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Supporting Information 
 

Transmission Electron Microscopy 

Figure S1 shows a representative TEM image of nanoparticles fabricated under identical 

conditions as those used to measure the black curve in Fig. 1. The mean particle diameter is 

determined to 4.3 nm (Fig. S2) and the particles are very close to spherical with a mean aspect 

ratio of 1.16 (Fig. S3). 

 

Figure S1. TEM image of alumina-embedded Ag nanoparticles corresponding to the black curve 

in Fig. 1.  
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Figure S2. Diameter distribution obtained for the same sample as in Fig.S1.  
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Figure S3. Aspect ratio distribution obtained for the same sample as in Fig.S1.  

Numerous studies in our group over the last 25 years have shown that in general small particles 

are spherical and it is only above a certain, material-dependent size that ellipsoidal and ramified 

structures are observed [1, 2].  
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For the smaller nanoparticles used in this study TEM grids have been prepared and analyzed 

regarding the absence of coalescence. An example for mass-selected Ag NPs (n = 100-229, d = 

1.5-2.0 nm) is given in Fig. S4. For these small sizes it is much more difficult to obtain images of 

sufficient resolution, notably due to the oxide matrix which can deteriorate under the electron 

beam. Such beam damage is visible in Fig. S4 in the center right. The obtained size distribution is 

consistent with the mass selection, within the limits of TEM image precision, as shown in Fig. S5.  

 

 

Figure S4. TEM image of size-selected Ag clusters, corresponding to the dark blue curve in Fig. 1 

in the text.  
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Figure S5. Diameter distribution obtained for the same sample as in Fig.S4. The dashed blue lines 

show the lower and upper limit of deposited size. 
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Description of matrix porosity in the simulations 

The alumina films fabricated by electron beam evaporation are porous, we have in the past 

characterized them using ellipsometry to 70% density [3]. This has to be taken into account in the 

numerical simulations. Four different cases are used for the alumina matrix as effective dielectric 

medium: dense and porous alumina, with and without a thin layer of vacuum at the interface 

between metal and matrix. A thin vacuum layer (d = 2 Bohr, 1.06 Å) has been used in some of our 

earlier work as a different phenomenological description of matrix porosity [4, 5, 6].  

In order to reasonably compare simulation and experiment, we plot in Fig. S6 the maxima of the 

experimental curves and the weighted means for the simulated spectra with  = 60 meV, averaged 

between 1.8 and 3.8 eV, i.e. the onset of interband transitions. Choosing the weighted mean for 

the simulated spectra has proven better than fitting a single response function, especially for highly 

fragmented spectra. These values are plotted in the lower half of the figure. 

From Fig. S6 we conclude that the best agreement between experiment and simulation is 

obtained for a continuous porous alumina matrix with the experimentally derived dielectric 

function (green triangles). Mimicking the local porosity with a vacuum layer at the interface yields 

values in the correct range but predicts a size-effect not observed in the experiment. The values 

obtained for a dense, non-porous matrix are consistently too low in energy by ~150 meV. 
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Figure S6. Comparison of mean LSPR energies. Experimental values are given by open squares, 

weighted means for different simulation series by solid symbols. At the top of the figure are 

displayed values for gas phase clusters, at the bottom for alumina-embedded ones. The reference 

numbers refer to those of the Supporting Information. 

Also shown in Fig. S6 are experimental and theoretical values for gas phase clusters. Here we 

clearly see the influence of the environment on the mean plasmonic response and the relative 

scatter of simulated responses. The theoretical values are taken from [6], the experimental ones 

from [7, 8, 9] 

We note furthermore that, in general, for the smallest sizes (below ~80 atoms), as the number of 

atoms in the cluster is reduced, corrections to our spherical jellium description might become 
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necessary. Whether the scatter of mean LSPR energies, as shown in Fig. S6, is real or due to an 

increasing insufficiency of the theoretical approach, has to be validated by ab-initio methods such 

as TD-DFT, which are today not available for oxide-embedded clusters. The scatter of the order 

of ~100 meV is much smaller than the environmental effects.  
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On the choice of the parameter in the simulations 

In classical Mie theory in the quasi-static limit the width of the LSPR is defined by the dielectric 

function and no size dependence is considered [10]. Depending on the tables used for the optical 

constants, different values for the width are obtained. The table in [11] give a FWHM of <60 meV, 

whereas that of [12] give >160 meV (cf. Fig S7). These widths reflect the bulk dissipation due to 

collisions of electrons with other electrons, phonons, defects etc. To this intrinsic damping one has 

to add surface effects which are commonly modeled through an additive term proportional to 1/R, 

with R the cluster radius. The proportionality factor includes homogeneous contributions (Landau 

damping) as well as inhomogeneous ones, reflecting the averaged ensemble measurement. It thus 

strongly depends on the material, the environment and the experimental conditions, notably the 

matrix porosity and interface roughness. It is typically adjusted to fit the experimental data, see 

e.g. [13]. 

In our work we use atomistic input parameters to model the bulk part of the plasmonic response, 

analogous to a Mie description as described above: the electron effective mass (taken as 1), the 

Wigner-Seitz radius of bulk silver, the d-electron part of the dielectric function (taken from [12]) 

and an extrapolated value for the intrinsic damping constant . This last has been determined by 

extrapolation to 120 meV, i.e. = 60 meV [14]. With these values we obtain a classical Mie 

plasmon with FWHM = 100 eV, slightly lower than 120 meV because of dielectric screening 

effects, as detailed in [15] (eq. 3) and in between the values of Mie theory using [11, 12]. 
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Figure S7. Simulated absorption cross sections using quasi-static Mie theory with the dielectric 

functions from refs. [11, 12]. Also shown is the curve using the model of this article in the large 

diameter limit. All curves are calculated with the experimental dielectric function of porous 

alumina, as described in the text. 

In order to account for surface effects, Landau damping is included in our theoretical description. 

As described in the text, the delocalized conduction electrons, oscillating in the external field, 

probe the anharmonic part of the electron-jellium potential and thereby couple to internal single-

electron excitations. Thus, the simulated spectra in Fig. 3 with = 60 meV include Landau 

damping but do not include all inhomogeneous line broadening effects due to interface 

inhomogeneities etc. These last are then added empirically by using increased values for . The 

combination of these two then corresponds to the phenomenological description with the 1/R 

correction, as described above. 
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Simulated absorption spectra 

In the following are shown the simulated absorption spectra for given sizes of n silver atoms and 

embedded in alumina matrices with different descriptions of porosity. In all cases the thickness of 

the layer of reduced d electron polarizability was fixed to d = 3.5 bohr, consistently with all our 

past work, and the intrinsic line width taken as 2 = 120 meV. 

In the left column are displayed the spectra using the dielectric function of bulk alumina as taken 

from [12] in black curves and those of porous alumina with the experimental values of [3] in red. 

In both cases dm is taken as zero, corresponding to a neat interface between metal and matrix. 

In the right column are shown the spectra with the same two dielectric functions, but this time 

with a thin layer of vacuum of dm = 2 bohr (1.06 Å) thickness at the metal-matrix interface, 

mimicking local matrix porosity. 
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