
HAL Id: hal-04214668
https://hal.science/hal-04214668

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Polynomial IOP and Commitments to
Non-malleable zkSNARKs

Antonio Faonio, Dario Fiore, Markulf Kohlweiss, Luigi Russo, Michal Zajac

To cite this version:
Antonio Faonio, Dario Fiore, Markulf Kohlweiss, Luigi Russo, Michal Zajac. From Polynomial IOP
and Commitments to Non-malleable zkSNARKs. TCC 2023, 21st Theory of Cryptography Conference,
IACR, Nov 2023, Taipei, Taiwan. �hal-04214668�

https://hal.science/hal-04214668
https://hal.archives-ouvertes.fr

From Polynomial IOP and Commitments to
Non-malleable zkSNARKs

Antonio Faonio1 , Dario Fiore2 , Markulf Kohlweiss3 , Luigi Russo1 , and
Michal Zajac4

1 EURECOM, Sophia Antipolis, France {faonio,russol}@eurecom.fr
2 IMDEA Software Institute, Madrid, Spain dario.fiore@imdea.org

3 University of Edinburgh and Input Output, markulf.kohlweiss@ed.ac.uk
4 Nethermind, michal@nethermind.io

Abstract. We study sufficient conditions to compile simulation-extract-
able zkSNARKs from information-theoretic interactive oracle proofs (IOP)
using a simulation-extractable commit-and-prove system for its oracles.
Specifically, we define simulation extractability for opening and evalua-
tion proofs of polynomial commitment schemes, which we then employ
to prove the security of zkSNARKS obtained from polynomial IOP proof
systems. To instantiate our methodology, we additionally prove that
KZG commitments satisfy our simulation extractability requirement, de-
spite being naturally malleable. To this end, we design a relaxed notion of
simulation extractability that matches how KZG commitments are used
and optimized in real-world proof systems. The proof that KZG satis-
fies this relaxed simulation extractability property relies on the algebraic
group model and random oracle model.

1 Introduction

Non-interactive succinct zero-knowledge arguments of knowledge (zkSNARKs)
[45] are the new Swiss army knife of blockchain scalability and privacy. They
effectively deliver the twin dream of probabilistically checkable proofs (PCP) [3]
and zero-knowledge proofs (ZKP) [34] while also being non-interactive, short,
and efficiently verifiable. These features make zkSNARKs of high practical and
theoretical relevance. They are an active area of research that has seen rapid
progress in multiple aspects, such as efficiency [7,33,35,36], security and versa-
tility of their setups [6,37], and proof composition [13,15].

Simulation-extractable zkSNARKs. Knowledge-soundness is the basic se-
curity notion of zkSNARKs: informally speaking, it guarantees that, in isola-
tion, a prover producing a valid proof must know the corresponding witness.
In contrast, there exist real-world deployments and cryptographic applications
of zkSNARKs that require a stronger property called simulation extractability
(SE, for brevity) [38,47]. Intuitively, this notion considers attackers that can see
proofs for some statements and may use this information in order to produce
a proof for some other statement without knowing the witness. Interestingly,

https://orcid.org/0000-0002-7152-6478
https://orcid.org/0000-0001-7274-6600
https://orcid.org/0000-0002-8660-9663
https://orcid.org/0000-0001-9869-786X

2 A. Faonio et al.

simulation extractability implies that proofs are non-malleable [23], a relevant
property in practical applications. Most zkSNARKs in the literature are only
proven to be knowledge-sound. In some cases, this is due to the fact that their
proofs may indeed be malleable, e.g., as in [36] (see also [4]). In other cases,
the lack of SE security proof is because it is challenging and may require more
investigation.

From polynomial commitments to SNARKs. The design of modern zk-
SNARKs follows the common cryptographic approach of starting with proto-
cols that achieve information-theoretic security in idealized models and then
compiling them into efficient protocols by employing a smaller computation-
ally secure primitive. In the world of SNARKs, the corresponding concepts are
(polynomial) interactive oracle proofs F -IOP [16,17,20,28,48] and (polynomial)
functional commitments F -COM [12,40,41]. An F -IOP employs two (idealized)
oracles that share their state: the prover calls the first oracle to commit to func-
tions f ∈ F and the verifier calls the second to query the committed functions.
Concretely, the F -IOP to SNARK compiler uses F -COM to replace oracles with
commitments, opening proofs, and query proofs. As this only removes reliance
on idealized function oracles but not interaction, the compiler additionally em-
ploys the usual Fiat-Shamir transformation for public-coin protocols to obtain
the final zkSNARK. The benefits of this compilation paradigm are modularity
and separation of concerns: once the compiler is proven, a line of research can
address the problem of improving F -IOPs while another research line can tackle
the problem of realizing F -COM schemes (e.g., with better efficiency, from differ-
ent assumptions, etc.): this approach has been successfully adopted to construct
several recent zkSNARKs. All this recent work, though, only shows that schemes
obtained via this paradigm are knowledge-sound.

1.1 Our work

We study the simulation extractability of a broad class of zkSNARKs built
through this “natural” compilation approach. In particular, our primary goal in-
cludes showing that not only existing zkSNARKs but also any future zkSNARKs
following this, by now standard, construction framework, provide simulation ex-
tractability. This goal has a twofold motivation. On the theoretical side, we are
interested in understanding sufficient conditions on F -COM to compile an F -IOP
into a simulation-extractable zkSNARK. On the practical side, by capturing ex-
isting compilers we can show that existing schemes that are under deployment,
e.g., Plonk [28], have already this strong security property.5 For this reason,
in our work, we focus on the popular case of the compiler where the F -IOP
is a polynomial IOP (i.e., the oracle functions F are low-degree polynomials),
and F -COM is a polynomial commitment. Furthermore, in terms of instantia-
tions we are interested in covering the celebrated KZG polynomial commitment
5 In fact as Mahak Pancholi and Akira Takahashi recently informed us of a flaw in

the trapdoor-less zero-knowledge simulation of [29] this is arguably the first proof of
simulation extractability of Plonk with deterministic KZG commitments.

From PIOPs to Non-malleable zkSNARKs 3

scheme [40] and on a polynomial IOP framework that is flexible enough to in-
clude recent constructions, e.g., [17,20,28,43,46]. The main contributions of our
work are: (i) to introduce a relaxed notion of simulation extractability for poly-
nomial commitments; (ii) to prove that the KZG scheme satisfies our relaxed SE
notion in the algebraic group model (AGM) and random oracle model (ROM);
and (iii) to prove that our notion is sufficient to compile a polynomial IOP into
a simulation-extractable zkSNARK, using the usual compilation approach. By
combining these results we obtain a simulation extractability proof for Plonk [28],
Basilisk [46], and a slight variation of Marlin [20] and Lunar [17].

1.2 Our techniques

Background. For our work, we chose the class of Polynomial (Holographic)
IOPs (PIOP) as defined by [17] as a generalization of [16].6 The oracle of the
prover commits to low-degree polynomials over a finite field while the queries of
the verifier check polynomial equations over these polynomials. These polynomial
equations can depend on additional field elements sent by the prover and/or the
verifier during the execution of the protocol. Slightly more in detail, the verifier
can query an oracle polynomial p(X) (or multiple polynomials simultaneously)
by specifying polynomials G and v to test equations of the form G(X, p(v(X))) ≡
0. Therefore, to be compiled, PIOPs need a commit-and-prove SNARK (CP-
SNARK) for proving the validity of such equations concerning the committed
polynomials. Notably, one can easily build this CP-SNARK from a CP-SNARK
for polynomial evaluations (e.g., KZG) by testing the equations on a random
point chosen by the random oracle.

Simulation extractability challenges. Intuitively, the use of a simulation-
extractable CP-SNARK in the above compiler should result in a simulation-
extractable zkSNARK: the zero-knowledge simulator samples random commit-
ments (relying either on hiding property of commitments, or the randomness in
the committed functions p). It then simulates evaluations of p that satisfy the
verification equation of the PIOP. The reduction to PIOP soundness extracts all
committed polynomials from their opening proofs and the final polynomial eval-
uations from the evaluation proofs. However, this approach presents two major
challenges:

– The PIOP could be arbitrary. For example, consider a PIOP obtained by
the sequential composition of two PIOP protocols for two independent state-
ments. Very likely, the set of queries to the polynomials made by the two
sub-protocols are independent and (unless the PIOP specifies it explicitly)
the evaluation queries of the first sub-protocol may be chosen based on the
verifier’s random challenges sent before the second sub-protocol even starts.
The simulation extractability of the zkSNARK compiled from this protocol

6 PIOPs can flexibly capture under the same hat all the most recent protocols based
on the notions of [16], AHP [20], and ILDP [28].

4 A. Faonio et al.

might be affected because one could strip off the second set of evaluation
proofs and replace them with those for another statement7.

– One needs to prove that existing, efficient, and practically deployable instan-
tiations of polynomial commitment schemes are simulation-extractable.

Our solutions. To solve the first challenge, motivated by our goal to show
that existing zkSNARKs are simulation-extractable and that future zkSNARKs
can seamlessly achieve simulation extractability, we define a (rather minimal)
constraint on the PIOP. Namely, we require that at least one of the polynomial
equations involves all the oracle polynomials and that the polynomial v chosen
by the verifier (see above) is not constant.8 Fortunately, this constraint is natural
and easy to meet in practice: Plonk naturally meets our constraint meanwhile
all the other proof systems based on Aurora’s univariate sumcheck [8] can be
easily (and at negligible cost) adapted by instantiating the proof of polynomial
degree through an evaluation query on all the polynomials.

For the second challenge, unfortunately, the issue is that the most obvi-
ous candidate, the efficient and widely deployed KZG polynomial commitment
scheme [40], is not simulation-extractable. Using bracket notation, KZG commit-
ments are of the form [p(s)]1 for a trapdoor secret s encoded in the parameters
([si]1)i∈[0..d], [1, s]2, while evaluation proofs for an input x and output y are of
the form [p(s)−y

s−x]1. KZG is malleable: for example, given a commitment to p,
anyone can compute [p(s) + ∆]1 and open it using the same proof to (x, y + ∆).

Our starting point is the observation that KZG retains a form of simula-
tion extractability for evaluations at points that are randomly chosen after the
commitment. Fortunately, this is the situation we encounter in the Fiat-Shamir
part of the PIOP-to-SNARK compiler. The commitment forms part of the first
commit-and-prove part of the statement which is hashed to determine the x of
the second part of the statement. Thus, the evaluation point depends on the
commitment and can be considered random in the RO model.

To formalize this important relaxation, we introduce the notion of policy-
based simulation extractability (Φ-SE, w.r.t. a policy parameter Φ). In the stan-
dard simulation extractability experiment, the adversary can ask the simulator
to generate proofs for statements of its choice and, eventually, must produce a
new valid proof without knowing the witness. In Φ-SE, we consider a relaxation
of the SE game in which all the simulation queries of the adversary must satisfy
a predicate specified in Φ; similarly, Φ can constrain the winning condition of
the adversary. For this reason, we refer to Φ as the policy. One can see that Φ-SE
is a generalization of existing SE notions such as true-simulation extractability
7 In particular, the adversary could have a simulated proof π̃ = (π, π′) for (x,x′) and

then could choose x′′ for which it knows a valid witness, and finally forge for (x,x′′)
using (π, π′′), where π′′ is honestly generated. As the simulated proof π is reused,
extraction fails. Notice that this attack works even when the Fiat-Shamir challenges
for π′′ are derived by hashing a transcript that contains π.

8 This can be for example implemented via a common random point chosen at the
end of the protocol, on which all oracles are evaluated.

From PIOPs to Non-malleable zkSNARKs 5

(where the adversary can only see simulated proofs on true statements) [22],
or weak simulation extractability (where the adversary only wins if it provides
a proof for a new statement and, contrary to (strong) SE, loses if it provides
a new proof for a statement previously asked to the simulation oracle). Once
having defined this framework, we analyze which policies Φ are strong enough to
achieve simulation extractability in the compiled zkSNARK, while at the same
time being weak enough for instantiation by KZG under plausible assumptions
(in the AGM [27] and RO). Specifically, we isolate the (simulation) extractability
properties needed for the compiler and verify it for KZG in the AGM. This is the
only part of our results where we need the AGM. Given the broad applications
of KZG in the field of practical zkSNARKs and beyond, the characterization of
its (non-)malleability is interesting in its own right. In fact, our policy highlights
some malleability attacks that we discovered and that we needed to handle. Fi-
nally, for our Φ we prove that KZG is Φ-SE in the AGM and ROM. This proof
turned out to be highly non-trivial and is one of our main technical contributions.

1.3 Related work
It is hard to be exhaustive, or even representative, in discussing related work
on SNARKs. For the sake of our paper, we focus on related work on simula-
tion extractability notions. Groth and Maller [38] give a simulation-extractable
zkSNARK that consists of only 3 group elements. Their construction is neither
universal nor updatable. The recent work of Ganesh, Orlandi, Pancholi, Taka-
hashi and Tschudi [31] shows that Bulletproofs [14] are non-malleable in AGM.
More recently, Dao and Grubbs show that Spartan and Bulletproofs are non-
malleable even without AGM [21]. Both Ganesh et al. and Dao et al. work extend
the framework introduced by Faust, Kohlweiss, Marson and Venturi in [25] to
Fiat-Shamir applied to multi-round interactive arguments. On a similar path,
the work of Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu and Zajac [29] shows
non-malleability for Plonk, Sonic and Marlin. Both [29,31] show that interac-
tive arguments can be simulation-extractable after applying the Fiat-Shamir
transform. In particular, their approach consists of defining new properties, like
trapdoor-less zero-knowledge9 and unique response10 that need to be proven on
a case-by-case basis. Namely, for each candidate SNARK (even if resulting from
a generic compiler) one needs additional effort to show that it is simulation ex-
tractable. This is arguably more challenging and less generic than our approach.
Thanks to our result, once having a Φ-SE polynomial commitment, one only
needs to check a very simple property on the polynomial IOP.

The work of Abdolmaleki, Ramacher and Slamanig [2] shows a generic com-
piler to simulation-extractable SNARKs which requires key-homomorphic signa-
tures. Their compiler produces universally-composable SNARKs (UC-SNARKs),
which they prove through a black-box straight-line extractor. To obtain a black-
box straight-line extractor, they append to the SNARK proof an encryption of
9 That is zero-knowledge where the simulator does not rely on the SRS’s trapdoor but

on the programmability of the random oracle.
10 That is, at some point of the protocol, the prover becomes a deterministic algorithm.

6 A. Faonio et al.

the witness, thus achieving a relaxed succinctness w.r.t. the size of the circuit
describing the relation. The recent work of Ganesh, Kondi, Orlandi, Pancholi
and Takahashi [30] shows how to regain full succinctness in UC-SNARKs in the
ROM through Fischlin’s transform [26].

1.4 Open problems

Our framework is general enough to handle compilation from polynomial com-
mitment schemes different than KZG. Our contribution identifies a set of prop-
erties that a polynomial commitment scheme needs to have so that the resulting
SNARK is simulation-extractable. We believe that thanks to the non-malleability
of random oracles the FRI scheme [10] readily possesses the necessary properties,
which would imply the simulation extractability of STARKs [6].

Another advantage of our formalization of PIOP over previous proposals such
as [16] is that it naturally supports optimization tricks in the literature [17]. As
an intermediate step of our compiler, we define a CP-SNARK for polynomial
evaluations based on KZG. While we capture the important use case of batched
evaluations on a common point, for the sake of simplicity, we leave further exten-
sions and optimizations for future work. In particular, we do not capture the case
of proving evaluations on arbitrary linear combinations of committed polynomi-
als. We believe this extension could be handled at the PIOP level by extending
the notion to virtual oracle polynomials obtained through linear combinations
of other oracles (and thus using the homomorphic property of KZG). We leave
open the problem to extend our result to other polynomial IOP models.

Recent works extend the polynomial evaluation proofs of KZG to multiple
evaluation points [49,50]. Our simulation extractability strategy for KZG can be
applied partially to these schemes; however, our technique uses a clever argument
to separate the realm of commitments from the realm of proofs (in KZG proofs
and commitments are both of the form [p(s)]1 for some polynomial p) based
on their degree as polynomials. Unfortunately, the same technique does not
work when the degree of the polynomial in the proof depends on the number of
evaluation points in the proved statement.

2 Preliminaries

A function f is negligible in λ (we write f ∈ negl(λ)) if it approaches zero
faster than the reciprocal of any polynomial: i.e., for every c ∈ N there is an
integer λc such that f(λ) ≤ λ−c for all λ ≥ λc. For an integer n ≥ 1, we
use [n] to denote the set {1, 2, . . . , n}. Calligraphic letters denote sets, while
set sizes are written as |X |. Lists are represented as ordered tuples, e.g. L :=
(Li)i∈[n] is a shortcut for the list of n elements (L1, . . . , Ln). To get a specific
value from a list, we also use the “dot” notation; e.g., we use L.b to access
the second element of the list L := (a, b, c). An asymmetric bilinear group G
is a tuple (q,G1,G2,GT , e, P1, P2), where G1,G2 and GT are groups of prime
order q, the elements P1, P2 are generators of G1,G2 respectively, e : G1×G2 →

From PIOPs to Non-malleable zkSNARKs 7

GT is an efficiently-computable non-degenerate bilinear map, and there is no
efficiently computable isomorphism between G1 and G2. Let GroupGen be some
probabilistic polynomial-time (PPT) algorithm which on input 1λ, where λ is
the security parameter, returns a description of a bilinear group G. Elements in
Gi, i ∈ {1, 2, T} are denoted in implicit notation as [a]i := aPi, where PT :=
e(P1, P2). Every element in Gi can be written as [a]i for some a ∈ Zq, but
note that, given [a]i, it is in general hard to compute a (discrete logarithm
problem). Given a, b ∈ Zq we distinguish between [ab]i, namely the group element
whose discrete logarithm base Pi is ab, and [a]i · b, namely the execution of the
multiplication of [a]i and b, and [a]1 · [b]2 = [a · b]T , namely the execution of a
pairing between [a]1 and [b]2. We do not use the implicit notation for variables,
e.g. c = [a]1 indicates that c is a variable name for the group element whose
logarithm is a.

Definition 1 (Algebraic algorithm, [27]). An algorithm A is algebraic if
for all group elements z that A outputs (either as returned by A or by invoking an
oracle), it additionally provides the representation of z relative to all previously
received group elements. That is, if elems is the list of group elements that A has
received so far, then A must also provide a vector r such that z = ⟨r, elems⟩.

Definition 2 (Polynomial Commitment). A polynomial commitment is a
tuple of algorithms PC := (KGen, Com, VerCom) that works as follows:
KGen(ppG, d)→ ck takes as input group parameters ppG ←$ GroupGen(1λ), and

a degree bound d, and outputs a commitment key ck.
Com(ck, f)→ (c, o) takes as input the commitment key ck, and a low degree

polynomial f ∈ F≤d[X], and outputs a commitment c and an opening o.
VerCom(ck, c, f, o)→ b takes as input ck, a commitment c, a polynomial f and

an opening o, and accepts (b = 1) or rejects (b = 0).

Definition 3 (Witness Sampleability, [39]). A distribution D is witness
samplable if there is a PPT algorithm D̃ s.t. for any ppG, the random variables
A←$ D(ppG) and

[
Ã

]
1, where Ã←$ D̃(ppG), are equivalently distributed.

Definition 4 (Dℓ,k-Aff-MDH assumption). Given a matrix distribution
Dℓ,k, the Affine Diffie-Hellman Problem is: given A ∈ Gℓ×k

1 , with A ←$ Dℓ,k,
find a nonzero vector x ∈ Zℓ

q and a vector y ∈ Zk
q such that

[
x⊤A

]
1 = [y]1.

Definition 5 ((d, d′)-Power Polynomial in the Exponent). The (d, d′)-
PEA Assumption holds for a bilinear group generator GroupGen if for every
PPT adversary A that receives as input (

[
1, . . . , sd

]
1 ,

[
1, . . . , sd′

]
2
) and outputs

a polynomial p(X) of degree at most max{d, d′}, and a value y, the probability
that p(s) = y is negligible. When d = d′ we use the shortcut d-PEA.

Definition 6 (d-Power Discrete Logarithm [42]). Given a degree bound
d ∈ N, the d-Power Discrete Logarithm (d-DL) assumption holds for a bilinear
group generator GroupGen if for every PPT adversary A that receives as input
(
[
1, . . . , sd

]
1 ,

[
1, . . . , sd

]
2), and outputs the value s′, the probability that s = s′

is negligible. We also use DL as a shortcut for 1-DL.

8 A. Faonio et al.

Lemma 1 (d-DL ⇒ d-PEA). We can make a reduction to the assumption
that computes s. The reduction invokes the adversary, gets p(X) − y of degree
d, and computes s by factoring the polynomial p(s)− y. As p(s)− y = 0 we are
guaranteed that s is a root.

Lemma 2 (DL ⇒ Uℓ,k-Aff-MDH). When considering the uniform random
distribution Uℓ,k, we can make a reduction to the assumption that computes
s. The reduction samples at the exponent a uniformly random matrix A =
(ai,j)i,j ∈ Zℓ×k

q and invokes the adversary on input [(ai,j)i,j]1. Finally, let pi(s)
be the i-the row of x⊤A. The reduction computes s by factoring one of the k
polynomials pi(s)− yi.

3 Policy-based Simulation-Extractable NIZKs

We start by defining the basic syntax and properties for a Non-Interactive Zero-
Knowledge Argument of Knowledge. Following Groth et al. [37], we define a
PT relation R verifying triple (pp,x,w). We say that w is a witness to the
instance x being in the relation defined by the parameters pp when (pp,x,w) ∈
R (equivalently, we sometimes write R(pp,x,w) = 1). For example, pp could
be the description of a bilinear group or additionally contain a commitment key
or a common reference string. A NIZK for a relation R (and group generator
GroupGen) is a tuple of algorithms Π = (KGen, Prove, Verify) where:

– KGen(ppG)→ srs is a probabilistic algorithm that takes as input the param-
eters ppG ←$ GroupGen(1λ) and outputs srs := (ek, vk, pp), where ek is the
evaluation key, vk is the verification key, and pp are the parameters for R.

– Prove(ek,x,w)→ π takes an evaluation key ek, a statement x, and a witness
w such that R(pp,x,w) holds, and returns a proof π.

– Verify(vk,x, π)→ b takes a verification key, a statement x, and either accepts
(b = 1) or rejects (b = 0) the proof π.

Definition 7 (Succinctness). A NIZK Π is said succinct if the running time
of Verify is poly(λ + |x|+ log |w|) and the proof size is poly(λ + log |w|).

CP-SNARKs. Commit-and-Prove succinct arguments of knowledge, or simply
CP-SNARKs, are knowledge-sound and succinct NIZKs whose relations ver-
ify predicates over commitments (see Campanelli, Fiore and Querol [18]). We
consider the following syntax. Briefly speaking, we refer to a CP-SNARK for
a relation R and a commitment scheme CS as a tuple of algorithms CP =
(KGen, Prove, Verify) where KGen(ck) → srs is an algorithm that takes as input
a commitment key ck for CS and outputs srs := (ek, vk, pp); ek is the evaluation
key, vk is the verification key, and pp are the parameters for the relationR (which
include the commitment key ck). Moreover, if we consider the key generation al-
gorithm KGen′ that upon group parameters ppG first runs ck←$ CS.KGen(ppG),
runs srs ←$ CP.KGen(ck) and outputs srs; then the tuple (KGen′, Prove, Verify)
defines a SNARK.

From PIOPs to Non-malleable zkSNARKs 9

Zero-Knowledge in the SRS (and RO) model. The zero-knowledge simu-
lator S of a NIZK is a stateful PPT algorithm that can operate in three modes:

– (srs, stS) ← S(0, ppG) takes care of generating the parameters and the sim-
ulation trapdoor (if necessary)

– (π, stS)← S(1, stS ,x) simulates the proof for a statement x
– (a, stS)← S(2, stS , s) takes care of answering random oracle queries

The state stS is updated after each operation. Similarly to [25,31], we define the
following wrappers.

Definition 8 (Wrappers for NIZK Simulator). The following algorithms
are stateful and share their state st = (stS , coms,Qsim,QRO,Qaux) where stS is
initially set to be the empty string, and Qsim,QRO and Qaux are initially set to
be the empty sets.

– S1(x, aux) is an oracle that returns the first output of S(1, stS ,x, aux).11

– S ′
1(x,w) is an oracle that first checks (pp,x,w) ∈ R where pp is part of srs

and then runs (and returns the output of) S1(x).
– SF

1 (x,w) is an oracle parameterized by a function F ; first, it checks if
(pp,x,w) ∈ R, and then runs (and returns the output of) S1(x, F (x,w)).
As explained below, this is useful to model leaky-zero-knowledge.

– S2(s, aux) is an oracle that first checks if the query s is already present in
QRO and in case answers accordingly, otherwise it returns the first output
a of S(2, stS , s). Additionally, the oracle updates the set QRO by adding the
tuple (s, aux, a) to the set.

Almost all the oracles in our definitions can take auxiliary information as ad-
ditional input. We use this auxiliary information in a rather liberal form. For
example, in the definition above, the auxiliary information for S1 refers to the
(optional) leakage required by the simulator to work in some cases (see more in
Definition 10), while the auxiliary information for S2 can contain, for example,
the algebraic representations of the group elements in s (when we restrict to
algebraic adversaries) or other information the security experiments might need.

Definition 9 (Zero-Knowledge). A NIZK NIZK is (perfect) zero-knowledge
if there exists a PPT simulator S such that for all adversaries A:

Pr

 ppG ← GroupGen(1λ)
srs← KGen(ppG)
AProve(ek,·,·)(srs) = 1

 ≈ Pr

 ppG ← GroupGen(1λ)
(srs, stS)← S(0, ppG)

AS′
1(·,·)(srs) = 1

Zero-knowledge is a security property that is only guaranteed for valid statements
in the language, hence the above definition uses S ′

1 as a proof simulation oracle.
11 More often, simulators need only the first three inputs, see Definition 9; abusing

notation, we assume that such simulators simply ignore the auxiliary input aux.

10 A. Faonio et al.

We also introduce a weaker notion of zero-knowledge. A NIZK is F -leaky
zero-knowledge if its proofs may leak some information, namely a proof leaks
F (x,w), where (x,w) ∈ R. We formalize this by giving the zero-knowledge sim-
ulator the value F (x,w), which should be interpreted as a hint for the simulation
of proofs. This notion could be seen as an extension of the bounded leaky zero-
knowledge property defined in [17] and tailored for CP-SNARKs. Our notion is
a special case of the leakage-resilient zero-knowledge framework of Garg, Jain
and Sahai [32] where the leakage of the simulator is known ahead of time.

Definition 10 (Leaky Zero-Knowledge). A NIZK NIZK is F -leaky zero-
knowledge if there exists a PPT simulator S such that for all adversaries A:

Pr

 ppG ← GroupGen(1λ)
srs← KGen(ppG)
AProve(ek,·,·)(srs) = 1

 ≈ Pr

 ppG ← GroupGen(1λ)
(srs, stS)← S(0, ppG)

ASF
1 (·,·)(srs) = 1

3.1 Policy-Based Simulation Extractability

An extraction policy defines the constraints under which the extractor must ex-
tract the witness. For example, we could consider the policy that checks that the
forged instance and proof were not queried/output by the zero-knowledge simu-
lator (thus modeling the classical simulation extractability notion), or we could
consider a policy that only checks that the forged instance was not queried to the
simulator, thus obtaining a weaker flavor of classical simulation extractability.
Clearly, the more permissive the policy the stronger the security provided.

In our work, we also consider policies that constrain the behavior of the zero-
knowledge simulator. For example, we could consider the policy that checks that
the queried instances belong to the relation, thus obtaining a notion similar to
true-simulation extractability (see Dodis et al. [22]). Looking ahead, contrary to
the true-simulation extractability notion in [22], our policy-based version of the
true-simulation extractability rather than disallowing certain queries, punishes
the adversary at extraction time. It is not hard to see that the two definitional
flavors, namely disallowing illegal queries versus punishing an adversary that
made an illegal query are equivalent in the context of simulation extractability,
because the adversary’s goal is computational12.

Extraction policies. We define an extraction policy as a tuple Φ = (Φ0, Φ1)
of PPT algorithms. This is used to define Φ-simulation extractability as follows.
The security experiment starts by running the extraction policy algorithm Φ0,
which generates public information ppΦ. The public information may contain,
for example, random values that define the constraints later checked by Φ1.
Therefore, we feed ppΦ to the adversary. In the case of commit-and-prove proof
systems, the public information may contain commitments for which the adver-
sary does not know openings (but on which it can still query simulated proofs).
12 Observe that for decisional tasks disallowing and punishing flavors can result in

different security notions, see Bellare, Hofheinz and Kiltz [5].

From PIOPs to Non-malleable zkSNARKs 11

After receiving a forgery from the adversary, the security experiment runs the
extraction policy Φ1. The policy Φ1 is a predicate that takes as input: (i) The
public parameter ppΦ; (ii) The forged instance and proof (x, π); (iii) The view
of the experiment, denoted view. Such a view contains the public parameters,
the set of simulated instances and proofs Qsim, and the set QRO of queries and
answers to the random oracle13; (iv) Auxiliary information auxΦ which might
come along with the forged instance. We use auxΦ to provide the adversary an
interface with the policy.
Definition 11 (Simulation extractability). A NIZK Π for a relation R
and simulator S is Φ-simulation-extractable if for every PPT adversary A there
is an efficient extractor E such that the following advantage is negligible in λ:

AdvΦ-se
Π,A,S,E(λ) := Pr

[
ExpΦ-se

Π,A,S,E(λ) = 1
]

Below, we give a definition that explicitly considers the sub-class of PPT alge-
braic adversaries. To fit algebraic adversaries into our definitional framework we
let the algebraic adversaries return the representation vectors (1) for any query
to the simulator S into the auxiliary information aux and (2) for the forgery into
the auxiliary information auxE .
Definition 12 (Simulation extractability in the AGM). Let Π be a NIZK
for a relation R with a simulator S. Π is Φ-simulation-extractable (or simply
Φ-SE) if there exists an efficient extractor E such that for every PPT algebraic
adversary A, the advantage AdvΦ-se

Π,A,S,E(λ) (cf. Definition 11) is negligible in λ.

4 Simulation extractability of KZG in AGM

KZG [40] is a Polynomial Commitment scheme (see Definition 2) defined over
bilinear groups G = (G1,G2,GT , e), that consists of the following algorithms:
KGen(1λ, d) on input the security parameter 1λ, and a degree bound d ∈ N,

outputs ck := ((
[
sj

]
1)j∈[0,d], [1, s]2), for secret s←$ Fq.

Com(ck, f(X)) on input ck, a polynomial f(X), outputs c := [f(s)]1.
VerCom(ck, c, f(X)) outputs 1 if c = [f(s)]1.
The above scheme is (standard) binding under the d-DL assumption (see [35]),
in fact, given two polynomials f and f ′ that evaluate to the same value on the
secret point s, we can find s among the roots of the (non-zero) polynomial f−f ′.

We consider a CP-SNARK CPevl for the relation Revl((x, y), f) := f(x) = y,
where f is committed as [f(s)]1. The scheme constructed in this section requires
one G1 element to commit to f(X), one G1 element for the evaluation proof,
and checking this proof of evaluation requires two pairings, and is knowledge
extractable in the AGM [20]. This is taken from [17] but adapted to AGM only.
13 Even if the given NIZK is not in the random oracle (namely neither the prover nor

the verifier algorithms make random oracle queries) it still makes sense to assume
the existence of the set QRO. This is useful to model security for NIZK protocols
that eventually are used as sub-protocols in ROM-based protocols.

12 A. Faonio et al.

ExpΦ-se
A,S,E(λ)

ppG ←$ GroupGen(1λ)
(srs, stS)← S(0, ppG)
ppΦ ←$ Φ0(ppG)

(x, π, auxE , auxΦ)← AS1,S2 (srs, ppΦ)
w← E(srs,x, π, auxE)
view← (srs, ppΦ,Qsim,QRO,Qaux)

if Φ1((x, π), view, auxΦ) ∧ VerifyS2 (srs,x, π)
∧ (pp,x,w) /∈ R then return 1

else return 0

S1(x, aux) :
π, stS ← S(1, stS ,x, aux)
Qsim ← Qsim ∪ {(x, aux, π)}
return π

S2(s, aux) :
if ̸ ∃ aux, a : (s, aux, a) ∈ QRO :

a, stS ← S(2, stS , s, aux)
QRO ← QRO ∪ {(s, aux, a)}

return a

Fig. 1. The Φ-simulation extractability experiments in ROM. The extraction policy Φ takes as input
the public view of the adversary view (namely, all the inputs received and all the queries and answers to
its oracles). The set Qsim is the set of queries and answers to the simulation oracle. The set QRO is the
set of queries and answers to the random oracle. The set Qaux is the set of all the auxiliary information
sent by the adversary (depending on the policy, this set might be empty or not). The wrappers S1 and
S2 deal respectively with the simulation queries and the random oracle queries of A in the experiment.

KGenevl: parse ck as ((
[
sj

]
1)j∈[0,d], [1, s]2) and define ek := ck and vk := [1, s]2,

and return srs := (ek, vk).
Proveevl(ek,x = (c, x, y),w = f): output π := [π(s)]1, where π(X) is the poly-

nomial such that π(X)(X − x) ≡ f(X)− y.
Verifyevl(vk,x = (c, x, y), π): output 1 iff e(c− [y]1 , [1]2) = e(π, [s− x]2).

The extraction policy for CPevl. We define Φs-adpt
evl = {ΦD}D as the family

(indexed by a sampler D) of semi-adaptive extraction policies for the KZG-
based CPevl CP-SNARK. Indeed, as we show below, the evaluation points xj

for the instances for which the adversary can see simulated proofs are selectively
chosen independently of the commitment key, while the evaluation values y can
be adaptively chosen by the adversary. Each policy ΦD is a tuple of the form
(ΦD

0 , Φ1), as defined in Section 3.1, where ΦD
0 outputs the parameters ppΦ while

Φ1 outputs a bit. In particular, ΦD
0 on input group parameters ppG outputs

ppΦ := (coms,Qx), where coms is a vector of commitments sampled from D, and
Qx is a set of evaluation points.

For sake of clarity, we define the policy Φ1 as the logical conjunction of a
“simulator” policy Φsim and an “extractor” policy Φext, i.e. Φ1 = Φsim ∧Φext. The
first policy defines rules under which we can classify a simulation query legal,
while the second one defines rules under which the extractor must be able to
extract a meaningful witness.

Definition 13. Let Φsim be the policy that returns 1 if and only if:

1. Points check: let (xi, auxi, πi)i be all the entries of Qsim. Recall that an
instance x can be parsed as (c, x, y). Check that ∀i : xi.x ∈ Qx.

From PIOPs to Non-malleable zkSNARKs 13

2. Commitment Check: For all i ∈ [Qsim], parse auxi as the representation
vectors for xi.c and πi such that ri = f i∥ci is the algebraic representation
of the commitment xi.c. For any i check that ⟨f i, ek⟩+ ⟨ci, coms⟩ = xi.c.

3. Algebraic Consistency: Let Ij := {i : xi.x = xj} and let Rj := (ci)i∈Ij .
Check that ∀j: (i) the system of linear equations Rj · z = yj has at least a
solution, where z are the variables and yj = (xi.y−⟨f i, (1, xj , . . . , xd

j)⟩)i∈Ij
.

In more intuitive terms, for every simulation query (c, x, y) made by the adver-
sary: (1) ensures that x is in the setQx chosen at the beginning of the experiment
(this is the semi-adaptive restriction); (2) ensures that c is computed as a linear
combination of the simulated commitments and the G1 elements of the SRS,
but not of simulated proofs; (3) ensures that overall the queried statements are
plausibly true (e.g., the adversary does not ask to open the same (c, x) at two
different y ̸= y′). We notice that the “Algebraic Consistency” check is necessary
since, if violated it would enable a class of generic attacks. We briefly mention
one attack in the proof intuition and we refer the reader to [24] for the details.

Next, we define the policy Φext as the logical disjunction of two policies, Φrnd
ext

and Φder
ext . To this end, we first define some notation: let gc : G1×{0, 1}∗ → {0, 1}

be a function that on inputs a group element c and a string s, that can be parsed
as a list of group elements ci followed by a second string s̃, outputs 1 iff ∃i : c = ci.

Definition 14. Let Φext, Φrnd
ext and Φder

ext be predicates that, parsing the forgery
instance x∗ = (c∗, x∗, y∗), are defined as follows:

– Φrnd
ext returns 1 if and only if there exist a query (s, aux, a) to the random ora-

cle and aux contains a non-constant polynomial h(X) such that the following
conditions are satisfied:
1. Hashing check: (s, aux, a) ∈ QRO, note that QRO is contained in view,
2. Decoding check: gc(c∗, s) = 1.
3. Polynomial check: gh(h, aux) = 1, where gh : F[X] × {0, 1}∗ → {0, 1}

is a function that on input a polynomial h(X) and a string aux outputs
1 iff h(X) is encoded in aux.

4. Computation check: h(a) = x∗.
– Φder

ext returns 1 iff ∃(x, ·, π) ∈ Qsim s.t. x := (c∗, x∗, y′) and (y′, π) ̸= (y∗, π∗).
– Φext returns logical disjunction of Φrnd

ext and Φder
ext .

More intuitively, Φrnd
ext checks that the point x∗ is obtained from the random

oracle after querying it on the commitment c∗, whereas Φder
ext checks if x∗ is

a strong forgery, namely it is a new evaluation proof for a statement (c∗, x∗)
already queried to the simulation oracle.

Theorem 1. For any witness samplable distribution D that is D-Aff-MDH-
secure (see Definition 4), any bilinear-group generator GroupGen that samples
the generator of the group G1 uniformly at random, ∀ΦD ∈ Φs-adpt

evl , KZG is ΦD-
simulation-extractable in the AGM. In particular, there exists E such that for
any algebraic adversary A:

AdvΦD-se
CPevl,A,S,E(λ) ≤ O(ϵ(Qx+d+1)-DL(λ)) + O(ϵAff-MDH(λ)) + poly(λ)ϵh

14 A. Faonio et al.

where Qx := |Qx|, d is the maximum degree supported by CPevl, ϵ(Qx+d+1)-DL(λ)
is the maximum advantage for any algebraic PT adversary against the (Qx +
d + 1)-strong Discrete-Log Assumption, ϵAff-MDH(λ) is the maximum advantage
for any algebraic PT adversary against the D-Aff-MDH Assumption, h is the
polynomial that satisfies the Polynomial check of ΦD, and ϵh = deg(h)

q .

We show in the full version [24] how to generalize the scheme to support
hiding commitments, and we extend our result to the hiding setting. Also, we
consider a scheme CPm-evl for batch evaluations which follows from [28,44].

Proof intuition of Theorem 1. We consider an adversary whose forgery sat-
isfies the predicate Φrnd

ext . We first show an alternative way to simulate KZG
proofs. This step allows one to move from a simulator whose trapdoor is a “se-
cret exponent” s to a simulator whose trapdoor is a ‘tower’ of G1-elements

[
si

]
1.

The simulated SRS seen by the adversary includes only high-degree polynomi-
als of the form

[
p(s)si

]
1, while the simulator keeps the low-degree monomials[

si
]

1 for simulation. Here, p is a polynomial that vanishes in all the points to
be asked in the simulation queries (this is reminiscent of the reduction tech-
nique for Boneh-Boyen signatures [11]). Since we program the SRS based on the
queries our simulator is only semi-adaptive, namely it can simulate proofs for a
(exponentially large) subset of all the statements. This first change essentially
simplifies the objects involved in our analysis, from rational polynomials (with
the formal variable being the trapdoor) to standard polynomials.

Next, we need to show that the adversary cannot mix the simulated commit-
ments and the forgery material. In particular, we need to show that the forged
proof is not derived as a linear combination involving simulated commitments.
To show this, we use the fact that the degree of the proof must be smaller than
the degrees of simulated commitments, otherwise we could break the d-DL as-
sumption in the AGM. This intuitively comes from the fact that the verification
equation lifts the degree of the polynomial in the forged proof (as it is multiplied
by (X − x∗)). Similarly, we need to show that the forged instance cannot use a
linear combination that involves the simulated commitments. For this, we use
the Aff-MDH assumption to handle multiple evaluation proofs on different sim-
ulated commitments on the same evaluation point. In particular, we reduce the
view of many simulated proofs over many commitments and many evaluation
points to a view that only contains

[
p(s)si

]
1 and (non-rational) polynomials

[p(s)/(s− xj)]1. At this point, the attacker could still perform an attack if it
could decide the evaluation point x∗ arbitrarily. The attack works as follows:
(i) the adversary asks a simulation proof π for x = (c, x, y), and (ii) produces
the forgery x

∗ = (c + απ, x − α, y), π, for any α ∈ Zq. It is easy to check that
the forgery satisfies the verification equation. However, for this attack to work
the attacker needs to set the commitment in the forged instance as a function
of x∗ = x − α. The last part of our analysis shows that, indeed, the algebraic
representation of the commitment in the forgery cannot depend on x∗ and that
this attack cannot be mounted when x∗ is chosen after the commitment with
sufficient randomness. For the second case, we can reduce a Φder

ext forgery to a

From PIOPs to Non-malleable zkSNARKs 15

Φrnd
ext forgery. In fact, such a forgery together with the simulated proofs set an

algebraic inconsistency, a sub-case of the condition avoided by Item 3 of Defini-
tion 13, thus enabling an attack. In more detail, given a Φder

ext -forgery (c, x, y), π
and let ((c, x, y′), π′) ∈ Qsim we can define a new Φrnd

ext -forgery (c∗, x∗, y∗), π∗

where c∗ = (π′ − π), x∗ = RO(c∗) and π∗ = π−π′

x∗−x and y∗ = y−y′

x∗−x . We can prove
that the verification equation holds noticing that (π−π′)(s−x) = [y − y′]1 and
by simple algebraic manipulations.
Proof (of Theorem 1). We stress that A is algebraic (cf. Definition 1), there-
fore for each group element output it additionally attaches a representation r
of such a group element with respect to all the elements seen during the ex-
periment (included elements in coms). In particular, we assume that for each
query (x, aux) to the oracle S1 we can parse the value aux as (r, aux′) and r
is a valid representation for x.c. Similarly, for the queries (s, aux) to S2, aux
includes a valid representation for all the group elements gi encoded in s, i.e.
such that gc(gi, s) = 1. Together with its forgery, the algebraic adversary en-
codes a polynomial h(X) in auxϕ, and stores in auxE two representation vectors
rc∗ and rπ∗ for the two group elements c∗ and π∗. We can parse the vectors
rτ := fτ∥cτ∥oτ for τ ∈ {c∗, π∗} where fτ is the vector of coefficients associated
to group elements ek, cτ is the vector of coefficients associated to group elements
coms = ([ci]1)i∈[Qc], and oτ is the vector of coefficients associated to the group
elements of the simulated proofs proofs. Namely, for τ ∈ {c∗, π∗} we have:

τ = ⟨fτ , ek⟩+ ⟨cτ , coms⟩+ ⟨oτ , proofs⟩.

We can assume w.l.g. that all the simulation queries and the forgery of the adver-
sary A agree with the policy ΦD, as otherwise the adversary would automatically
lose the experiment. We assume that f i,j = 0,∀i, j, i.e., the adversary asks sim-
ulation queries on commitments that are a linear combination of coms only: this
is also w.l.g. as we briefly show below. Given a commitement ci,j = xi,j .c, whose
representation is ri,j = f i,j∥ci,j , the adversary could compute a proof πi,j for
the point xj and the evaluation value y as follows:

1. let y′ = fi,j(xj), A computes the commitment c′ ← Com(ck, fi,j(X)), and
the “honest” proof π′ for (c′, xj , y′)

2. asks the simulation oracle to provide a proof π̃ for the instance (c−c′, xj , y−
y′) with representation 0∥ci,j

3. recombines the proof πi,j = π′ + π̃

We define our extractor to be the canonical extractor that returns the polyno-
mial f(X) ← ⟨f c∗ , (1, X, . . . , Xd)⟩. We start by proving that for any algebraic
adversary A whose forgery satisfies the predicate Φder

ext , there exists an algebraic
adversary B whose forgery satisfies the predicate Φrnd

ext . Let {Φ′
D}D be the family

of policies defined exactly as Φs-adpt
evl with the difference that the extracion policy

Φext is equal to Φrnd
ext (i.e., there is no logical disjunction with Φder

ext).
Lemma 3. For any algebraic adversary A there is an algebraic adversary B :

AdvΦD-se
CPevl,A,S,E(λ) = AdvΦ′

D-se
CPevl,B,S,E(λ)

16 A. Faonio et al.

Proof. First, we notice that once we fix a commitment c, a point x, and a value y,
there is a unique proof π that can satisfy the KZG verification equation. Thus,
the predicate Φder

ext can be simplified as requiring that an adversary outputs a
valid proof π∗ and a value y∗ such that ∃((c∗, x∗, y′), ·, π) ∈ Qsim and y∗ ̸= y′.

The reduction B internally runs A forwarding all the simulation queries,
up to the forgery (x∗, π∗), where x

∗ = (c∗, x∗, y∗). If the simulation queries
and/or the forgery of the adversary A do not agree with the policy ΦD, i.e.
A automatically loses its game, B aborts. Otherwise, it must be true that the
forgery of A either (i) satisfies the extraction predicate Φrnd

ext or (ii) satisfies the
extraction predicate Φder

ext . Both cases can be efficiently checked by B. In case (i)
B would simply forward the forgery of A retaining the same advantage of A.
Otherwise, before submitting the forgery, B retrieves from Qsim the statement
x := (c∗, x∗, y′), where y′ ̸= y∗, and the corresponding proof π output by S1.
Then B produces the forgery:

ĉ← π∗ − π, x̂← h(a), π̂ ← π − π∗

x̂− x∗ , ŷ ← y′ − y∗

x̂− x∗

which satisfies the verification equation (cf [24]), and the extraction predicate
Φrnd

ext when (ĉ, h, a) ∈ QRO. ⊓⊔

Thanks to Lemma 3 we can assume that the forgery of A satisfies the extraction
predicate Φrnd

ext . We let H0 be the ExpΦD-se
A,S,E (λ) experiment, and we denote by ϵi

the advantage of A to win Hi, i.e. ϵi := Pr[Hi = 1].

Hybrid H1. Recall that D is witness samplable, thus according to Definition 3
there exists a PPT algorithm D̃ associated with the sampler D. The hybrid
experiment H1 is identical to the previous one, but the group elements in coms
are “sampled at exponent”, i.e. we use D̃ to generate the field elements γ, and
we let coms← [γ]1; we also add γ to stS . By the witness sampleability of D, H0
and H1 are perfectly indistinguishable, thus ϵ1 = ϵ0.

Hybrid H2. In this hybrid, we change the way we generate the SRS srs and
the way in which S1 simulates the proofs. Let

(
(G1,G2,GT , e), [1]1 , [1]2

)
←$

GroupGen(1λ), sample s ←$ F and compute
[
s, . . . , sD+d

]
1 , [1, s]2, where D ←

Qx + 1. Let xr ←$ F, and let p(X) be the vanishing polynomial in Qx ∪ {xr},
namelyp(X) := (X − xr)

∏
x∈Qx

(X − x). Let also pj(X) := p(X)(X − xj)−1, for
j ∈ [Qx]. In H2 we have that:

– ppG := ((G1,G2,GT , e), [p(s)]1 , [1]2),
– srs := (ek, vk), where ek←

[
p(s), p(s)s, . . . , p(s)sd

]
1 and vk← [1, s]2,

– stS :=
[
1, s, . . . , sD+d

]
1 , [1, s]2, γ.

Upon a query of the form (x = (c, xj , yk), aux = (rc, aux′)) to S1, the latter
outputs the proof π ← [(⟨rc, γ⟩ − yk) · pj(s)]1, and updates Qsim accordingly.

We now show that H1 ≡ H2, i.e., the view offered to the adversary A is
identically distributed in the two experiments.

Lemma 4. ϵ2 = ϵ1.

From PIOPs to Non-malleable zkSNARKs 17

Proof. Notice that in H2 we sample from GroupGen the description of the group,
and then we set the generator of G1 to [p(s)]1 which, thanks to the random root
xr, is distributed uniformly at random even given the value s. It is not hard to
verify that the simulated proofs generated by the hybrid H2 pass the verification
equations, in fact, we are assuming that queried commitment c are of the form
⟨rc, coms⟩. Additionally, since the proofs are uniquely determined given the SRS
and the statements, the simulated proofs created in H2 are distributed as the
simulated proofs generated by the simulator S1 in H1. Thus the advantage of A
is the same in the two experiments. ⊓⊔

Given an algebraic adversary A we can define a new adversary, Ac, that we
call the core adversary. Whenever the adversary A outputs a group element g it
provides a representation vector rg := fg∥cg∥og for g such that:

g = ⟨fg, ek⟩+ ⟨cg, coms⟩+ ⟨og, proofs⟩.

Ac runs internally A and forwards all the queries and answers from A to its
simulation oracle. However, the way of simulating RO queries must ensure to
not alter the result of the extractor policy, i.e. the “hash-check” for x∗. This is
why we cannot simply forward the queries of A to the random oracle. Therefore,
we keep track of the queries made by A in the list QRO,A and the list of queries
made by the core adversary in QRO. More in detail, when A queries the RO with
(s, aux), the adversary Ac makes a “core” RO query (sc, auxc) such that:

1. Let s be parsed as (gi)i∈[k] (the group elements in s whose representations
rgi

:= fgi
∥cgi
∥ogi

are in aux) and a string s̃. Notice, since the adversary is
algebraic we can un-ambiguously parse s as such.

2. For each i, Ac computes the group elements g′
i = gi − ⟨fgi

, ek⟩. Ac encodes
into the string s′ the group elements (gi, g′

i)i∈[k].
3. Ac queries the RO with (sc, auxc), where sc := s′∥s̃, and auxc contains the

representations of all the group elements in s′ and the same function h
encoded in aux. Finally, it forwards the output to A, i.e. it adds (s, aux, a)
to QRO,A, and adds (s, sc) to (the initially empty) Qs.

Eventually, A outputs as forgery a string s and the tuple (c′, x′, y′, π′), together
with representation vectors rc′ and rπ′ . Let f(X) := ⟨f c′ , (1, X, . . . , Xd)⟩, y :=
f(x′), and q(X) be such that q(X)(X − x′) = f(X)− y. Let f q be the vector of
the coefficients of q(X), namely q(X) := ⟨f q, (1, X, . . . , Xd)⟩. The core adversary
Ac returns for its forgery the string sc such that (s, sc) ∈ Qs, and the tuple
(c∗, x′, y∗, π∗), where y∗ ← y′ − f(x′) and:

c∗ ← c′ − [f(s)p(s)]1︸ ︷︷ ︸
Com(ck,f(X))

, π∗ ← π′ − [q(s)p(s)]1︸ ︷︷ ︸
Com(ck,q(X))

inserting into auxΦ the (correct) algebraic representations (0∥cc′∥oc′) for c∗ and
((fπ′ − f q)∥cπ′∥oπ′) for π∗.
Hybrid H3. This hybrid is exactly the same of H2 but instead of running the
experiment with the adversary A we run it with the core adversary Ac.

18 A. Faonio et al.

Lemma 5. ϵ3 = ϵ2.

Proof. First, by construction, it is easy to verify that Ac is algebraic. Thus we
need to show that the forgery of A is valid if and only if the forgery of Ac is
valid. By the verification equation of the forgery of Ac, we have:

e(c∗ − [y∗]1 , [1]2)− e(π∗, [s− x∗]2) =
e(c′ − [f(s)p(s)]1 − [y′ − f(x′)]1 , [1]2)− e(π′ − [q(s)p(s)]1 , [s− x∗]2) =
e(c′ − [y′]1 , [1]2)− e(π′, [s− x′]2)− [f(s)p(s)− f(x′)− q(s)p(s)(s− x∗)]T =
e(c′ − [y′]1 , [1]2)− e(π′, [s− x′]2),

where the last equation holds since q(X)(X −x′) = (f(X)− f(x′)) and x∗ = x′.
Finally, notice that a forgery is valid for A if it provides a string s that satisfies
the “hash check” of Φext. We have that there exist s, aux, a, and h(X) such that:
(i) gc(c∗, s) = 1, (ii) gh(h, aux) = 1, (iii) (s, aux, a) ∈ QRO,A, and (iv) x∗ = h(a)
for the forgery of A. The way Ac simulates the RO queries ensures that for the
query s of A to the RO, the core adversary sent the “core” RO query sc that
encodes both c′ and c∗, thus we have that (i) gc(c∗, sc) = 1, (ii) gh(h, auxc) = 1,
(iii) (sc, auxc, a) ∈ QRO, and (iv) x∗ = h(a) for the forgery of Ac. ⊓⊔

Notice that if we run the canonical extractor on the outputs of the core
adversary Ac, the extractor sets the extracted witness to be the zero polynomial.

Hybrid H4. The hybrid H4 additionally checks that fπ∗ ̸= 0 ∨ cπ∗ ̸= 0, and if
the condition holds the adversary Ac loses the game.

Lemma 6. ϵ3 ≤ ϵ4 + ϵ(Qx+d+1)-DL

Proof. Recall that from the definition of the experiment, upon a query (x, aux)
from Ac to the simulation oracle of the form x = (c, xj , yk) and aux = r where
c = ⟨r, coms⟩, the adversary receives the proof [πr,j,k(s)]1 where:

πr,j,k(X) := (⟨r, (γi)i⟩ − yk)pj(X).

Consider the following polynomials:

c∗(X) :=
∑

i∈[Qc]

cc∗,i · γip(X) +
∑
r,j,k

oc∗,r,j,k · πr,j,k(X)

π∗(X) :=
∑

i∈[Qc]

cπ∗,i · γip(X) +
∑
r,j,k

oπ∗,r,j,k · πr,j,k(X) +
∑

i∈[d+1]

fπ∗,iX
i−1p(X)

v(X) := c∗(X)− y∗p(X)− (X − x∗)π∗(X)

By the guarantees of the AGM, we have c∗ = [c∗(s)]1 and π∗ = [π∗(s)]1, more-
over, if the verification equation is satisfied by the forgery of Ac, then v(s) = 0.

Next, we show that when the forgery of the adversary is valid the probability
of fπ∗ ̸= 0 or cπ∗ ̸= 0 is bounded by ϵ(Qx+d+1)-DL. First, notice that if the
verification equation for Ac holds then the polynomial v(X) must be equivalent

From PIOPs to Non-malleable zkSNARKs 19

to the zero polynomial with overwhelming probability. In fact, v(s) = 0 when the
verification equation holds; if v(X) is not the zero polynomial then, by Lemma 1,
we can reduce Ac to an adversary to the (Qx + d + 1)-DL assumption. Thus:

c∗(X)− y∗p(X)− (X − x∗)π∗(X) = v(X) = 0. (1)

By the guarantees of the AGM, the polynomial π∗(X) is a linear combination
of elements that depend on Xi−1p(X) for i ∈ [d + 1] and pj(X) for j ∈ [Qx].
However, when the verification equation holds, the degree of π∗(X) must be
strictly less than the degree of p(X), because, by Eq. (1), v(X) would contain a
non-zero coefficient of degree Qx+d+1 which in particular implies that v(X) ̸≡ 0.
Then it must be the case that the forged proof π∗(s) is a linear combination of
the simulated proofs only, thus both fπ∗ and cπ∗ are null. ⊓⊔

The representation of c∗ and π∗ computed by the adversary (possibly) depends
on the elements πr,j,k (i.e. the proof for the linear combination r of the elements
of coms with evaluation point xj and evaluation value yk) of proofs. However, it is
much more convenient to give a representation that depends on the polynomials
pj(X). This motivates the definition of our next hybrid.
Hybrid H5. The hybrid H5 finds coefficients o′′

τ , for τ ∈ {c∗, π∗} such that:

⟨oτ , proofs⟩ = ⟨o′′
τ , ([pj(s)]1)j⟩. (2)

Moreover, if oc∗ ̸= 0 but o′′
c∗ = 0 the adversary loses the game.

Lemma 7. ϵ4 ≤ ϵ5 + ϵAff-MDH

Proof. We begin by showing that the hybrid can compute such alternative rep-
resentations efficiently. We proceed in steps. Let us parse the simulated proofs
proofs := (πj,ℓ)j,ℓ such that πj,ℓ is the ℓ-th simulated proof obtained by S1 on a
query involving the j-th point xj , i.e., ((xj , ĉj,ℓ, yj,ℓ), auxj,ℓ). Also, let cj,ℓ be the
algebraic representation for the group element ĉj,ℓ in auxj,ℓ. For every j ∈ [Qx],
we define Rj as the Qc ×Qc matrix whose ℓ-th column is cj,ℓ. By construction
of S1 in this hybrid we have that for every j ∈ [Qx] it holds

πj,ℓ :=
[
(c⊤

j,ℓ · γ − yj,ℓ) pj(s)
]

1

and thus πj :=
[
(R⊤

j γ − yj)pj(s)
]

1 with yj := (yj,ℓ)ℓ. Without loss of general-
ity, we assume that for each xj the adversary makes the maximum number of
simulation queries (i.e., ℓ ∈ [Qc]); therefore Rj is a full rank matrix (this fol-
lows from the fact that the simulation queries of the adversary satisfy the policy
Φsim, and in particular the algebraic consistency of the policy, see Item 3). Given
any vector oτ with τ ∈ {c∗, π∗}, its m-th entry oτ,m corresponds to the m-th
simulated proof in proofs. Therefore, similarly to above, we denote by oτ,j,ℓ the
entry corresponding to proof πj,ℓ and we define oτ,j := (oτ,j,ℓ)ℓ. Then, for every
j ∈ [Qx] we define o′

τ,j ← Rj ·oτ,j and π′
j ← (R⊤

j)−1 ·πj , from which we derive:

∀τ
∑

j

⟨o′
τ,j , π′

j⟩ =
∑

j

⟨Rj · oτ,j , (R⊤
j)−1 · πj⟩ =

∑
j

⟨oτ,j , πj⟩

20 A. Faonio et al.

which is equal to ⟨oτ , proofs⟩, up to a permutation of the indices j.
For all j ∈ [Qx] let zj := (R⊤

j)−1 · yj , and note that π′
j = [(γ − zj)pj(s)]1

namely π′
j,i is a valid proof for the instance (ci, xj , zj,i) w.r.t. the simulated SRS.

H5 computes o′′
τ,j ← ⟨o′

τ,j , (γ−zj)⟩, and o′′
τ ← (o′′

τ,j)j∈[Qx]. By construction:∑
j∈[Qx]

⟨o′
τ,j , π′

j⟩ =
∑

j∈[Qx]

o′′
τ,j · [pj(s)]1 .

which proves the first part of the lemma, i.e., computing o′′
τ,j satisfying Eq. (2).

In what follows, we prove that if the event that H5 outputs 0 but H4 would
output 1, namely that all the conditions of H4 hold but oc∗ ̸= 0∧o′′

c∗ = 0, then we
can break the Aff-MDH assumption. First, notice that for any j oc∗,j ̸= 0 implies
that o′

c∗,j ̸= 0, because the linear transformation applied to compute o′
c∗,j is full

rank. Second, take an index j∗ such that oc∗,j∗ ̸= 0 and set A ← o′
c∗,j∗ and

ζ ← ⟨zj∗ , o′
c∗,j∗⟩. By the above definition of the values o′′

c∗,j∗ and our assumption
that the “bad event” of this hybrid is o′′

c∗ = 0, we have that:

⟨A, [γ]1⟩ = [⟨o′
c∗,j∗ , (γ − zj∗)⟩︸ ︷︷ ︸

o′′
c∗,j∗ =0

]1 + [⟨o′
c∗,j∗ , zj∗⟩︸ ︷︷ ︸

ζ

]1 = [ζ]1 .

The reduction B to theD-Aff-MDH Assumption takes as input a distribution [γ]1
and runs the experiment as in H4 (it perfectly emulates H4, and in particular
the simulation oracle, because it knows the trapdoor s “at the exponent”). Then
B computes the coefficients (Ai)i∈[Qc] and the value ζ as described above, which
is a valid D-Aff-MDH solution. ⊓⊔

Hybrid H6. The hybrid H6 additionally checks that rc∗ ̸= 0, and if the condi-
tion holds the adversary Ac loses the game.

Lemma 8. ϵ5 ≤ ϵ6 + ϵAff-MDH + 2ϵ(Qx+1+d)-DL + poly(λ) deg(h)
q

Proof. We bound the probability that the adversary loses in H6 but not in H5,
namely, the probability that r∗

c ̸= 0 but the conditions of H5 hold. We show
a reduction B to the Aff-MDH when this event happens. First of all, we can
assume that the core adversary outputs coefficients f c∗ = fπ∗ = cπ∗ = 0, i.e.
the adversary only makes use of previous commitments ci ∈ coms and simulated
proofs πr,j,k ∈ proofs to represent c∗, and only uses the simulated proofs to
represent the proof π∗. The reduction B takes as input a distribution [γ]1 and
runs the experiment as in H5. B aborts if the forgery (c∗, x∗, y∗, π∗) returned by
the adversary is not valid (i.e. either the extraction predicate or the verification
equation is not satisfied) or rc∗ = 0. Otherwise, we have that:

e(c∗ − [p(s)y∗]1 , [1]2) = e(π∗, [s− x∗]2) and rc∗ ̸= 0

where rc∗ ̸= 0 if oc∗ ̸= 0 ∨ cc∗ ̸= 0. We can then rewrite the commitment and
the proof of forgery of the core adversary as a function of the coefficients o′′

c∗

From PIOPs to Non-malleable zkSNARKs 21

and o′′
π∗ (as computed in the H5):

c∗ :=
∑

i∈[Qc]

cc∗,i [γip(s)]1 +
∑

j∈[Qx]

o′′
c∗,j [pj(s)]1 , π∗ :=

∑
j∈[Qx]

o′′
w∗,j [pj(s)]1

Since the verification equation is satisfied, and plugging in the AGM represen-
tations we have:∑

i∈[Qc]

cc∗,iγip(s) +
∑

j∈[Qx]

o′′
c∗,jpj(s)− p(s)y∗ =

∑
j∈[Qx]

o′′
π∗,jpj(s)(s− x∗) (3)

For all j ∈ [Qx], we define δj := xj − x∗. We can rewrite the r.h.s. of Eq. (3) as:∑
j∈[Qx]

o′′
π∗,jpj(s)(s− x∗) =

∑
j∈[Qx]

o′′
π∗,j(p(s) + pj(s)δj).

In Eq. (3), we group all the terms that depend on p(s) on the left side, and we
move all the terms that depend on pj(s) to the right side, thus obtaining:(∑

i∈[Qc]

cc∗,iγi −
∑

j∈[Qx]

o′′
w∗,j − y∗

)
︸ ︷︷ ︸

A

p(s) =
∑

j∈[Qx]

(
o′′

w∗,jδj − o′′
c∗,j

)
︸ ︷︷ ︸

Bj

pj(s) (4)

Let f(X) := Ap(X) −
∑

j∈[Qx] Bjpj(X). Notice that because of Eq. (4) we
have f(s) = 0, thus we can assume f(X) ≡ 0, as otherwise we can reduce, by
Lemma 1, to the (Qx + d + 1)-DL assumption. It must be the case that both∑

j∈[Qx] Bjpj(s) = 0 and A = 0 because the degree of p(X) and of pj(X) for
any j are different. Moreover, the polynomials pj(X) are linearly independent,
namely the only linear combination

∑
j ajpj(X) = 0 is the trivial one where the

coefficients aj = 014, thus Bj = 0 for all j. We have that o′′
w∗,jδj − o′′

c∗,j = 0,∀j.

Thus we can rewrite the coefficients o′′
π∗,j = o′′

c∗,j

δj
, ∀j. Since A must be 0:

∑
i∈[Qc]

cc∗,iγi −
∑

j∈[Qx]

o′′
c∗,j

δj
− y∗ = 0. (5)

B can plug the definition of the coefficients o′′
c∗,j in Eq. (5) and derive:

0 =
∑

i∈[Qc]

cc∗,iγi −
∑
i,j

o′
c∗,i,j(γi−zji

)
δj

− y∗

=
∑

i∈[Qc]

(cc∗,i −
∑

j

o′
c∗,i,j

δj
)γi +

∑
i,j

o′
c∗,i,jzji

δj
− y∗.

14 To see this, ∀xj ∈ Qx we have that
∑

j′ aj′ pj′ (xj) = ajpj(xj) since pj(xj) ̸= 0 and
pj′ (xj) = 0 for j ̸= j′, and ajpj(xj) = 0 iff aj = 0

22 A. Faonio et al.

Above, in the last step we have grouped the terms depending on γi. In particular,
the last equation shows that B can make a forgery in the Aff-MDH game since it
knows z := y∗ −

∑
i,j

o′
c∗,i,jzji

δj
and coefficients Ai := cc∗,i −

∑
j

o′
c∗,i,j

δj
such that:∑

i∈[Qc] Ai [γi]1 = [z]1. For this to be a valid solution in the Aff-MDH game, we
need the existence of at least an index i such that Ai ̸= 0. We show that this
occurs with all but negligible probability, i.e., Pr[∃i ∈ [Qc] : Ai ̸= 0] ≥ 1−negl(λ).

To this end, consider an arbitrary µ ∈ [Qc], then we have Pr[∀i ∈ [Qc] : Ai =
0] ≤ Pr[Aµ = 0]. Thus, for any µ, we have:

Pr[∃i ∈ [Qc] : Ai ̸= 0] = 1− Pr[∀i ∈ [Qc] : Ai = 0] ≥ 1− Pr[Aµ = 0].

Below, we argue that Pr[Aµ = 0] is negligible based on the randomness of x∗

which is chosen by the random oracle after defining Aµ, and we make use of

the assumption that rc∗ ̸= 0. We claim that the value Aµ = cc∗
, µ −

∑
j

o′
c∗
, j,µ

(x∗−xj)
can be fixed before the random oracle query x

∗ is made. To this end, we start
by showing that o′

c∗,j does not depend on x∗. Let B(j) ⊆ [Qc] be the subset
of indices of the simulation queries that involve xj and that occurred before
the random oracle query that returned x∗. We observe that for every η ∈ B(j)
it must be oc∗,j,η = 0 since the simulated proof πj,η is not in the view of the
adversary. Therefore:

o′
c∗,j,i =

∑
η∈[Qc]

Rj,η,i · oc∗,j,η =
∑

η∈B(j)

Rj,η,i · oc∗,j,η

and observe that all the rows of Rj belonging to B(j) can all be defined before
x∗ is sampled. Hence, we have that Aµ depends on the values cc∗ , x∗, {xj}j , and
oc∗,j which can all be defined before the random oracle query x

∗ is made.
Now, we bound Pr[Aµ = 0]. Recall that, since the extractor policy Φext holds

true, we have that x∗ = h(a) and (s, aux, a) ∈ QRO where gc(c∗, s) = 1 and the
function h is the polynomial encoded in auxϕ: the adversary may want to encode
up to n ∈ poly(λ) different polynomials hi into auxϕ to maximize its advantage,
and the extractor policy does not impose any restriction on this. Moreover, by the
AGM, since Ac sends a query s (where c∗ is encoded in s) to the random oracle
it also defines coefficients for c∗ before the value a, and therefore x∗ = h(a), is
defined. Also, it is not hard to see that the representation vector of c∗ defined
by Ac when querying the random oracle must be the same representation vector
used for the forgery. As otherwise we would break the (Qx+d+1)-DL assumption.
Thus the coefficients cc∗ and o′

c∗,j are defined by the adversary before seeing the
random value x∗. Notice that, once the coefficients cc∗ and o′

c∗,j are fixed, the
coefficient Aµ can be seen as function of x∗ ∈ Zq, i.e. Aµ = Aµ(x∗), where:

Aµ(X) = cc∗,µ +
∑

j

o′
c∗,j,µ

X−xj
=

cc∗,µ

∏
j(X − xj) +

∑
j(o′

c∗,j,µ

∏
j′ ̸=j(xj′ −X))∏

j X − xj
.

Notice that Aµ(X)(
∏

j(X−xj)) vanishes in at most Qx points in F\Qx and van-
ishes in the set of points Qx. Let R be the set of the roots of such a polynomial,

From PIOPs to Non-malleable zkSNARKs 23

since ∀i ∈ [n], hi is defined before x∗ is computed, and by union bound:

Pr[∃i : hi(RO(s)) ∈ R] ≤
∑
r∈R

Pr[∃i : hi(RO(s)) = r] ≤ nQx
maxi deg(hi)

q

for each string s that encodes c∗, To conclude, we notice that A can submit
at most QRO queries to the RO with strings encoding c∗, say s1, . . . sQRO . Thus
the probability that there exist i ∈ [n], j ∈ [QRO] such that hi(RO(sj)) ∈ R is
bounded by nQROQx

maxi deg(hi)
q . ⊓⊔

Hybrid H7. The hybrid H7 additionally checks that y∗ ̸= 0, and if the condition
holds the adversary Ac loses the game. For space reasons, we give in [24] the
proof of the following lemma.

Lemma 9. ϵ6 ≤ ϵ7 + ϵ(Qx+1+d)-DL + poly(λ) deg(h)
q

Finally, we have that the probability that the adversary wins in H7 is null,
namely ϵ7 = 0. Indeed, the canonical extractor E outputs the 0 polynomial,
moreover because of the condition introduced in H6, we have c∗ = [0]1, and
because of the condition introduced in H7 we have y∗ = 0, thus the witness
extracted is valid for the instance x∗ = (c∗ = [0]1 , x∗, y∗ = 0). ⊓⊔

5 Simulation-Extractable Universal zkSNARKs

We provide a technical overview of our compiler for universal SNARKs based on
polynomial IOPs. Rather than delving into extensive formal definitions and anal-
ysis, we aim to present this section in a more informal (and also more compact)
manner and refer the reader to [24] for all the details.

We define an indexed relation R verifying tuple (pp, i,x,w). We say that w
is a witness to the instance x being in the relation defined by the pp and index
i when (pp, i,x,w) ∈ R. Briefly, we say that a NIZK NIZK is universal if there
exists a deterministic algorithm Derive that takes as input a (universal) srs and
an index i, and outputs a specialized verification key for such an index. We say
NIZK is a SNARK if the verification keys and the proofs are succinct. We say
that a SNARK is universal if there exists a deterministic algorithm Derive that
takes as input a (universal) srs and an index i, and outputs a specialized and
succinct verification key for such an index.

Polynomial Interactive Oracle Proofs. A Polynomial (Holographic) IOP
[17] consists of an r-rounds interaction between a prover P, sending oracle poly-
nomials pi (and additional messages πi), and a verifier V, who sends uniformly
random messages ρi; finally, V outputs a set of polynomial identities to be
checked on the prover’s polynomials of the form (G(k), v

(k)
1 , . . . , v

(k)
n), that is

satisfied if and only if F (k)(X) ≡ 0 where:

F (k)(X) := G(k)(X, {pi(v(k)
i (X))}i, {πi}i). (6)

24 A. Faonio et al.

In our work, we use PIOPs with two slight refinements.15 The first one, called
(non-adaptive) algebraic verifiers, says that the above polynomials v

(k)
j do not

depend on the instance and can be expressed as polynomial functions of V’s
random coins, i.e., v

(k)
j (X) = ṽ

(k)
j (X, ρ) for some instance-independent ṽ

(k)
j . The

second one is a more restrictive16 concept of soundness called state-restoration
straight-line knowledge soundness. This notion combines the notion of state-
restoration soundness from [9] with the concept of straight-line extractability
from [17]. For further clarification, the malicious prover engages in a game with
the honest verifier and has the additional ability to roll back the interaction
with the verifier to a previous state. At some point, the interaction may reach
a final state. The prover is considered successful if it produces an accepting
transcript, while the extractor, given such a transcript that includes all the
oracle polynomials, fails to produce a valid witness. Similarly to previous work,
we use the notion of bounded zero-knowledge of [20,17].

Compilation-safe PIOP. We must incorporate an additional element into the
classical recipe. As stated in the introduction, mix-and-match attacks on com-
piled protocols, involving two or more independent sub-protocols, are unavoid-
able. Therefore, we identify a structural restriction on the PIOP that prevents
such problematic scenarios. The restriction is easy to state and easy to meet:

Definition 15 (Compiler-safe PIOP). A PIOP PIOP is compiler-safe if
for any i,x and ρ := ρ1, . . . , ρr−1 and any tuple (G(k), v

(k)
1 , . . . , v

(k)
n)j∈[ne] ←

V(F, i,x, ρ) there exists an index k such that for all j the polynomials v
(k)
j are

of degree at least one.

The Compilation-Ready CP-SNARK. Instead of compiling directly a PIOP
through a polynomial commitment in its simplest form (i.e., an evaluation proof
for each polynomial queried in the PIOP), we take an alternative road similar
to [17]. Namely, we assume the existence of a CP-SNARK that, w.r.t. a tuple
of commitments (cj)j∈[n], is capable of proving either knowledge of polynomials
(pj)j∈[n] opening these commitments or that the committed polynomials sat-
isfy a statement like the one in Eq. (6) (i.e., that the oracles committed in
(cj)j∈[n] would make the PIOP verifier accept)17. We call this building block
a compilation-ready CP-SNARK (CP, shortly), and informally we refer to the
former type of statements as “proof of knowledge” and to the latter as “PIOP
verifier”. While our compilation strategy follows previous work, our novel con-
tribution is to properly define the properties that this CP-SNARK must satisfy
in order to argue that the result of the compiler is simulation-extractable, and
not only knowledge-sound. These properties are mainly three. The first one is
15 All the PIOPs that we are aware of satisfy both these properties.
16 The (classical) notion of knowledge extractability implies state-restoration soundness

through complexity leveraging [9].
17 The reason to assume a single CP-SNARK for both kinds of statements has to do

with the security guarantees when we compose protocols in the AGM [1].

From PIOPs to Non-malleable zkSNARKs 25

that the CP prover can “append” arbitrary messages to the proven instances.
Looking ahead to our compiler, this feature is used so that the prover and the
verifier can append the (hash of the) protocol’s transcript to the proven instance,
in such a way that a CP proof acts as a signature of knowledge for the transcript
[19]. Note that this hashing of the transcript already happens in the standard
PIOP compiler due to the application of the Fiat-Shamir transform; here, we
highlight it explicitly as it plays an important role in the proof of simulation
extractability. The second property, referred to as the commitment simulator for
PIOP, intuitively requires the existence of a strategy to simulate commitments
such that: adding them to the view preserves zero-knowledge, and the simula-
tion respects the “commitment check” constraint in Item 2 of Definition 13. This
is a very mild property that is trivially satisfied when employing hiding com-
mitments, and is met by existing simulation strategies based on deterministic
commitments to randomized polynomials [28,17]. The third property of CP is
that it must be simulation-extractable w.r.t. a policy Φ̂ such that:

– The adversary can ask simulated proofs for “PIOP verifier” statements where
all the v

(k)
j of Eq. (6) are fixed at the beginning of the experiment.

– If the forgery of the adversary is a “proof of knowledge” for commitments c∗,
then the adversary must return as auxiliary output yet another forgery for a
“PIOP verifier” statement such that: (1) All the commitments c∗ appear in
the second forgery, (2) the second forgery is valid according to the extractor
policy described next.

– If the forgery of the adversary is for the “PIOP verifier” statement, then the
statement-proof pair returned by the adversary must not be in the list of
simulated statements-proofs, and (similarly to Definition 15) there exists a
k such that for all j the polynomial v

(k)
j has degree at least 1.

Theorem 2 (Informal). Let PIOP be a PIOP for an indexed relation R
that is state-restoration straight-line extractable, bounded zero-knowledge, and
compiler-safe (cf. Definition 15). Let CP be a compilation-ready CP-SNARK for
PIOP. There exists a compiler that produces a simulation-extractable Universal
zkSNARK for R.

We follow the classical compilation strategy where: for each of the r rounds, the
zkSNARK prover sends commitments of the PIOP oracle polynomials (along
with a proof of knowledge) and then computes the PIOP verifier’s challenges
using Fiat-Shamir; in the last round, the prover sends a CP proof that the
PIOP verifier accepts, i.e., Eq. (6) holds w.r.t. all the commitments sent earlier.
Notably, this CP proof is produced using the statement and the hash of the
transcript as “message” for the signature of knowledge.

We briefly discuss how the properties of PIOP and CP play a role in the secu-
rity of the compiled zkSNARK Π. We recall that in the simulation-extractability
experiment, we have an adversaryA who makes simulation queries for statements
of its choice and eventually comes up with a forgery, which is a statement-proof
that is new and valid. The goal is to show that for such an adversary there is an

26 A. Faonio et al.

extractor that outputs a valid witness with overwhelming probability. Roughly
speaking, we build this extractor by first extracting the committed oracle poly-
nomials from the CP “proof of knowledge” in the random oracle query of A in
each round,18 and then by running the PIOP extractor to obtain the witness.

For this extraction strategy to work, we need two conditions: (A) The “proof
of knowledge” extraction must be valid. (B) The zkSNARK extractor feeds the
PIOP extractor with polynomials that pass the PIOP verification equations. A
technicality about relying on CP extraction for (A) and (B) is that we actually
have to make a reduction to its policy-based simulation-extractability. In particu-
lar, this means that we have to turn A into CP adversaries that comply with the
policy Φ̂. To obtain (A), we use the second property of Φ̂ mentioned above, which
ensures a valid extraction if the adversary later provides a valid proof of polyno-
mial evaluation. This is however the case for us since a successful adversary must
provide such proof. For (B), we rely on the following observations. If A produces
a forgery for a new statement of Π then the CP proof (aka signature of knowl-
edge) must use a new message, and thus we can build a CP adversary returning
a new statement-proof pair. If A produces a forgery for a statement queried to
the simulation oracle, then by strong simulation extractability the proof must be
new, which means that: either the commitments in the transcript are different,
or the commitments are all the same but the “PIOP verifier” proof is different.
In the former case, we get a different transcript, which yields a CP forgery with
a new message, as in the previous case. In the latter case, the transcript is the
same and we get a CP forgery with the same message but fresh proof. Notably,
in all the cases, the CP forgeries respect the degree-1 condition thanks to the
compiler-safe property of the PIOP. Finally, the reduction CP adversaries that
we build satisfy the first property of Φ̂ thanks to the algebraic verifier property
of PIOP, which allows us to precompute the instance-independent polynomials
ṽ

(k)
j , and to the programmability of the random oracle that allows us to presam-

ple the verifier’s challenges ρ, define v
(k)
j (X) = ṽ

(k)
j (X, ρ), and later program

the random oracle to use these coins ρ.

Compilation-ready CP-SNARK from KZG. To connect together Section 4
and the results of this section, we show a simple compilation-ready CP-SNARK
in the ROM based on batched KZG evaluation proofs. For a “PIOP verifier”
statement, the prover RO-hashes the instance and obtains a random point ξ, eval-
uates the polynomials v

(k)
j (ξ) for any j and outputs the evaluations pj(v(k)

j (ξ))
together with a batch evaluation proof for all of them. For a “proof of knowledge”
statement, the prover does not output an explicit proof element (we call this a
vacuous proof), and we rely on the AGM to argue its extractability. The idea is
that, for an algebraic adversary that produces an alleged commitment c and its
algebraic representation, we can find a way to open c, under some circumstances.
For example, consider the adversary that, during the simulation-extractability
experiment, hashes (i.e., makes a random oracle query) the commitment c, and

18 Note, this avoids rewinding, since extraction is performed in the same moment when
the adversary sends the proof of knowledge through a RO call.

From PIOPs to Non-malleable zkSNARKs 27

later includes c in a “PIOP verifier” instance. Then the algebraic representa-
tion of c returned at hashing time must coincide with the same polynomial
extracted at forgery time, otherwise one can break the standard binding of the
commitment. Crucially, this scenario fits exactly the second part of the policy
Φ̂. As for the third part of the policy, we notice that an attack similar to the
mix-and-match malleability attack mentioned in the introduction applies to our
compilation-ready CP-SNARK. For example, the adversary could ask a simu-
lation for an instance that tests two (fake) commitments on constant values
defined by the v

(k)
j , and then it can produce a forgery that includes one of the

commitments by copying part of the simulated proof. Intuitively, this is why we
require that the v

(k)
j have a degree at least 1: when evaluated on a fresh random

point ξ, a valid proof for pj(v(k)
j (ξ)) ensures that the prover knows pj .

Acknowledgements This work received funding from MESRI-BMBF French-
German joint project named PROPOLIS (ANR-20-CYAL-0004-01), the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation program under project PICOCRYPT (grant agreement
No. 101001283), and from the Spanish Government under projects PRODIGY
(TED2021-132464B-I00) and ESPADA (PID2022-142290OB-I00). The last two
projects are co-funded by European Union EIE, and NextGenerationEU/PRTR
funds.

References

1. M. Abdalla, M. Barbosa, J. Katz, J. Loss, and J. Xu. Algebraic adversaries in
the universal composability framework. In M. Tibouchi and H. Wang, editors,
ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 311–341. Springer,
Heidelberg, Dec. 2021.

2. B. Abdolmaleki, S. Ramacher, and D. Slamanig. Lift-and-shift: Obtaining simu-
lation extractable subversion and updatable SNARKs generically. In J. Ligatti,
X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages 1987–2005. ACM
Press, Nov. 2020.

3. S. Arora and S. Safra. Probabilistic checking of proofs; A new characterization of
NP. In 33rd FOCS, pages 2–13. IEEE Computer Society Press, Oct. 1992.

4. K. Baghery, M. Kohlweiss, J. Siim, and M. Volkhov. Another look at extraction and
randomization of groth’s zk-snark. In N. Borisov and C. Dı́az, editors, Financial
Cryptography and Data Security - 25th International Conference, FC 2021, Virtual
Event, March 1-5, 2021, Revised Selected Papers, Part I, volume 12674 of Lecture
Notes in Computer Science, pages 457–475. Springer, 2021.

5. M. Bellare, D. Hofheinz, and E. Kiltz. Subtleties in the definition of IND-CCA:
When and how should challenge decryption be disallowed? Journal of Cryptology,
28(1):29–48, Jan. 2015.

6. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable zero knowledge
with no trusted setup. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 701–732. Springer, Heidelberg, Aug. 2019.

28 A. Faonio et al.

7. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In R. Canetti and
J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108.
Springer, Heidelberg, Aug. 2013.

8. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
Aurora: Transparent succinct arguments for R1CS. In Y. Ishai and V. Rijmen, ed-
itors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

9. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In M. Hirt
and A. D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
31–60. Springer, Heidelberg, Oct. / Nov. 2016.

10. E. Ben-Sasson, L. Goldberg, S. Kopparty, and S. Saraf. DEEP-FRI: Sampling
outside the box improves soundness. In T. Vidick, editor, ITCS 2020, volume 151,
pages 5:1–5:32. LIPIcs, Jan. 2020.

11. D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin
and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–
73. Springer, Heidelberg, May 2004.

12. D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Report
2020/081, 2020. https://eprint.iacr.org/2020/081.

13. D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Halo infinite: Proof-carrying data
from additive polynomial commitments. In T. Malkin and C. Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 649–680, Virtual Event,
Aug. 2021. Springer, Heidelberg.

14. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

15. B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. Recursive proof composition from
accumulation schemes. In R. Pass and K. Pietrzak, editors, TCC 2020, Part II,
volume 12551 of LNCS, pages 1–18. Springer, Heidelberg, Nov. 2020.

16. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers.
In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 677–706. Springer, Heidelberg, May 2020.

17. M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodŕıguez. Lunar: A tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. In M. Tibouchi and H. Wang, editors, ASIACRYPT 2021, Part III,
volume 13092 of LNCS, pages 3–33. Springer, Heidelberg, Dec. 2021.

18. M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular design and com-
position of succinct zero-knowledge proofs. In L. Cavallaro, J. Kinder, X. Wang,
and J. Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, Nov. 2019.

19. M. Chase and A. Lysyanskaya. On signatures of knowledge. In C. Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 78–96. Springer, Heidelberg, Aug.
2006.

20. A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P. Ward. Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In A. Canteaut and
Y. Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–
768. Springer, Heidelberg, May 2020.

21. Q. Dao and P. Grubbs. Spartan and bulletproofs are simulation-extractable (for
free!). In C. Hazay and M. Stam, editors, EUROCRYPT 2023, Part II, volume
14005 of LNCS, pages 531–562. Springer, Heidelberg, Apr. 2023.

https://eprint.iacr.org/2020/081

From PIOPs to Non-malleable zkSNARKs 29

22. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryp-
tography in the presence of key leakage. In M. Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 613–631. Springer, Heidelberg, Dec. 2010.

23. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended ab-
stract). In 23rd ACM STOC, pages 542–552. ACM Press, May 1991.

24. A. Faonio, D. Fiore, M. Kohlweiss, L. Russo, and M. Zajac. From polynomial iop
and commitments to non-malleable zksnarks. Cryptology ePrint Archive, Paper
2023/569, 2023. https://eprint.iacr.org/2023/569.

25. S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability
of the Fiat-Shamir transform. In S. D. Galbraith and M. Nandi, editors, IN-
DOCRYPT 2012, volume 7668 of LNCS, pages 60–79. Springer, Heidelberg, Dec.
2012.

26. M. Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 152–168. Springer, Heidelberg, Aug. 2005.

27. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applica-
tions. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 33–62. Springer, Heidelberg, Aug. 2018.

28. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

29. C. Ganesh, H. Khoshakhlagh, M. Kohlweiss, A. Nitulescu, and M. Zajac. What
makes fiat-shamir zksnarks (updatable SRS) simulation extractable? In C. Galdi
and S. Jarecki, editors, Security and Cryptography for Networks, SCN 2022, volume
13409 of Lecture Notes in Computer Science, pages 735–760. Springer, 2022.

30. C. Ganesh, Y. Kondi, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi.
Witness-succinct universally-composable snarks. Cryptology ePrint Archive, Paper
2022/1618, 2022. https://eprint.iacr.org/2022/1618.

31. C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Fiat-shamir
bulletproofs are non-malleable (in the algebraic group model). In O. Dunkelman
and S. Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS,
pages 397–426. Springer, Heidelberg, May / June 2022.

32. S. Garg, A. Jain, and A. Sahai. Leakage-resilient zero knowledge. In P. Rogaway,
editor, CRYPTO 2011, volume 6841 of LNCS, pages 297–315. Springer, Heidelberg,
Aug. 2011.

33. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg,
May 2013.

34. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM
Press, May 1985.

35. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In
M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, Dec. 2010.

36. J. Groth. On the size of pairing-based non-interactive arguments. In M. Fischlin
and J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
305–326. Springer, Heidelberg, May 2016.

37. J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and uni-
versal common reference strings with applications to zk-SNARKs. In H. Shacham

https://eprint.iacr.org/2023/569
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1618

30 A. Faonio et al.

and A. Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
698–728. Springer, Heidelberg, Aug. 2018.

38. J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge
from simulation-extractable SNARKs. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 581–612. Springer, Hei-
delberg, Aug. 2017.

39. C. S. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces.
In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of
LNCS, pages 1–20. Springer, Heidelberg, Dec. 2013.

40. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to poly-
nomials and their applications. In M. Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 177–194. Springer, Heidelberg, Dec. 2010.

41. J. Lee. Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In K. Nissim and B. Waters, editors, TCC 2021, Part II,
volume 13043 of LNCS, pages 1–34. Springer, Heidelberg, Nov. 2021.

42. H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 169–189. Springer, Heidelberg, Mar. 2012.

43. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In
L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM CCS 2019, pages
2111–2128. ACM Press, Nov. 2019.

44. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updateable structured reference strings.
Cryptology ePrint Archive, Report 2019/099, 2019. https://eprint.iacr.org/2019/
099.

45. S. Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE
Computer Society Press, Nov. 1994.

46. C. Ràfols and A. Zapico. An algebraic framework for universal and updatable
SNARKs. In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part I, volume
12825 of LNCS, pages 774–804, Virtual Event, Aug. 2021. Springer, Heidelberg.

47. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer Society Press,
Oct. 1999.

48. A. Szepieniec. Polynomial IOPs for linear algebra relations. Cryptology ePrint
Archive, Report 2020/1022, 2020. https://eprint.iacr.org/2020/1022.

49. A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovratovich.
Aggregatable subvector commitments for stateless cryptocurrencies. In C. Galdi
and V. Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 45–64. Springer,
Heidelberg, Sept. 2020.

50. A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin.
Caulk: Lookup arguments in sublinear time. In H. Yin, A. Stavrou, C. Cremers,
and E. Shi, editors, ACM CCS 2022, pages 3121–3134. ACM Press, Nov. 2022.

https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2020/1022

	From Polynomial IOP and Commitments to Non-malleable zkSNARKs
	1 Introduction
	1.1 Our work
	1.2 Our techniques
	1.3 Related work
	1.4 Open problems

	2 Preliminaries
	3 Policy-based Simulation-Extractable NIZKs
	3.1 Policy-Based Simulation Extractability

	4 Simulation extractability of KZG in AGM
	5 Simulation-Extractable Universal zkSNARKs

