

h3(r) = e−
√
2rrnµ−

3
2

∑
j≥0

r−nµ+
3
2 e
√
2r(αj+1 − αj) and k3(r) = 1 + r−1

∑
j≥0

r(βj+1 − βj).

and we conclude that the proof of Lemma 3.4, we have done above for n ≥ 2, works also
when n = 1.
This terminates the proof of Lemma 3.4.

Step 2 The polynomial vanishing behavior at +∞.
We are looking for (x, y) = (hJ−, kr

−nµ), with lim+∞ h = 0 and lim+∞ k = 1. We prove
the following

Lemma 3.5 For all µ verifyng −1
2 ≤ d2(1 − µ) ≤ 1

2 , there exists a solution of (3.87),
denoted by (h4, k4), that is defined in some interval [R,+∞[, where R is independent of
the parameter µ. It is continuous wrt the parameter µ in the sense that (h, h′, k, k′)(r)
tends to a limit as µ tends to a limit µ0. Moreover, its behavior at +∞ are given by

|h4(r)| ≤Me
√
2rr−nµ−

3
2 and |k4(r)− 1| ≤Mr−1 (3.121)

for all r ∈ [R,+∞[ and for some M independent of µ.

Proof Let R > 0 be given. We rewrite (3.87) as the fixed point problem
h = α0 +

∫ r
R e

2
√
2t
∫ t
+∞ e

−
√
2s(− 2nd

s3/2
s−nµk + q(s)e−

√
2sh)dsdt

k = β0 +
∫ r
+∞ t

2nµ−1
∫ t
+∞ s

−nµ+1(2nd
s2
s−1/2e−

√
2sh− µ(1− f2d −

d2

r2
)s−nµk)dsdt.

(3.122)
We define a sequence (αj , βj) by the induction (3.112) again. Using (3.88), (3.89) and
(3.90), we estimate, for r ≥ R,

|α1 − α0| ≤
∫ r

R
e2
√
2t

∫ +∞

t
e−
√
2s2nds−nµ−3/2dsdt ≤ 2nd

∫ r

R
e2
√
2t 2√

2
t−nµ−3/2e−

√
2tdt

that gives

|α1 − α0| ≤ 4ndr−nµ−3/2e
√
2r. (3.123)

Now, using (3.90), we obtain

|β1 − β0| ≤
∫ +∞

r
t2nµ−1

∫ +∞

t
s−2nµ−3Cdsdt ≤

∫ +∞

r
t−3

C

2nµ + 2
dt.
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that gives

|β1 − β0| ≤
C

4
r−2. (3.124)

We estimate, for j ≥ 1

|αj+1 − αj | ≤
∫ r

R
e2
√
2t(

∫ +∞

t
e−
√
2s(2nds−nµ−5/2‖r(βj − βj−1)‖L∞([R,+∞[)+

+Cs−nµ−
7
2 e−

√
2s‖rnµ+

3
2 e−

√
2r(αj − αj−1)‖L∞([R,+∞[)ds)dt

≤
∫ r

R
e
√
2tt−nµ−5/2

(
4nd√

2
‖r(βj − βj−1)‖L∞([R,+∞[) +

2C√
2
‖rnµ+

3
2 e−

√
2r(αj − αj−1)‖L∞([R,+∞[)

)
dt.

And we obtain

|αj+1 − αj | ≤ 4ndr−nµ−5/2e
√
2r‖r(βj − βj−1)‖L∞([R,+∞[)+

+2Ce
√
2rr−nµ−5/2‖rnµ+

3
2 e−

√
2r(αj − αj−1)‖L∞([R,+∞[).

(3.125)

Now we estimate

|βj+1 − βj | ≤
∫ +∞

r
t2nµ−1

∫ +∞

t
(2nds−2nµ−3‖rnµ+

3
2 e−

√
2r(αj − αj−1)‖L∞([R,+∞[)+

+Cs−2nµ−4‖r(βj − βj−1)‖L∞([R,+∞[))dsdt.

We deduce that

|βj+1 − βj | ≤
∫ +∞

r
t2nµ−1(2nd

t−2nµ−2

2nµ + 2
dt‖rnµ+

3
2 e−

√
2r(αj − αj−1)‖L∞([R,+∞[)+

+C

∫ +∞

r
t2nµ−1

t−2nµ−3

2nµ + 3
dt‖r(βj − βj−1)‖L∞([R,+∞[).

And, since nµ > 0,

|βj+1 − βj | ≤ ndr−2‖rnµ+
3
2 e−

√
2r(αj − αj−1)‖L∞([R,+∞[)+

+C
4 r
−3‖r(βj − βj−1)‖L∞([R,+∞[.

(3.126)

We let K = max{4nd, 2C} and (3.123), (3.124), (3.125) and (3.126) give that for all
r ≥ R

‖rnµ+
3
2 e−

√
2r(αj+1 − αj)‖L∞([R,+∞[) ≤ 2jKj+1R−j

and ‖r(βj+1 − βj)‖L∞([R,+∞[) ≤ 2jKj+1R−j
(3.127)

We chose R large enough to have 2KR−1 < 1/2 and we define, for r ≥ R

h4(r) = r−nµ−
3
2 e
√
2r
∑
j≥0

rnµ+
3
2 e−

√
2r(αj − αj−1) and k4(r) = 1 + r−1

∑
j≥0

r(βj+1 − βj).
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Now we deduce that for all r ≥ R,

rnµ+
3
2 e−

√
2r|h4(r)| ≤ K(1− 2KR−1/2)−1

and
r|k4(r)− 1| ≤ K(1− 2KR−1/2)−1.

We deduce the estimate (3.121), where M is independent of µ and r.
Moreover, the continuity of (h4, h

′
4, k4, k

′
4)(r) wrt µ, for all r ≥ R follows from (3.127) by

the same proof as for Lemma 3.2.
This terminates the proof of Lemma 3.5.

Step 3 The proof of Proposition 3.5.
To construct the solution (uµ3 , v

µ
3 ), we first denote, for r ∈ [R,+∞[,

x3 = h3J+ and y3 = k3r
nµ

where R, (h3, k3) are defined in Lemma 3.4. Thus, (x3, y3) is a solution of (3.83). By
(3.110), we obtain, with the same M independent of µ and for all r ∈ [R,+∞[

|x3| ≤Mrnµ−2 and |y3 − rnµ | ≤Mrnµ−1. (3.128)

Moreover, in view of the properties of (h, k), we have that (x3, x
′
3, y3, y

′
3)(r) is continuous

wrt µ, for all r ≥ R.
Now, exactly as in the proof of Proposition 3.4, we have a extension of of (x3, y3) as a
solution of (3.83) defined in ]0,+∞[. And denoting also this extension by (x3, y3) we
have that (x3, x

′
3, y3, y

′
3) is continuous wrt µ, in (L∞([r0, r1]))

4, for all r1 > r0 > 0.
Now we define

uµ3 = (x3 + y3)/2 and vµ3 = (x3 − y3)/2

to obtain that (uµ3 , v
µ
3 ) is a solution of (1.25) and to prove that in [R,+∞[

|uµ3 − r
nµ | ≤ Crnµ−1 and |vµ1 + rnµ | ≤ Crnµ−1

with C independent of µ and that Y µ
3 → Y 1

3 as µ → 1 in (L∞([r0, r1]))
4, for all

0 < r0 < r1.

Now, to construct the solution (uµ4 , v
µ
4 ), we first denote, for r ∈ [R,+∞[,

x4 = h4J− and y4 = k4r
−nµ

where R, (h4, k4) is defined in Lemma 3.5. By (3.121), we obtain, with the same M
independent of µ and for all r ∈ [R,+∞[

|x4| ≤Mr−nµ−2 and |y4 − r−nµ | ≤Mr−nµ−1. (3.129)

We follow the same pattern of proof as for (uµ1 , v
µ
1 ). We denote

uµ4 = (x4 + y4)/2 and vµ4 = (x4 − y4)/2
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and we deduce that, in [R,+∞[

|uµ4 − r
−nµ | ≤Mr−nµ−1 and |vµ4 + r−nµ | ≤Mr−nµ−1.

The prolongation of (uµ4 , v
µ
4 ) as a solution of (1.25) in ]0,+∞[, and the continuity of this

solution wrt µ follow from the same principle as above.
This terminates the proof of Proposition 3.5.

Proof of Proposition 3.6. The arguments are exactly the same as in the proof of
Proposition 3.3.

4 Proof of Theorem 1.5.

Concerning the solutions of (1.14), we have proved in [1] that the least behavior at 0
is related to the exponentially increasing behavior at +∞ and that the exponentially
decreasing behavior at +∞ is related to the stronger blowing up behavior at 0. Let us
quote it.

Theorem 4.6 (Theorem 1.6 in [1]). The solution (a1, b1), that is the solution of (1.14)
defined in Proposition 3.2, for µ = 1, has the exponentially blowing up behavior at +∞,
ie C(J+, J+), for some C > 0. And the solution (u2, v2) of (1.14), that is defined in
Proposition 3.4, for µ = 1, has the most blowing up behavior at 0, ie b ≥ Cr−n−d, for
some C > 0.

We will need also Theorem 1.1. Let us prove Theorem 1.5.

Proof of (i). Let d ≥ 1 and n ≥ 1. Let us suppose that µ(ε) → 1, as ε → 0.
We will denote µ instead of µ(ε) and we will use the solutions Xµ

i , i = 1, . . . , 4 defined
near 0 in Propositions 3.2 and 3.1 and the solutions Y µ

i , i = 1, . . . , 4 defined near +∞ in
Propositions 3.4 and 3.5. Recall that they tend respectively to Xi and Yi, as µ→ 1.
Firstly, since Y µ

i , i = 1, . . . , 4 form a base of solutions, we can write

Xµ
1 =

4∑
j=1

Cµj Y
µ
j .

Each real number Cµj can be computed by means of a 4 × 4 determinant, for any fixed
r > 0, and consequently, since Xµ

1 (r) and each Y µ
j (r) has a limit as µ → 1, then, each

Cµj has a limit too. And by Theorem 4.6, X1 has the exponentional blowing up behavior
at +∞ and we deduce that C1 6= 0, where C1 = limµ→1C

µ
1 . Consequently, Cµ1 6= 0,

when µ is closed to 1, and we can choose Xµ
1 to represent a solution of (1.24) having the

exponentially blowing up behavior at +∞ instead of Y µ
1 .

So, we can write Xµ
3 as a combination of Xµ

1 and Y µ
i , i = 2, 3, 4. And consequently, we

write

Xµ
3 = Dµ

1X
µ
1 +

4∑
j=2

Dµ
j Y

µ
j (4.130)
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and, as explained above, each real number Dµ
j has a limit as µ → 1. We are going to

prove that Dµ
3 → 0 as µ→ 1.

Let (a, b) be an eigenvector associated to µ, ie (a, b) is any solution of (1.24) that is
defined at 0. We let Xµ = (a, ra′, b, rb′)t the associated solution of (1.26). Since (a, b) is
defined at 0, there exists two real numbers (Aµ1 , A

µ
3 ) 6= (0, 0) such that

Xµ = Aµ1X
µ
1 +Aµ3X

µ
3 . (4.131)

Now, the condition a(1ε ) = b(1ε ) = 0 leads us to the system
Aµ1a

µ
1 (1ε ) +Aµ3a

µ
3 (1ε ) = 0

Aµ1b
µ
1 (1ε ) +Aµ3b

µ
3 (1ε ) = 0.

Thus if we denote by ∆ the determinant

∆ := aµ1 (
1

ε
)bµ3 (

1

ε
)− bµ1 (

1

ε
)aµ3 (

1

ε
),

we have, ∆ = 0.
We obtain firstly that the corresponding real eigenspace is one dimensional.

Now, we deduce from (4.130) that the determinant ∆ defined above is

∆ =

∣∣∣∣∣∣
aµ1 (1ε )

∑4
j=2D

µ
j u

µ
j (1ε )

bµ1 (1ε )
∑4

j=2D
µ
j v

µ
j (1ε )

∣∣∣∣∣∣ .
And we have proved above that ∆ = 0. This implies either that there exists some real
number kε such that the first column of ∆ is obtained by multiplying the second column
by kε, either the second column is null. Let us prove that the first possibility cannot be
true.
In view of Propositions 3.4 and 3.5, there exists some R > 0 and some M > 0, the both
being independent of µ, such that for all r ≥ R

|aµ1 (r)− Cµ1 J+| ≤MJ+r
− 1

2 , |bµ1 (r)− Cµ1 J+| ≤MJ+r
− 1

2 ,

|
∑4

j=2D
µ
j u

µ
j (r)−Dµ

2J− −D
µ
3 r

nµ −Dµ
4 r
−nµ | ≤Mrnµ−1

and

|
∑4

j=2D
µ
j v

µ
j (r)−Dµ

2J− +Dµ
3 r

nµ +Dµ
4 r
−nµ | ≤Mrnµ−1.

And we apply these estimates for r = 1/ε, to obtain, for all ε small enough

|aµ1 (1ε )− Cµ1 ε
1
2 e
√
2
ε | ≤Mεe

√
2
ε , |bµ1 (1ε )− Cµ1 ε

1
2 e
√
2
ε | ≤Mεe

√
2
ε ,

∑4
j=2D

µ
j u

µ
j (1ε )−Dµ

2 e
−
√
2

ε ε
1
2 −Dµ

3 ε
−nµ −Dµ

4 ε
nµ | ≤Mε−nµ+1

and

∑4
j=2D

µ
j u

µ
j (1ε )−Dµ

2 e
−
√
2

ε ε
1
2 +Dµ

3 ε
−nµ +Dµ

4 ε
nµ | ≤Mε−nµ+1,
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M being independent of µ and of ε. And, as seen above Cµ1 → C1 > 0, as ε→ 0.
Thus, the first possibility to have ∆ = 0 implies that for ε small enough and for some M
independent of µ and ε and for some real number kε,{
|Cµ1 ε

1
2 e
√
2
ε − kε(Dµ

2 e
−
√
2

ε ε
1
2 +Dµ

3 ε
−nµ +Dµ

4 ε
nµ)| ≤Mε

1
2 (ε

1
2 e
√
2
ε + kε(D

µ
2 e
−
√
2

ε ε
1
2 +Dµ

3 ε
−nµ +Dµ

4 ε
nµ))

|Cµ1 ε
1
2 e
√
2
ε − kε(Dµ

2 e
−
√
2

ε ε
1
2 −Dµ

3 ε
−nµ −Dµ

4 ε
nµ)| ≤Mε

1
2 (ε

1
2 e
√
2
ε + kε(D

µ
2 e
−
√
2

ε ε
1
2 +Dµ

3 ε
−nµ +Dµ

4 ε
nµ))

Let us prove that this cannot occur.
Recall that µ stands for µ(ε) and that it tends to 1, as ε tends to 0, and that each Dµ

i

tends to a real limit as µ tends to 1. Thus, if (Dµ
3 , D

µ
4 ) 6→ (0, 0), the term Dµ

2 e
−
√
2

ε ε
1
2 is

very small behind Dµ
3 ε
−nµ +Dµ

4 ε
nµ and consequently we can write{

|Cµ1 ε
1
2 e
√

2
ε − kε(Dµ

3 ε
−nµ +Dµ

4 ε
nµ)| ≤Mε

1
2 (ε

1
2 e
√
2
ε + kε(D

µ
3 ε
−nµ +Dµ

4 ε
nµ))

|Cµ1 ε
1
2 e
√

2
ε + kε(D

µ
3 ε
−nµ +Dµ

4 ε
nµ)| ≤Mε

1
2 (ε

1
2 e
√
2
ε + kε(D

µ
3 ε
−nµ +Dµ

4 ε
nµ)),

(4.132)

for another M independent of ε and of µ.
Soustraying the both double inequations (4.132) we obtain

|kε|(1−Mε
1
2 )|Dµ

3 ε
−nµ +Dµ

4 ε
nµ | ≤Mεe

√
2
ε .

Now we use this inequality into (4.132) and, since Cµ1 → C1 > 0, we deduce that

ε
1
2 e
√
2
ε ≤M1εe

√
2
ε ,

for some M1 independent of ε and of µ. This contradiction proves that

(Dµ
3 , D

µ
4 )→ (0, 0) as µ→ 1.

Further, we return to (4.130) and we let µ→ 1. We obtain

X3 = D1X1 +D2Y2.

But we know, by Proposition 3.1 (that we use for µ = 1), that

|a3(r)− r|n−d|| ≤Mr|n−d|+2, |b3(r)−
A2
dr
|n−d|+2d+2

(d− n+ |n− d|+ 2)2
| ≤Mr|n−d|+2d+4,

|a1(r)−
A2
d

(3d+ n+ 2− |n− d|)2
rn+3d+2| ≤Mrn+3d+4, |b1(r)− rn+d| ≤Mrn+d+2

and consequently
|b3(r)−D1b1(r)| ≤Mrn+d.

But we know by Proposition 4.6 that (u2, v2) have the most blowing up behavior at 0, ie
there exists C > 0 such that

|b2(r)| ≥ Cr−n−d.

So we cannot have X3 = D1X1+D2Y2. We have proved that the first column of ∆ cannot
be obtained by multiplying the second column by a real number kε.
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So we are led to examine the second possibility to have ∆ = 0, that is

4∑
j=2

Dµ
j u

µ
j (

1

ε
) =

4∑
j=2

Dµ
j v

µ
j (

1

ε
) = 0.

In view of Propositions 3.4 and 3.5 we can deduce from
∑4

j=2D
µ
j u

µ
j (1ε ) = 0 that

|Dµ
2J−(

1

ε
) +Dµ

3 ε
−nµ +Dµ

4 ε
nµ | ≤Mε

1
2 |Dµ

2J−(
1

ε
) +Dµ

3 ε
−nµ +Dµ

4 ε
nµ |,

where M is independent of µ and of ε.
This condition implies that Dµ

3 → 0 as ε → 0. And, more precisely, we can give the
estimate

|Dµ
3 | ≤Mεnµ(εnµ + J−(

1

ε
)), (4.133)

where M is independent of ε and µ.
Returning to (4.130) and letting µ→ 1, we are led to

X3 −D1X1 = D2Y2 +D4Y4, (4.134)

that is bounded at +∞ and bounded at 0. We deduce that if µ(ε)→ 1, then there exists
a bounded solution of (1.14). If n ≥ 2, by Theorem 1.1. This terminates the proof of (i).

Proof of (iv). Let us prove (iv) and we will be able to deduce (ii) from (iv). Let
us suppose that there exists a bounded solution of (1.14). It is true for n = 1. From
Lemma 1.1, we know that the first eigenvalue tends to 1. We proved in (i) just above
that if µ(ε) → 1, then the eigenspace associated to µ(ε) is one dimensional and that a
base of this eigenspace, given by (4.131) can be written as

Xµ = (Aµ1 +Aµ3D
µ
1 )Xµ

1 +Aµ3 (Xµ
3 −D

µ
1X

µ
1 ). (4.135)

Denoting Ãµ1 = Aµ1 +Aµ3D
µ
1 , we may suppose that

max{Ãµ1 , A
µ
3} = 1

and, since (Ãµ1 , A
µ
3 ) tends to a limit denoted by (Ã1, A3) as µ→ 1, we have that

Xµ → Ã1X1 +A3(X3 −D1X1), max{Ã1, A3} = 1. (4.136)

The condition aµ(1ε ) = 0 leads to

Ãµ1a
µ
1 (

1

ε
) = −Aµ3 (aµ3 (

1

ε
)−Dµ

1a
µ
1 (

1

ε
)).

We use (4.130) and in view of the behaviors at +∞ proved in Propositions 3.4, 3.5 and
Theorem 4.6, we infer that the principal parts as ε→ 0 are

Ãµ1C
µ
1 J+(

1

ε
) = −Aµ3 (Dµ

2J−(
1

ε
) +Dµ

3 ε
−nµ +Dµ

4 ε
nµ).
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Since |Aµ3 | ≤ 1 and since each Dµ
j has a finite limit, we deduce that Ãµ1 → 0, as ε → 0.

And we can even give this precision, in view of (4.133)

|Ãµ1 | ≤M(J+(
1

ε
))−1(J−(

1

ε
) + εnµ) (4.137)

for some M idependent of ε and µ.
So, Ã1 = 0 and we can conclude from (4.136) that

Xµ → X3 −D1X1 as ε→ 0

and since we know from (4.134) that X3−D1X1 is bounded at +∞, we have proved that
the limit of the eigenvector is bounded at +∞ and we have also that

Xµ → D2Y2 +D4Y4 as ε→ 0. (4.138)

Now, let us denote the eigenvector

Xµ = (aµ, r(aµ)′, bµ, r(bµ)′)t and X3 −D1X1 = (a, ra′, b, rb′)t

and let us prove that∫ 1
ε
0 r(1− f2d )(aµ − a)2dr +

∫ 1
ε
0 r(1− f2d )(bµ − b)2dr → 0, as ε→ 0. (4.139)

The convergence of the integral on [0, R], for all R > 0 is clear. And let us recall that for
r large, 0 < 1− f2d < Cr−2. More, we use (4.135) to write

aµ = Ãµ1a
µ
1 +Aµ3 (aµ3 −D

µ
1a

µ
1 )

and we use (4.130) to deduce that

aµ = Ãµ1a
µ
1 +Aµ3 (Dµ

2u
µ
2 +Dµ

3u
µ
3 +Dµ

4u
µ
4 ).

In view of (4.133) and of (4.137) and in view of the behaviors at +∞ of aµ1 and uµ3 , we
deduce that, for R ≤ r ≤ 1/ε, R large and valid for all µ,

|Ãµ1a
µ
1 +Aµ3D

µ
3u

µ
3 | ≤M

(
(J+(

1

ε
))−1εnµJ+(r) + ε2nµrnµ

)
for some M independent of ε and µ. We deduce that for R large enough and for ε < 1/R,∫ 1

ε

R
r(1− f2d )|Ãµ1a

µ
1 +Aµ3D

µ
3u

µ
3 |

2dr → 0 as ε→ 0. (4.140)

And (4.138) gives a = D2u2 +D4u4. We write

aµ−a = Ãµ1a
µ
1+Aµ3D

µ
3a

µ
3+Aµ3 (Dµ

2 (uµ2 − u2) +Dµ
4 (uµ4 − u4) + (Dµ

2 −D2)u2 + (Dµ
4 −D4)u4))

Since Dµ
2 − D2 → 0, Dµ

4 − D4 → 0, uµ4 − u4 → 0, uµ2 − u2 → 0 and |uµ2 | ≤ MJ−,
|uµ4 | ≤Mr−nµ , |u2| ≤MJ−, |u4| ≤Mr−nµ , we conclude by the Lebesgue Theorem that

limε→0

∫ 1
ε
R r(1− f2d )|Ãµ3 ||D

µ
2 (uµ2 − u2) +Dµ

4 (uµ4 − u4) + (Dµ
2 −D2)u2+

+(Dµ
4 −D4)u4|2dr = 0.

(4.141)
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And we have exactly the same estimate for bµ − b.
We deduce (4.139).
But combining the system (1.14) verifyed by (a, b) and the system (1.25) verified by
(aµ, bµ) we obtain (letting n = 1)∫ 1

ε
0 r[((aµ)′ − a′)2 + ((bµ)′ − b′)2 + (1−d)2

r2
(aµ − a)2 + (1+d)2

r2
(bµ − b)2+

+f2d (aµ − a)2 + f2d (bµ − b)2]dr = µ
∫ 1
ε
0 r(1− f2d )

(
(aµ − a)2 + (bµ − b)2

)
dr+

+(µ− 1)
∫ 1
ε
0 r(1− f2d ) ((aµ − a)a+ (bµ − b)b) dr.

We use (4.139) and the Lebesgue Theorem as above to deduce that the rhs tends to 0, as
ε tends to 0. Consequently, the lhs tends to 0, too. Combining this result with (4.139)
we infer that∫ 1

ε
0 r

(
((aµ)′ − a′)2 + ((bµ)′ − b′)2 + (aµ − a)2 + (bµ − b)2

)
dr+

+
∫ 1
ε
0

(
(aµ−a)2

r + (bµ−b)2
r

)
dr → 0 as ε→ 0.

(4.142)

If we return to the complex notation, ie

ωµ := ei(n−d)θaµ + ei(n+d)θbµ and ω := ei(n−d)θa+ ei(n+d)θb

we just proved that
‖ωµ − ω‖H1(B(0, 1

ε
)) → 0 as ε→ 0,

that terminates the proof of (iv).

Proof of (ii). Let us prove that at most one eigenvalue µ can tend to 1. If µ and µ̃
are two eigenvalues, then we have

(µ− µ̃)

∫ 1
ε

0
r(1− f2d )(aµãµ + bµb̃µ)dr = 0

where (a, b) and (ã, b̃) are solutions of (1.24), respectively for µ and for µ̃, and (a, b) and
(ã, b̃) are defined at r = 0. Since r(1−f2d )(|a|+|b|) ≤Mr−2, (4.139) gives the convergence

of (r(1 − f2d ))
1
2aµχ[0, 1

ε
] to (r(1 − f2d ))

1
2a and of (r(1 − f2d ))

1
2 bµχ[0, 1

ε
] to (r(1 − f2d ))

1
2 b in

L2([0,+∞[). So we obtain that

lim
ε→0

∫ 1
ε

0
r(1− f2d )(aµãµ + bµb̃µ)dr =

∫ +∞

0
r(1− f2d )(a2 + b2)dr. (4.143)

Since the limit is not zero, we deduce that for ε small enough∫ 1
ε

0
r(1− f2d )(aµãµ + bµb̃µ)dr 6= 0.
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So if µ and µ̃ tend to 1 as ε→ 0, then µ = µ̃.
We have proved (ii).

Proof of (iii). Let n be given. Let us recall that the operator T −1C is compact and
its restriction to Hn,d is compact too. By the standard theory of compact operators, the
eigenvalues 1/µ are bounded and they cannot have any accumulation point except 0. We
can deduce there is at most a finite number of eigenvalues µ in ]0, 1[. So we can choose
the same C and the same ε0 for all these eigenvalues, in order to have 0 < 1− µ(ε) < C
for all ε < ε0. By Theorem 1.4 (iv), there exists a finite number of n for which we have
some eigenvalues less than 1. So we can chose the same ε0 and the same C for all the
eigenvalues less than 1 and for all n. Now, for n ≥ d and for a given ε, n 7→ mn,d(ε) is
clearly increasing. So, we chose the same C and the same ε0 for every n ≥ 2d − 1 and
very eigenvalue µ(ε). Finally, we can chose some C and some ε0 independent of n and
independent of the eigenvalue µ(ε).
This terminates the proof of Theorem 1.5.

5 The proof of Theorem 1.2.

There exists a Hilbertian base (ζj)j∈J of H, such that

< Cζi, ζj >(L2×L2)(B(0,1))= 0 for i 6= j and < Cζj , ζj >(L2×L2)(B(0,1))= 1.

If we denote by µj the eigenvalue associated to ζj , by Theorem 1.5 there exists some C > 0
independent of ε and independent of the eigenvalue µj and some ε0 also independent of
µj such that

1− µj(ε) < −C or 1− µj(ε) > C for all ε < ε0.

We define the subsets I+ and I− of J by j ∈ I+ if µj > 1 and j ∈ I−, if µj < 1. We
define (W⊥)+ the subspace of W⊥ spanned by (ζj)j∈I+ and (W⊥)− spanned by (ζj)j∈I− .
We divide the proof of Theorem 1.2 into two steps.
In Step 1, we prove the following inequality, for ω ∈ H ∩

(
(W⊥)+ ∪ (W⊥)−

)
,

| < Lεω, ω >L2(B(0,1)) | ≥M < Cω, ω >L2(B(0,1)) (5.144)

In Step 2, we prove (1.4), (1.6), (1.5) and (1.7).

Step 1
Let ω =

∑
n≥1(ane

−inθ + bne
inθ) + a0, belonging to H ∩ ((W⊥)+ ∪W⊥)−).

We write
ω =

∑
i∈J

αjζj .

From the definition of (ζj)j∈J , we infer that

T ω =
∑
j∈J

αjµjCζj
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and consequently

Lεω =
∑
j∈J

αj(1− µj)Cζj ,

that gives

< Lεω, ω >L2(B(0,1))=
∑
j∈J

α2
j (1− µj) < Cζj , ζj > .

If ω ∈ (W⊥)+, αj = 0 unless j ∈ I+. We deduce that

< Lεω, ω >L2(B(0,1))≤ −C < Cω, ω >L2(B(0,1)) .

If ω ∈ (W⊥)−, αj = 0 unless j ∈ I−. We deduce that

< Lεω, ω >L2(B(0,1))≥ C < Cω, ω >L2(B(0,1)) .

In any case, we have (5.144).

Step 2
We consider that ω ∈ (W⊥)+ or ω ∈ (W⊥)− and by Step 1 we have (5.144).

But we have
< Lεω, ω >L2(B(0,1))=< h, ω >L2(B(0,1)) . (5.145)

First, we write the Cauchy-Schwartz inequality

| < h, ω >L2(B(0,1)) | ≤ ‖ε−1
√

1− f2ω‖L2(B(0,1))‖ε
√

(1− f2)−1h‖L2(B(0,1)). (5.146)

We deduce from (5.145) together with (5.144) that

| < h, ω >L2(B(0,1)) | ≥M < Cω, ω >L2(B(0,1)) .

We use (5.146) to deduce that

< Cω, ω >L2(B(0,1))≤
1

M2

∫ 1

0
r

ε2

1− f2
|h|2dr. (5.147)

But since L = −T + C, we use (5.145) to write

< T ω, ω >L2(B(0,1))= − < h, ω >L2(B(0,1) + < Cω, ω >L2(B(0,1)) .

Using (5.146) again, that gives

< T ω, ω >L2(B(0,1))≤< Cω, ω >
1
2

L2(B(0,1))

(∫ 1

0
r

ε2

1− f2
|h|2dr

) 1
2

+ < Cω, ω >L2(B(0,1))

and using (5.147), we obtain

< T ω, ω >L2(B(0,1))≤ (M−1 +M−2)

∫ 1

0
r

ε2

1− f2
|h|2dr.
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Now in view of (1.28) and (1.27), we have that limr→0(1 − f2d (r))(1 + r2) = 1 and
limr→+∞(1− f2d (r))(1 + r2) = d2, and this is a positive function in [0,+∞[. We deduce
that there exists some C > 0 such that 1− f2d (r) ≥ C/(1 + r2), for all r ≥ 0. So we use

1− f2 ≥ C ε2

ε2 + r2
for all r ∈ [0, 1] (5.148)

with C independent of ε to obtain

< T ω, ω >L2(B(0,1))≤M
∫ 1

0
r(ε2 + r2)|h|2dr, (5.149)

for some other M , independent of ε. That gives in particular∫
B(0,1)

|∇(eidθω)|2dx ≤M
∫ 1

0
r(ε2 + r2)|h|2dr.

We have proved (1.5).

Now, we use (5.148) in (5.147) to obtain∫ 1

0

r

ε2 + r2
|ω|2dr ≤M

∫ 1

0
r(ε2 + r2)|h|2dr. (5.150)

Thus we have proved (1.4).

Now, let us recall that

< T ωR, ωR >L2(B(0,1)=
∑
n≥1

∫ 1

0

(
r|a′n|2 + r|b′n|2 +

(n− d)2

r
|an|2 +

(n+ d)2

r
|bn|2 +

|an + bn|2

r
f2
)
dr+

+

∫ 1

0
(r|a′0|2 +

d2

r
|a0|2 + 2rfd|a0|2)dr

and that

< T iωI , iωI >L2(B(0,1)=
∑
n≥1

∫ 1

0

(
r|a′n|2 + r|b′n|2 +

(n− d)2

r
|an|2 +

(n+ d)2

r
|bn|2 +

|an − bn|2

r
f2
)
dr+

+

∫ 1

0
(r|a′0|2 +

d2

r
|a0|2)dr

We conclude that (1.5) and (1.7) are valid when an and bn are complex valued.

6 The proof of Lemma 1.1.

We suppose that d ≥ 1 and n ≥ 1. Let us suppose that (a, b) is a bounded solution of
(1.14). Let N be chosen and 0 < N < 1. Let us define (acut, bcut) by

(acut, bcut)(r) =

{
(a, b)(r) for 0 ≤ r ≤ N

ε

(a, b)(Nε )h(r) for N
ε ≤ r ≤

1
ε

55



where, as in the beginning of the proof of Theorem 1.4, Part 2,

h(r) = e−ue, u =
N
ε −

1
ε

r − 1
ε

.

We have acuteidθ ∈ H1
0 (B(0, 1ε )) and bcuteidθ ∈ H1

0 (B(0, 1ε )). We denote

ω = ae−inθ + beinθ and ωcut = acute−inθ + bcuteinθ.

Using the usual rescaling, we have ω̃cut ∈ Hn,d.
We have supposed that mn,d(ε) ≥ 1, so we deduce from the definition of mn,d(ε) that

0 ≤ mn,d(ε)− 1 ≤
− < Lεω̃cut, ω̃cut >L2(B(0,1))

< Cω̃cut, ω̃cut >L2(B(0,1))
.

Now we have

< Cω̃cut, ω̃cut >L2(B(0,1))=< (1− f2d )ωcut, ωcut >L2(B(0,1/ε)) .

But, in view of the possible bounded behaviors at +∞, (in Proposition 3.5 in which
µ = 1), there exists M and R such that for all r > R,

|a|+ |b| ≤Mr−n, |a′|+ |b′| ≤Mr−n−1 and 1− f2d ≤Mr−2. (6.151)

We use the Lebesgue Theorem to deduce that

< Cω̃cut, ω̃cut >L2(B(0,N))→< (1− f2d )ω, ω >L2(R2) as ε→ 0. (6.152)

Now let us estimate − < Lεω̃cut, ω̃cut >L2(B(0,1)). Since (a, b) verifies the system (1.14),
we have

− < Lεω̃cut, ω̃cut >L2(B(0,1))=

= − < Lεω, ω >L2(B(0,N
ε
)) + [ra′a+ b′b]

N
ε
0 +

+
∫ 1
ε
N
ε

[(a2(Nε ) + b2(Nε ))(r(h′)2 − r(1− f2d )h2) + (n−d)2
r a2(Nε ) + (n+d)2

r b2(Nε )+

+rf2dh
2(a(Nε ) + b(Nε ))2]dr

We deduce by (6.151) that [
ra′a+ b′b

]N
ε
0
≤Mε2n.

Now we use the estimate (2.30) and (6.151) to obtain∫ 1
ε

N
ε

(a2(
N

ε
) + b2(

N

ε
))r(h′)2dr ≤Mε2n.

On the other hand, by Proposition 3.5, we have

|a+ b| ≤Mr−n−1
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and consequently

(a(
N

ε
) + b(

N

ε
))2 ≤Mε2n+2.

We deduce that ∫ 1
ε

N
ε

rf2dh
2(a(

N

ε
) + b(

N

ε
))2dr ≤Mε2n+2

∫ 1
ε

N
ε

rh2dr.

But ∫ 1
ε

N
ε

rh2dr ≤ ε−1e2
∫ 1

ε

N
ε

e−2udr

and ∫ 1
ε

N
ε

e−2udr =

∫ +∞

1
e−2uu−2(

1

ε
− N

ε
)du.

And finally ∫ 1
ε

N
ε

rf2dh
2(a(

N

ε
) + b(

N

ε
))2dr ≤Mε2n.

Now ∫ 1
ε

N
ε

r(1− f2d )h2dr ≤M
∫ 1

ε

N
ε

r−1h2dr

that gives, using the estimate just above,

(a2(
N

ε
) + b2(

N

ε
))

∫ 1
ε

N
ε

r(1− f2d )h2dr ≤Mε2n.

And we conclude that

− < Lεωcut, ωcut >L2(B(0, 1
ε
))≤Mε2n,

while by (6.152)
< Cωcut, ωcut >L2(B(0, 1

ε
))≥M.

This gives
0 < mn,d(ε)− 1 ≤Mε2n.

We have proved Lemma 1.1.
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