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A superconnection formalism for gauge theories of gravity

A slightly detailed outline on the superconnection formalism is given. After that, we offer a bird's-eye view of gauge theories of gravity in the general context. As application of superconnection formalism, we give the BRST transformations of a gauge-affine gravity. An outlook on the calculation of topological observables in the case of gauge-affine gravity is also contained.

INTRODUCTION

It is strongly believed (inspired by lessons from general relativity and quantum mechanics) that a fully satisfactory and consistent theory of quantum gravity requires a genuine revolution in theoretical physics and as a consequence, things (theories, concepts, physics itself, philosophy of physics etc) won't be the same before and after the intended revolution. Therefore, for more than 90 years quantization of gravity has been considered as the holy grail of theoretical physics; even a plethora of brilliant physicists have racked their brains in order to have at hand a self-consistent theory of quantum gravity. However, many proposed models have confronted a block and this is due to the inability to have at hand a theory of quantum gravity which is at the same time renormalizable and unitary. Moreover, the peculiarity of gravity if quantized refers to the dimensionful character of the gravitational coupling constant G N [1].

On the other hand, there are many hints compelling one to consider another classical theory of gravity as an enlarged version of Einstein's gravity, and this will only be done if one goes beyond the Riemannian background of general relativity. For instance, taking into account post-Riemannian structure of a gravity theory includes basically extra degrees of freedom, e.g. torsion and nonmetricity. On this basis, it has been believed that there is a direct link between post-Riemannian geometry and group-based gauge theories of gravity [2].

Inspired by the fact that all physical (forces based on) theories except gravity, namely electromagnetic, strong and weak interactions are well described by the local (gauge) principle [3,4] and at the same time are considered good candidates to be quantized, one should inevitably think of the possibility to describe the gravitational interaction within the gauge principle. Indeed, this fact is one of the outstanding successes of modern theoretical physics; actually, it was strongly believed, depending only on indications and without any conclusive findings, that the global Poincaré symmetry is an upshot of a symmetry breakdown procedure of an affine symmetry, which itself describes the very early stage of the universe [5]. The question now is about the possibility to incorporate gravity into a gauge picture. Incidentally, metric-affine gravity (MAG, for short) can be considered as the larger gauge theory of gravity one can imagine [6] and it is based on gauging the general affine group A(4, R). (For an exhaustive and self-contained review on metric-affine theory based on gauge principle, see [2] and references therein) For this purpose, a plenty of mathematical models and formalisms have been developed in order to deal with the problem of quantization of gauge theories and in particular of gauge theories of gravity; a superconnection formalism is one of them. In the program of attempting to quantize gauge theories of gravity, BRST and anti-BRST algebra of a gauge-affine gravity [7,8] was obtained geometrically using a superconnection formalism [9].

SUPERCONNECTION FORMALISM

Before we proceed

The symmetries allowing one to deal with commuting and anticommuting objects (operators, etc.) on an equal footing have played a major role in modern physics, in particular in BRST quantization of gauge field theories, in Brownian motion and in supersymmetric field theories [START_REF] Rogers | Supermanifolds: Theory and applications[END_REF]. As a consequence, one can inevitably think of an extension of elementary classical differential geometry in order to incorporate the anticommuting variables. This, by the way is the main aim of the geometry of supermanifolds. Intuitively, the geometric approach to supermanifolds theory tells us that a supermanifold is simply defined by a topological space (with a particular topology, often chosen to be DeWitt topology) which is locally diffeomorphic to the so-called superspace R m,n S that we will define in what follows.

Definitions and useful notions

Definition .1 (Super vector space) A super (aka Z 2 -graded) vector space V is primarily a vector space which admits the disjoint

(V 0 ∩ V 1 = / 0) decomposition V = V 0 ⊕ V 1 ( 1 
)
with V 0 (V 1 ) being its even (odd) part. An element v i ∈ V i | i=0,1 which is either even or odd is said to be homogeneous. Thus, the Z 2 degree (it is known in literature as Grassmann parity) of v i , denoted also by |v i | is simply i which is an element of Z 2 . Furtheromore, if the super vector space V is endowed with a complete norm, then V becomes a Banach super vector space or simply a super vector B-space.

One should also notice that super vector space homomorphisms can easily be constructed as linear mappings between super vector spaces.

Definition .2 (Superalgebra) A superalgebra A over the field C is, in addition to be a super vector space, is an algebra over the ground field C. This is equivalent to say

A i A j ⊂ A i+ j modulo 2 for i, j = 0, 1 (2) 
A superalgebra A is said to be supercommutative if, ∀ A, B ∈ A homogeneous elements,

AB = (-) |A||B| BA (3) 
We should notice that even elements (which have Z 2 -degree of 0) commute with all elements both odd and even, whilst odd elements (which have Z 2 -degree of 1) anticommute with each other. Therefore, the square of an odd element vanishes, i.e. ∀A ∈ A 1 , A 2 = 0. For instance, a typical example of superalgebras is mainly the Grassmann algebra with fermionic anticommuting elements {θ 1 , ..., θ N } satisfying the condition: [START_REF] Rogers | Encyclopedia of mathematical physics[END_REF]. For the construction of superspaces, it is more convenient to restrict the main building blocks to supercommutative real Grassmann algebra, denoted from now on by R S[I] , with I being the number of generators of the algebra. Moreover, the asuumption that the superalgebra is supercommutative allows us to admit the decomosition

θ i θ j = -θ j θ i , ∀i, j. A direct consequence of the latter is θ 2 i = 0, ∀i
R S[I] = R S[I;0] ⊕ R S[I;1] (4) 
where the index 0 (1) denotes the even (odd) part of the superalgebra R S[I] . At this stage, one is able to define a superspace.

Definition .3 (Superspace)

A superspace with dimension (m, n) is represented by the Cartesian product of m copies of R S[I;0] with n copies of R S[I;1] as

R m,n S[I] := R S[I;0] × ... × R S[I;0] m copies × R S[I;1] × ... × R S[I;1] n copies . (5) 
A basic element of the superspace R m,n S[I] can be written, as a result of what precedes as (V 1 , ...,V m ;V m+1 , ...,V m+n ) ≡ (x 1 , ..., x m ; ξ 1 , ..., ξ n ) if one fixes a particular (m, n) superbasis {e 1 , ..., e m , e m+1 , ..., e m+n }.

At this stage, it is convenient to define the basic projection homomorphisms as follows.

Definition .4 (projection maps) An augmentation (aka body) map is the unique homomorphism defined from the real Grassmann algebra R S[I] onto the field R as follows [START_REF] Rogers | Supermanifolds: Theory and applications[END_REF][START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF] b : R S

[I] → R A ≡ ∑ λ A λ θ λ → b(A) =: A ∅ ≡ 1, ( 6 
)
where λ is a multi index. One can also imagine its complementary, known as the soul map which is defined from R S[I] onto itself (in fact, the target domain is the nilpotent part of R S[I] ) as

s : R S[I] → R S[I] A → A -b(A).1. (7) 
Inspired by the primitive body map b : R S[I] → R (which gets rid of all nilpotent Grassmann generators and preserves only the real part, as indicates its label body), one can define the Body map as [START_REF] Rogers | Encyclopedia of mathematical physics[END_REF] b m,n : R m,n

S[I] → R m (x; ξ ) ≡ (x 1 , ..., x m ; ξ 1 , ..., ξ n ) → b(x 1 ), ..., b(x m ) . (8) 
Intuitively, as mentioned above a supermanifold is the Grassmann generalization of an elementary manifold, namely a supermanifold is a set locally diffeomorphic to the superspace R m,n S with dimesnion (m, n), as a manifold in Differential Geometry which is a topological space locally diffeomorphic to the vector space R n with dimension n.

Definition .5 (Supersmoothness) Let R S[I] be a Grassmann algebra. The map

f : R m,n S[I] ⊃ U → R S[I] (9) 
is said to be supersmooth or G ∞ -superfunction if

∀(x; η) ∈ U ⊂ R m,n S[I] , D f (x; η) ∈ L R m,n S[I] , R S[I] (10) 
In other words, ∀(x; η),

(x + h; η + ζ ) ∈ U, f (x + h; η + ζ ) = f (x; η) + (h; ζ ).D f (x; η) + (x; η) .O(h; ζ ) (11) with lim (h;ζ ) →0 O(h; ζ ) = 0, and (h; ζ ).D f (x; η) = h.∂ x f + ζ .∂ η f .
One should note that if f and g are supersmooth, then the maps f + g, f .g and f • g are also supersmooth [START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF]. By having at hand the notion of supersmoothness of superfunctions, we are able to probe into the notion of supermanifolds and this could be done by introducing the notion of superatlas.

Definition .6 (Superatlas) Let U ⊂ M be a subset of a set M and φ a bijective map such that

φ : M ⊃ U → N ⊂ R m,n S (12)
Then, the pair (U, φ ) is called a superchart on M. We call a superatlas on M the whole family of supercharts

{(U i , φ i ) |i∈I } such that • {U i } is a family of open sets that covers M, that is, M = i∈I U i ,
• Given two overlapping open sets U i and U j then,

ϕ i j := φ i • φ -1 j : φ j (U i ∩U j ) → φ i (U i ∩U j ) (13) 
is G ∞ . We call a complete superatlas on M a collection of charts {(U i , φ i ) |i∈I } which is not contained in any other atlas.

Definition .7 (Supermanifold) A supermanifold with dimension (m, n) is a topological space M endowed with a superatlas {(U i , ψ i )} |i∈I , where U i denotes an open in M and ψ i is a homeomorphism such that

1. i U i = M, 2. ∀(i, j) ∈ I, ψ j • ψ -1 i : ψ i (U i ∩U j ) → ψ j (U i ∩U j
) is a transition superfunction. A (m, n)-supermanifold can be viewed as a vector superspace R m,n S endowed with a system of local coordinates {(x µ , θ α )} |µ=1,...,m;α=1,...,n .

We should stress that the description given above of a supermanifold is called the concrete DeWitt supermanifold, as opposed to algebro-geometric supermanifold, and it is often denoted (m, n) -G ∞ supermanifold [START_REF] Rogers | Supermanifolds: Theory and applications[END_REF].

Definition .8 [START_REF] Rogers | Supermanifolds: Theory and applications[END_REF][START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF] Let U be an open in M and R S be a real Grassmann algebra. Then 1. The function f : M ⊃ U → R S is said to be supersmooth or G ∞ -function on U, if for overlapping opens U and U i for all i ∈ I, the function (called local representative)

f • ψ -1 i : ψ i (U ∩U i ) → R S ( 14 
)
is supersmooth, 2. The set of all supersmooth functions on the open U is an algebra, denoted G ∞ (U), or B(U), and it is a super B-module.

Definition .9 (Super vector field) A super vector field defined on the open U ⊂ M is all element, labelled with χ of a vector space which is endomorphic to G ∞ (U), such that 1. χ obeys the graded Leibnitz rule, that is χ(

f g) = (χ f )g + (-) |χ|| f | f (χg), ∀ f , g ∈ G ∞ (U), 2. χ(k f ) = (-) |χ||k| k(χ f ), ∀ f ∈ G ∞ (U), k ∈ R S .
The set of all super vector fields defined on M is denoted D(M) and it has the following properties

• D(U) is a left-graded B-module is equivalent to say ( f X) ∈ D(U), ∀ f ∈ G ∞ (U), A ∈ D(U) (15) 
• D(U) is B-module with the bracket operation defined as

[A, B] = AB + (-) |A||B|+1 BA, ∀A, B ∈ D(U), (16) 
By interpreting the magnetic vector potentials, viewed as gauge fields, in a physical experiment -treated quantum mechanically -as connections in the fibre bundle scheme, one can completely describe (some) quantum experiments (e.g. Aharanov-Bohm experiment, etc.) in the fibre bundle picture, without losing much information about the internal structure of the experiment [START_REF] Bernstein | [END_REF]. On that basis, the notion of a superfibre bundle which is a very crucial point in the study of supermanifolds, is constructed intuitively by an extension of the notion of a fibre bundle in classical Differential Geometry. For this purpose, we need to define first the notion of a super Lie group.

Super Lie groups provide the global representation of super Lie algebras, which is one of the motivations to be in too deep as long as supermanifold theory is concerned. Intuitively speaking, a super Lie group is a classical group which has a supermanifold structure, and therefore it reveals global properties since a supermanifold is basically a topological space [START_REF] Rogers | Supermanifolds: Theory and applications[END_REF]. Furthermore, we should notice here, following [START_REF] Rogers | Supermanifolds: Theory and applications[END_REF] that we only consider super Lie groups which are real abstract groups and formed by extending groups to super groups.

Definition .10 (Super Lie group) A super Lie group of dimension (m, n) is a set G such that 1. The set G is basically an abstract group (associative binary group operation and existence of inverse element),

The set G is a supermanifold with dimension (m, n).

We give in the following some crucial definitions which are useful in subsequent theorems. (for a more detailed review on supermanifolds theory, see [START_REF] Rogers | Supermanifolds: Theory and applications[END_REF]) Definition .11 (Right translation) Let g i be an element of G. The left action or right transation l g of an element g 1 by another element g is defined as follows

l g : G → G g → g.g 1 ( 17 
)
Definition .12 (Induced mapping on vector fields) The induced mapping l g on a vector field X on G is defined for all G ∞ -superfunctions f ∈ G ∞ (G) and all vector fields X ∈ D(G)

l g (X) f := X( f • l g ) (18) 
Definition .13 (Left invariant vector fields) Let X be a vector field. If

l g (X) = X, ∀g ∈ G, X ∈ D(G) (19) 
X is then said to be left invariant. The set of all left invariant vector fields on a supergroup G is labelled with L (G).

Application of the latter definitions leads to the following theorem

Theorem .1 Let G be a super Lie group and L (G) the set of invariant vector fields on G. Then L (G) is a super Lie module over the Grassmann algebra R S under the Lie bracket defined as

[, ] : L (G) × L (G) → L (G) (X,Y ) → [X,Y ] := XY + (-) |X||Y |+1 Y X (20) 
The construction of a super Lie module u over R S of a super Lie group G is done by means of the latter theorem. Furthermore, the super Lie algebra g of a super Lie group G could be directly obtained using the tensorial relation, u = R S ⊗ g [START_REF] Rogers | Supermanifolds: Theory and applications[END_REF]. Accordingly, The Lie bracket has the following properties [START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF] •

[kX,Y ] = k[X,Y ], ∀X,Y ∈ g, k ∈ R S ,
• Graded Jacobi identity: (-

) |X||Z| [X, [Y, Z]] + (-) |Y ||X| [Y, [Z, X]] + (-) |Z||Y | [Z, [X,Y ]] = 0, ∀X,Y, Z ∈ g.
Now, we are at a position to define one of the most important geometric strcuture on supermanifolds as follows.

Definition .14 (Super principal G-bundle) A super principal G-bundle P(M, G), with a base space M and a structural group G, is a supermanifold P with dimension dim(P) = dim(M) + dim(G) such that 1. G acts freely on P and we formally write

P × G → P (u, g) → R g u := u.g (21) 
2. The supermanifold M is the superspace quotient of P under the equivalence relation induced by the supergroup G, and we write, M = P/G. The map π : P → M is a supersmooth superprojection.

3. P is locally trivial, viz. ∀x ∈ M, ∃U ⊂ M and we have the isomorphism

π -1 (U) ≈ iso U × G, (22) 
such that there is a superdiffeomorphism

ψ : π -1 (U) → U × G π -1 (U) u → ψ(u) = (π(u), ϕ(u)) (23) 
where ϕ is a map defined for all g ∈ G as

ϕ : π -1 (U) → Gu.g → ϕ(u).g (24) 
The supersmooth transition functions t i j should be defined as in the classical case of elementary Differential Geometry for every overlapping opens U i ∩U j = 0 by

t i j : U i ∩U j → G u → ϕ i (u) ϕ j (u) -1 (25)
Definition .15 (Connections on super principal bundles) A connection Γ on the super principal G-bundle P is a map such that for each point z ∈ P, one assigns a tangent subspace H z ⊂ T z P (T z P denotes the tangent space to P at z) and having the following properties:

1. There exists a subspace V z := Ker π * :

T z P → T π(z) M = {z ∈ T z P|π * (z) = 0}, such that T z P = H z ⊕V z , 2. H z.g = R * g H z , ∀g ∈ G, 3.
H z depends smoothly on z, that is, ∀x ∈ T P, the projections of x on H z and V z are two supersmooth maps.

The connection Γ induces a superconnection 1-form ω : D(G) → L (G) with values on the super Lie module u of the structure group G [START_REF] Rogers | Supermanifolds: Theory and applications[END_REF], and it has the following properties:

1. R * g ω = ad g -1 ω, 2. ω( Ã) = A,
where à is a vector superfield associated to A ∈ u.

We should notice that the vertical and horizontal parts of a vector superfield X ∈ P could be decomposed in the following manner [START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF] ω(X

H ) = 0, ω(X V ) = A (26) 
A supercurvature 2-superform associated to the superconnection ω is constrcuted by applying the exterior superderivative operator D, namely

Ω(X,Y ) = Dω(X,Y ) := dω(X H ,Y H ) (27) 
and it has the following properties:

1. R * g Ω = ad g -1 Ω, 2. Ω(X,Y ) = 0 if X = X H or/and Y = Y H
Having at hand a superconnection 1-form and its associated supercurvature 2-form, one arrives at Cartan's structure equation

Ω = dω + 1 2 [ω, ω], (28) 
and Bianchi identity

DΩ = dΩ + [ω, Ω] = 0. ( 29 
)

OUTLOOK ON GAUGE THEORIES OF GRAVITY

A gauge theory is historically known as a field theory based on a local symmetry which, in its turn, is incarnated in a so-called gauge or local group, e.g. Electromagnetism is a gauge theory of a unitary local symmetry U(1). Inspired by the vital role played by the Weyl gauge principle in modern physics, (Electrodynamics, Quantum Chromodynamics and the Standard Model) one should have an inquiry on the possibility to include gravity under the banner of a gauge principle. Accordingly, a gauge theory of gravity is a theory describing the gravitational interaction and is obtained as an upshot of of a gauging procedure of a local group. One can distinguish two types of gauge theories, as far as the gauge group is concerned: internal and external. For internal symmetries the fields of the gauge theory are not related to the frame bundle LM of the base space M, One should notice that post-Riamnnian structure of spacetime, e.g. torsion and nonmetricity (if they are all present in a theory, the spacetime becomes a metric-affine spacetime, (L 4 , g)) relies on the choice of gauge group of a gauge theory of gravity. For instance, Poincaré gauge gravity (PG, for short) which is nothing but an Einstein-Cartan theory with propagating torsion, gauge-affine gravity which is obtained when gaugging the affine group A(4, R) (for an exhaustive review, see [2]).

BRST SYMMETRY AND TOPOLOGICAL INVARIANTS

In order to study quantum gauge theories, the idea of making use of the geometrical structure of superfibre bundles imposes itself automatically. In this context, the superconnection formalism has been proved to be a powerful method allowing one to well define the physical fields of a quantized gauge theory, and to find the BRST transformations. Therefore, it is necessary to construct an appropriate principal superfibre bundle, i.e. mainly the base space M and the structure group G S [START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF].

For instance, as long as the quantized version of the larger gauge theory of gravity is concerned, viz. gauge-affine gravity based on gauging the affine group A(4, R) the fields are: the vierbein e a µ , the connection ω a bµ and the ghost fields associated to general coordinates and to the general linear group GL(4, R). Alternatively, these fields can be viewed geometrically on the structure of a superfibre bundle P(M, G S ); one has to identify at one hand the base space M with the metric-affine spacetime (L 4 , g) and the group G S with a super Lie group, at the other hand. Roughly speaking, using this identification the physical fields are introduced by means of a superconnection having its values in the Lie algebra g S of the structure group G S .

The idea of constructing a structure group that meets the needs of BRST transformations of a gauge-affine gravity relies on choosing a set of even generators I E such that E = {(a), (ab), (µν)} as well as a set of odd generators I O such that O = {(α)}. Therefore, a choice of the structure group G S could be made as [START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF] G S := GL(4, R) ⊗ A(4, R) ⊗ T 0,2

where GL(4, R) denotes the general linear group with generators having spacetime indices (µν), GA(4, R) represents the affine group with generators having group indices, namely (a) or (ab) with the former is for translation part of the affine group, whereas the latter are general linear group indices, and T 0,2 is a supergroup of translations. We choose to label a superconnection defined above with φ in order to distinguish it from the affine connection ω ab µ defined on principal bundle with a metric-affine spacetime (L 4 , g) as a base space. Thus, a general GA(4, R)-valued superconnection φ can always have the form

φ = dx N φ ab N M ab + φ a N L a (31) 
where M ab and L a denote the gauge group generators and φ N being the associated components of φ , with = 1, ..., dimG. One notes also that N = 0, ..., 3 if N ≡ µ and N = 1, 2 if N ≡ α. We should note that the Grassmann parities of the superconnection's components is defined as follows

|φ N | ≡ m (32) 

TABLE I .

 I Illustration of various gauge theories based on both internal and external gauge symmetries. and we call these theories internal gauge theories, e.g. Maxwell theory based on the unitary group U(1), Yang-Mills theory based on the gauge group SU(n). In contrast, external symmetries have to do with LM. For that reason, we call theories based on that type of symmetries external gauge theories, e.g. Poincaré gauge theory of gravity, gauge-affine gravity[5]. (The table I below illustrates different gauge theories based on gauging of symmetry groups, both internal and external. One should note that only the last two ones are external gauge theories)

	Gauge theory	Gauge group
	Electromagnetism	U(1)
	Electroweak theory	SU(2) ×U(1)
	Standard Model of Particle Physics	SU(3) × SU(2) ×U(1)
	Poincaré gauge gravity	P(1, 3) ≡ T 4 SO(1, 3)
	Gauge-affine gravity	A(4, R) ≡ T 4 GL(4, R)
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where m = 0 if N = µ and m = 1 if N = α. We denote the ghost number of a field by gh(), such that gh(θ 1 ) = -1, gh(θ 2 ) = 1 and the ghost number of all fields with even-parity vanishes, namely [9] gh(φ ab µ , φ a µ , φ ab 1 , φ ab 2 , φ a 1 , φ a 2 ) ≡ (0, 0, 1, -1, 1, -1) (33) When a superfield is evaluated at θ α = 0, we write the superfield followed by a vertical line, such as φ ab µ | ≡ φ ab µ (θ α = 0); We call φ ab µ | the lowest component of φ ab µ . In what follows, we identify the lowest components φ ab µ |, φ a µ |, φ ab 1 | and φ ab 2 | with the affine connection ω ab µ , the vierbein e a µ , the GA(4, R) ghost c ab and its anti-ghost c ab , respectively. Moreover, performing the replacement (from coordinate to Grassmann index)

allows to define the coordinate ghost and anti-ghost superfields η µ α . The inverse of supervierbein φ µ a is defined by means of the orthogonality relations

Accordingly, η µ 1 | ≡ c µ is the coordinate ghost, whereas η µ 2 | ≡ c µ represents the coordinate anti-ghost. In the following, we will knock the crucial doors and we refer to [START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF] for further details. We also avoided to intervene a plenty of technical details for the sake of brevity. Let us remember for completeness that the commutation relations defining the ga(4, R)-algebra of the GA(4, R) group read

Using Cartan's equation (28) and Bianchi identity (29) with a projection of supercurvature superform Ω into the basis (b M ) = (b µ , b α ) such that (We have omitted the wedge operator between the basis elements for the sake of simplicity)

By inserting the expressions of the superconnection φ and the supercurvature Ω into 28 and 29 and imposing the horizontality conditions on the supercurvature

and by making use of the identifications

, one arrives at the BRST transformations of the physical fields in a gauge-affine gravity [9,[START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF] 

With R a bµν , T a µν , B µ and B ab are the curvature, torsion, coordinate auxiliary field and GA(4, R) auxiliary field, respectively. Here, one should stress out that choosing the structure group G S as in 30 provides the obtainment of BRST transformations of the spacetime connection Γ and the spacetime metric g µν using the identification law Γ λ µν = φ λ µν | and the relation between the coordinate metric and Minkowski metric, g µν = η ab e a µ e b ν , respectively [START_REF] Meziane | Transformations BRST et anti-BRST en théorie de jauge affine de la gravitation et formalisme de la superconnexion[END_REF]. Utimately, finding new (involving curvature or/and torsional) topological observables allows us to well know about the global structure of the manifold. Additionally, they are reduced to the expectation values of physical observables for topological field theories [START_REF] Aouane | Nouvelles observables torsionnelles en gravitation topologique à 4 dimensions et formalisme de la superconnexion[END_REF][START_REF] Aouane | [END_REF]. For instance, the authors of [START_REF] Aouane | [END_REF] constructed new torsional observables in a model of topological gravity based on the gauge group SO (5). Here, we should stress that BRST and anti-BRST transformations of such a model were found earlier by the authors of [16]. Accordingly, we will follow the same path and construct new observables for a gauge-affine gravity [START_REF] Belarbi | BRST symmetry and observables for 4D topological gauge-affine gravity[END_REF], knowing that BRST and anti-BRST transformations of this model based on the gauge group A(4, R) were found first in [9]. (For a review on topological obervables in topological gravity see [START_REF] Constantinidis | [END_REF])

CONCLUSIONS

The superconnection formalism has attracted a lot of scientists' attention because of its mathematical rigour and also for their applications in modern physics, such as supergravity, superstring theories and quantization of gauge theories. In the current paper we have given the general framework of the superconnection formalism with general definitions and an important theorem on the construction of super Lie modules. Additionally, starting from a set of points and coming to super principal bundle, the superconnection formalism has been culminated with the construction of a superconnection where its name came from. Subsequently, we have presented a general description of gauge theories of gravity with examples. As application, we have focused on gauge-affine gravity and we have exhibited in a geometric framework the BRST transformations of such a model [9].