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We consider the complex Ginzburg-Laudau operator on a bounded domain. We prove some estimates for the inverse of the linearized operator.

1 Introduction.

We consider the Ginzburg-Landau equation on a bounded connected domain Ω,

-∆u = 1 ε 2 u(1 -|u| 2 ) in Ω u = g in ∂Ω (1.1)
where ε > 0 is a small parameter, u and g have complex values and degree (g, ∂Ω) ≥ 1. This equation has been intensively studied, in [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF], and many others. Let us denote N ε (u) = ∆u + 1 ε 2 u(1 -|u| 2 ) and let us define f d as the only solution of the differential equation

f d + f d r -d 2 r 2 f d = -f d (1 -f 2 d ) f d (0) = 0, lim r→+∞ f d (r) = 1.
(1.

2)

The equation (1.2) is completely studied in [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau[END_REF]. And let u 0 (x) = f d ( |x| ε )e idθ . We have

N ε (u 0 ) = 0.
We will always denote

f (r) = f d ( r ε
).

The linearized operator around any function u is given by

dN ε (u)(ω) = ∆ω + ω ε 2 (1 -|u| 2 ) - 2 ε 2 u(u.ω + u.ω). 1 
Let us consider the linearized operator around the solution u 0 , ie

dN ε (u 0 )(ω) = ∆ω + ω ε 2 (1 -f 2 ) - 2 ε 2 f 2 e idθ e idθ .ω,
where ω is any complex valued function and 2u.ω = uω + ωu. We will use the operator L ε := e -idθ dN ε (u 0 )e idθ instead of dN ε (u 0 ) and we will use also the rescaled operator L 1 . These operators are of importance for some technics of construction of solutions for the equation (1.1).

The invariance of the equation (1.1) wrt the translations and the rotations gives

0 = dN ε (u 0 )(iu 0 ) = dN ε (u 0 )( ∂u 0 ∂x 1 ) = dN ε (u 0 )( ∂u 0 ∂x 2 ).
A calculus gives ∂u 0 ∂θ = idu 0 , e -idθ ∂u 0 ∂x 1 = 1 2

1 ε f d ( r ε ) + d r f d ( r ε ) e -iθ + 1 2 1 ε f d ( r ε ) - d r f d ( r ε ) e iθ and e -idθ ∂u 0 ∂x 2 = i 2 1 ε f d ( r ε ) + d r f d ( r ε ) e -iθ + i 2 - 1 ε f d ( r ε ) + d r f d ( r ε ) e iθ .
In [START_REF] Beaulieu | Bounded solutions for an ordinary differential system from the Ginzburg-Landau theory[END_REF], we have proved that The case d = 1 was known by [START_REF] Pacard | Linear and nonlinear aspects of vortices. The Ginzburg-Landau model[END_REF], chapter 3. In this book, Pacard and Rivière construct some solutions for (1.1), having the degree one around each singularity. Before that, the eigenvalue problem L ε ω = -λ(ε)ω, had been studied in several papers, including [START_REF] Lieb | Symmetry of the Ginzburg-Landau minimizer in a disc[END_REF], [START_REF] Mironescu | On the stability of radial solutions of the Ginzburg-Landau equation[END_REF], [START_REF] Lin | The stability of the radial solution to the Ginzburg-Landau equation[END_REF], [START_REF] Lin | Spectrum of the linearized operator for the Ginzburg-Landau equation[END_REF]. It is used in [START_REF] Del Pino | Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality[END_REF], [START_REF] Del Pino | Variational reduction for Ginzburg-Landau vortices[END_REF]...

In the present paper, we let H := {ω : B(0, 1) → C, e -idθ ω ∈ H 1 0 (B(0, 1))}.

And we let Φ 0 , Φ 1 and Φ 2 be functions in H, associated with e -idθ u 0 , e -idθ ∂u 0 ∂x 1 and e -idθ ∂u 0 ∂x 2 , in a sense that will be defined below in Theorem 1.5. We denote W the subspace of H spanned by Φ 0 , Φ 1 and Φ 2 and we define W ⊥ by H = W ⊕ W ⊥ . Last, for every ω ∈ H we consider the Fourier expansion ω(x) = where, for any a ∈ C, Ra is the real part and Ia is the imaginary part of a. For h ∈ L 2 (B(0, 1)) we consider the equation

L ε ω = h. (1.3) 
We will prove the following Theorem 1.2 There exists M > 0 independent of ε such that for all ω ∈ W ⊥ , and denoting ω = ω R + iω I , we have

| < L ε (ω R ), ω R > L 2 (B(0,1)) | ≥ M < Cω R , ω R > L 2 (B(0,1))
and | < L ε (iω I ), iω I > L 2 (B(0,1)) | ≥ M < Cω I , ω I > L 2 (B(0,1)) (1.4) where

C = 1 ε 2 (1 -f 2 ),
that gives, when ω is a solution of (1.3), verifying ω = 0 in ∂B(0, 1), B(0,1) where the α j and β j have complex values, let us remark that we can replace (1.5) by

1 ε 2 + |x| 2 |ω| 2 dx ≤ M B(0,1) (ε 2 + |x| 2 )|h| 2 dx (1.
1 0 |a 0 | 2 rdr ε 2 +r 2 + n≥1 1 0 (|a n | 2 + |b n | 2 ) rdr ε 2 +r 2 ≤ C n≥1 1 0 r(ε 2 + r 2 )(|α n | 2 + |β n | 2 )dr + 1 0 r(ε 2 + r 2 )|α 0 | 2 dr (1.7)
and we can replace (1.6) ,

1 0 (r|a 0 | 2 + d 2 r |a 0 | 2 )dr + n≥1 1 0 r|a n | 2 + r|b n | 2 + (n-d) 2 r |a n | 2 + (n+d) 2 r |b n | 2 dr ≤ C n≥1 1 0 r(ε 2 + r 2 )(|α n | 2 + |β n | 2 )dr + 1 0 r(ε 2 + r 2 )|α 0 | 2 dr.
(1.8) Now let us recall in which way the equation L ε ω = h is transformed into systems of ordinary equations.

Letting, for n ≥ 1 ω n (x) = a n (r)e -inθ + b n (r)e inθ , and for n = 0, ω 0 (x) = a 0 (r), we have 2e idθ .e idθ ω n = ω

n + ω n = (b n + a n )e inθ + (b n + a n )e -inθ . Moreover e -idθ ∆(e idθ ω) = ∆ω - d 2 r 2 ω + i 2d r 2 ∂ω ∂θ . Consequently e -idθ dN ε (u 0 )e idθ ω = n≥1 e -inθ a n + a n r -(n-d) 2 r 2 a n + an ε 2 (1 -f 2 ) -an ε 2 f 2 -bn ε 2 f 2 + + n≥1 e inθ b n + b n r -(n+d) 2 r 2 b n + bn ε 2 (1 -f 2 ) -bn ε 2 f 2 -an ε 2 f 2 + +a 0 + a 0 r -d 2 r 2 a 0 + a 0 ε 2 (1 -f 2 ) -a 0 +a 0 ε 2 f 2 .
(1.9) For n ≥ 1, Separating the Fourier components of e -idθ dN ε (u 0 )e idθ ω, we can consider the operators

for n ≥ 1, L ε (ω n ) = a n + a n r -(n-d) 2 r 2 a n + an ε 2 (1 -2f 2 ) -bn ε 2 f 2 e -inθ + + b n + b n r -(n+d) 2 r 2 b n + bn ε 2 (1 -2f 2 ) -an ε 2 f 2 e inθ and, for n = 0, L ε (a 0 ) = a 0 + a 0 r - d 2 r 2 a 0 + a 0 ε 2 (1 -f 2 ) - a 0 + a 0 ε 2 f 2 .
Separating the real part and the imaginary part of a n and of b n , we consider the following operators, where a n and b n are real valued function

for n ≥ 1 L ε : (a n e -inθ + b n e inθ ) →    a n + a n r -(n-d) 2 r 2 a n + an ε 2 (1 -2f 2 ) -bn ε 2 f 2 e -inθ + + b n + b n r -(n+d) 2 r 2 b n + bn ε 2 (1 -2f 2 ) -an ε 2 f 2 e inθ ; L ε : (ia n e -inθ + ib n e inθ ) →    i a n + a n r -(n-d) 2 r 2 a n + an ε 2 (1 -2f 2 ) + bn ε 2 f 2 e -inθ + +i b n + b n r -(n+d) 2 r 2 b n + bn ε 2 (1 -2f 2 ) + an ε 2 f 2 e inθ ; and, for n = 0, L ε : ia 0 → i(a 0 + a 0 r -d 2 r 2 a 0 + a 0 ε 2 (1 -f 2 )) ; L ε : a 0 → a 0 + a 0 r -d 2 r 2 a 0 + a 0 ε 2 (1 -f 2 ) -2a 0 ε 2 f 2 .
(1.10) Let us consider the equation (1.3). We denote ω n = ω n,R + iω n,I . For n ≥ 1, ω n,R and ω n,I belong to the set

H n,d = {ae -inθ + be inθ , (a, b) : [0, 1] → R × R; ae i(d-n)θ + be i(n+d)θ ∈ H 1 0 (B(0, 1))}.
and ω 0,R and ω 0,I belong to

H 0,d = {a : [0, 1] → R, e idθ a ∈ H 1 0 (B(0, 1))}.
We endow H n,d with the scalar product

< (a, b)|(u, v) >= 1 0 (ra u + rb v + (n -d) 2 r au + (n + d) 2 r bv + f 2 ε 2 (a + b)(u + v))dr
and we endow H 0,d with the scalar product

< a|u >= 1 0 (ra u + d 2 r au)dr.
From (1.3), we are led to the equations , for n ∈ N

L ε (ω n,R ) = h n,R L ε (iω n,I ) = ih n,I (1.11) 
and, in view of (1.10), when n ≥ 1, (1.11) gives two second order ordinary diifferential systems, the both of them with two equations, and with two real valued unknown functions. For n = 0, we have two ordinary second order ordinary diifferential equations, each of them with one real valued unknown function.

In what follows in this section, unlike in Theorem 1.2, a and b or a n and b n will be real valued functions.

The first works on the question, quoted above, are considering the following eigenvalue problem in each Hilbert space H n,d , that is, for r ∈ [0, 1] and for n = 0

a + a r - d 2 r 2 a + 1 ε 2 (1 -f 2 )a = -λ(ε)a, a(1) = 0 (1.12) and a + a r - d 2 r 2 a -2af 2 + 1 ε 2 (1 -f 2 )a = -λ(ε)a, a(1) = 0. (1.13) 
And for r ∈ [0, 1] and for n ≥ 1

     a + a r -(n-d) 2 r 2 a -1 ε 2 f 2 b + 1 ε 2 (1 -2f 2 )a = -λ(ε)a b + b r -(n+d) 2 r 2 b -1 ε 2 f 2 a + 1 ε 2 (1 -2f 2 )b = -λ(ε)b a(1) = b(1) = 0 (1.14)
The question of whether there exist some eigenvalues such that λ(ε) → 0 as ε → 0 is related to the question of the existence of bounded solutions in [0, +∞[ for the following system, which is a rescaled form of (1.14), but with the domain [0, +∞[ instead of [0,

1 ε ] for n ≥ 1 a + a r -(n-d) 2 r 2 a -f 2 d b + (1 -2f 2 d )a = 0 b + b r -(n+d) 2 r 2 b -f 2 d a + (1 -2f 2 d )b = 0.
(1.15)

And for n = 0 (ii) For d ≥ 1 and n = 1, the first eigenvalue λ 1 (ε), for the eigenvalue problem (1.14) verifies λ 1 (ε) > 0 and λ 1 (ε) → 0 as ε → 0 and there are no other eigenvalue tending to 0. (iii) For d ≥ 1 and n = 0, there exists C > 0 independent of ε such that for any eigenvalue of the problems (1.12) and (1.13) we have λ(ε) ≥ C, for some C > 0 independent of ε.

a + a r - d 2 r 2 a + (1 -f 2 d )a = 0 (1.16) and a + a r - d 2 r 2 a -2af 2 d + (1 -f 2 d )a = 0. ( 1 
And the following Theorem was proved in [START_REF] Lin | The stability of the radial solution to the Ginzburg-Landau equation[END_REF] Theorem 1.4 For d ≥ 1 and n ≥ 2, If there are no bounded solution (a, b) of (1.15), then |λ(ε)| > C, for some C > 0 independent of ε and for every eigenvalue λ(ε) of the problem (1.14).

In [START_REF] Beaulieu | Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation[END_REF], we proved that the converse of Theorem 1.4 is true. In [START_REF] Beaulieu | Bounded solutions for an ordinary differential system from the Ginzburg-Landau theory[END_REF], we proved that there are no bounded solution of (1.15) when n ≥ 2. We claim that, making use of Theorem 1.1, we are able to give a completely different proof of Theorem 1.4. But neither this technique nor that of [START_REF] Lin | The stability of the radial solution to the Ginzburg-Landau equation[END_REF] permits to obtain

|ε 2 λ(ε)| ≥ C.
In [START_REF] Beaulieu | Bounded solutions for an ordinary differential system from the Ginzburg-Landau theory[END_REF], we associated the problem of the existence of bounded solutions of (1.15) with the following eigenvalue problem, for r ∈ [0, 1] and for n ≥ 1

     a + a r -(n-d) 2 r 2 a -1 ε 2 f 2 a -1 ε 2 f 2 b = -1 ε 2 µ(ε)(1 -f 2 )a b + b r -(n+d) 2 r 2 b -1 ε 2 f 2 b -1 ε 2 f 2 a = -1 ε 2 µ(ε)(1 -f 2 )b a(1) = b(1) = 0 (1.18)
and for r ∈ [0, 1] and for n = 0

a + a r -d 2 r 2 a = -1 ε 2 µ(ε)(1 -f 2 )a a(1) = 0. (1.19) and a + a r -d 2 r 2 a -2 ε 2 f 2 a = -1 ε 2 µ(ε)(1 -f 2 )a a(1) = 0.
(1.20)

We can also use the following form of the system (1.18)

   L ε (ω) = (1 -µ(ε))Cω ω = ae -inθ + be inθ ∈ H n,d , (1.21) 
where

C := 1 ε 2 (1 -f 2 )
. We use a notion of C-eigenvalue, as in [START_REF] Crandall | Bifurcation, perturbation of simple eigenvalues and linearized stability[END_REF].

If ae -inθ + be inθ ∈ H n,d , we remark that

L ε (ae -inθ + be inθ ) = (1 -µ(ε))C(ae -inθ + be inθ ) ⇔ L ε (iae -inθ -ibe inθ ) = (1 -µ(ε))C(iae -inθ -ibe inθ ) .
let us recall the cases of the first eigenvalues, for n = 0 and n = 1. Let m n,d be defined in (1.22) and (1.23). We have Theorem 1.5 For all d ≥ 1, (i) there exists C > 0 and ε 0 > 0 such that, for all ε < ε 0 , m 0,d (ε) ≥ 1+Cε 2 ; m 0,d (ε) → 1 and there exists an associated eigenvector Φ 0 , solution of (1.19) with m 0,d in place of µ, such that (Φ 0 -f )(r) → 0 as ε → 0, for all r ≥ 0.

(ii) m 1,d (ε) > 1 and m 1,d (ε)-1 ε 2
→ 0 as ε → 0. (iii) There exists an eigenvector Φ 1 = ae -iθ + be iθ ∈ H n,d associated to the eigenvalue

m 1,d (ε), ie L ε (Φ 1 ) = 1-m 1,d ε 2 CΦ 1 , such that (1-f 2 ) 1 2 ε (Φ 1 -e -idθ ∂u 0 ∂x 1 ) L 2 (B(0,1)) → 0, as ε → 0 and Φ 2 = iae -iθ -ibe iθ is also an eigenvector, ie L ε (Φ 2 ) = 1-m 1,d ε 2 CΦ 2 ,
and

(1-f 2 ) 1 2 ε (Φ 2 -e -idθ ∂u 0 ∂x 2 ) L 2 (B(0, 1 
)) → 0, as ε → 0. In the present paper, we prove the following Theorem 1.6 For any d ≥ 1, there exists C > 0 independent of ε such that (i) for any n ≥ 2, |1 -µ(ε)| ≥ C for every eigenvalue µ(ε) for the problem (1.21) and for every ε.

(ii) For n = 0 and for the problem (1.19), µ(ε) -1 ≥ C, for any eigenvalue, except if µ = m 0,d and for the problem (1.20), µ(ε) -1 ≥ C, for every eigenvalue. For n = 1,

µ(ε) -1 ≥ C except if µ = m 1,d .
More generally, Theorem 1.6 is valid for every function g > 0 defined in [0, +∞[ in place of 1 -f 2 d , as long as g(t) ≤ K 1+t 2 for some K and for any ε 2 γ(ε) instead of µ(ε) -1.

On the other hand, Lemma 5.2 of our unpublished preprint [START_REF] Beaulieu | The kernel of the linearized Ginzburg-Landau operator[END_REF] gives some converse to Theorem 1.6. Indeed, we have Lemma 1.1 (Lemma 5.2 in [START_REF] Beaulieu | The kernel of the linearized Ginzburg-Landau operator[END_REF]). If there exists some bounded solution (a, b) of (1.15), then there exists an eigenvalue µ(ε) verifying µ(ε) -1 → 0.

Last, let us recall that we defined m n,d (ε) as the first eigenvalue for the above eigenvalue problem (1.18) 

in H n,d , that is m n,d (ε) = inf (a,b)∈H n,d ×H n,d \{(0,0)} 1 0 (ra 2 + rb 2 + (n-d) 2 r a 2 + (n+d) 2 r b 2 + r ε 2 f 2 d ( r ε )(a + b) 2 )dr 1 ε 2 1 0 r(1 -f 2 d ( r ε ))(a 2 + b 2 )dr (1.22) and m 0,d (ε) is the first eigenvalue for the problem (1.19) in H 0,d m 0,d (ε) = inf a∈H 0,d \{0} 1 0 (ra 2 + d 2 r a 2 )dr 1 ε 2 1 0 r(1 -f 2 d ( r ε ))a 2 dr (1.23) and m0,d (ε) is the first eigenvalue for the problem (1.20) in H 0,d m0,d (ε) = inf a∈H 0,d \{0} 1 0 (ra 2 + d 2 r a 2 + 2rf d ( r ε )a 2 )dr 1 ε 2 1 0 r(1 -f 2 d ( r ε ))a 2 dr . (1.24)
And that the eigenvalue problem (1.14) leads to the following definitions 

λ n,d (ε) = inf (a,b)∈H n,d ×H n,d \{(0,0)} 1 0 (ra 2 + rb 2 + (n-d) 2 r a 2 + (n+d) 2 r b 2 + r ε 2 f 2 d ( r ε )(a + b) 2 -r ε 2 (1 -f 2 d ( r ε ))(a 2 + b 2 ))dr 1 0 r(a 2 + b 2 )dr and λ 0,d (ε) = inf a∈H 0,d \{0} 1 0 (ra 2 + d 2 r a 2 -r ε 2 (1 -f 2 d ( r ε ))a 2 )dr
[0, 1/ε], we see that ε → m γ 1 ,γ 2 (ε) decreases when ε decreases. Then lim ε→0 m γ 1 ,γ 2 (ε) exists.
What is new is essentially Theorem 1.6 (i) and its consequence Theorem 1.2. We claim that we are able to prove Theorem 1.6 (i) as well as Theorem 1.4 by use of a resolvent matrix for the system (1.15) with known behaviors at 0 and at +∞ and by considering the system (1.18) as a "second member"system. But we choose to present a proof of Theorem 1.6 that does not involve to inverse two 4 × 4 matrices. But the other point of view is to construct two bases of solutions for the linear system (1.18) involving the parameter ε. It is what we do in the second part. In the third part, we prove Theorem 1.6. This third part contains some parts of the proof of Theorem 1.5. In the fourth part, we prove Lemma 1.1 and in the firth part we prove Theorem 1.2.

In all the paper, we use the following notation, if

x → f (x) and x → g(x) are given function, f = O(g) if |f (x)| ≤ M |g(x)|, with M independent of x.
2 Two bases of solutions for the system (1.18) and (1.19).

First let us recall the expansions of f

d f d (r) = 1 - d 2 2r 2 + O( 1 r 4 ) near +∞ (2.25) and f d (r) = A d (r d - 1 4(d + 1) r d+2 ) + O(r d+4 ) near 0. (2.26)
We suppose that d ≥ 1 and that n ≥ 1.

In [START_REF] Beaulieu | Bounded solutions for an ordinary differential system from the Ginzburg-Landau theory[END_REF], we gave two independent solutions bounded at 0 and two independent solutions that blow up at 0, and the same thing at +∞, for the system (1.15).

Let us recall that we can rewrite the system (1.15) as

X = M X (2.27) with M =      0 1 r 0 0 -r(1 -2f 2 d ) + (n-d) 2 r 0 rf 2 d 0 0 0 0 1 r rf 2 d 0 -r(1 -2f 2 d ) + (n+d) 2 r 0      .
and that a base of solutions is formed by four vector solutions of the form X = (a, ra , b, rb ) t .

In [START_REF] Beaulieu | Bounded solutions for an ordinary differential system from the Ginzburg-Landau theory[END_REF] and in [START_REF] Beaulieu | The kernel of the linearized Ginzburg-Landau operator[END_REF], there is γ 1 instead of |n -d| and γ 2 instead of n + d. The continuity and the derivability of the solutions of the differential system wrt (γ 1 , γ 2 ) was important and the determination of some suitable ranges for the parameters was necessary. Here, n and d are integers, so the continuity wrt to (γ 1 , γ 2 ) doesn't exist anymore. The Theorem 1.4 and the Theorem 1.5 in [START_REF] Beaulieu | Bounded solutions for an ordinary differential system from the Ginzburg-Landau theory[END_REF] give, when n ≥ 1 and d ≥ 1 are some integers Proposition 2.1 For d ≥ 1 and n ≥ 1, there exist four independent solutions of (1.15) having the following behavior at 0 :

(a 1 (r), b 1 (r)) ∼ 0 O(r n+3d+2 ), r n+d , (a 3 (r), b 3 (r)) ∼ 0 r |n-d| , O(r |n-d|+2d+2 ) (a 2 (r), b 2 (r)) ∼ 0        O(r 2+d-n ), r -n-d n ≥ d + 2 O(r ln r)), r -n-d n = d + 1 O(r 2 ), r -n-d n = d O(r d-n ), r -n-d 1 ≤ n ≤ d -1
and

(a 4 (r), b 4 (r)) ∼ 0        r -n+d , O(r -n+3d+2 ) n ≥ d + 2 r -n+d , O(-r n+d log r) n = d + 1 -ln r, O(r 2d+2 ln r) n = d r n-d , O(r n+d ) 1 ≤ n ≤ d -1.
We have four independent solutions having the following behaviors at +∞ :

(u 1 (r), v 1 (r)) ∼ +∞ (J + (r), J + (r)) 1 + O(r -2 ) , (u 2 (r), v 2 (r)) ∼ +∞ (J -(r), J -(r)) 1 + O(r -2 ) , (u 3 (r), v 3 (r)) ∼ +∞ (r n , -r n ) 1 + O(r -2 ) , (u 4 (r), v 4 (r)) ∼ +∞ r -n , -r -n 1 + O(r -2 ) ,
with the notation

J + (r) = e √ 2r √ r , J -(r) = e - √ 2r √ r .
The proof of Proposition 2.1 for the behaviors at 0 is contained in the proof of Proposition 2.2 below and the proof for the behaviors at +∞ is contained in the proof of Proposition 2.3 below. The only difference is that in Proposition 2.1, µ = 1 and consequently there is no dependence anymore of the solutions wrt .

Let us denote by X i , i = 1, . . . , 4 the four independent solutions defined near 0 and by Y i , i = 1, . . . , 4 the four solutions defined near +∞, for the system (1.15), which are defined in Proposition 2.1. We have proved in [START_REF] Beaulieu | Bounded solutions for an ordinary differential system from the Ginzburg-Landau theory[END_REF], Theorem 1.6 that the least behavior at 0 is related to the exponentially increasing behavior at +∞ and that the exponentially decreasing behavior at +∞ is related to the stronger blowing up behavior at 0. Let us quote it. Theorem 2.7 (Theorem 1.6 in [START_REF] Beaulieu | Bounded solutions for an ordinary differential system from the Ginzburg-Landau theory[END_REF]). The solution X 1 has the exponentially blowing up behavior at +∞, like the solution Y 1 . And the solution Y 2 has the more blowing up behavior at 0, like the solution X 2 . Now we define a base of four solutions at 0 for the perturbated system

a + a r -(n-d) 2 r 2 a -f 2 d b + (1 -2f 2 d )a = (1 -µ(ε))(1 -f 2 d )a b + b r -(n+d) 2 r 2 b -f 2 d a + (1 -2f 2 d )b = (1 -µ(ε))(1 -f 2 d )b.
(2.28) Proposition 2.2 Let us suppose that d ≥ 1 and n ≥ 1 and that µ(ε) → 1, (i) there exist four independent solutions of (1.18), having the behaviors at 0 enonced in Proposition 2.1, more precisely, for all r ∈ [0, R]

|a ε 1 (r)|| ≤ Cr n+3d+2 , |b ε 1 (r) -r n+d | ≤ Cr n+d+2 , |a ε 3 (r) -r |n-d| | ≤ Cr n-d+2 , |b ε 3 (r)| ≤ Cr |n-d|+2d+2 , |a ε 2 (r)|| ≤ Cr 2 ζ (j=2) 1 (r), |b ε 2 (r) -r -n-d | ≤ Cr 2 r -n-d , |a ε 4 (r) -r |n-d| | ≤ Cr |n-d| r, |b ε 4 (r)| ≤ Crζ (j=4) 2 (r), if n = d, |a ε 4 (r) + ln r| ≤ Cr 2 (-ln r), |b ε 4 (r)| ≤ Cr 2d+2 (-ln r), if n = d (2.29)
for some C > 0 and some 0 < R < 1, the both being independent of ε. and (ii) denoting X ε i , i = 1, . . . , 4 these solutions, we have lim ε→0 X ε i = X i , i = 1, . . . , 4, where X i is defined in Proposition 2.1.

Let us indicate what are the suitable maps

(ζ 1 , ζ 2 ) for each of the four solutions (a ε j , b ε j ). (ζ 1 , ζ 2 )(r) = (r n+3d , r n+d ) for j = 1 (r |n-d| , r |n-d|+2d ) for j = 3. For j = 2, ζ 1 (r) =        r -|n-d| if n ≥ d + 2 r |n-d|-2 if n ≤ d -1 -r -1 ln r if n = d + 1 1 if n = d ζ 2 (r) = r -n-d and for j = 4, ζ 1 (r) = r -|n-d| if n = d -ln r if n = d ζ 2 (r) =        r -n+3d if n ≥ d + 2 r n+d-2 if n ≤ d -1 -r n+d-2 ln r if n = d + 1 -r 2d ln(r) if n = d. Proof of Proposition 2.2.
We use the same proof as in [START_REF] Beaulieu | Bounded solutions for an ordinary differential system from the Ginzburg-Landau theory[END_REF] and for more details, in [START_REF] Beaulieu | The kernel of the linearized Ginzburg-Landau operator[END_REF], but we involve the term (1 -µ(ε))(1 -f 2 d ). The proof below is valid for µ = 1 and gives the proof of the first part of Proposition 2.1. For (a ε 1 , b ε 1 ) and (a ε 3 , b ε 3 ) we use the following form of the system (2.28)

(r 2|n-d|+1 (ar -|n-d| ) ) = r |n-d|+1 (f 2 d b + f 2 d a -µ(ε)(1 -f 2 d )a) (r 2(n+d)+1 (br -(n+d) ) ) = r n+d+1 (f 2 d b + f 2 d a -µ(ε)(1 -f 2 d )b).
(2.30)

To construct (a ε 1 , b ε 1 ) and (a ε 3 , b ε 3 ) , we consider the following integral equation

   a = αr |n-d| + r |n-d| r 0 t -2(|n-d|-1 t 0 s |n-d|+1 (f 2 d b + f 2 d a -µ(ε)(1 -f 2 d )a)dsdt b = βr n+d + r n+d r 0 t -2(n+d)-1 t 0 s n+d+1 (f 2 d a + f 2 d b -µ(ε)(1 -f 2 d )b)dsdt (2.31) with (α, β) = (0, 1) for (a ε 1 , b ε 1 ) and with (α, β) = (1, 0) for (a ε 3 , b ε 3 ).
For (a ε 2 , b ε 2 ) and (a ε 4 , b ε 4 ) for n = d we consider the following form of the system (2.28), when n = d.

(r -2|n-d|+1 (ar |n-d| ) ) = r -|n-d|+1 (f 2 d b + f 2 d a -µ(ε)(1 -f 2 d )a) (r -2(n+d)+1 (br n+d ) ) = r -(n+d)+1 (f 2 d b + f 2 d a -µ(ε)(1 -f 2 d )b).
(2.32)

But for (a ε 4 , b ε 4 ) and for n = d, we let τ (r) -ln r. and consider the system

(rτ 2 (τ -1 a) ) = rτ (f 2 d b + f 2 d a -µ(ε)(1 -f 2 d )a) (r -2(n+d)+1 (br n+d ) ) = r -(n+d)+1 (f 2 d b + f 2 d a -µ(ε)(1 -f 2 d )b). (2.33) To construct (a ε 2 , b ε 2 ) and (a ε 4 , b ε 4 )
for n = d we consider the following integral equation 

   a = αr -|n-d| + r -|n-d| r 0 t 2|n-d|-1 t R s -|n-d|+1 (f 2 d b + f 2 d a -µ(ε)(1 -f 2 d )a)dsdt b = βr -(n+d) + r -(n+d) r 0 t 2(n+d)-1 t R s -(n+d)+1 (f 2 d b + f 2 d a -µ(ε)(1 -f 2 d )b)dsdt (2.
   a = τ (r) + τ (r) r 0 1 t τ -2 (t) t 0 sτ (s)(f 2 d b + f 2 d a -µ(1 -f 2 d )a)dsdt b = r -n-d r 0 t 2(n+d)-1 t 0 s -n-d+1 (f 2 d a + f 2 d b -µ(1 -f 2 d )b)dsdt. (2.35)
Let us explain the pattern of proof. We define Φ(a, b) as the rhs of the above integral equations and we consider the two maps r → ζ 1 (r) and r → ζ 2 (r) defined above for each j. We want to construct solutions (a j , b j ), j = 1, ..., 4, verifying, for some R independent of ε and some C independent of ε

for j = 1 and j = 2 |a(r)ζ -1 1 (r)| + |b(r)ζ -1 2 (r)) -1| ≤ Cr 2 , for j = 3 and j = 4 |a(r)ζ -1 1 (r) -1| + |b(r)ζ -1 2 (r))| ≤ Cr 2
(2.36) for all 0 < r ≤ R. For j = 4 and n = d, we replace r 2 in the rhs by r.

For this purpose, we define two sequences whose initial data depends of the desired solution (a j , b j ).

For j = 1, 2 α 0 = 0 β 0 = ζ 2 and for j = 3, 4 α 0 = ζ 1 β 0 = 0 (2.37) and in any case (α k+1 , β k+1 ) = Φ(α k , β k ). We will denote ν : r → r. Now we will prove that for a given 0 < R < 1 all 0 < r < R we have

ζ -1 ν -2 |α k+1 -α k |(r) ≤ M r 2 ( ν -2 ζ -1 1 (α k -α k-1 ) L ∞ ([0,R]) + ζ -1 2 ν -2 (β k -β k-1 ) L ∞ ([0,R]) ), (2.38) ζ -1 2 ν -2 |β k+1 -β k |(r) ≤ M r 2 ( ζ -1 1 ν -2 (α k -α k-1 ) L ∞ ([0,R]) + ζ -1 2 ν -2 (β k -β k-1 ) L ∞ ([0,R]) ) (2.39) and |α 1 -α 0 |(r) ≤ M r 2 ζ 1 (r), |β 1 -β 0 |(r) ≤ M r 2 ζ 2 (r) (2.40)
where M does not depend on ε and does not depend on R.

For j = 4 and n = d, we have to replace ν -2 by ν -1 and r 2 in the rhs by r.

Next, we choose R < 1 such that CR < 1 and we define, for all 0 < r < R

a ε j (r) = ζ 1 (r)r 2 k=+∞ k=0 (ν -2 ζ -1 1 (α k+1 -α k ))(r) + α 0 (r), b ε j (r) = ζ 2 (r)r 2 k=+∞ k=0 (ν -2 ζ -1 2 (β k+1 -β k ))(r) + β 0 (r), (2.41) 
j = 1, 2, 3 and the suitable adaptation for j = 4. Thus we have (a ε j , b ε j ) = Φ(a ε j , b ε j ) and consequently we have defined a solution X ε j defined in ]0, R]. By the Cauchy-Lipschitz Theorem for the linear ordinary equations, the solution is defined in ]0, +∞[. By induction, α k and β k have limits as ε → 0. Moreover, thanks to the inequalities just above, the sums in (2.41) are convergent uniformly wrt ε. Consequently, a ε 1 (r) and b ε 1 (r) have limits as ε → 0, for every r ∈]0, R], and, in view of the integral equation, also ra ε 1 (r) and rb ε 1 (r) have limits as ε → 0. So we can consider

(a ε 1 (R), Ra ε 1 (R), b ε 1 (R), Rb ε 1 (R))
t as an intial value for the solution X ε 1 , and a supposed well known principle in the Cauchy-Lipschitz Theory gives that a continuous initial value wrt ε, together with the continuous dependence of the coefficients of the equation wrt ε lead to a continous solution wrt ε. And we deduce that for all r ∈]0, +∞[, lim ε→0 X ε j (r) = X j (r), where X j (r) is defined in Proposition 2.1. And by the definition of a ε j and b ε j in (2.41), we have the desired behavior at 0 (2.36) for (a ε j , b ε j ). For the estimates, we use

f 2 d (t) ≤ M t 2d and |1 -f 2 d -µ(ε)| ≤ M,
This terminates the proof of Proposition 2.2. Now let us turn to a base of solutions defined at +∞. To make the proof clear, let us suppose that µ is sufficiently closed to 1 to have -

1 2 ≤ d 2 (1 -µ) ≤ 1 2 and, for n ≥ 1, let us define n ε = n 2 + d 2 (1 -µ(ε)).
We note that for n = 1 we have µ(ε) > 1 for every eigenvalue µ, so, n ε ≥ 1 in any case.

Proposition 2.3 Let us suppose that d ≥ 1 and n ≥ 1 and that µ(ε) -1 → 0, there exists a base of four solutions of (2.28) defined by there behaviors at +∞ and denoted by Y ε i , i = 1, . . . , 4. They verify, in [R, +∞[

|u ε 1 -J + | + |v ε 1 -J + | ≤ Cr -1 J + , |u ε 2 -J -| + |v ε 2 -J -| ≤ Cr -1 J - (2.42)
and

|u ε 3 -r nε | + |v ε 3 + r nε | ≤ Cr -1 r nε , |u ε 4 -r -nε | + |v ε 4 + r -nε | ≤ Cr -1 r -nε and |u ε 3 + v ε 3 | ≤ Cr nε r -1 , |u ε 4 + v ε 4 | ≤ Cr -nε r -1
where the both constants R > 0 and C > 0 are independent of ε. Moreover Y ε i (r) → Y i (r) as ε → 0, for all r > 0, where Y i are defined in Proposition 2.1.

Proof The proof below is valid also when µ = 1 and that gives the proof of the second part of Proposition 2.1. Let us recall that we let x = a+b and y = a-b. The system (2.28) becomes the following system verified by (x, y)

x + x r -n 2 +d 2 r 2 x + 2nd r 2 y + (1 -3f 2 d )x + (µ -1)(1 -f 2 d )x = 0 y + y r -n 2 +d 2 r 2 y + 2nd r 2 x + (1 -f 2 d )y + (µ -1)(1 -f 2 d )y = 0. (2.43) 
We let

J + := e √ 2r √ r , J -:= e - √ 2r
√ r and x(r) := r 1 2 x(r).

Thanks to

x + x r - 1 4r 2 x = r -1 2 x ,
we can replace the first equation of (2.43) by

x -2x + -n 2 -d 2 + 1 4 r 2 x + 3(1 -f 2 d )x + 2nd r 3 2 y + (µ -1)(1 -f 2 d )x = 0, that is (e 2 √ 2r (xe - √ 2r ) ) = e √ 2r q(r)x - 2nd r 3 2 y or (e -2 √ 2r (xe √ 2r ) ) = e - √ 2r q(r)x - 2nd r 3 2 y ,
where

q(r) = n 2 + d 2 -1 4 r 2 -3(1 -f 2 d ) -(µ -1)(1 -f 2 d ).
The second equation of the system (2.43) can be written as

y + y r - n 2 + d 2 (1 -µ) r 2 y + 2nd r 2 x + µ(1 -f 2 d - d 2 r 2 )y = 0, that is also (r 2nε+1 (r -nε y) ) = r nε+1 (- 2nd r 2 x -µ(1 -f 2 d - d 2 r 2 y) or (r -2nε+1 (r nε y) ) = r -nε+1 (- 2nd r 2 x -µ(1 -f 2 d - d 2
r 2 )y). Eventually, the system (2.43) can be written as

(e ±2 √ 2r (r 1 2 e ∓ √ 2r x) ) = r 1 2 e ± √ 2r q(r)x -2nd r 2 y (r ±2nε+1 (r ∓nε y) ) = r ±nε+1 (-2nd r 2 x -µ(1 -f 2 d -d 2 r 2 )y) (2.44)
We will construct four independent solutions (x j , y j ), j = 1, ..., 4. Let us indicate the four fixed point equations we have to solve.

The exponential blowing up behavior at +∞ : the solution (x 1 , y 1 ). We consider the fixed point problem

     x = J + + J + r +∞ e -2 √ 2t t R e √ 2s s 1 2 (-2nd s 2 y + q(s)x)dsdt y = r nε r R t -2nε-1 t R s nε+1 ( 2nd s 2 x -µ(ε)(1 -f 2 d -d 2 s 2
)y)dsdt. The intermediate blowing up behavior at +∞ : the solution (x 3 , y 3 ). We consider the fixed point problem

     x = J + r +∞ e -2 √ 2t t R e √ 2s s 1 2 (-2nd s 2 y + q(s)x)dsdt y = r nε + r nε r +∞ t -2nε-1 t R s nε+1 ( 2nd s 2 x -µ(ε)(1 -f 2 d -d 2 s 2 )y)dsdt.
The least behavior at +∞ : the solution (x 2 , y 2 ). We consider the fixed point problem

     x = J -+ J - r +∞ e 2 √ 2t t +∞ e - √ 2s s 1 2 (-2nd s 2 y + q(s)x)dsdt y = r -nε r +∞ t 2nε-1 t +∞ s -nε+1 ( 2nd s 2 x -µ(ε)(1 -f 2 d -d 2 s 2
)y)dsdt. The intermediate vanishing behavior at +∞ : the solution (x 4 , y 4 ). We consider the fixed point problem

     x = J - r R 0 e 2 √ 2t t +∞ e - √ 2s s 1 2 (-2nd s 2 y + q(s)x)dsdt y = r -nε + r -nε r +∞ t 2nε-1 t +∞ s -nε+1 ( 2nd s 2 x -µ(ε)(1 -f 2 d -d 2 s 2 )y)dsdt.
Let us explain the pattern of proof. We denote each fixed point equation by (x, y) = Φ(x, y), for (x, y) defined in [R, +∞[. Then we give a map ζ, that will be

ζ(r) =        J + (r) for (x 1 , y 1 )
r nε for (x 3 , y 3 ) J -(r) for (x 2 , y 2 ) r -nε for (x 4 , y 4 ). And we want to prove, for a chosen R large enough and independent of ε, the existence of a fixed point (x j , y j ) verifying the estimate, for all r ∈]R, +∞[ and for some C depending only of R,

|x j (r) -ζ(r)| + |y j (r)| ≤ Cζ(r)r -1 if j = 1, 3, (2.45) or |x j (r)| + |y j (r) -ζ(r)| ≤ Cζ(r)r -1 if j = 2, 4. (2.46)
For this purpose, we define by induction, for (x 1 , y 1 ) and for (x 3 , y 3 )

(α 0 , β 0 ) = (ζ, 0) and (α k+1 , β k+1 ) = Φ(α k , β k ).
(2.47)

For (x 2 , y 2 ) and for (x 4 , y 4 ), we exchange the role of x and y, that gives

(α 0 , β 0 ) = (0, ζ) and (α k+1 , β k+1 ) = Φ(α k , β k ). ( 2 

.48)

We denote ν : r → r. Now we prove that there exists M > 0 independent of ε, independent of k, and independent of R > 1, such that for all r ≥ R and all k ≥ 1, for j = 1, 2

|(α k+1 -α k )ζ -1 ν|(r) ≤ M r -1 ( (α k -α k-1 )ζ -1 ν ∞,[R,+∞[ + (β k -β k-1 )ζ -1 ν) ∞,[R,+∞[ ) (2.49) and |(β k+1 -β k )ζ -1 ν|(r) ≤ M r -1 ( (α k -α k-1 )ζ -1 ν ∞,[R,+∞[ + (β k -β k-1 )ζ -1 ν) ∞,[R,+∞[ ) (2.50)
and for j = 3, 4

|(α k+1 -α k )ζ -1 ν 2 |(r) ≤ M r -1 ( (α k -α k-1 )ζ -1 ν 2 ∞,[R,+∞[ + (β k -β k-1 )ζ -1 ν ∞,[R,+∞[ ) (2.51) and |(β k+1 -β k )ζ -1 ν|(r) ≤ M r -1 ( (α k -α k-1 )ζ -1 ν 2 ∞,[R,+∞[ + (β k -β k-1 )ζ -1 ν ∞,[R,+∞[ ).
(2.52)

We have to verify also, for j = 1, 2

|α 1 -α 0 | ≤ M r -1 ζ(r) and |β 1 -β 0 | ≤ M r -1 ζ(r) (2.53)
and for j = 3, 4

|α 1 -α 0 | ≤ M r -2 ζ(r) and |β 1 -β 0 | ≤ M r -1 ζ(r).
(2.54) with M independent of R and independent of ε.

Next we choose R > 1 such that M R -1 < 1 and we are allowed to define x j (r) and y j (r), for j = 1, 2 by

x j (r) = α 0 (r) + r -1 ζ k≥0 rζ -1 (α k+1 -α k )(r) (2.55)
and

y j (r) = β 0 (r) + r -1 ζ k≥0 rζ -1 (β k+1 -β k )(r)
and, for j = 3, 4,

x j (r) = α 0 (r) + r -2 ζ k≥0 r 2 ζ -1 (α k+1 -α k )(r).
The sums converge, uniformly wrt ε, for all r > R 0 . Consequently, arguing as for the solutions near 0, we get the existence of a solution (x, y) having the desired behavior (2.45) or (2.46) at +∞ and we get also the limit of (x, y)(r) as ε → 0 to a solution of the same system as (2.43) but with µ = 1, for each r ∈]0, +∞[ and having the same behavior (2.45) or (2.46) at +∞. The proof of Proposition 2.3 follows, with u ε = x + y and v ε = x -y. For the estimates above, we need the following estimates, obtained by an integration by part. Let α ∈ R and β > 0 be given. Then 

β if α < 0 1 β t α e βt for all t ≥ R > 0 if α ≥ 0.
(2.57)

We will fix R > 1, large enough to have (2.57) for the desired α and β and we will use, for s ≥ R,

|1 -µ|(1 -f 2 d ) ≤ C r 2 , |1 -f 2 d - d 2 r 2 | ≤ C r 4 and |q(s)| ≤ C r 2 (2.58)
where

C is independent of R > 1.
This terminates the proof of Proposition 2.3.

We turn now to the case n = 0, ie to the equation (1.20) and to the equation (1.19). We write the rescaled form of (1.19) as 

a + a r - d 2 r 2 a + (1 -f 2 d )a + (µ(ε) -1)(1 -f 2 d )a = 0. ( 2 
f d = A d r d + O(r d+2 ) near r = 0. (ii) If µ(ε) → 1,
there exists a base of two solutions a ε 1 and a ε 2 of (2.59) with the following behaviors at 0 : there exist R > 0 and C > 0 verifying for all 0 < r < R

|a ε 1 (r) -f d (r)| ≤ C|1 -µ(ε)|r 2 f d (r) and |a ε 2 (r) -r -d | ≤ Cr -d+1 (2.61) 
where R and C are independent of ε. Moreover, letting ε → 0, for all r > 0 a

ε 1 (r) → f d (r) and a ε 2 (r) → -1 2dA d g d + Af d , for some A ∈ R.
Proof (i) If g is any solution of the equation (1.16) we can combine the equation of g and the equation of f d and integrating by parts we are led to, for all r 1 > 0 and

r 2 > 0 [r(f d g -f d g )(r)] r 2 r 1 = 0.
We deduce that there exists C such that rf 2

d g d f d
= C. This gives, for some D ∈ R,

g(r) = Df d (r) + Cf d (r) r 1 dt tf 2 d (t)
.

We define

g d (r) := f d (r) r 1 dt tf 2 d (t)
.

A calculus gives (2.60).

(ii) We take advantage of the identity, valid for any function u

ru 2 (au -1 ) = (ra ) u -a(ru ) . (2.62) 
Firstly, we choose u = f d . Letting g = af -1 d , we infer that (2.59) is equivalent to

rf 2 d g = (1 -µ)r(1 -f 2 d )f 2 d g.
We define the fixed point problem, for g

g = 1 + (1 -µ) r 0 f -2 d t t 0 s(1 -f 2 d )f 2 d gdsdt. (2.63) 
We denote it by g = Φ(g). Considering that

t 2d 1+t 2d f -2 d , (1-f 2 d )(1+t 2 ) and f 2 d (1+t 2d )t -2d
have positive limits together at 0 and at +∞, we will use the following estimates, in ]0, +∞[[, for some M > 0

f -2 d ≤ M 1 + t 2d t 2d , 1 -f 2 d ≤ M 1 1 + t 2 and f 2 d ≤ M t 2d 1 + t 2d .
We define by induction

α 0 = 1, α k+1 = Φ(α k ).
We define ζ(r) := r 2 . A calculus gives, for r > 0

|α 1 -α 0 | ≤ C|1 -µ|r 2 and r -2 |α k+1 -α k | ≤ C|1 -µ|r 2 ζ -1 (α k -α k-1 L ∞ ([0,r]
where C is independent of r and independent of ε. We choose R > 0 such that CR 2 < 1 and we define, for all r ∈ [0, R]

g = 1 + ζ k≥0 ζ -1 (α k+1 -α k ).
Thus a ε 1 = f d g verifies (2.61). Secondly, we choose u(r) = r -d . We compute (r -2d+1 (ar

-d ) ) = -r -d+1 µ(1 -f 2 d )a
We let g(r) := a(r)r d and we solve the fixed point problem

g(r) = 1 + r 0 t 2d-1 t R -µ(1 -f 2 d )s -2d+1 gds
where R > 0. The same method as above , with α 0 = 1 and ζ(r) = r leads to

r -1 |α k+1 -α k | ≤ Cr ζ -1 (α k -α k-1 ) L ∞ ([0,R]) and r -1 |α 1 -α 0 | ≤ C r ln r if d = 1 r if d ≥ 2
with C independent of ε and independent of R. Choosing R such that CR < 1, we conclude as above. This terminates the proof of (2.61).

We turn now to the equation (1.17), for n = 0. Its rescaled form is

a + a r - d 2 r 2 a -2f d a + µ(ε)(1 -f 2 d )a = 0.
(2.64) Proposition 2.5 (i)There exists a base of two solutions a 1 and a 2 defined near 0, for (1.17) verifying respectivly

|a 1 -f d | ≤ Cr 2 f d and |a 2 -r -d | ≤ Cr -d+2 .
And if µ(ε) → 1, there exists a solution a ε 1 of (2.64) such that

|a ε 1 (r) -f d (r)| ≤ Cr 2 f d (r)
for all r ∈ [0, R] and for some R and some C independent of ε. Moreover a ε 1 → a 1 as ε → 0. And there exists a second solution that blows up at 0. (ii) There exists a base of two solutions of (1.17), b 1 and b 2 , defined near +∞ and there exists some R > 0 verifying

|b 1 -e √ 2r √ r | ≤ Cr -1 e √ 2r √ r and |b 1 -e - √ 2r √ r | ≤ Cr -1 e - √ 2r √ r , for all r ∈ [R, +∞[. And if µ(ε) → 1,
there exists a base of two solutions b ε 1 and b ε 2 of (2.64) verifying

|b ε 1 -e √ 2r √ r | ≤ Cr -1 e √ 2r √ r and |b ε 1 -e - √ 2r √ r | ≤ Cr -1 e - √ 2r √ r
for all r ∈ [R, +∞[, R and C being independent of ε.

(iii) The solution a 1 defined at 0 blows up exponentially at +∞, like Ab 1 , for some A > 0.

Proof (i) Let us give a sketch of the proof. We can adapt the proof of (ii) in Proposition 2.4. Using (2.62) again, we choose firstly u = f d and secondly u = r -d . We are led successively to the following forms of (2.64)

(rf 2 d (af -1 d ) ) = 2rf 2 d a + (1 -µ)af d (1 -f 2 d ) and (r -2d+1 (ar d ) ) = 2f d ar 1-d -µar -d+1 (1 -f 2 d
). And we solve the both integral equations, where g = af -1 d and next g = ar d ,

g = 1 + r 0 f -1 d t t 0 (1 -µ)(1 -f 2 d ) + 2f d )sf 2 d g dsdt.
and

g(r) = 1 + r 0 t 2d-1 t R -µ(1 -f 2 d ) + 2f d s -2d+1 gds.
And we let µ = 1, for the equation (1.17).

(ii) The same trick as above, in the proof of Proposition 2.3 leads to replace (2.64) by (e 2 √ 2r (r

1 2 ae - √ 2r ) ) = e √ 2r r 1 2 ( 1 4r 2 -µ(1 -f 2 d ))
or (e -2 √ 2r (r

1 2 ae √ 2r ) ) = e - √ 2r r 1 2 (- 1 4r 2 + d 2 r 2 -µ(1 -f 2 d )).
And as above we solve the following fixed point problems, for µ = 1 or for µ closed to 1 and for R large enough

a = J + + J + r +∞ e -2 √ 2t t R e √ 2s s 1 2 a(- 1 4r 2 + d 2 r 2 -µ(1 -f 2 d ))ds and a = J -+ J - r +∞ e 2 √ 2t t +∞ e - √ 2s s 1 2 a(- 1 4r 2 + d 2 r 2 -µ(1 -f 2 d ))ds.
And the method for the construction is the same as for Proposition 2.3.

(iii) Multiplying the equation of a 1 and the equation of f d and integrating by parts, we obtain r(a

1 f d -f d a 1 )(r) = r 0 2tf 2 d (t)a 1 (t)dt.
This gives

rf 2 d a 1 f d (r) = r 0 2tf 3 d (t) a 1 f d (t)dt
and consequently a 1 (r) > 0 for all r and the only convenient behavior at +∞ for a 1 f d is the blowing up one.

that ω ε → ω, as ε → 0. We denote

ω ε = 4 j=2 D ε j ω ε j = ω ε 3 -D ε 1 ω ε 1 .
We have, for a given A > 0,

ω ε -ω L 2 (B(0, 1 ε )) ≤ 4 j=2 D ε j ω ε j - 4 j=2 D j ω j L 2 (B(0, 1 ε )\B(0,A)) + + ω ε 3 -D ε 1 ω ε 1 -ω 3 + D 1 ω 1 L 2 (B(0,A))
. The second term of the rhs tends obviously to 0, and, since D 3 = 0, the first term can be estimated as

4 j=2 D ε j ω ε j - 4 j=2 D j ω j L 2 (B(0, 1 ε )\B(0,A)) ≤ D ε 2 ω ε 2 -D 2 ω 2 L 2 (B(0, 1 ε )\B(0,A)) + + D ε 4 ω ε 4 -D 4 ω 4 L 2 (B(0, 1 ε )\B(0,A)) + D ε 3 ω ε 3 L 2 (B(0, 1 ε )\B(0,A))
. The first two terms tend to 0 by the Lebesgue Theorem and for the third term we estimate

ω ε 3 L 2 (B(0, 1 ε )B(0,A)) ≤ Cε -n+1
with C independent of ε, while the condition 4 j=2 D ε j u ε j ( 1 ε ) = 0 gives

D ε 3 = O(ε 2n ).
Eventually, we conclude that

ω ε -ω L 2 (B(0, 1 ε )) → 0 as ε → 0.
Now, to complete the proof of (ii), we consider n = 0 and n = 1. The proof of m 0,d > 1 and the proof of m 1,d > 1 are the same as for λ 0,d > 0 and λ 1,d > 0, in [START_REF] Mironescu | On the stability of radial solutions of the Ginzburg-Landau equation[END_REF]. Indeed, multiplying the equation (1.19), by f and integrating by parts on [0, 1], we obtain m 0,d > 1. Then, using a truncation of f , with value 0 for r ≥ 1, as a test function for the infimum m 0,d , and since we know the existence of the limit, we obtain that lim ε→0 m 0,d (ε) ≤ 1.

And the proof of m 1,d > 1 uses a trick involving the system (2.43). The only difference is the positive factor 1 -f 2 d . The proof of lim ε→0 m 1,d (ε) = 1 follows from Lemma 1.1. Indeed, it must exist µ(ε) → 1, but m 1,d (ε) > 1 is the least eigenvalue, so m 1,d (ε) → 1. And thanks to the proof above, the limit of an eigenvector for µ(ε) → 1 has to be the bounded solution of (1.15) and the norm ω ε -ω L 2 ([0, 1 ε ]) → 0. But since the eigenvalue problem is, with the suitable rescaling, T ωε = µ(ε)C ωε and in view of the scalar product for H n,d , we have < C ωε , ηε > L 2 ([0,1]) = 0 when η ε and ω ε are two independent eigenvectors that gives

< (1-f d )ω ε , η ε > L 2 ([0, 1 ε ]) = 0, this is in contradiction with ω ε -η ε L 2 ([0, 1 ε 
]) → 0. This proves that there is at most one eigenvalue tending to 1. We deduce (ii) for n = 1. Now, for n = 0, if µ(ε) > m 0,d (ε) and if µ(ε) → 1, we consider a ε a solution of (2.59) with µ(ε) = m 0,d (ε) and we consider b ε a solution for µ(ε). Thanks to Proposition 2.4, we can chose a ε (0) = b ε (0) = 1 and combining the equations of a ε and of b ε , we find that for all r > 0

r((a ε ) b ε -a ε (b ε ) )(r) = r 0 s(µ(ε) -m 0,d (ε))a ε b ε (1 -f 2 d )ds.
Since a ε > 0, this proves that a ε b ε (r) > 0 as soon as a ε b ε > 0 in [0, r[ and consequently b ε (r) > 0 for all r ≥ 0. But this is in contradiction with

1 ε 0 (1 -f 2 d )a ε b ε sds = 0. Thus, if µ(ε) > m 0,d (ε) is an eigenvalue for n = 0, we have |µ(ε) -1| ≥ C, with C independent of ε. Now let us prove that m0,d (ε) ≥ 1 + C, with C > 0 independent of ε, where m0,d is defined in (1.24). If ãε 0 realizes m0,d , we can estimate m0,d (ε) ≥ m 0,d (ε) + ε 2 1 ε 0 2rf d (a ε 0 ) 2 dr 1 ε 0 r(1 -f 2 d )(a ε 0 ) 2 dr .
But, with the notations of Proposition 2.5, we can write

a ε 0 = A ε 1 b ε 1 + A ε 2 b ε 2 ,

and, as above

A ε 1 → A 1 , A ε 2 → A 2
, for some real numbers A 1 and A 2 . And since a ε 0 → a 0 , that can be supposed to be equal to a 1 , we have

A 1 = 0. Since 1 -f 2 d = d 2 r 2 + O( 1 r 4 ), a calculus gives some M > 0 independent of ε such that m0,d (ε) ≥ m 0,d (ε) + M.
4 The proof of Lemma 1.1.

To begin with, let us recall some notation for the eigenvalue problem (1.18). We consider the operator T n,d : H n,d → H n,d defined by

< -T n,d (a, b), (u, v) > H n,d ,H n,d := 1 0 (ra u +rb v + (n -d) 2 r au+ (n + d) 2 r bv+ r ε 2 f 2 (a+b)(u+v))dr. We remark that ((a, b), (u, v)) →< T n,d (a, b), (u, v) > H n,d ,H n,d
is a scalar product on H n,d . So, T n,d is an isomorphism, by the Riesz Theorem. Last, let us define the embedding 

I : H n,d → H n,d (a, b) → ((u, v) → 1 0 r(au + bv)dr) Since the embedding H 1 0 (B(0, 1)) × H 1 0 (B(0, 1)) ⊂ L 2 (B(0, 1)) × L 2 (B(0, 1)) is compact, then I is compact. Let us define C = 1 ε 2 (1 -f 2 )I.
< Cζ i , ζ j > (L 2 ×L 2 )(B(0,1)) = 0 for i = j and < Cζ j , ζ j > (L 2 ×L 2 )(B(0,1)) = 1.
Let us suppose that (a, b) is a bounded solution of (1.15). Let 1 2 < N < 1 be given, let us define (a cut , b cut ) by

(a cut , b cut )(r) = (a, b)(r) for 0 ≤ r ≤ N ε ((a, b)(r)(1 -h(r)) for N ε ≤ r ≤ 1 ε where h(r) = (r -N ε ) 3 ( 1 ε -N ε ) 3 . We have a cut e idθ ∈ (H 2 ∩ H 1 0 )(B(0, 1 ε )) and b cut e idθ ∈ (H 2 ∩ H 1 0 )(B(0, 1 ε ))
, since this is true for a and b and since moreover the first two derivatives of a cut e idθ and b cut e idθ are continuous. In view of the possible behaviors at +∞ given in Proposition 2.1, we have, for ε small enough

|a(r)| ≤ Cr -n for N ε < r < 1 ε , |a cut | ≤ |a| and r(1 -f 2 d ) = O( 1 r 
) at +∞ and we verify that

< (a cut -a, b cut -b), (1 -f 2 d )(a cut -a, b cut -b) > (L 2 ×L 2 )(B(0, 1 ε )) = 1 ε N ε r(1 -f 2 d )((a -a cut ) 2 + (b -b cut ) 2 )dr = O(ε 2n ) as ε → 0. (4.65)
Then, let us define

(ã cut , bcut )(r) = (a cut , b cut )( r ε ) 0 < r < 1. We write (ã cut , bcut ) = i∈J α i (ε)ζ i and < (1 -f 2 d )(a cut , b cut ), (a cut , b cut ) > (L 2 ×L 2 )(B(0, 1 ε )) =< C j∈J α j ζ j , j∈J α j (ε)ζ j > (L 2 ×L 2 )(B(0,1)) = i∈J α 2 j (ε). By (4.65), < (1 -f 2 d )(a cut , b cut ), (a cut , b cut ) > L 2 (B(0, 1 ε )) -→ +∞ 0 r(1 -f 2 d )(a 2 + b 2 )dr as ε → +∞.
Consequently there exists I ⊂ J, such that

I = ∅ and for all i ∈ I, α 2 i (ε) → 0, as ε → 0. (4.66) Now we write (T -C)(ã cut , bcut ) = i∈J α i (ε)(µ i (ε) -1)Cζ i that gives < (T -C)(ã cut , bcut ), i∈J α i (ε)(µ i (ε) -1)ζ i > H n,d ,H n,d = i∈J α 2 i (ε)(µ i (ε) -1) 2 . (4.67) But (T -C)(ã cut , bcut
) is represented by a function of L 2 (B(0, 1)) × L 2 (B(0, 1)). Using this identification, we can estimate the rhs of (4.67) as follows,

< (T -C)(ã cut , bcut ), i∈J α i (µ i (ε) -1)ζ i > H n,d ,H n,d = =< (T -C)(ã cut , bcut ), ε 2 1 -f 2 (T -C)(ã cut , bcut ) > (L 2 ×L 2 )(B(0,1)) = 1 N rε 2 1 -f 2 [ (ã cut ) + (ã cut ) r - (n -d) 2 r 2 ãcut - 1 ε 2 f 2 (ã cut + bcut ) - 1 ε 2 (1 -f 2 )ã cut 2 + ( bcut ) + ( bcut ) r - (n + d) 2 r 2 bcut - 1 ε 2 f 2 (ã cut + bcut ) - 1 ε 2 (1 -f 2 ) bcut ) 2 ]dr. = 1 ε N ε r 1 -f 2 d [ ((a cut ) + (a cut ) r - (n -d) 2 r 2 a cut -f 2 d (a cut + b cut ) -(1 -f 2 d )a cut 2 + (b cut ) + (b cut ) r - (n + d) 2 r 2 b cut -f 2 d (a cut + b cut ) -(1 -f 2 d )b cut 2 ]dr.
Let us estimate each term, as ε → 0. We use r 1 -f 2 We deduce that We have proved that

1 ε N r 1 -f 2 d (a cut
1 ε N ε r 1 -f 2 d (a cut + a cut r - (n -d) 2 r 2 a cut -f 2 d (a cut + b cut ) -(1 -f 2 d )a cut ) 2 dr = O(ε 2n )
and with the same proof we have So, for all i ∈ J we have

|α i (ε)(µ i (ε) -1)| = O(ε n ).
Since n ≥ 1, we are led to µ i (ε) -1 → 0 as ε → 0, for all i ∈ I, where the set I is defined in (4.66).

We have proved Lemma 1.1, for n ≥ 1.

5 The proof of Theorem 1.2 completed.

First, let ω = n≥1 (a n e -inθ + b n e inθ ) + a 0 , where a n and b n are real valued functions. We are going to prove that | < L ε (ω), ω > L 2 (B(0,1)) | ≥ C < Cω, ω > L 2 (B(0,1)) .

(5.69)

The second inequality of (1.4) will follow, since we remark that if we define η := n≥1 (a n e -inθ -b n e inθ ) + a 0 and if α n , β n are the real valued functions defined by If ω ∈ (W ⊥ ) 1 , α j = 0 unless j ∈ J 1 . We deduce that < L ε ω, ω > L 2 (B(0,1)) ≤ -C < Cω, ω > L 2 (B(0,1)) .

L ε (η) =
If ω ∈ (W ⊥ ) 2 , α j = 0 unless j ∈ J 1 . We deduce that < L ε ω, ω > L 2 (B(0,1)) ≥ C < Cω, ω > L 2 (B(0,1)) .

In any case, we have (5.69) and if ia 0 ∈< iΦ 0 > ⊥ , then

< L ε ia 0 , ia 0 > L 2 (B(0, 1 ε ) ≥ C < Ca 0 , a 0 > L 2 (B(0, 1 ε )
where, in the both cases, C is independent of ε. That terminates the proof of (1.4). Now, if ω ∈ W ⊥ ∩ H is a solution of (1.3), as claimed in (1.11), if we denote h = h R + ih I , we have (L ε ω = h) ⇔ (L ε ω R = h R , L ε iω I = ih I ) .

We consider first ω R and h R . The equality < L ε ω R , ω R > L 2 (B(0,1)) =< h R , ω R > L 2 (B(0,1))

together with (1.4) gives

| < h R , ω R > L 2 (B(0,1)) | ≥ M < Cω R , ω R > L 2 (B(0,1)) .
We deduce that

< Cω R , ω R > L 2 (B(0,1)) ≤ M < Cω R , ω R > 1 2
L 2 (B(0,1)) 

1 0 r ε 2 1 -f 2 |h R | 2 dr

Theorem 1 . 1

 11 For all d ≥ 1 the set of the solutions of L 1 ω = 0 which are defined at 0 and bounded at +∞ is reduced to the three functions provided by the invariance of the equation (1.1) by the rotations and the translations of the coordinates, ie if d , (f d + d r f d )e -iθ + (f d -d r f d )e iθ and i(f d + d r f d )e -iθ + i(f d -d r f d )e iθ .

n≥1((

  a n (r)e -inθ + b n (r)e inθ ) + a 0 (r), a n (r) ∈ C, b n (r) ∈ C, r ∈]0, 1] and we denote ω R := n≥1 (Ra n (r)e -inθ + Rb n (r)e inθ ) + Ra 0 (r) and ω I := n≥1 Ia n (r)e -inθ + Ib n (r)e inθ ) + Ia 0 (r)

(ε 2 +

 2 |x| 2 )|h| 2 dx. (1.6) Now, if we denote h = n≥1 (α n e -inθ + β n e inθ ) + α 0 ,

1 0 ra 2 .

 12 dr These infimum are attained. Considering the rescaling (ã, b)(r) = (a(εr), b(εr)) and an extension by 0 outside

  34) where (α, β) = (0, 1) for (a ε 2 , b ε 2 ) and (α, β) = (1, 0) for (a ε 4 , b ε 4 ), n = d. Here 0 < R < 1 is a real number, but we replace R by 0 in the first equation, for (a ε 2 , b ε 2 ), when 1 ≤ n ≤ d. And for (a ε 4 , b ε 4 ), n = d, we consider the following integral equation

. 59 )

 59 Proposition 2.4 (i) There exists a function g d such that f d and g d form a base of solutions of the equation (1.16) and we have |g d (r) + 1 2dA d r -d | ≤ Cr -d+2 at r = 0 and |g d (r) -log r| ≤ Cr -2 log r at r = +∞ (2.60) where A d > 0 is defined by

  Since C is a compact operator and thanks to the continuity of T -1 n,d , then T -1 n,d C is a compact operator from H n,d into itself. By the standard theory of self adjoint compact operators, there exists a Hilbertian base of H n,d formed of eigenvectors of T -1 n,d C. We will consider (ζ i ) i∈J such a base. We can write the eigenvalue problem as T n,d (a, b) = µ(ε)C(a, b). We can normalized the base (ζ j ) in order to have

(a cut ) 2 r 4 f d 2 f 2 dand 1 ε N ε h 2

 422 dr = O(ε 2n ). Taking advantage that a + b = O(r -n-2 ) at +∞, a similar estimate for a cut + b cut gives (a cut + b cut ) 2 dr = O(ε 2n ). Now a cut = a (1 -h) + ah and |a | ≤ Cr -n-1 dr = O(ε).

) 2 r 2 1

 21 dr = O(ε 2n ). -f d 2 (a cut ) 2 dr = O(ε 2n ).

r 2 b

 2 cut -f 2 d (a cut + b cut ) -(1 -f 2 d )b cut ) 2 dr = O(ε 2n )and eventually< (T -C)(ã cut , bcut ), i∈J α i (ε)(µ i (ε) -1)ζ i > H n,d ,H n,d = O(ε 2n ) (4.68) But (4.68) and (4.67) give i∈J α 2 i (ε)(µ i (ε) -1) 2 = O(ε 2n ).

n≥1( 2 j ( 1 -

 21 α n e -inθ + β n e inθ ) + α 0 , we haveL ε (iω) = n≥1 i(α n e -inθ -β n e inθ ) + iα 0 + i f 2 ε 2 2a 0 .Consequently, we have< C(iω), iω > L 2 (B(0,1)) =< Cη, η > L 2 (B(0,1))that gives< L ε ω, ω > L 2 (B(0,1)) = j∈J α µ j ) < Cζ j , ζ j > .

< 1 -

 1 Cω R , ω R > L 2 (B(0,1)) ≤ M f 2 |h R | 2 dr. (5.70) But since L = -T + C, we are led to < T ω R , ω R > L 2 (B(0,1)) = -< h R , ω R > L 2 (B(0,1) + < Cω R , ω R > L 2 (B(0,1)) .

  Theorem 1.3 (i) For any d ≥ 1 and for n = 1 the system (1.15) has a one dimentional real vector space of bounded solutions, spanned by (f d + d r f d , f d -d r f d ).

	.17)
	A bounded solution means that a and b are defined in [0, +∞[ and that the both func-
	tions have finite limits at +∞.
	Let us quote what is known untill the 90'

  and this proves(1.4), for ω ∈ ⊕ n≥1 H n,d . As remarked in the beginning of this section, we obtain (1.4) for ω R ∈ ⊕ n≥1 H n,d and for ω I ∈ ⊕ n≥1 H n,d . Now, we know from Theorem 1.6 (ii) that if a 0 ∈ H 0,d is real valued, then< L ε a 0 , a 0 > L 2 (B(0, 1 ε )) ≥ C < Ca 0 , a 0 > L 2 (B(0, 1

ε )

3 Proof of Theorem 1.6.

Let n ≥ 1. Let us suppose that µ(ε) → 1. Let (a, b) be any solution of (1.18), we let X = (a, ra , b, rb ) t . Considering the behavior of (a, b) at 0, there exists two real numbers (A ε 1 , A ε 3 ) = (0, 0) such that X = A ε 1 X ε 1 + A ε 3 X ε 3 . Now, the condition a( 1 ε ) = b( 1 ε ) = 0 leads us to the system

Thus if we denote the determinant

then ∆ = 0. We obtain firstly that the corresponding real eigenspace is one dimensional. Now, we can write

Each real number C ε j can be computed by means of a 4 × 4 determinant, for any fixed r > 0 and consequently, since X ε 1 (r) and each Y ε j (r) has a limit as ε → 0, then, each C ε j has a limit too, denoted by C j . By Theorem 2.7, X 1 has the exponentional blowing up behavior at +∞ and we deduce that C 1 = 0. Consequently, we can choose X ε 1 to represent a solution of (2.28) having the exponentially blowing up behavior at +∞ instead of Y ε 1 . We can write

As explained above, each real number D ε j has a limit as ε → 0. Moreover,

.

In view of Proposition 2.3, ∆ = 0, unless

This condition implies that D ε 3 → 0 as ε → 0. We are led to to X

, that is bounded at +∞ and bounded at 0. We deduce that if µ(ε) → 1, then there exists a bounded solution. Moreover, since we have proved just above that the eigenspace associated to µ(ε) is one dimensional, a base of this eigenspace is

If n ≥ 2, by Theorem 1.1, we have the proof of (i). Now, when there exists some bounded solution of (2.1) and if µ(ε) → 1, let us denote ω ε = a ε e -inθ + b ε e inθ a given associated eigenvector and ω the bounded solution such and

follows from the inequality

We define the operator T by

where Cω = ω ε 2 (1 -f 2 ). We consider the Hilbert space

We may endow ⊕ n≥1 H n,d with that scalar product

and this scalar product let ⊕ n≥1 H n,d be a Hilbert space. We let (ζ j ) j∈J be a Hilbertian base, each ζ j being an eigenvector for the operator T -1 C. We let the eigenvalue µ i (ε) be defined by T ζ j = µ j (ε)Cζ j . This implies that

We define (W ⊥ ) 1 the subspace of W ⊥ 1 corresponding to the eigenvalues µ j (ε) > 1 and (W ⊥ ) 2 corresponding to the eigenvalues µ j (ε) < 1. And we define J = J 1 ∪ J 2 . By Theorem 1.6 there exists some C > 0 independent of ε such that

From the definition of (ζ j ) j∈J , we infer that

L 2 (B(0,1))

and using (5.70), we obtain

with C independent of ε to obtain

(5.72) that gives (1.6). Moreover, we use (5.71) in (5.70) to obtain

(5.73) Now (5.72) and (5.73) are valid for iω I instead of ω R and ih I instead of h R . Thus (5.73) gives

that gives (1.5) and (1.7). 

Now, let us recall that