David Adjiashvili

Felix Hommelsheim

Moritz Mühlenthaler

Oliver Schaudt

Fault-Tolerant Edge-Disjoint s-t Paths -Beyond Uniform Faults

Keywords: 2012 ACM Subject Classification Theory of computation → Routing and network design problems; Theory graph algorithms, network design, fault tolerance, approximation algorithms .SWAT.2022

The Edge-disjoint s-t Paths Problem (s-t EDP) is a classical network design problem whose goal is to connect for some k ≥ 1 two given vertices of a graph under the condition that any k -1 edges of the graph may fail. We extend the simple uniform failure model of the s-t EDP as follows: the edge set of the graph is partitioned into vulnerable, and safe edges, and a set of at most k vulnerable edges may fail, while safe edges do not fail. In particular we study the Fault-Tolerant Path (FTP) problem, the counterpart of the Shortest s-t Path problem in this non-uniform failure model as well as the Fault-Tolerant Flow (FTF) problem, the counterpart of s-t EDP. We present complexity results alongside exact and approximation algorithms for both problems. We emphasize the vast increase in complexity of the problems compared to s-t EDP.

Introduction

The Minimum-Cost Edge-Disjoint s-t Path Problem (s-t EDP) is a classical network design problem defined as follows. Given an edge-weighted directed graph D = (V, A), two terminal vertices s, t ∈ V and an integer parameter k ∈ Z ≥0 , find k edge-disjoint paths connecting s and t with minimum total cost. Equivalently, the problem s-t EDP asks for the minimum cost of connecting two nodes in a network, given that any k -1 edges can "fail" and hence be a-posteriori removed from the graph. The assumption here is that faults are uniform in the sense that every edge in the graph is equally vulnerable. Our goal is to advance the understanding of network design problems in the presence of non-uniform faults. To this end we study a natural generalization of s-t EDP called the Fault-Tolerant Path (FTP) problem, in which we partition the set of edges into vulnerable and safe edges. The task is to find a minimum-cost subgraph of a given graph that contains an s-t path after removing any k vulnerable edges from the graph. Formally, the problem FTP is defined as follows.

Observe that by adding the requirement that x ∈ {0, 1} A to FRAC-FTP, we obtain FTP. Recall that for MCF the value of an optimal integer solution is equal to the value of an optimal fractional solution. We show that in contrast to MCF the integrality gap of FRAC-FTP is bounded by k + 1 and that this bound is essentially tight in the sense that there is an infinite family of instances with integrality gap arbitrarily close to k + 1. This result also leads to a simple LP-based (k + 1)-approximation algorithm for FTP, which we then combine with an algorithm for the case k = 1 to obtain a k-approximation algorithm for FTP. Note that FTP also admits the following simple (k + 1)-approximation algorithm: Replace each safe edge with k + 1 parallel edges and find k + 1 edge-disjoint paths from s to t with minimum cost. It is not clear however how to obtain a k-approximation based on this algorithm, so our LP-based analysis is justified.

The second problem we study is FTF, which asks for ℓ ≥ 1 disjoint s-t paths in the presence of non-uniform single-edge faults. Observe that in the special case of uniform faults (every edge is vulnerable) an optimal solution is a minimum-cost s-t flow of value k + ℓ which can be computed in polynomial time. We show that as before the presence of non-uniform faults makes the problem much harder. In fact, it is as hard to approximate as FTP, despite the restriction to single-edge faults (the same result holds for FTF on undirected graphs). On the positive side, we give a simple polynomial-time (ℓ + 1)-approximation algorithm for FTF which computes a MCF with appropriately chosen capacities.

Note that our positive results for FTP imply a polynomial-time algorithm for FTF when ℓ = 1. Together with the hardness of FTF in general this motivates the questions how the complexity of FTF depends on the number ℓ of disjoint paths. To this end, we fix ℓ and study the corresponding slice Fault-Tolerant ℓ-Flow of FTF. Our main result is a 2-approximation algorithm for this problem. In a nutshell, the algorithm first computes a minimum-cost ℓ-flow and then makes the resulting ℓ disjoint paths fault tolerant by solving the corresponding augmentation problem. We solve the augmentation problem by reducing it to a shortest path problem; it is basically a dynamic programming algorithm in disguise. However, the reduction is quite involved: in order to construct the instance of Shortest s-t-Path, we solve at most n 2ℓ instances of the Min-cost Strongly Connected Subgraphs problem on ℓ terminal pairs, all of which can be done in polynomial time for fixed ℓ. Hence, the overall running time is polynomial for fixed ℓ.

In the light of our approximation results for Fault-Tolerant ℓ-Flow, one may wonder whether the problem may even admit a polynomial-time algorithm (assuming P ̸ = NP, say). An indication in this direction is that for a number of problems with a similar flavor, including robust paths [START_REF] Adjiashvili | Bulk-robust combinatorial optimization[END_REF], robust matchings [START_REF] Hommelsheim | How to secure matchings against edge failures[END_REF] or robust spanning trees [START_REF] Adjiashvili | Flexible graph connectivity[END_REF], hardness results were obtained by showing that the corresponding augmentation problems are hard. However, our results mentioned above show that this approach does not work for FTF. We show that a polynomial-time algorithm for Fault-Tolerant ℓ-Flow implies polynomial-time algorithms for 1-2-connected Directed 2 Steiner Tree. Whether this problem is NP-hard or not is a long-standing open question.

Related Work

The shortest path problem is a classical problem in the area of combinatorial optimization and as such, it has received considerable attention also in the context of fault tolerance, see for example [START_REF] Aissi | Approximation complexity of minmax (regret) versions of shortest path, spanning tree, and knapsack[END_REF][START_REF] Dhamdhere | How to pay, come what may: Approximation algorithms for demand-robust covering problems[END_REF][START_REF] Daniel Golovin | Improved approximations for two-stage min-cut and shortest path problems under uncertainty[END_REF][START_REF] Büsing | Recoverable robust shortest path problems[END_REF][START_REF] Yu | On the robust shortest path problem[END_REF][START_REF] Zieliński | The computational complexity of the relative robust shortest path problem with interval data[END_REF]. Most of the variants of the Shortest Path Problem studied in these references, as well as FTP and FTF, are subsumed by the Capacitated Survivable Network Design Problem, which due to its generality is hard to approximate even within a factor of 2 log 1-δ (n) on directed graphs for any δ > 0 under standard complexity assumptions [START_REF] Chakrabarty | Approximability of capacitated network design[END_REF]. The problems FTP and FTF also fit in the framework of bulk-robustness introduced by Adjiashvili, Stiller and Zenklusen [START_REF] Adjiashvili | Bulk-robust combinatorial optimization[END_REF]. In this model, we are given a set of failure scenarios, that is, a set of subsets of resources that may fail simultaneously. The task is to find a minimum-cost subset of the resources such that a desired property (e.g., connectivity of a graph) is maintained, no matter which failure scenario materializes. Adjiashvili, Stiller and Zenklusen considered bulk-robust counterparts of the Shortest Path and Minimum S WAT 2 0 2 2

5:4

Fault-Tolerant Edge-Disjoint s-t Paths Matroid basis problems. For bulk-robust shortest paths on undirected graphs they give a O(k + log n)-approximation algorithm, where k is the maximum size of a failure scenario. However, the running-time of this algorithm is exponential in k. Note that their bulk-robust shortest path problem generalizes FTP, and therefore the same approximation guarantee holds for FTP. Our approximation algorithm for FTP significantly improves on this bound, on both the approximation guarantee and the running-time. Furthermore, Adjiashvili [START_REF] Adjiashvili | Non-uniform robust network design in planar graphs[END_REF] obtained an LP-based O(k 2)-approximation algorithm for bulk-robust shortest paths on planar graphs. Uniform failure models have been considered for other classical connectivity problems, such as the Minimum Spanning Tree problem: Here, if any k edges of the input graph may fail we obtain the Minimum k-Edge Connected Spanning Subgraph (k-ECSS) problem. For k-ECSS, Gabow, Goemans, Tardos and Williamson [START_REF] Harold | Iterated rounding algorithms for the smallest k-edge connected spanning subgraph[END_REF] gave a polynomial time (1 + c k)approximation algorithm for k-ECSS, for some fixed constant c. The authors also show that for some constant c ′ < c, the existence of a polynomial time (1 + c ′ k)-approximation algorithm implies P = NP. The more general Generalized Steiner Network problem admits a polynomial 2-approximation algorithm due to Jain [START_REF] Jain | A factor 2 approximation algorithm for the generalized Steiner network problem[END_REF]. This is also the best known bound for weighted 2-ECSS. Non-uniform single-edge failures for the minimum spanning tree problem have been considered in [START_REF] Adjiashvili | Flexible graph connectivity[END_REF] and a 2-approximation algorithm for this problem has been given recently by Boyd et al. [START_REF] Boyd | A 2-approximation algorithm for flexible graph connectivity[END_REF]. A problem of a similar flavor but with uniform single-edge faults is Robust Matching Augmentation, which asks for a minimum-cost subgraph such that after the removal of any single edge, the resulting graph contains a perfect matching [START_REF] Hommelsheim | How to secure matchings against edge failures[END_REF]. This problem is as hard to approximate as Directed Steiner Forest, which is known to admit no log 2-ε -approximation algorithm unless NP ⊆ ZTIME(n polylog(n)) [START_REF] Halperin | Polylogarithmic inapproximability[END_REF]. The approximation hardness of FTF is a consequence of this result.

Notation

We mostly consider directed graphs, which we denote by (V, A), where V is the set of vertices set and A the set of arcs. Undirected graphs are denoted by (V, E) where E is the edge set. When we consider edge-weighted graphs we assume throughout that the weights are non-negative. Let G = (V, A) be a digraph with vulnerable arcs M ⊆ A. We denote by M := A \ M the set of safe arcs. Furthermore, for any set ∅ ̸ = X ⊊ V of vertices of G, we denote by δ(X) the set of arcs vw ∈ A such that v ∈ X and w / ∈ X.

Organization

The remainder of this paper is organized as follows. In Section 2, we present our results on FTP. We first show that FTP on undirected graphs is a special case of FTP on directed graphs. We provide exact polynomial algorithms for two special cases of FTP in Section 2.

Fault-Tolerant Paths

Assuming non-negative edge-weights, the shortest path problem on undirected graphs is a special case of the same problem on directed graphs: we may replace each undirected edge by two anti-parallel directed edges and conclude that any shortest path in the resulting digraph corresponds to a shortest path in the original undirected graph. We show that this observation extends to FTP. For this purpose we show that any solution to an FTP instance on an undirected graph admits an orientation, such that in each failure scenario a directed s-t paths remains (assuming that if an undirected edge fails, both corresponding anti-parallel arcs fail). As a consequence, the positive results for FTP on directed graphs given in sections 2.1 and 2.2 also hold for FTP on undirected graphs.

▶ Proposition 1. Let X ⊆ E be a feasible solution to an instance of FTP on an undirected graph (V, E). Then there is an orientation

- → X of X such that (V, - → X -F) contains a directed s-t path for every F ⊆ M with |F | ≤ k.
Proof. Let us assume for a contradiction that there is no such orientation. A set Y of (undirected and directed) edges is a partial orientation of X if there is a partition of X into sets X 1 and

X 2 such that Y = X 1 ∪ -→ X 2 , where -→ X 2 is an orientation of X 2 .
Let Y be a partial orientation of X that maximizes the number of directed edges such that (V, -→ X -F) contains a directed s-t path for every F ⊆ M with |F | ≤ k. By our assumption, there is at least one undirected edge e = vw in Y . Furthermore, there are two sets

S 1 , S 2 ⊆ V of vertices, such that {s} ⊆ S 1 , S 2 ⊆ V \ {t}, v ∈ S 1 \ S 2 , and w ∈ S 2 \ S 1 . Note that vw ∈ δ(S 1) and wv ∈ δ(S 2).
Since e is needed in both directions for Y to be feasible, there is some F ⊆ M , |F | ≤ k such that X \ F contains an s-t path that must leave S 1 via vw. Therefore, the cut δ(S 1) contains at most k + 1 edges and all of them except possibly e are vulnerable. The same holds for δ(S 2) and therefore we have

+ 2 = |δ(S 1)| + |δ(S 2)| ≥ |δ(S 1 ∩ S 2)| + |δ(S 1 ∪ S 2)| ≥ 2k + 2 (1)
so we have equality throughout. Furthermore, |δ(•)| satisfies the following identity

|δ(S 1)| + |δ(S 2)| = |δ(S 1 ∩ S 2)| + |δ(S 1 ∪ S 2)| + |A(S 1 \ S 2 , S 2 \ S 1)| + |A(S 2 \ S 1 , S 1 \ S 2)| ,
but the observation that e is an edge connecting S 1 \ S 2 and S 2 \ S 1 , together with the fact the we have equality in (1) yields a contradiction to the previous identity. ◀

Exact Algorithms

In this section we give polynomial-time algorithms for FTP on arbitrary graphs, where at most one edge can fail (k = 1) and FTP on directed acyclic graphs (DAGs) for fixed k. We start with the following useful observation.

▶ Lemma 2. Let I = (D = (V, A), s, t, M, k) be an FTP-instance and X ⊆ A. Then the following statements are equivalent. 1. X is a feasible solution to I.

2.

The network (V, X) with capacities c e = 1 if e ∈ M and c e = ∞ otherwise admits an s-t flow of value at least k + 1.

S WAT 2 0 2 2

5:6

Fault-Tolerant Edge-Disjoint s-t Paths

Proof. Let X ⊆ E(D). First, suppose that X is a feasible solution to the FTP instance (D, M, k). Suppose for a contradiction that the network ((V, X), c) capacitated by c e = 1 if e ∈ M and c e = ∞ otherwise admits no s-t flow of value at least k + 1. Then, by the Max-Flow Min-Cut Theorem, there is some capacitated cut δ(V ′) for some

V ′ ⊆ V with s ∈ V ′ and t / ∈ V ′ such that c(δ(V ′)) < k + 1.
By the definition of c, this implies that δ(V ′) does not contain any safe edge. But then F := δ(V ′) is a cut in (V, X) of size at most k, a contradiction to the feasibility of X. Now, suppose that X is not a feasible solution to the FTP instance (D, M, k). Then there is some capacitated cut δ(V ′) for some V ′ ⊆ V with s ∈ V ′ and t / ∈ V ′ such that c(δ(V ′)) ≤ k. But then, by the Max-Flow Min-Cut Theorem, the network ((V, X), c) admits no s-t flow of value at least k + 1. ◀

We consider the restriction of FTP to k = 1. An s-t bipath in the graph D = (V, A) is a union of two (not necessarily disjoint) s-t paths P 1 , P 2 ⊆ A. In the context of 1-FTP we call a bipath Q = P 1 ∪ P 2 robust if P 1 ∩ P 2 ∩ M = ∅. Note that every robust s-t bipath Q in G is a feasible solution to the 1-FTP instance. Indeed, consider any vulnerable edge e ∈ M . Since e ̸ ∈ P 1 ∩ P 2 it holds that either P 1 ⊆ Q -e, or P 2 ⊆ Q -e. It follows that Q -e contains some s-t path. The next lemma shows that every feasible solution of the 1-FTP instance contains a robust s-t bipath.

▶ Lemma 3. Every feasible solution S * to an 1-FTP instance contains a robust s-t bipath.

Proof. We assume without loss of generality that S * is a minimal feasible solution with respect to inclusion. Let Y ⊆ S * be the set of bridges in (V, S *). From feasibility of S * , we have Y ∩ M = ∅. Consider any s-t path P in S * . Let u 1 , • • • , u r be be the set of vertices incident to Y = P ∩ Y . Let u i and u i+1 be such that u i u i+1 ̸ ∈ Y . (if such an edge does not exist, we have Y = P , which means that P is a robust s-t bipath). Note that S * must contain two edge-disjoint u i -u i+1 paths L 1 , L 2 . Taking as the set Y together with all such pairs of paths L 1 , L 2 results in a robust bipath. ◀

We conclude from the previous discussion and Lemma 3 that all minimal feasible solutions to the 1-FTP instance are robust bipaths. This observation leads to the simple polynomialtime algorithm for 1-FTP that, using flow-techniques, computes for any pair of vertices u, v the length of i) a min-cost u-v path using only safe edges and ii) two edge-disjoint u-v paths of minimum cost. In a second step the algorithm computes a minimum-cost s-t path in a complete graph with respect to the minimum of the two computed costs. The resulting s-t path corresponds to a min-cost s-t bipath in the original graph and hence, by Lemma 3, an optimal robust s-t path.

▶ Theorem 4. 1-FTP admits a polynomial-time algorithm.

Proof. To solve 1-FTP we need to find the minimum cost robust s-t bipath. To this end let us define two length functions

ℓ 1 , ℓ 2 : V × V → R ≥0 . For two vertices u, v ∈ V let ℓ 1 (u, v)
denote the shortest path distance from u to v in the graph (V, A \ M), and let ℓ 2 (u, v) denote the cost of the shortest pair of edge-disjoint u-v paths in D. Clearly, both length functions can be computed in polynomial time (e.g. using flow techniques). Finally, set ℓ(u, v) = min{ℓ 1 (u, v), ℓ 2 (u, v)}. Construct the complete graph on the vertex set V and associate the length function ℓ with it. Observe that by definition of ℓ, any s-t path in this graph corresponds to a robust s-t bipath with the same cost, and vice versa. It remains to find the shortest s-t bipath by performing a single shortest s-t path in the new graph. For every edge uv in this shortest path, the optimal bipath contains the shortest We now consider the problem k-FTP (for fixed k ∈ N) on layered graphs. The generalization to a directed acyclic graph is done via a standard transformation, which we describe later. Recall that a layered graph D = (V, A) is a graph with a partitioned vertex set

u-v path in (V, A \ M) if ℓ(u, v) = ℓ 1 (u, v),
V = V 1 ∪ • • • ∪ V r and a set of edges satisfying A ⊂ i∈[r-1] V i × V i+1 . We assume without loss of generality that V 1 = {s} and V r = {t}. For every i ∈ [r -1] we let A i = A ∩ V i × V i+1 .
We reduce k-FTP to a shortest path problem in a larger graph. The following definition sets the stage for the algorithm.

▶ Definition 5. An i-configuration is a vector d ∈ {0, 1, • • • , k + 1} Vi satisfying v∈Vi d v = k + 1. We let supp(d) = {v ∈ V i : d v > 0}. For an i-configuration d 1 and an (i + 1)- configuration d 2 we let V (d 1 , d 2) = supp(d 1) ∪ supp(d 2) and A(d 1 , d 2) = A[V (d 1 , d 2)].
We say that an i-configuration d 1 precedes an (i + 1)-configuration d 2 if the following flow problem is feasible. The graph is defined as

H(d 1 , d 2) = (V (d 1 , d 2), A(d 1 , d 2)
). The demand vector ν and the capacity vector c are given by

ν u = -d 1 u if u ∈ supp(d 1) d 2 u if u ∈ supp(d 2)
and

c e = 1 if e ∈ M ∞ if e ∈ E \ M, respectively. If d 1 precedes d 2 we say that the link (d 1 , d 2) exists. Finally, the cost ℓ(d 1 , d 2) of this link is set to be minimum value w(A ′) over all A ′ ⊆ A(d 1 , d 2)
, for which the previous flow problem is feasible, when restricted to the set of edges A ′ .

The algorithm constructs a layered graph

H = (V, A) with r layers V 1 , • • • , V r . For every i ∈ [r] the set of vertices V i contains all i-configurations. Observe that since V 1 =
{s} and V r = {t}, we have that V 1 and V r contain one vertex each, which we denote by c s and c t , respectively. The edges correspond to links between configurations. Every edge is directed from the configuration with the lower index to the one with the higher index. The cost is set according to Definition 5. The following lemma provides the required observation, which immediately leads to a polynomial-time algorithm.

▶ Lemma 6. Every c s -c t path P in H corresponds to a fault-tolerant path S with w(S) ≤ ℓ(P), and vise-versa.

Proof. Consider first a fault-tolerant path S ⊆ A. We construct a corresponding c s -c t path in H as follows. Consider any k + 1 s-t flow f S , induced by S.

Let p 1 , • • • , p l be a path decomposition of f S and let 1 ≤ ρ 1 , • • • , ρ l ≤ k + 1 (with i∈[l] ρ i = k + 1) be the corresponding flow values.
Since D is layered, the path p j contains exactly one vertex v j i from V i and one edge e j i from A i for every j ∈ [l] and i ∈ [r]. For every i ∈ [r] define the i-configuration d i with

d i v = j∈[l]:v=v i j ρ i ,
if some path p j contains v, and d i v = 0, otherwise. The fact that d i is an i-configuration follows immediately from the fact that f S is a (k + 1)-flow. In addition, for the same reason d i precedes d i+1 for every i ∈ [r -1]. From the latter observations and the fact that

d 1 = c s and d r = c t it follows that P = d 1 , d 2 , • • • , d r is a c s -c t path in H with cost ℓ(P) ≤ w(S).
Consider next an c s -c

t path P = d 1 , • • • , d r with cost ℓ(P) = r-1 i=1 ℓ(d i , d i+1). The cost ℓ(d i , d i+1) is realized by some set of edges R i ⊆ A(d i , d i+1) for every i ∈ [r -1].
From Definition 5, the maximal s-t flow in the graph

D ′ = (V, R) is at least k + 1, where S WAT 2 0 2 2 5:8 Fault-Tolerant Edge-Disjoint s-t Paths R = ∪ i∈[r-1] R i .
Next, Lemma 2 guarantees that there exists some feasible solution S ⊆ R, the cost of which is at most ℓ(P). In the latter claim we used the disjointness of the sets R i , which is due the layered structure of the graph G. This concludes the proof of the lemma. ◀ Finally, we observe that the number of configurations is bounded by O(n k+1), which implies that k-FTP can be solved in polynomial time on layered graphs.

To obtain the same result for directed acyclic graphs we perform the following transformation of the graph. Let v 1 , • • • , v n be a topological sorting of the vertices in D. Replace every edge e = v i v j (i < j) with a path p e = v i , u e i+1 , • • • , u e j-1 , v j of length j -i + 1 by subdividing it sufficiently many times. Set the cost of the first edge on the path to w ′ (v i u e i+1) = w(v i v j) and set the costs of all other edges on the path to zero. In addition, create a new set of faulty edges M ′ , which contains all edges in a path p e if e ∈ M . It is straightforward to see that the new instance of FTP is equivalent to the original one, while the obtained graph after the transformation is layered. We summarize the result as follows.

▶ Theorem 7. There is a polynomial-time algorithm for k-FTP restricted to instances with a directed acyclic graph.

Integrality Gap and Approximation Algorithms

In this section we study the natural fractional relaxation FRAC-FTP of FTP and prove a tight bound on its integrality gap. That is, we bound the worst-case ratio of the value of an optimal solution of an FTP instance and the corresponding optimal value of FRAC-FTP. This result also suggests a simple approximation algorithm for FTP with ratio k + 1. We then combine this algorithm with the algorithm for 1-FTP to obtain a k-approximation algorithm.

Fractional FTP and Integrality Gap

We give the following bound on the integrality gap of FRAC-FTP.

▶ Theorem 8. The integrality gap of FRAC-FTP is at most k + 1. Furthermore, there exists an infinite family of instances of FTP with integrality gap arbitrarily close to k + 1.

Proof. Consider an instance I = (D, s, t, M, k) of FTP. Let x * denote an optimal solution to the corresponding FRAC-FTP instance, and let OP T = w(x *) be its cost. Define a vector y ∈ R A as follows.

y e = (k + 1)x e if e ̸ ∈ M min{1, (k + 1)x e } otherwise. (2)
Clearly, it holds that w(y) ≤ (k + 1)OP T . We claim that every s-t cut in D with capacities as desired. From our observations it follows that the maximum flow in D with capacities y is at least k + 1. Finally, consider the minimum cost (k + 1)-flow z * in D with capacities defined by

y
c e = k + 1 if e ̸ ∈ M 1 otherwise.
From integrality of c and the minimum-cost flow problem we can assume that z * is integral.

Note that y e ≤ c e for every e ∈ A, hence any feasible (k + 1)-flow with capacities y is also a feasible (k + 1)-flow with capacities c. From the previous observation it holds that w(z *) ≤ w(y) ≤ (k + 1)OP T . From Lemma 2 we know that the support of z * is a feasible solution to the FTP instance. This concludes the proof of the upper bound of k + 1 for the integrality gap.

To prove the same lower bound we provide an infinite family of instances, containing instances with integrality gap arbitrarily close to k + 1. Consider a graph with p ≫ k parallel edges with unit cost connecting s and t, and let M = A. An optimal solution to this FTP instance chooses any subset of k + 1 edges. At the same time, the optimal solution to FRAC-FTP assigns a capacity of 1 p-k to every edge. This solution is feasible, since in every failure scenario, the number of edges that survive is at least p -k, hence the maximum s-t flow is at least one. The cost of this solution is p p-k . Taking p to infinity yields instances with integrality gap arbitrarily close to k + 1. ◀

The proof of Theorem 8 leads to a simple (k + 1)-approximation algorithm for FTP. However, simply creating k copies of each vulnerable arc and finding a minimum-cost s-t flow of value at least k + 1 gives a (k + 1)-approximation as well.

▶ Proposition 9. FTP admits a polynomial-time (k + 1)-approximation algorithm.

A k-Approximation Algorithm

We propose an LP-based k-approximation algorithm for FTP that is a refinement of the LP-based approximation algorithm of Proposition 9. Intuitively, the reason why the algorithm of Proposition 9 gives an approximation ratio of k + 1 is that the capacity of the edges in A \ M is set to k + 1. Therefore, if an s-t flow z * uses such an edge to its full capacity, the cost incurred is k + 1 times the cost of the edge. Hence, the best possible lower bound on the cost w(z *) is (k + 1) OPT F RAC , where OPT F RAC denotes the optimal value of the corresponding FRAC-FTP instance. To improve the algorithm we observe that each edge which carries a flow of k + 1 according to z * is a cut-edge in the obtained solution.

Let I = (D, s, t, M) be an instance of FTP. We begin our analysis by considering a certain canonical flow defined by minimal feasible solutions.

▶ Definition 10. Consider an inclusion-wise minimal feasible solution

S ⊆ A to I. A flow f S induced by S is any integral s-t (k + 1)-flow in D respecting the capacity vector c S e =        1 if e ∈ S ∩ M k + 1 if e ∈ S \ M 0 if e ∈ A \ S.
Consider an optimal solution X * ⊆ A to I and a corresponding induced flow f * . Define

X P AR = {e ∈ X * : f * (e) ≤ k} and X BRIDGE = {e ∈ X * : f * (e) = k + 1} .
S WAT 2 0 2 2 5:10

Fault-Tolerant Edge-Disjoint s-t Paths

As we argued before, every edge in X BRIDGE must be a bridge in H = (V, X *) disconnecting s and t. Let e u denote the tail vertex of an edge e ∈ A. Since every edge e ∈ X BRIDGE constitutes an s-t cut in H, it follows that the vertices in U = {e u : e ∈ X BRIDGE } ∪ {s, t} can be unambiguously ordered according to the order in which they appear on any s-t path in H, traversed from s to t. Let s = u 1 , • • • , u q = t be this order. Except for s and t, every vertex in U constitutes a cut-vertex in H. Divide H into q -1 subgraphs H 1 , • • • , H q-1 by letting H i = (V, Y i) contain the union of all u i -u i+1 paths in H. We observe the following:

▶ Proposition 11. For every i ∈ {1, 2, . . . , q -1} the set Y i ⊆ A is an optimal solution to the FTP instance

I i = (G, u i , u i+1 , M).
Consider some i ∈ {1, 2, . . . , q -1} and let f * i denote the flow f * , restricted to edges in H i . Note that f * i can be viewed as a u i -u i+1 (k + 1)-flow. Exactly one of the following cases can occur. Either H i contains a single edge e ∈ A \ M , or max e∈Yi f * i (e) ≤ k. In the former case, the edge e is the shortest u i -u i+1 path in (V, A \ M). In the latter case we use an algorithm that is similar to the one of Proposition 9 to obtain a k-approximation of the optimal FTP solution on instance I i . Concretely, the algorithm defines the capacity vector c ′ (e) = k if e / ∈ M and c ′ (e) = 1, otherwise, and finds an integral minimum-cost u i -u i+1 (k + 1)-flow Y * in D, and returns the support Y ⊆ A of the flow as the solution. The existence of the flow f * i guarantees that w(y *) ≤ w(f * i), while the fact that the maximum capacity in the flow problem is bounded by k gives w(Y) ≤ kw(y *). It follows that this algorithm approximates the optimal solution to the FTP instance I i to within a factor k.

The final algorithm uses the algorithm for 1-FTP as a blueprint. However, instead of finding two edge-disjoint u-v paths, the new algorithm solves the aforementioned flow problem. We summarize the main result of this section as follows.

▶ Theorem 12. FTP admits a polynomial-time k-approximation algorithm.

Approximation Hardness

We complement our algorithmic results by showing approximation hardness for FTP. An instance of the problem Directed m-Steiner Tree (m-DST) is given by a weighted directed graph D = (V, A), a source node s ∈ V , a set T ⊆ V of terminals and an integer m ≤ |T |. The goal is to find a minimum-cost arboresence X ⊆ A rooted at s that connects s to m terminals. Halperin and Krauthgamer [START_REF] Halperin | Polylogarithmic inapproximability[END_REF] showed that m-DST cannot be approximated within a factor log 2-ϵ m for every ϵ > 0, unless NP ⊆ ZTIME(n polylog(n)). We show that the problem m-DST is a special case of FTP.

Given an m-DST instance we construct an instance of FTP as follows. The graph D is augmented by |T | new arcs A ′ of cost 0 connecting every terminal to a new node t. Finally, we let M = A ′ and k = m -1. It is readily verified that any fault-tolerant s-t path in the graph so obtained corresponds to a feasible solution to the m-DST instance of the same cost (we may assume that all arcs in A ′ are in some solution to the FTP instance). This implies the following conditional approximation lower bound for FTP. ▶ Proposition 13. FTP admits no polynomial-time approximation algorithms with ratio log 2-ϵ k for every ϵ > 0, unless NP ⊆ ZTIME(n polylog(n)).

The reduction can be easily adapted to yield a k ϵ -approximation algorithm for FTP for the special case that M ⊆ {e ∈ A : t ∈ e} using the algorithm of Charikar et. al. [START_REF] Charikar | Approximation algorithms for directed Steiner problems[END_REF].

We end this discussion by showing that FTP contains as a special case a more general Steiner problem, which we call Simultaneous Directed m-Steiner Tree (m-SDST). An input to m-SDST specifies two arc-weighted digraphs D 1 = (V, A 1 , w 1) and D 2 = (V, A 2 , w 2) on the same set V of vertices, a source s, a set T ⊆ V of terminals, and an integer m ≤ |T |. The goal is to find a subset U ⊆ T of m terminals and two arborescences S 1 ⊆ A 1 and S 2 ⊆ A 2 connecting s to U in the respective graphs, so as to minimize w 1 (S 1) + w 2 (S 2). m-SDST is seen to be a special case of FTP via the following reduction. Given an instance of m-SDST, construct a graph D = (V ′ , A) as follows. Take a disjoint union of D 1 and D 2 , where the direction of every arc in D 2 is reversed. Connect every copy of a terminal u ∈ T in D 1 to its corresponding copy in D 2 with an additional zero-cost arc e u . Finally, set M = {e u : u ∈ T } and k = m -1. A fault-tolerant path connecting the copy of s in D 1 to the copy of s in D 2 corresponds to a feasible solution to the m-SDST instance with the same cost, and vice-versa.

Fault-Tolerant Flows

In this section we present our results on the problem FTF. We first give an approximation hardness result and then investigate the complexity of FTF for fixed flow values ℓ. Our main result is a polynomial-time algorithm for the corresponding augmentation problem, which we use to obtain a 2-approximation for Fault-Tolerant ℓ-Flow. We conclude by showing that a polynomial-time algorithm for Fault-Tolerant ℓ-Flow implies polynomial-time algorithms for two problems whose complexity status is open.

Approximation Hardness of FTF

We show that FTF is as hard to approximate as Directed Steiner Forest by using an approximation hardness result from [START_REF] Hommelsheim | How to secure matchings against edge failures[END_REF] for the problem Weighted Robust Matching Augmentation. The problem Weighted Robust Matching Augmentation asks for the cheapest edge-set (assuming non-negative costs) to add to a bipartite graph such that the resulting graph is bipartite and contains a perfect matching after a-posteriori removing any single edge. The idea of our reduction is similar to that of the classical reduction from the Bipartite Maximum Matching problem to the Max s-t Flow problem. Note that we may assume that both parts of the input graph have the same size. We add to the graph (U, W, E) on n vertices of a Weighted Robust Matching Augmentation instance I two terminal vertices s and t, and connect s to each vertex of U and each vertex of W to t by an arc of cost 0. Now we add all possible arcs from U to W , marking those as vulnerable that correspond to an edge in E; the costs are according to I. Observe that a fault-tolerant n/2-flow corresponds to a feasible solution to the Weighted Robust Matching Augmentation instance after deleting s and t.

▶ Lemma 14. A polynomial-time f (ℓ) approximation algorithm for FTF implies a polynomialtime f (n/2)-approximation algorithm for Weighted Robust Matching Augmentation, where n is the number of vertices in the Weighted Robust Matching Augmentation instance.

Proof. In the following it will be convenient to denote by E the edge-set of the bipartite complement of a bipartite graph with edge-set E. Let I = (G, c) be an instance of Weighted Robust Matching Augmentation where G = (U, W, E) is a balanced bipartite graph on n vertices and c ∈ Z E ≥0 . Our reduction is similar to the classical reduction from the perfect matching problem in bipartite graphs to the Max s-t Flow problem. We construct in polynomial-time an instance I ′ = (D ′ , c ′ , s, t, M) of FTF as follows. To obtain the digraph D ′ = (V, A), we add to the vertex set of G two new vertices s and t and add all arcs from s to U and from W to t. Furthermore, we add all arcs from U to W and consider those that correspond to an edge in E as vulnerable. That is, we let M := {uw : u ∈ U, w ∈ W, uw ∈ E}. To complete the construction of I ′ , we let ℓ = n/2, and let the arc-costs c ′ be given by For X ⊆ E ∪ E we write q(X) for the corresponding set of arcs of D ′ . Similarly, for a set Y ⊆ A of arcs we write q -1 (Y) for the corresponding set of undirected edges of G. Observe that for a feasible solution X to I, the arc set q(X) ∪ A s ∪ A t is feasible for I ′ , where A s (resp., A t) is the set of arcs leaving s (resp., entering t). Furthermore, a feasible solution Y to I ′ corresponds to a feasible solution q -1 (Y \ (A s ∪ A t)) to I. Also note that, by the choice of c ′ , we have that the cost of two corresponding solutions is the same. It follows that since ℓ = n/2, any polynomial-time f (ℓ)-factor approximation algorithm for Fault-Tolerant ℓ-Flow implies a polynomial-time f (n/2)-factor approximation algorithm for Weighted Robust Matching Augmentation, where n = |U + W |. ◀

S
We combine Lemma 14 with two hardness results from [START_REF] Hommelsheim | How to secure matchings against edge failures[END_REF] and [START_REF] Halperin | Polylogarithmic inapproximability[END_REF] to obtain the following approximation hardness result for FTF.

▶ Theorem 15. FTF admits no polynomial-time log 2-ε (ℓ)-factor approximation algorithm for every ε > 0, unless NP ⊆ ZTIME(n polylog(n)).

Proof. We give a polynomial-time cost-preserving reduction from Directed Steiner Forest to FTF via Weighted Robust Matching Augmentation. The intermediate reduction step from Directed Steiner Forest to Weighted Robust Matching Augmentation is given in [START_REF] Hommelsheim | How to secure matchings against edge failures[END_REF]Prop. 6.1]. Consider an instance I of Directed Steiner Forest on a weighted digraph D = (V, A) on n vertices with k terminal pairs (s 1 , t 1), (s 2 , t 2), . . . , (s k , t k). According to the reduction given in the proof of [START_REF] Hommelsheim | How to secure matchings against edge failures[END_REF]Prop. 18], we obtain an instance of Weighted Robust Matching Augmentation on a graph of at most 2(n + k) + 2(n -k) = 4n =: n ′ vertices. By the arguments their proof, a f (n ′)-approximation algorithm for Weighted Robust Matching Augmentation yields a f (4n)-approximation algorithm for Directed Steiner Forest. We apply Proposition 14 to conclude that an f (ℓ)-approximation algorithm for FTF yields a f (2n)approximation algorithm for Directed Steiner Forest. According to the result of Halperin and Krauthgamer [START_REF] Halperin | Polylogarithmic inapproximability[END_REF], the problem Directed Steiner Forest admits no polynomial-time log 2-ε n-approximation algorithm for every ε > 0, unless NP ⊆ ZTIME(n polylog(n)). We conclude that FTF admits no polynomial-time log 2-ε (ℓ/2)-factor approximation algorithm under the same assumption. ◀

Approximation Algorithms

We first present a simple polynomial-time (ℓ + 1)-approximation algorithm for FTF, which is similar to the LP-based (k + 1)-approximation for FTP. The algorithm computes a minimumcost s-t flow of value ℓ + 1 on the input graph with the following capacities: each vulnerable arc receives capacity 1 and any other arc capacity 1 + 1/ℓ. The solution then consists of all arcs in the support of the flow. To see that for this choice of capacities we obtain a feasible solution, recall that the value of any s-t cut upper-bounds the value of any s-t flow. Therefore, each s-t cut C has value at least ℓ + 1, so C contains either at least ℓ safe arcs or at least ℓ + 1 arcs. To prove the approximation guarantee, we show that any optimal solution to an FTF instance contains an s-t flow of value ℓ + 1 and observe that we over-pay safe arcs by a factor of at most (1 + 1/ℓ).

▶ Theorem 16. FTF admits a polynomial-time (ℓ + 1)-approximation algorithm.

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt

5:13

Proof. Let I be an instance of FTF on a digraph D = (V, A)) with weight c ∈ Z A ≥0 , terminals s and t, vulnerable arcs M and desired flow value ℓ. We consider an instance I ′ = (D, c, s, t, ℓ + 1, g) of MCF, where the arc capacities g are given by g e :=

1 if e ∈ M , and

1 + 1 k otherwise
An optimal solution to I ′ can be computed computed in polynomial-time by standard techniques. We saw in the discussion at the beginning of Section 3.2 that the set of arcs of positive flow in a solution to I ′ yields a feasible solution to I.

It remains to bound the approximation ratio. Let Y * be an optimal solution to I of cost OPT(I). We first show that Y * contains ℓ + 1 disjoint s-t paths.

▷ Claim 1. Y * contains an s-t flow of value ℓ + 1 with respect to the capacities g.

Proof. First observe that in any feasible solution to I, every s-t cut contains either at least ℓ safe arcs or at least ℓ + 1 arcs. Now, an s-t cut Z in Y * having at least ℓ safe arcs satisfies

g(Z) ≥ (1 + 1 ℓ) • ℓ = ℓ + 1.
On the other hand, an s-t cut Z ′ in Y * containing at least ℓ + 1 arcs satisfies g(Z ′) ≥ ℓ + 1. Hence, each s-t cut in Y * has capacity at least ℓ + 1. By the max-flow-min-cut theorem there is an s-t flow of value at least ℓ + 1. ◁

The theorem now follows from the next claim.

▷ Claim 2. An optimal solution to I ′ has cost at most (ℓ + 1) • OPT(I).

Proof. Let f * ∈ Q A be an optimal s-t flow with respect to the capacities g. Furthermore, let Y be the set of arcs of positive flow, that is

Y := {e ∈ A | f * e > 0}. Let Y M = Y ∩ M be the vulnerable arcs in Y and let Y S = Y \ Y M
be the safe arcs. First, we may assume that each arc e ∈ Y has flow value at least f * e ≥ 1/ℓ, since each arc has capacity either 1 or 1 + 1 ℓ . This is true since we could scale the arc capacities g by a factor ℓ, which allows us to compute (in polynomial time) an integral optimal solution with respect to the scaled capacity function, using any augmenting paths algorithm for MCF. In addition, observe that we may pay a factor of at most 1 + 1 ℓ too much for each safe arc since the capacity of the safe arc is 1 + 1 ℓ . Therefore, we may bound the cost of a safe arc e ∈ Y S by ℓ

• (1 + 1 ℓ) • c e • f
c(Y) = c(Y S) + c(Y M) ≤ ℓ • (1 + 1 ℓ) • e∈Y S c e • f * e + e∈Y M c e • f * e ≤ ℓ • (1 + 1 ℓ) • e∈Y S c e • f * e + e∈Y M c e • f * e ≤ (ℓ + 1) • OPT(I) ,
where the first inequality follows from the two arguments above and the last inequality follows from Claim 1. ◁ ◀ Note that we cannot simply use the dynamic programming approach as in the algorithm for 1-FTP to obtain an ℓ-approximation for FTF, since a solution to FTF in general does not have cut vertices, which are essential for the decomposition approach for the k-approximation for FTP. S WAT 2 0 2 2 5:14

Fault-Tolerant Edge-Disjoint s-t Paths A 2-approximation for Fault-Tolerant ℓ-Flow

We now show that for a fixed number ℓ of disjoint paths a much better approximation guarantee can be obtained. That is, we give a polynomial-time 2-approximation algorithm for Fault-Tolerant ℓ-Flow (FTℓF) (however, its running time is exponential in ℓ). The algorithm first computes a minimum-cost s-t flow of value ℓ and then augments it to a feasible solution by solving the following augmentation problem.

Fault-Tolerant ℓ-Flow Augmentation Instance: arc-weighted directed graph D = (V, A), nodes s, t ∈ V , arc-set X0 ⊆ A that contains ℓ disjoint s-t paths, and set M ⊆ A of vulnerable arcs.

Task:

Find minimum weight set S ⊆ A \ X0 such that for every f ∈ M the set (X0 ∪ S) \ f contains ℓ disjoint s-t paths.

Our main technical contribution is that Fault-Tolerant ℓ-Flow Augmentation can be solved in polynomial time for fixed ℓ. Our algorithm is based on a dynamic programming approach and it involves solving many instances of the problem Directed Steiner Forest, which asks for a cheapest subgraph connecting ℓ given terminal pairs. This problem admits a polynomial-time algorithm for fixed ℓ [START_REF] Feldman | The directed Steiner network problem is tractable for a constant number of terminals[END_REF], but is W[1]-hard when parameterized by ℓ, so the problem is unlikely to be fixed-parameter tractable [START_REF] Guo | Parameterized complexity of arc-weighted directed Steiner problems[END_REF]. Roughly speaking, we traverse the ℓ disjoint s-t paths computed previously in parallel, proceeding one arc at a time. In order to deal with vulnerable arcs, at each step, we solve an instance of Directed Steiner Forest connecting the ℓ current vertices (one on each path) to ℓ destinations on the same path by using backup paths. That is, we decompose a solution to the augmentation problem into instances of Directed Steiner Forest connected by safe arcs. An optimal decomposition yields an optimal solution to the instance of the augmentation problem. We find an optimal decomposition by dynamic programming. Essentially, we give a reduction to a shortest path problem in a graph that has exponential size in ℓ.

Let us fix an instance I of Fault-Tolerant ℓ-Flow Augmentation on a digraph D = (V, A) with arc-weights c ∈ Z A ≥0 and terminals s and t. Let P 1 , P 2 , . . . , P ℓ be ℓ disjoint s-t paths contained in X 0 . We assume without loss of generality that X 0 is the union of P 1 , P 2 , . . . , P ℓ . If X 0 contains an arc e that is not on any of the ℓ paths, we remove e from X 0 and assign to it weight 0.

We now give the reduction to the shortest path problem. We construct a digraph D = (V, A); to distinguish it clearly from the graph D of I, we call the elements in V (A) of D vertices (arcs) and elements of V (A) nodes (links). We order the vertices of each path P i , 1 ≤ i ≤ ℓ, according to their distance to s on P i . For two vertices x i , y i of P i , we write x i ≤ y i if x i is at least as close to s on P i as y i . Let us now construct the node set V. We add a node v to V for every ℓ-tuple v = (x 1 , ..., x ℓ) of vertices in V (X 0) satisfying x i ∈ P i , for every i ∈ {1, 2, . . . , ℓ}. Note that the corresponding vertices of a node are not necessarily distinct, since the ℓ edge-disjoint paths P 1 , P 2 , . . . , P ℓ may share vertices. We also define a (partial) ordering on the nodes in V. From now on, let v 1 = (x 1 , ..., x ℓ) and v 2 = (y 1 , ..., y ℓ) be two nodes of V. We write v 1 ≤ v 2 if x i ≤ y i for every 1 ≤ i ≤ ℓ. Additionally, let Q i (x, y) be the sub-path of P i from a vertex x of P i to a vertex y of P i .

We now construct the link set A := A 1 ∪ A 2 of D as the union of two link-sets A 1 and A 2 , defined as follows. We add to A 1 a link v 1 v 2 , if v 1 precedes v 2 and the subpaths of each P i from x i to y i contain no vulnerable arc. That is, we let

A 1 := {v 1 v 2 | v 1 , v 2 ∈ V, v 1 ≤ v 2 , Q i (x i , y i) ∩ M = ∅ for 1 ≤ i ≤ ℓ} .
D ′ = (V, A ′),
where

A ′ = (A \ X 0) ∪ 1≤i≤ℓ ← - Q i (x i , y i), where ← - Q i (x i , y i) are the arcs of Q i (x i , y i)
0 if e ∈ ← - Q i (x i , y i) for some i ∈ {1, 2, . . . , ℓ}.
That is, for 1 ≤ i ≤ ℓ, we reverse the path Q i (x i , y i) connecting x i to y i and make the corresponding arcs available at zero cost. We then need to connect x i to y i without using arcs in X 0 . Since the number of terminal pairs is at most ℓ which is a constant, the Directed Steiner Forest instance I(v 1 , v 2) can be solved in polynomial time by the algorithm of Feldman and Ruhl given in [START_REF] Feldman | The directed Steiner network problem is tractable for a constant number of terminals[END_REF]. Let OPT(I(v 1 , v 2)) be the cost of an optimal solution to I(v 1 , v 2). We add a link v 1 v 2 to A 2 if the computed solution of I(v 1 , v 2) is strongly connected. This completes the construction of A 2 . For a link e ∈ A we let the weight w e = 0 if e ∈ A 1 and w e = OPT(I(v 1 , v 2)) if e ∈ A 2 .

We now argue that a shortest path P from node s 1 = (s, . . . , s) ∈ V to node t 1 = (t, . . . , t) ∈ V in D corresponds to an optimal solution to I. For every link vw ∈ P, we add the optimal solution to I(v, w) computed by the Feldman-Ruhl algorithm to our solution Y . The algorithm runs in polynomial time for a fixed number ℓ of disjoint s-t paths, since it computes at most n ℓ Min-cost Strongly Connected Subgraphs on ℓ terminal pairs, which can be done in polynomial time by [START_REF] Feldman | The directed Steiner network problem is tractable for a constant number of terminals[END_REF]. Proving that the final algorithm is optimal is quite technical and requires another auxiliary graph and a technical lemma.

▶ Theorem 17. The set Y computed by Algorithm 1 is an optimal solution to the instance I of Fault-Tolerant ℓ-Flow Augmentation. Furthermore, the running time is bounded by

O(|A||V | 6ℓ-2 + |V | 6ℓ-1 log |V |).
From Theorem 17 we obtain a polynomial-time 2-approximation algorithm for FTℓF: Let OPT(I) be the cost of an optimal solution to an instance I of FTℓF. The algorithm first computes a minimum-cost s-t flow X 0 and then runs the algorithm for the augmentation problem using X 0 as initial arc-set. The algorithm returns the union of the arc-sets computed in the two steps. By Theorem 17 we can augment X 0 in polynomial time to a feasible solution X 0 ∪ Y to I. Since we pay at most OPT(I) for the sets X 0 and Y , respectively, the total cost is at most 2 OPT(I).

▶ Corollary 18. FTℓF admits a polynomial-time 2-approximation algorithm.

The remainder of this section is devoted to sketching the proof of Theorem 17. For this purpose we need another auxiliary graph that we use as a certificate of feasibility. For a graph H = (V, A *) such that X 0 ⊆ A * ⊆ A, we denote the corresponding residual graph

by D

X0 (A *) = (V, A ′). The arc-set A ′ is given by A ′ := {uv ∈ A * | uv / ∈ X 0 } ∪ {vu ∈ A * | uv ∈ X 0 }. An illustration of this graph is given in Figure 1. We first show that in a feasible solution Y ⊆ A \ X 0 , each vulnerable arc in X 0 is contained in a strongly connected component of D X0 (X 0 ∪ Y). ▶ Lemma 19. Let Y ⊆ A \ X 0 . Then Y is a feasible solution to I if and only if each vulnerable arc f ∈ M ∩ X 0 is contained in a strongly connected component of D X0 (X 0 ∪ Y).
Proof. We first prove the "if" part, so let f = uv be a vulnerable arc in

X 0 that is contained in a strongly connected component of D X0 (X 0 ∪ Y). Since f ∈ X 0 , the arc f is reversed in D X0 (X 0 ∪ Y) and since f is on a cycle C in D X0 (X 0 ∪ Y), there is a path P from u to v in D X0 (X 0 ∪ Y)
. Let P ′ be the path corresponding to P in X 0 ∪ Y . Note that P ′ is not a directed path in D and that an arc e on P ′ is traversed forward if e ∈ P ′ ∩ Y and traversed backward if e ∈ P ′ ∩ X 0 . We partition P ′ into two disjoint parts P ′ X0 = P ′ ∩ X 0 and P ′ Y = P ′ ∩ Y . We now argue that (X 0 -P ′ X0 -f) ∪ P ′ Y contains ℓ disjoint s-t paths. Clearly, we have (X 0 -P ′ X0 -f) ∪ P ′ Y ⊆ X 0 ∪ Y . Furthermore, by our assumption that X 0 is the union of ℓ s-t edge-disjoint paths, for each vertex v ∈ V -{s, t}, we have δ

+ (v) = δ -(v) and δ + (s) = δ -(t) = ℓ. Since C is a cycle in D X0 (X 0 ∪ Y) the degree constraints also hold for (X 0 -P ′ X0 -f) ∪ P ′ Y . Hence (X 0 -P ′ X0 -f) ∪ P ′
Y is the union of ℓ disjoint s-t paths. We now prove the "only if" part. Let f = uv ∈ X 0 be a vulnerable arc and suppose f is not contained in a strongly connected component of D X0 (X 0 ∪ Y). Let L ⊆ V be the set of vertices that are reachable from u in D X0 (X 0 ∪ Y) and let R = V -L. Note that s ∈ L, since u is on some s-t path in X 0 and t ∈ R, since otherwise there is a path from

u to v in D X0 (X 0 ∪ Y) (since every arc in X 0 is reversed in D X0 (X 0 ∪ Y)). Let L ′ = {x 1 , . . . , x ℓ } ⊆ L, x i ∈ P i for 1 ≤ i ≤ ℓ, be the vertices of L that are closest to t in X 0 . We now claim that δ + (L) is a cut of size ℓ in X 0 ∪ Y containing f . Since f is vulnerable this contradicts the feasibility of X 0 ∪ Y . We have f ∈ δ + (L) in X 0 ∪ Y , since otherwise f is contained in a strongly connected component of D X0 (X 0 ∪ Y). By the construction of L, we have Y ∩ δ + (L) = ∅.
Since X 0 is the union of ℓ disjoint paths, the set δ + (L) has size at most ℓ, proving our claim, since this implies that X 0 ∪ Y is not feasible. ◀ Next, we sketch the proof of Theorem 17. Let Y * be an optimal solution to I of weight OPT(I). We now show that Y is optimal. Observe that the weight of Y is equal to c ′ (P), so it suffices to show that w(P) ≤ OPT(I). To prove the inequality, we first introduce a partial ordering of the strongly connected components of D X0 (X 0 ∪ Y *). Using this ordering we can construct a path P ′ in D from (s, . . . , s) to (t, . . . , t) of cost w(P ′) = OPT(I). We conclude by observing that a shortest path P has cost at most w(P ′). ▷ Claim 2. There is a path P ′ from (s, . . . , s) to (t, . . . , t) in D of cost at most OPT(I).

Proof of

Proof of Claim 2 (sketch). We give an algorithm that constructs a path P ′ from (s, . . . , s) to (t, . . . , t) in D such that P ′ only uses links in A 2 that correspond to strongly connected components of Y * in D X0 (X 0 ∪ Y *). Starting from s 1 = (s, . . . , s) ∈ V, we perform the following two steps alternatingly until we reach (t, ..., t) ∈ V. 1. From the current node u, we proceed by greedily taking links of A 1 until we reach a node v = (v 1 , v 2 , . . . , v ℓ) ∈ V with the property that each vertex v i , 1 ≤ i ≤ ℓ, is either t or part of some strongly connected component of D X0 (X 0 ∪ Y *). 2. From the current node v, we take a link vw ∈ A 2 to some node w ∈ V, where the link vw corresponds to a strongly connected component Z of D X0 (X 0 ∪ Y *). It can be shown that this algorithm indeed finds the desired solution. ◁

Finally, using the algorithm in [START_REF] Feldman | The directed Steiner network problem is tractable for a constant number of terminals[END_REF] for finding a cost-minimal strongly connected subgraph on ℓ terminal pairs, we obtain that Algorithm 1 runs in time O(mn 6ℓ-2 + n 6ℓ-1 log n). ◀

Relation to a Problem of Open Complexity

In the previous section we obtained a 2-approximation for Fault-Tolerant ℓ-Flow. Ideally, one would like to complement this with a hardness (of approximation) result. However, since Fault-Tolerant ℓ-Flow Augmentation admits a polynomial-time algorithm according to Theorem 17, we cannot use the augmentation problem in order to prove NP-hardness of Fault-Tolerant ℓ-Flow; an approach that has been used successfully for instance for robust paths [START_REF] Adjiashvili | Bulk-robust combinatorial optimization[END_REF], robust matchings [START_REF] Hommelsheim | How to secure matchings against edge failures[END_REF] and robust spanning trees [START_REF] Adjiashvili | Flexible graph connectivity[END_REF]. Hence, there is some hope that Fault-Tolerant ℓ-Flow might actually be polynomial-time solvable. Here, we show that a polynomial-time algorithm for Fault Tolerant 2-Flow implies polynomial-time algorithms for 1-2-connected Directed 2 Steiner Tree, a problem whose complexity is open [START_REF] Cheriyan | Approximating rooted steiner networks[END_REF].

The problem 1-2-connected Directed 2 Steiner Tree is defined as follows. Given a digraph D = (V, E) with costs c ∈ Q A , a root vertex s ∈ V , and two terminals t 1 , t 2 ∈ V , the goal is to find a minimum cost set X ⊆ E such that X contains two disjoint s-t 1 paths and one s-t 2 path. Let X be a feasible solution to I ′ . We have ⊆ X, since otherwise X is not feasible. We now show that there is at least one s-t i path and there are at least two disjoint s-t 2 paths in (V, X \ Â). Assume first that there is no path from s to t 1 in (V, X \ Â). But then {(s, u), (v, t)} is a cut of size two in D ′ , where (s, u) is a vulnerable edge. This contradicts the feasibility of X. Now assume that there are no two disjoint s-t 2 paths in (V, X \ Â). It is not hard to see that then we have a contradiction to the feasibility of X. Finally, observe that there is a one-to-one correspondence between feasible solutions to I and I ′ . ◀

▶ Proposition 20. A polynomial-time algorithm for Fault

Conclusions and Future Work

We introduced the two problems FTP and FTF, which add a non-uniform fault model to the classical edge-disjoint s-t paths problem. This fault-model leads to a dramatic increase in the computational complexity. We gave polynomial-time algorithms for several classes of instances including the case k = 1 and DAGs with fixed k. Furthermore, we proved a tight bound on the integrality gap of a natural LP relaxation for FTP and obtained a polynomial k-approximation algorithm. For FTF, our main result is a 2-approximation algorithm for fixed ℓ. One of the main open problems is to see whether the approximation guarantee for FTP can be improved to the approximation guarantees of the best known algorithms for the Steiner Tree problem. Furthermore, it would be interesting to see if the methods employed in the current paper for 1-FTP and k-FTP on directed acyclic graphs can be extended to k-FTP on general graphs. Another intriguing open question is whether Fault-Tolerant ℓ-Flow is NP-hard, which is not known even for ℓ = 2. We showed that a positive result in this direction implies polynomial-time algorithms for two Steiner problems whose complexity status is open.

 |δ(S 1)| = |δ(S 2)| = k + 1. From the feasibility of Y and the fact that all edges in δ(S 1) and δ(S 2) except possibly e are vulnerable, it follows that |δ(S 1 ∩ S 2)| ≥ k + 1 and |δ(S 1 ∪ S 2)| ≥ k + 1. By the submodularity of the cut function |δ(•)| we have 2k

 and the shortest pair of u-v paths in D, otherwise. ◀

 has capacity of at least k + 1. Consider any such cut C ⊂ A, represented as the set of edges in the cut. Let M ′ = {e ∈ M : x * e ≥ 1 k+1 } denote the set of faulty edges attaining high fractional values in x * . Define C ′ = C ∩ M ′ . If |C ′ | ≥ k + 1 we are clearly done. Otherwise, assume |C ′ | ≤ k. In this case consider the failure scenario F = C ′ . Since x * is a feasible solution it must hold that e∈C\C ′ x * e ≥ 1. Since for every edge e ∈ C \ C ′ it holds that y e = (k + 1)x * e we obtain e∈C\C ′ y e ≥ k + 1 D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:9

 Edge-Disjoint s-t Paths c ′ uw := c uw if uw ∈ E(G), and 0 otherwise.

 e and the cost of each vulnerable arc e ∈ Y M by ℓ • c e • f e , where f e is the flow-value of arc e according to the solution Y . Hence, we obtain

Algorithm 1 : 1 :

 11 Exact algorithm for Fault-Tolerant ℓ-Flow Augmentation. Input: instance I of Fault-Tolerant ℓ-Flow Augmentation on a digraph D = (V, A) Construct the graph D = (V, A)

 in reversed direction. The arc costs are given by c ′ e := c e if e ∈ A \ X 0 , and

 Graph D and X0 consisting of two disjoint paths. s t (b) Residual graph D X0 (X0 ∪ Y).

Figure 1

 1 Figure 1 Illustration of the structure of feasible solutions to Fault-Tolerant ℓ-Flow Augmentation. Unsafe arcs are red, safe arcs are black. In Fig. 1a: edges of X0 are black and red; edges of A -X0 are light gray and light red. Dashed edges belong to Y .

 Theorem 17 (sketch). Let P be a shortest path in the D and let Y be the solution computed by Algorithm 1. Using Lemma 19 we can show the feasibility of Y . ▷ Claim 1. The solution Y computed by Algorithm 1 is feasible.

Tolerant 2 -

 2 Flow implies a polynomial-time algorithm for 1-2-connected Directed 2 Steiner Tree. Proof. Let I be an instance of 1-2-connected Directed 2 Steiner Tree on a graph D = (V, A) with edge-weights c ∈ Q E , root s ∈ V , and terminals T = {t 1 , t 2 }. We construct an instance I ′ of Fault Tolerant 2-Flow as follows. We add to D two vertices u and t and four directed edges = {(s, u), (t 1 , u), (u, t), (t 2 , t)}. Let the resulting graph be D ′ . The edge weights c ′ of D ′ are given by c ′ e := c e if e ∈ A(G), and 0 otherwise.Finally, we let M := A ∪ {(s, u), (t 1 , u)}, that is, the edges incident to t are safe while all other edges are unsafe.

 1. In Section 2.2 we relate FTP and FRAC-FTP by proving a tight bound on the integrality gap and show how this result leads to a k-approximation algorithm for FTP. In Section 2.3 we study the approximation hardness of FTP. Section 3 contains the results on the problem FTF. Approximation hardness of FTF is shown in Section 3.1. Section 3.2 contains the approximation algorithms for FTF with and without fixed flow value ℓ.

Furthermore, in Section 3.3, we relate the complexity of FTF with fixed ℓ to other problems of open complexity. Section 4 concludes the paper and contains open problems.

2 :

 2 Find a shortest path P in D from (s, . . . , s) to (t, . . . , t) 3: For each link vw ∈ P ∩ A 2 add the arcs of an optimal solution to I(v, w) to Y 4: return Y We now define the link setA 2 . Let v 1 , v 2 ∈ V such that v 1 precedes v 2 . If there is some 1 ≤ i ≤ ℓ, such that Q i (x i, y i) contains at least one vulnerable arc, then we first need to solve an instance of Directed Steiner Forest on ℓ terminal pairs in order to compute the cost of the link v 1 v 2 . We construct an instance I(v 1 , v 2) of Directed Steiner Forest as follows. The terminal pairs are (x i , y i) 1≤i≤ℓ . The input graph is given by