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Abstract—In this work, we give a complete characterization
of the ϵ-stable region in dynamic downlink random cellular
networks. The ϵ-stable region is the set of arrival rates such
that the proportion of unstable queues in the network is not
larger than ϵ. We derive upper and lower bounds as well as
an approximation of the critical arrival rate, which delimits
the ϵ-stable region. The developed model is based on stochastic
geometry and queuing theory to handle the interaction between
the transmit success probability and the queuing state evolution.
Extensive numerical simulations are provided to confirm the
tightness of the approximation.

Index Terms—Stochastic geometry, queuing theory, ϵ-stable
region, Gil-Pelaez Theorem.

I. INTRODUCTION

Stochastic geometry provides a mathematical framework
to analyze the performance of large scale wireless networks
by capturing the spatial randomness intrinsic to the wireless
systems including fading, shadowing, and power control [1], [2].
In the last decade, stochastic geometry has been combined with
various complex network models taking into account frequency
reuse, multiple antennas, multiple-tiers, or load-aware protocols,
to cite a few [2]–[5].

However, most of the literature relies on the assumption
that the transmitters are backlogged, i.e., the transmitters
always have packets to transmit in their buffer. This full
load assumption leads to pessimistic estimates of the system
performance. Since the real systems are subject to temporal
traffic variations and the signal sources generate packets
according to some stochastic process, the load-awareness is
essential for real-world performance assessment [3]. However,
the interaction between buffers, or queues, at each transmitter
makes the problem mathematically rather involved, because the
state of each queue depends on the state of all others queues.
The analysis remains however challenging due to the complex
interactions: the amount of active BS at a time, which depends
on the arrival rate, determines the level of interference in
the network. This interference level determines the successful
transmission rate of each BS that governs each buffer state, that,
at the end, impacts the amount of active BS. These interactions
make the queues closely dependent on each other.

A first attempt combining stochastic geometry and queueing
theory has been granted in [3], where the coverage probability
considering load has been investigated. In the case where
each transmitter provides a buffer for queueing, the primal
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consideration is about queueing stability. For a point-to-point
system with random arrival and departure processes at the
BS, the queue stability requires that the service rate be larger
than the arrival rate [6]. However, traffic conditions are more
complicated in a large-scale network with multiple queues
since the service rate depends on the state of all transmitters
in the network. To address this issue, recent attempts have
been made in [7]–[10]. The stability of uplink random access
networks have been studied in [7]. However, a single cell
network has been considered in this work thereby ignoring the
inter-cell interference. A traffic-aware spatio-temporal model
for uplink cellular networks has been developed in [8] to
study the scalability and stability tradeoff, i.e., its ability to
support a large number of devices while the queue sizes are
not diverging. In [9], the network stable region in a downlink
cellular network has been investigated. The main drawback of
these results is that they only consider the average performance
based on the first statistical moment of useful metrics, i.e., the
coverage probability. These metrics provide limited amount
of information. For example, given a packet arrival rate of
0.4, and a coverage probability of 0.5, i.e., the probability
that the signal to interference plus noise ratio (SINR) of the
typical user exceeds a given threshold θ is 0.5, the network
is said to be stable since the coverage probability is larger
than the arrival rate. However, half of the users could have a
coverage probability of 0.8 and another half of 0.2, then only
the user with the coverage probability of 0.8 are stable, i.e.,
half of the users. The other extreme case is that all users have
a coverage probability of 0.5, which indicates that all the users
are stable. Clearly, both situations lead to the same average
coverage probability among users, but they correspond to a
quite different users experience.

To overcome this drawback, a more refined metric known as
ϵ-stable region has been proposed in [10]. Unlike the stability
region, that is based on the first moment measure, ϵ-stable
region relies on the moment generating function of the signal
to interference plus noise ratio (SINR). The characterization
of the ϵ-stable region relies on the meta distribution [11]. This
concept allows to answer the question "What is the set of
arrival rates such that the proportion of unstable queues in the
network is below ϵ at a required SINR?". It is worth noting
the similarity between this definition and the ϵ-capacity one:
the latter gives the maximum achievable rate at which the
probability being in outage is lower than ϵ. A single letter
characterization of the ϵ-stable region is, however, far from



being trivial because of the interactions between the queues.
To overcome this problem, upper and lower bounds have been
proposed to analyze the ϵ-stable region, and to avoid the effect
of queue interaction [10]. However, the bounds are not very
tight especially under some network configurations.

The main contributions of this paper can be summarized
as follow. First, we provide the closed-form expression of the
upper and lower bounds of ϵ-stable region in the case of random
link distances, contrary to [10] where the communication
distance is fixed. Moreover, unlike our previous work in [9]
where only stable region was considered, in this paper we
focus on the ϵ-stable region to characterize the probability that
a queue in the network be unstable is below ϵ. Second, we
propose an alternative definition of the ϵ-stable region and
derive accordingly a tight approximation of the critical arrival
rate that was unavailable in literature. In particular, a discrete
time Markov chain (DTMC) is used to handle the interaction
between the transmit success probability and the queue state
evolution to obtain the tight approximation of the critical arrival
rate, contrary to the bounds provided in literature where the
interaction between queues is not considered. Our result reveals
that the proposed approximation is tighter than the bounds.

Throughout the paper, P(·) denotes the probability under
the underlying distribution, EX(·) denotes the expectation over
the random variable X , Im{·} represents the imaginary part of
a complex number. The indicator function is denoted as 1(A),
which takes values 1 when the proposition A is true and 0
otherwise. The Euclidean norm is denoted as ∥ · ∥.

II. SYSTEM MODEL

A. Network topology

A single-tier downlink cellular network is considered whose
base stations (BSs) lie in R2 following an independent and
homogeneous Poisson point process (HPPP) Φ, with intensity
λ. User equipment (UE) density is high enough such that
every BS has at least one UE associated with it. Besides, each
UE is associated to the closest BS. A single UE is randomly
chosen as the typical UE, and we further assume that it is
located at the origin for the ease of analyses. Moreover, all
BSs are assumed to transmit in the same band, i.e., using
a full frequency reuse approach. A block-fading propagation
model is considered, where the channels between any pair of
transceivers are assumed independent and identically distributed
(i.i.d.) and quasi-static, i.e., the channel is constant during one
transmission slot, and varies independently from slot to slot.

The arrival and departure traffic per BS are discrete stochastic
processes. The time is slotted in very short equal intervals in
which only one packet arrives or leaves from the BS queues in
the network. This model is widely used in literature [8], [12],
[13]. The packet arrival process at each transmitter is assumed
to be a Bernoulli process with a rate ξ ∈ [0, 1] expressed in
packet per slot and per BS. Without loss of generality, we
assume the packet size is fixed and it requires exactly one
time slot to be transmitted. Each BS maintains an independent
queue of infinite size to store the generated packets.

Figure 1. Realization of an HPPP with evolution of the queue in each
transmitter.

Contrarily to the arrival process, the departure process cannot
be fixed a priori. It is characterized according to the time-
dependent SIR distribution. If the received SIR exceeds a
predefined threshold θ, the packet is transmitted successfully,
and removed from the queue. Otherwise, the transmission fails
and the packet remains in the queue waiting for retransmission
in the next time slot until being successfully received. We
assume that there is an instantaneous error-free feedback
channel at each link, so that the instantaneous SIR and the
result of each transmission, success or failure, are perfectly
known at the transmitter side. There is no limit on the number
of possible retransmissions. However in practice, the number of
needed retransmissions remains low when the system is stable
[12]. At each time slot, the BSs with empty buffer remain
silent to reduce power consumption and inter-cell interference.
Let Φt be the set of BSs that are transmitting in the time slot
t ∈ N. We have Φt ⊆ Φ, and Φt = Φ when all BSs are active,
at time t. A snapshot of a realization of an HPPP with queue
state at a node is presented in Fig. 1.

B. Signal-to-interference ratio

An interference limited network is assumed, i.e. neglecting
the noise. By the Slivnyak’s theorem [14], it is sufficient to
focus on the SIR of a typical UE at the origin. With its tagged
BS located at x0, the received SIR experienced by the typical
UE at time slot t is

γt =
hx0,t ∥x0∥−α∑

x∈Φ\x0

hx,t ∥x∥−α
1(x ∈ Φt)

(1)

where hx0,t ∼ exp(1) is the exponential channel gain between
the typical UE and its tagged BS, ∥x∥ is the distance from
the interfering BS at x to the origin, hx,t is the exponential
channel gain between the typical UE and the interfering BS
at position x and time slot t, with mean 1, and α is the path
loss exponent.

Moreover, we note qt the probability

qt = P1(x∈Φt)(1(x ∈ Φt) = 1) (2)

which can be seen as the fraction of active interfering BS at
time slot t, or equivalently the probability that a randomly
chosen BS is active at time slot t.



III. ϵ-STABLE REGION

The ϵ-stable region gives the maximum arrival rate beyond
which the probability for the queue at typical UE to be unstable
exceeds a threshold ϵ. A queue becomes unstable if the arrival
rate exceeds the average long-term departure rate. To illustrate
this issue, we first define the transmit success probability as
follows.

Definition 1. Given a SIR threshold θ and a given realization
of the PPP, the transmit success probability at the typical BS
x0 at time slot t is

µt = P

 hx0
∥x0∥−α∑

x∈Φ\x0

hx ∥x∥−α
1(x ∈ Φt)

≥ θ

∣∣∣∣Φ
 (3)

Lemma 1. The transmit success probability experienced by
the typical UE at time t is

µt =
∏

x∈Φ\x0

(
qt

1 + θ ∥x0∥α ∥x∥−α + 1− qt

)
(4)

Proof. See Appendix A.

Lemma 1 quantifies how the transmit success probability
behaves at a given time slot and depends on the traffic. The
queue states are affecting the transmit success probability via
the probability qt. As qt decreases, less interferers are active
in the network, and hence, the aggregate interference decreases
and µt increases at typical BS.

Definition 2 ( [10, Definition 1]). Let ξ be the arrival rate.
For any ϵ ∈ [0, 1], the ϵ-stability region Sϵ is defined as

Sϵ =

{
ξ ∈ [0, 1] : P

{
lim

T→∞

1

T

T∑
t=1

µt ≤ ξ

}
≤ ϵ

}
(5)

We define ξc as ξc = supSϵ. The network is ϵ-stable if and
only if ξ ≤ ξc.

1) Lower and upper bounds: Deriving the ϵ-stability region
Sϵ boils down to obtain the critical arrival rate ξc. It is non-
trivial to obtain the closed-form of (5) since the transmit success
probability is time dependent. Instead, the upper and lower
bound for ϵ-stable region are given by the following lemma.

Lemma 2. Considering the dynamic downlink cellular network
introduced above, the critical arrival rate ξc can be bounded
as follows

ξlc ≤ ξc ≤ ξuc (6)

where

ξzc =sup

{
ξ ∈ [0, 1] :

1

2
− 1

π
×
∫ ∞

0

1

w
Im

{
ξ−iw

gz(θ)

}
dw≤ϵ

}
with z ∈ {l, u} and gl(θ) = 2F1(iw,− 2

α ; 1 − 2
α ;−θ) for ξlc,

and gu(θ) = 1+
∫∞
1

[
1−

(
1− ξθ

θ+vα/2

)iw]
dv for ξuc .

Proof. See Appendix B.

The upper bound ξuc is obtained by defining a favorable
system where if the transmission of a packet fails, this packet
is dropped instead of being re-transmitted. The transmitters
only serve newly arrived packets at each time slot, if any, and
then are active with probability qt = ξ. In the favorable case,
the dropped packet does not lead to an unstable network. This
condition is not acceptable in practice, but is introduced here
only to derive the upper bound.

The lower bound ξlc is obtained when all BSs keep trans-
mitting all the time, i.e., qt = 1, ∀t ∈ N, which leads to the
highest interference and the lowest transmit success probability
in (3).

2) Approximation of ξc: A modified definition of the ϵ-stable
region, instead of (5), is given by

Sϵ =
{
ξ ∈ [0, 1] : P

{
lim
t→∞

µt ≤ ξ
}
≤ ϵ
}

(7)

Under this definition, we ignore the initial period of transient
values of µt, and only characterize the ϵ-stable region when
time goes to infinity. The new region is simpler to handle
compared with (5). Before delving into the solution details,
we make the following assumption.

Assumption 1. The BSs are assumed to be activated indepen-
dently with probability q = lim

t→∞
qt when time goes to infinity,

and thus the stable transmit success probability is µ = lim
t→∞

µt.

This assumption is reasonable because the effect of small
scale fading is independent with time and the positions of UEs
and BSs remain constant during the time evolution.

From the temporal perspective, a generic transmission link
can be abstracted to a queue with service rate given by µt and
arrival rate given by ξ. The traffic evolution at typical BS x0

can be modeled as a DTMC in Fig. 2 with ξ̄ = 1 − ξ and
µ̄t = 1−µt. The state space is made of the number of packets
in the queue and takes value in {0, 1, 2, · · · }. State 0 represents
the empty buffer event. When the buffer is in this state, the
transmitter remains silent. When the queues evolve up to the
convergence, i.e., the DTMC reaches the stationary distribution,
the number of active transmitters stabilizes and does not evolve
with time. Note that q is the complementary probability for
the queue to be in state 0 when DTMC is stationary.

Lemma 3. [9] Under fixed arrival and departure rates, ξ and
µ respectively, the active probability at a randomly chosen BS
conditioned on Φ is

q =

{
ξ/µ, if µ > ξ,

1, if µ ≤ ξ.
(8)

According to the relative values of µ and ξ, a randomly
chosen BS has a probability of ξ/µ to be active if its arrival
rate is less than the departure rate, and is always active in the
opposite case. It is important to note when µ < ξ then q = 1
and all the queue lengths and average queue delays grow up
to infinity, corresponding to an unstable network.
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Figure 2. DTMC model.

Thanks to Assumption 1 and Lemma 3, we are ready to
present the approximation of the ϵ-stable region in downlink
cellular networks.

Theorem 1. Considering the dynamic downlink cellular net-
work introduced above and definition in (7), the approximated
critical arrival rate of ϵ-stable region can be characterized as
follows

ξ̃c = sup

{
ξ ∈ [0, 1] :

1

2
− 1

π
× (9)

∫ ∞

0

1

w
Im


ξ−iw

1+
∫∞
1

[
1−
(
1− E[q]θ

θ+vα/2

)iw]
dv

dw≤ϵ


where E[q] = ξ

1−θξρ(θ,α) if 1
1+θρ(θ,α) > ξ, and E[q] = 1

otherwise, and ρ(α, θ) =
∫∞
1

[θ + u
α
2 ]−1du.

Proof. See appendix C.

The expression in (9) quantifies how the key features of a
dynamic network, i.e., interference, SIR receiving threshold
and traffic profile, affect the distribution of the ϵ-stable region.
Several remarks regarding Theorem 1 are in order.

Remark 1. The upper and lower bound of the critical arrival
rate in Lemma 2 corresponds to E[q] = ξ and E[q] = 1 in
Theorem 1, respectively.

Remark 2. When the SIR receiving threshold θ → 0, for all
ϵ ≥ 0, the critical arrival rate approaches to 1. Letting θ → 0
Theorem 1 becomes

lim
θ→0

ξ̃c = sup

{
ξ ∈ [0, 1] :

1

2
− 1

π

∫ ∞

0

1

w
Im
{
ξ−iw

}
dw≤ϵ

}
= sup

{
ξ ∈ [0, 1] :

1

2
+

1

π
× π

2
sgn(ln ξ) ≤ϵ

}
= 1 (10)

since sgn(ln ξ) = −1,∀ ξ ∈ (0, 1). Similar conclusion can be
drawn for the upper bound ξuc and lower bound ξlc. According
to the squeeze theorem [15], Remark 2 is obtained.

Remark 2 illustrates that a transmission attempt is almost
surely successful when θ → 0, thus the admissible critical
arrival rate approaches 1.

IV. NUMERICAL RESULTS

In this section, we validate the accuracy of our analysis
through simulations, and explore the impact of traffic condition
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Figure 3. Upper and lower bounds of the ϵ-stable region.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

upper bound

lower bound

theorem 1

simulation

 =-5 dB

 =0 dB

Figure 4. The approximation and bounds of the ϵ-stable region.

on network performance from several aspects. Unless otherwise
mentioned, the following parameters are used throughout this
section: path loss exponent α = 4, BS density λ = 0.25, and
packet arrival rate ξ ∈ [0, 1] packet/slot.

Three simulation scenarios are considered. (i) The original
system described in section II. For each network realization,
the queues are let to evolve up to the convergence, i.e., when
the number of active transmitters stabilizes and does not evolve
with time. Then a new network realization is drawn and the
process repeats; (ii) The full load case, where all BSs keep
transmitting all the time, leading to the lower bound described
in Lemma 2; (iii) The favorable system, where a randomly
chosen BS is active with probability ξ, leading to the upper
bound described in Lemma 2.

Fig. 3 plots the upper and lower bounds of the ϵ-stable region
w.r.t. ϵ and labeled on the SIR threshold θ, i.e., θ = −5 dB
and θ = 10 dB. The figure shows a perfect match between
simulations and the analytical expressions obtained in Lemma 2.



The real critical arrival rate, i.e., the average rate at which the
probability to be unstable for a queue exceeds ϵ, lies between
these bounds. Next, we observe that the region between upper
and lower bounds reduces when ϵ increases, i.e., the bounds
converge to 1 when ϵ = 1 as mentioned in Remark 2. Moreover,
the critical arrival rate ξc decreases when θ increases. Indeed,
as θ increases, a transmission has a higher chance to fail when
scheduled. Hence, the possible arrival rates, i.e., those for
which the network is ϵ-stable, decrease. The figure also reveals
that the upper and lower bounds are not tight when θ is high
and ϵ is low.

Fig. 4 focuses on the approximation of the critical arrival
rate ξ̃c derived in Theorem 1. The critical arrival rate obtained
by simulation is based on Definition 2 and it is compared to the
expression in Theorem 1 which is based on (7). We can observe
that the critical rate lies between our upper and lower bounds
and Theorem 1 reveals to be a good approximation of the true
critical rate, as confirmed by the simulations. This observation
implies that the transient phase present in Definition 5 but not in
(7), has a negligible effect on the critical arrival rate. Moreover,
it is observed that the critical arrival rate ξ̃c is close to the upper
bound ξuc when θ is relatively small, i.e., θ = −5 dB. This is
because decreasing θ increases the opportunity of a successful
transmission. Thus the active probability of the typical BS in
the real case is much closer to the active probability in the
favorable system. Last but not least, the numerical computation
of (9) is far faster than running Monte-Carlo simulations, i.e.,
few minutes compared to several days of simulations.

V. CONCLUSION

In this work, we have proposed a full characterization of the
ϵ-stable region in a dynamic downlink cellular network. We
have bounded the critical arrival rate, i.e., the rate at which the
queue becomes unstable, and also presented an approximation
of this rate. These results allow a quick assessment of the
proportion of queues that are in outage on average when the
network deployment is modeled with PPP and the network
traffic is modeled with DTMC.

In a real-world environment, the network dynamically adjusts
its radio parameters, such as BS transmit power or modulation
and coding schemes, depending on the traffic conditions.
However, the characterization of ϵ-stable regions under complex
settings is quite challenging and requires the introduction
of Markov decision processes and reinforcement learning
strategies in the analysis. This opens new doors in research
associating stochastic geometry and machine learning and is
left for further works.

APPENDIX

A. Proof of Lemma 1

Given the typical UE received data at time slot t, its transmit
success probability is written as

µt = Px0

 hx0,t ∥x0∥−α∑
x∈Φ\x0

hx,t ∥x∥−α
1(x ∈ Φt)

> θ

∣∣∣∣Φ


= E{hx},1(x∈Φt)

[
exp

(
−s
∑

x∈Φ\x0

hx ∥x∥−α
1(x ∈ Φt)

)∣∣∣∣Φ]
a
= E{hx},1(x∈Φt)

 ∏
x∈Φ\x0

exp
(
−shx ∥x∥−α

1(x ∈ Φt)
) ∣∣∣∣Φ


= E1(x∈Φt)

 ∏
x∈Φ\x0

1

1 + s ∥x∥−α
1(x ∈ Φt)

∣∣∣∣Φ


b
=

∏
x∈Φ\x0

(
qt

1 + θ ∥x0∥α ∥x∥−α + 1− qt

)
(11)

where (a) follows from the i.i.d. hypothesis of hx and further
independence from the point process Φ, and (b) follows from
the definition qt = P(1(x ∈ Φt) = 1).

B. Proof of Lemma 2

a) Lower bound ξlc: Let µl be the transmit success
probability experienced by the typical UE in the full load
case, it follows

µl = E{hx0},{hx}

P
 hx0

∥x0∥−α∑
x∈Φ\x0

hx ∥x∥−α ≥ θ

∣∣∣∣Φ



=
∏

x∈Φ\x0

(
1

1 + θ ∥x0∥α ∥x∥−α

)
(12)

Define Y l ≜ ln(µl), then the moment generating function
of Y l is

φY l(s) = EΦ

 ∏
x∈Φ\x0

(
1

1 + θ ∥x0∥α ∥x∥−α

)s


a
= EΦ

[
exp

(
−λ
∫ ∞

∥x0∥

[
1−
(

1

1+θ ∥x0∥α∥x∥−α

)s]
d∥x∥

)]
b
=

[
1 +

∫ ∞

1

[
1−

(
1

1 + θv−
α
2

)s]
dv

]−1

c
=

[
− 2

α

∫ 1

0

[
1−

(
1

1 + θt

)s]
t−

2
α−1dt

]−1

d
=

(
2F1(s,−

2

α
; 1− 2

α
;−θ)

)−1

(13)

where (a) follows from the probability generation functional
of the PPP; (b) is obtained by using the PDF of ∥x0∥, which
is f||x0||(r) = 2πλreπλr

2

dr and the change of variable v
1
2 =

∥x∥
∥x0∥ ; (c) is obtained using the change of variable v−

α
2 = t. The

integral in (c) can be shown, after some algebraic manipulations,
equal to the Gauss hypergeometric function in (d) [16, Section
9.11, pp 1005].

The CDF of Y l, denoted by P(Y l < y), follows from the
Gil-Pelaez’s Theorem as

P(Y l < ln(u)) =
1

2
− 1

π

∫ ∞

0

Im[u−iwφYl
(iw)]

w
dw (14)



The corresponding lower bound of the ϵ-stability region is

Sl
ϵ =

{
ξ ∈ [0, 1] :

1

2
− 1

π

∫ ∞

0

1

w
×

Im

{
ξ−iw

2F1(iw,−α
2 ; 1−

α
2 ;−θ)

}
dw ≤ ϵ

}
(15)

b) Upper bound ξuc : Let µu be the transmit success
probability experienced by the typical UE in the favorable
system, it follows

µu =E

exp
−θ ∥x0∥α

∑
x∈Φ\x0

hx1(x∈Φt) ∥x∥−α

∣∣∣∣Φ


=
∏

x∈Φ\x0

(
ξ

1 + θ ∥x0∥α ∥x∥−α + 1− ξ

)
(16)

We define Y u as Y u ≜ ln(µu), and follow similar steps as in
(13), the moment generating function of Yu is

φY u(s) =

[
1 +

∫ ∞

1

[
1−

(
1− ξθ

θ + v
α
2

)s]
dv

]−1

(17)

According to the Gil-Pelaez’s Theorem, the probability of µu

be lower than the average arrival rate ξ is

P{µu < ξ} =
1

2
− 1

π

∫ ∞

0

1

w
Im{ξ−iwφY u(iw)}dw (18)

The corresponding upper bound of ϵ-stable region is obtained
and leads to the result in Lemma 2.

C. Proof of Theorem 1

Based on Lemma 1 and assumption 1, the stable transmit
success probability has the expression

µ =
∏

x∈Φ\x0

(
q

1 + θ ∥x0∥α ∥x∥−α + 1− q

)
. (19)

Defining Y ≜ lnµ, the moment generating function of Y is

E [exp(sY )]

= EΦ

 ∏
x∈Φ\x0

(
q

1+θ ∥x0∥α∥x∥−α +1−q

)s


a
= EΦ

[
e
−λ

∫ ∞
∥x0∥

[
1−

(
q

1+θ∥x0∥α∥x∥−α +1−q
)s]

d∥x∥
]

b
=

∫ ∞

0

2πλre−λπr2exp

(
−λπr2

∫ ∞

1

[
1−
(

q

1+θv−
α
2

)s ]
dv

)
dr

=

[
1 +

∫ ∞

1

[
1−

(
1− qθ

θ + v
α
2

)s]
dv

]−1

(20)

where steps (a) and (b) are the same as those in (13).
Aforesaid Lemma 3, EΦ[q] = ξ/EΦ[µ],∀ EΦ[µ] > ξ. And it

can be noticed that EΦ[µ] is the particular case when s = 1 in
(20). After straightforward algebraic manipulations, we have

E[q] =

{
ξ

1−θξρ(θ,α) , if 1
1+θρ(θ,α) > ξ

1, if 1
1+θρ(θ,α) ≤ ξ

(21)

where ρ(α, θ) =
∫∞
1

[θ + u
α
2 ]−1du.

The CDF of Y , denoted by FY (u) = P[Y ≤ u], follows
from the Gil-Pelaez’s Theorem as

FY (u) = P(Y < ln(u))

=
1

2
− 1

π

∫ ∞

0

1

w
Im


u−iw

1+
∫∞
1

[
1−
(
1− kθ

θ+vα/2

)iw]
dv

dw

and the proof is complete.
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