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Abstract—This article deals with Ordered Statistics Decoding
(OSD) applied to the soft outputs of the Belief Propagation (BP)
algorithm. We first model the weighted sum of the a posteriori
LLRs across BP decoding iterations into a neuron. The neuron
is then trained with the focal loss to compute for each BP
decoding failure a set of accumulated Log Likelihood Ratios
(LLRs) suited for OSD post-processing. Then, we propose a
recursive selection procedure of LLRs sets, for multiple OSD
post-processing. This selection is carried out from the sets of a
posteriori LLRs calculated at each BP iteration, and from the
accumulated LLRs optimized for the OSD, based on their joint
probabilities of failure with OSD post-processing. An OSD is
then applied to each set of LLRs belonging to the selection. In
addition, we propose to reduce the OSD post-processing decoding
complexity without significantly degrading its performance. Our
results show that this new decoding method provides an effective
way to bridge the gap to maximum likelihood decoding for short
and long Low Density Parity Check (LDPC) codes.

Index Terms—LDPC, belief propagation, ordered statistics
decoding post-processing

I. INTRODUCTION

The emergence of communication systems for the Internet
of Things (IoT), with the requirement of short-packet trans-
missions, has revitalized interest in research and practice of
efficient error correcting codes for messages ranging from a
few tens up to a few hundred bits. While important progress
has been made over the last years in understanding the limits of
coding at short block lengths [1], the design of efficient short
codes and decoding algorithms still raises many challenges [2].

Low-Density Parity-Check (LDPC) codes [3] are a class of
error correcting codes defined by sparse bipartite graphs [4].
They are well-known for their excellent error correction
performance at suitably large blocklengths, achieving near
Shannon channel capacity performance under iterative belief
propagation (BP) decoding [5]. For codes defined by cycle-free
bipartite graphs, BP decoding outputs maximum a posteriori
estimates of the coded bits [6]. However, finite length codes
are actually defined by graphs with cycles, in which case BP
decoding is known to be sub-optimal.

In order to improve the error correction capability of short
LDPC codes, the BP can be associated with an Ordered
Statistics Decoding (OSD) [7]. A first combination strategy,
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introduced in [8] and used in [9], effectively improves the
performance by applying a low order OSD at the end of each
BP iteration. However, the resulting complexity is increased
significantly due to the use of the OSD at each iteration. To
limit the added complexity, the OSD can be applied as a post-
processing step, exploiting the BP soft output only when the
latter fails to converge to a codeword. As such, the authors
of [10] propose an OSD post-processing step for shortened
LDPC codes, by considering that some of the information
bit values are fixed and known by the receiver. In [11], the
accumulation of the Log Likelihood Ratios (LLRs) during BP
decoding iterations is used as a new reliability measure of
variable-nodes for the OSD. Employing directly the observed
LLRs for the reliability measure has been investigated as well
in [12]. The OSD post-processing is also carried out in [13]
after a decoding diversity composed of several BP modeled
with recurrent neural networks (BP-RNNs), each being trained
to decode a different kind of error events.

In this paper, we aim firstly at improving the OSD post-
processing on the BP outputs for short LDPC codes decoding.
Our approach first consists in modeling a weighted sum
based on the approach of [11] into a neuron. This neuron
is optimized with the focal loss [14] in order to compute
for each noisy codeword intended for post-processing a set
of accumulated LLRs suited for OSD. Then, we propose to
recursively construct a selection of LLRs sets from the sets
of a posteriori LLRs computed at each BP decoding iteration,
and from the set of the accumulated and optimized LLRs for
OSD. To carry out this selection, the complementarity of the
considered LLRs sets is measured with their joint probability
of failure with OSD post-processing. We thus introduce a new
decoding method, where an OSD post-processing is applied to
each set of LLRs belonging to the selection. We also show that
the proposed decoding strategy above is scalable for longer
LDPC codes. Furthermore, reducing the complexity induced
by OSD becomes necessary since the number of calculated
codewords during OSD tends to be computationally too costly,
in particular for medium or large LDPC codes. For this reason,
we also propose to reduce the number of candidate codewords
computed during the OSD post-processing step.

The paper is organized as follows. Section II introduces
the notations, recalls the OSD algorithm and describes the
approach of [11]. The training of the neuron modeling the



accumulated LLR with the focal loss, the procedure to select
complementary sets of LLRs, and the complexity reduction
technique are then explained in Section III. Finally, Section IV
presents the numerical results, and Section V concludes the
paper.

II. OSD POST-PROCESSING ON THE A POSTERIORI LLRS
OF BP DECODING

We consider an LDPC code defined by a Tanner (bipartite)
graph [4] with N variable-nodes, M check-nodes, denoted
respectively by n ∈ {1, . . . , N} and m ∈ {1, . . . ,M}, and
with K = N−M information bits. BP decoding then consists
of an iterative exchange of messages along the Tanner graph
edges, where each message provides an LLR estimate of the
incident variable-node [5].

We also consider the OSD [7], a decoding algorithm capable
of approaching the Maximum Likelihood (ML) decoding
performance for medium block length linear codes, with poly-
nomial complexity. It can be used as a stand-alone decoder,
exploiting the soft channel output, or as post-processing step
exploiting the output of a soft decision decoder such as the
BP. The first step of the OSD consists to sort the variable-
nodes according to a reliability measure, that is the absolute
value of the corresponding soft decision. In the case of OSD
post-processing for BP, the soft output, and thus the reliability
depends of the a posteriori LLR given during BP decoding.
The parity check matrix of the code is then brought into
a systematic form, denoted by Hsyst, so that to ensure the
K first columns corresponds to the most possible reliable
variable-nodes. In OSD-0, the hard decision is taken on
the most reliable variable-nodes, and the least reliable ones
are determined by solving a linear system given by Hsyst.
Therefore, the decoding is successful if and only if the most
reliable variable-nodes are error-free. To deal with cases where
these bits contain errors, OSD-p considers all the possible
choices of at most p errors among them. For each choice,
the initial hard-decision of the corresponding variable-nodes
is flipped, and the least reliable variable-nodes are determined
again by solving the linear system given by Hsyst. A list of∑p

i=0

(
K
i

)
codewords, noted by S, is thus computed by this

procedure. The most likely codeword in S is then selected
thanks to the ML criterion:

ĉ = argmax
ĉs∈S

P (ĉs|y) (1)

where ĉs represents a codeword determined by OSD-p and
y = {y1, . . . , yN} the observed (channel) noisy codeword.
OSD-p may closely approach the ML decoding performance,
assuming the p value (referred to as OSD order) is suitably
large.

In order to improve the performance of OSD post-
processing with BP soft outputs, the authors of [11] propose to
measure the reliability of the variable-nodes for OSD-p with
the accumulation of the a posteriori LLRs during BP decoding
iterations. More precisely, if the BP fails to obtain a codeword

after a maximum number of I iterations, the reliability of a
variable-node n is computed as follows:

L̂(S)
n =

I∑
i=0

L̂(i)
n , n ∈ [1, N ] (2)

where L̂
(0)
n corresponds to the observed LLR of bit n, and

L̂
(i)
n to its a posteriori LLR calculated at iteration i of BP, for

i ∈ [1, I].
Intuitively, the reliability measure described in equation (2)

allows to obtain a stronger reliability for variable-nodes whose
L̂
(i)
n keep the same sign across BP iterations than those whose

L̂
(i)
n sign change. Hence, the set L̂(S) :=

{
L̂(S)
1 , . . . , L̂(S)

N

}
ensures that the most reliable variable-nodes and thus fixed
by the OSD corresponds to bits for whose BP decoding is
”certain” of their values.

III. MULTIPLE OSD POST-PROCESSING

A. Accumulated and optimized LLR for OSD post-processing

In this section, we are interested in determining an LLR
accumulated during BP iterations as suited as possible for OSD
post-processing. To do so, we introduce the weights w(i) ≥ 0,
i ∈ [0, I], in equation (2). We thus propose to compute the
reliability of a variable-node n by the following accumulated
LLR of I iterations:

L̂(NS)
n =

I∑
i=0

w(i)L̂(i)
n , n ∈ [1, N ] (3)

This equation is then modeled by a simple neuron. To
create the neuron training set, we first generate a set TBP
of noisy codewords by considering a binary-input AWGN
channel, with a BPSK alphabet (±1) inputs, and a fixed noise
variance σ2. TBP is then decoded by the BP. Since the AWGN
channel and BP are symmetrical, only the all-zero codeword
is transmitted. We subsequently denote by TBP-OSD the subset
of noisy codewords of TBP for which the BP does not find a
codeword after I iterations. The sets L̂n :=

{
L̂
(0)
n , . . . , L̂

(I)
n

}
,

(with n ∈ [1, N ]) of each noisy codeword belonging to TBP-OSD
then constitute the training set of the neuron. This training set
allows the neuron to be trained only in cases where the BP
does not converge to a codeword.

To optimize the neural weights, we propose to utilize the
focal loss, first introduced in [14], and defined by:

FL
(
bn, L̂

(NS)
n

)
= −bnσ

(
L̂(NS)
n

)γ
log

(
1− σ

(
L̂(NS)
n

))
− (1− bn)

(
1− σ

(
L̂(NS)
n

))γ

log
(
σ
(
L̂(NS)
n

))
(4)

where bn is the expected value of bit n, σ(x) = (1 + e−x)−1

is the sigmoid function converting the LLR value into the
probability that the decoded bit is equal to zero, and γ ≥ 0
is an an adjustable hyper-parameter. By assuming that the all-
zero word is transmitted, that is bn = 0 for n ∈ [1, N ], (4)
simplifies to:

FL
(
L̂(NS)
n

)
= −

(
1− σ

(
L̂(NS)
n

))γ

log
(
σ
(
L̂(NS)
n

))
(5)



The focal loss enables to focus the training on the hardest
elements to classify in the training set, by affecting them
higher penalties. In our case, the most difficult vectors to
classify are the L̂n possessing L̂

(i)
n with larges amplitudes

and incorrect signs, since it will result in a L̂(NS)
n with

the same characteristics. Minimizing the focal loss therefore
optimizes the weights to reduce the impact of such L̂

(i)
n on

the computation of L̂(NS)
n . Moreover, resulting L̂(NS)

n with large
amplitudes and incorrect signs induce erroneous bits, which
will be potentially selected among the K most reliable ones
during OSD. Consequently, minimizing the focal loss reduces
the probability of having erroneous bits among the K the most
reliable bits. L̂(NS) is thus effectively optimized for OSD post-
processing. To the best of our knowledge, it is the first time the
focal loss [14] is used in decoding. We noticed that training
an LLR L̂(NS) with a focal cost γ > 0 outperforms the training
with a binary cross entropy (that is γ = 0) when OSD post-
processing is applied.

B. Selecting sets of LLRs

In order to get closer to the ML decoding performance,
we propose here a decoding method where an OSD post-
processing is applied after each LLRs set of an ordered list
LZ of Z LLRs sets, with Z ∈ [1, I+2]. To construct this list,
the complementarity of L̂(i) :=

{
L̂
(i)
1 , . . . , L̂

(i)
N

}
, i ∈ [0, I],

and of L̂(NS) with OSD is evaluated with the number of errors
remaining after OSD post-processing.

We first generate a test set TBP-OSD, according to the
procedure described in the previous section. The decoding
performance of the OSD post-processing is then assessed
on TBP-OSD with each L̂(i) and with L̂(NS). We denote by
F (i) ⊂ TBP-OSD (resp. F (NS) ⊂ TBP-OSD) the subset of
noisy words on which L̂(i) (resp. L̂(NS)) leads to a failure
during OSD-p decoding. Then, we recursively construct an
ordered list of LLRs sets, noted L. This list is initialized with
L̂(NS), L =

{
L̂(NS)

}
, since L̂(NS) is optimized for OSD post-

processing. To add a new LLRs set L̂new to L, we propose to
apply the following rule:

L̂new = argmin
L̂(i)∈{L̂(0),...,L̂(I)}\L

∣∣∣FL ∩ F (i)
∣∣∣ , (6)

where FL := F (NS) if L =
{
L̂(NS)

}
, FL := F (NS) ∩

(
∩L̂(i)∈L

F (i)
)

otherwise. The above rule is applied I + 1 times, until
L contains all the LLRs sets. If the minimum argument of (6)
is not unique, an arbitrary choice is made among these values.

For Z ≤ I + 2, LZ is defined as the sub-list of the Z
first LLRs sets of L. LZ is thus an ordered list of LLRs
sets, representing Z complementary levels of reliability with
respect to OSD post-processing. As the OSD post-processing
is applied to each element of LZ , an ML rule such as defined
in (1) is used to choose the final codeword among the Z
candidate codewords. In the following, we note this decoding
method by BP-LZ-OSD-p.

Finally, we point out that neither the neural modeling of
the weighted sum, nor the construction of LZ , depend of the

dimensions N and K of the considered LDPC code. As a
result, the methodology presented in this paper is reproducible
for any LDPC code.

C. Complexity reduction

A main practical limitation for the OSD implementation is
its decoding complexity [15], since a list of

∑p
i=0

(
K
i

)
candi-

date codewords has to be calculated at each OSD utilisation.
Hence, the OSD post-processing complexity tends to be espe-
cially costly for medium or long LDPC codes with K > 100
and for OSD-p with p ≥ 2. To address this issue, the number
of candidate codewords is thus usually limited by flipping only
some of the most reliable variable-nodes. As such, a procedure
to compute a list of positions to be flipped during OSD-p was
introduced in [15]. This list is notably determined thanks to the
computation of joint error probabilities for the most reliable
bits, and allows to process only the most probable candidate
codewords. In [16], the most reliable bits are partitioned into
segments according to reliability thresholds depending of the
received noisy codeword. Only some of the segments are then
selected for flipping. Both previously described methods can
require a high computational cost, due in particular to the
threshold computations. The authors of [17] propose for each
noisy codeword to flip only the most reliable variable-nodes
for which soft values do not respect amplitude thresholds.

Here, we propose a strategy to reduce the computational
complexity, which does not depend of the noisy codeword.
More precisely, we first put a limitation to the decoding
complexity by restricting our study to OSD-2. We then reduce
the complexity of OSD-2, and by extension of BP-LZ-OSD-2,
by limiting the choices to a maximum of two errors according
to their level of reliability. We thus introduce two positions
thresholds, T1 and T2, with T1 < T2. For simplicity, the most
reliable bits are also numbered from 0 to K in ascending order
of reliability. For a linear code, we thus consider only up to
two flips between [0, T2], with at least one flip in [0, T1] in
the case of two flips. Note that the bits with sorting positions
in the segment [T2+1,K] correspond to bits with the highest
reliability, and thus with the lowest probability of error. In
addition, a couple of errors in [T1 + 1, T2]

2 is less probable
than a couple of errors in [0, T1]

2 or in [0, T1] × [0, T2].
Therefore, the proposed method limits the number of candidate
codewords for OSD-2 by processing only error events with the
highest probability of occurrence. The number of candidate
codewords NC is obtained with the following formula:

NC = 1 +

(
T2

1

)
+

(
T1

2

)
+ (T2 − T1)T1 (7)

The optimal choice of T1 and T2 is then determined by a
complexity/performance evaluation thanks to (7) . Indeed, for
a fixed number of candidate codewords Nc, all the couples
satisfying (7) are determined. We then assessed the FER of BP-
LZ-OSD-2 at a fixed SNR with each found couple. The couple
for which the reduced complexity BP-LZ-OSD-2 obtains the
best FER performance is thus selected.



Finally, note that for BP-LZ-OSD-p, the number of tested
codewords when the BP fails is equal to Z×

∑p
i=0

(
K
i

)
since Z

OSD-p are performed. Therefore, the value of Z may also be
limited for complexity reasons as it directly impact the number
of tested codewords and the number of system resolutions.

IV. NUMERICAL RESULTS

A. Simulation settings

Three LDPC codes have been considered in our simulations.
Their parameters are provided in Table I, where Rc := K/N
denotes the coding rate, dv the variable-nodes degree, and dc
the check-nodes degree.

TABLE I
LDPC codes parameters

N K Rc dv dc

CCSDS code [18] 128 64 0.5 3-5 8
Tanner code [19] 155 64 0.41 3 5

MacKay code [20] 1008 504 0.5 3 6

The number of BP decoding iterations was set to 25 for the
CCSDS and Tanner codes, and to 10 for the MacKay code.
The OSD-p post-processing was evaluated for p = 0, 1, 2 in
order to limit the number of tested combinations. Concerning
the neuron introduced in Section III-A, a set TBP-OSD of 10000
noisy codewords was generated to create the training set.
The weights, all initialized to one, were then optimized over
50 epochs, so that the focal loss converge towards a limit.
Furthermore, we assessed the Frame Error Rate (FER) of
the OSD-p with L̂(NS) according to the hyper-parameter γ,
and we determined empirically γ = 10 as being a good
choice to penalize the misclassified LLRs. Finally, the neuron
was trained for each SNR value ranging from 2.5 dB to
4.5 dB (resp. from 1.5 dB to 3.5 dB), with a step of 0.5 dB
for the CCSDS code (resp. Tanner code/MacKay code). In
addition, for each SNR value, a test set TBP-OSD of 10000 noisy
codewords was generated, and a list L was thereby constructed
according to the procedure described in section III-B. We
compare then the different decoding strategies proposed in
this paper for the three codes, in terms of FER. Reported SNR
gains are evaluated at a FER of 10−4.

B. CCSDS Code

On Fig. 1, the performance of CCSDS decoding for an
OSD-p post processing with L̂(NS) is compared with the
performance of an OSD-p post processing using L̂(S) as a
reliability measure. We observe with L̂(NS) a slightly better
performance than L̂(S) for p = 1 (similar for p = 0). For an
order p = 2, L̂(NS) allows to obtain a gain of 0.16 dB with
respect to L̂(S). As a result, L̂(NS) becomes more and more
suited to OSD when the OSD order increases.

In the following, we consider a maximum budget of 3 OSD-
p post-processing. To start with, the set L3 is determined from
L, as explained in section III-B. The performance of OSD-p
post-processing with L3 and with L̂(NS) alone are illustrated
in Fig. 2. We notice that applying an OSD-p after each LLRs
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Fig. 1. FER for CCSDS code, L̂(S) vs L̂(NS).
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Fig. 2. FER for CCSDS code.
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Fig. 3. FER for Tanner code.
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Fig. 4. FER for MacKay code.

set of L3 provides an increasing gain with respect to the order
p. Indeed, the gain is respectively of 0.12 dB, 0.22 dB, and



0.27 dB for p = 0, 1, 2. In addition, it can be observed that
BP-L3-OSD-2 achieves a FER performance at only 0.17 dB
from ML decoding [21].

Finally, OSD-p post-processing is applied after a decoding
diversity of 3 BP-RNNs, denoted D3. The construction method
of this decoding diversity is detailed in [13]. For each BP-
RNN of D3, a single neuron is optimized with the parameters
described in section IV-A. Three L̂(NS) reliability are thus
computed and assessed with an OSD-p post-processing. An
ML rule decides of the the final codeword. We note this
diversity approach by D3-L̂(NS)-OSD-p, and the corresponding
results are shown in Fig. 2. It can be observed that BP-L3-
OSD-0 provides a slight improvement over D3-L̂(NS)-OSD-
0. The gain increases to 0.1 dB for p = 1, and then to
0.12 dB for p = 2. As a result, using the BP decoder alone
and constructing a list of complementary LLRs sets is a
better strategy in term of FER performance with OSD-p post-
processing.

C. Tanner Code
The simulation results obtained with the Tanner code are

presented on Fig. 3, with the same methodology. The decoding
by BP-L3-OSD-0 provides a gain of 0.16 dB with respect to
BP-L̂(NS)-OSD-0. This gain remains similar when the OSD
order is 1 or 2. Furthermore, we observe that BP-L3-OSD-2
nearly reaches the ML decoding performance.

For this code, we also consider a decoder BP-L3-OSD-2
operating with a complexity reduced by 50%, as described in
Section III-C. This complexity reduction amounts to NC =
3121 instead of the BP-L3-OSD-2 3 ×

∑2
i=0

(
64
i

)
= 6243

codewords tested at each BP decoding failure. An optimal
threshold couple (T1, T2) for BP-L3-OSD-2 is thus determined
for each SNR value. The corresponding performance is illus-
trated in Fig. 3. We notice that the complexity reduction of
50% induces a degradation of only 0.08 dB with respect to
BP-L3-OSD-2 with no reduction.

D. Extension to longer code: MacKay code
Fig. 4 shows the simulations results for the MacKay code.

This code possesses higher dimensions N and K than both
previously discussed codes, but as explained in Section III-B,
the methodology is reproducible. It can be observed that BP-
L3-OSD-p exhibits small improvements with respect to BP-
L̂(NS)-OSD-p, up to 0.1 dB for an order p = 2.

However, since K = 504, Nc = 381783 candidate code-
words are computed at each BP decoding failure for BP-
L3-OSD-2. Consequently, a complexity reduction becomes
mandatory for the MacKay code. As such, the decoder BP-L3-
OSD-2 with a complexity reduction of 50% is assessed. An
optimal threshold couple is hence calculated for each SNR
value. We observe that the decoder BP-L3-OSD-2 with a
complexity reduction of 50% tends to be almost as efficient
than the standard BP-L3-OSD-2 decoder.

V. CONCLUSION

In this article, we addressed the problem of enhancing
LDPC codes decoding with an OSD post-processing on the

BP outputs. To this end, we optimized an accumulated LLR
for OSD post-processing using the focal loss. We then built
recursively an ordered list of complementary LLRs sets with
respect to the OSD algorithm. This list allowed us to propose
a new decoding strategy, where an OSD post-processing is
applied after each LLRs set of the list. Finally, we showed
that this methodology can be reproduced for any codeword
length, provided that the complexity of the OSD is limited.
This work also opens new perspectives on the utilisation of
the focal loss for decoding with neural networks.
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