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Abstract

We show that, for each symmetry class based on the tenfold way classification,
the effective Dirac operator obtained by integrating out the additional bulk direc-
tion takes a value in the corresponding classifying space, from which we obtain
the flat band Hamiltonian. We then obtain the overlap Dirac operator for each
symmetry class and establish the Ginsparg–Wilson relation associated with C and
T symmetries, and also the mod-two index theorem.
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1 Introduction

Study of topological phases of matter, which has been originated in condensed-matter
physics, now provides an interdisciplinary arena of research involving various domains
of theoretical and experimental physics and also mathematics. A topological insu-
lator phase is a primary example of the topological phases, that exhibits a gapless
surface state, while the interior behaves as a gapped insulator. This gapless surface
state is topologically protected, and the topological insulator cannot be transformed
continuously to a topologically trivial insulator. For a topological band insulator, one
can consider the topological invariant associated with its band structure, which plays
an essential role in characterization of topological property. For example, the TKNN
number [1–3] is the topological invariant associated with the two-dimensional class A
system, which is given by integrating the Berry curvature (the first Chern class of the
Bloch bundle) over the two-dimensional Brillouin torus.

Since the topological property does not depend on the detail of the band structure,
we often use the band flattened system to simplify the argument (see, e.g., [4,5]). In this
paper, we provide a systematic methodology, that we call the bulk extension, to obtain
the band flattened Hamiltonian from a generic gapped Hamiltonian of free fermion.
Here is the summary of the prescription.

1. Consider a d-dimensional gapped free fermion Hamiltonian H.

2. Construct a (d+ 1)-dimensional Dirac operator D by adding an extra direction.

3. Compute the functional determinant detD while imposing the periodic boundary
condition in the extra direction together with the Pauli–Villars regulator.

4. Read off the effective Dirac operator D from the determinant, and convert it to
the band flattened Hamiltonian in the bulk limit, H = H/

√
H2 =: sgn(H).

We apply this formalism to generic symmetry classes of topological insulators and su-
perconductors [4,5] based on the Altland–Zirnbauer (AZ) tenfold way classification [6].
Here is the first result of this paper.

Theorem 1.1 (Theorem 3.6). Let γ be (one of) the mass matrix of the gapped Hamil-
tonian H. Then, we obtain the band flattened Hamiltonian from the effective Dirac
operator under the periodic boundary condition, H = γD, in the bulk limit.
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In fact, for class C system, the effective Dirac operator D takes a value in the
classifying space SC ∈ {C0,1, R0,...,7} (Proposition 3.8), which plays an essential role
in the tenfold way classification: The homotopy group of SC characterizes topological
property of the topological insulator/superconductor [4, 5]. See Table 1.

The formalism of the bulk extension presented in this paper is motivated by the
overlap Dirac operator, showing an exact chiral symmetry on a lattice, that was orig-
inally formulated for the class A system [7–9]. We extend the original construction of
the overlap operator to generic AZ tenfold way symmetry classes.

Proposition 1.2 (Proposition 3.5). The overlap Dirac operator of class C is given by

Dov =
1

2
(1 + V ) , V ∈ SC . (1.1)

It has been known [7–11] that the overlap Dirac operator of class A obeys Ginsparg–
Wilson (GW) relation [12] (recovering dependence on the lattice constant a),1

γD +Dγ = aDγD , (1.2)

which is interpreted as a non-linear deformation of the chiral symmetry relation, {γ,D} =
γD + Dγ = 0. Applying the same argument to C and T symmetries, we obtain the
corresponding GW relation.

Theorem 1.3 (Theorem 4.4). Let C and T be the unitary operators defined in (2.10).
For the system with C and T symmetries, the overlap Dirac operator obeys,

CD +DTC = aDTCD , TD +D∗T = aD∗TD . (1.3)

These relations immediately imply an anomaly under C and T transformations
similarly to the parity anomaly [14] in the overlap formalism, which is related to the
anomalous behavior of Majorana(–Weyl) fermion (hence, C transformation) [15–19],
and of the T -invariant topological system [20, 21]. We remark that GW relation with
respect to an additional symmetry has been also discussed in [22] in the context of
topological crystalline insulators/superconductors [23].

The overlap formalism also provides a concise description of the index theorem. It
has been established that the Z-valued index of the overlap Dirac operator, ind(Dov) =
dimkerDov − dim cokerDov, is given as follows.

Proposition 1.4 (Hasenfratz–Laliena–Niedermayer [10], Lüscher [11], Adams [24]).
Let η(A) be the eta invariant of a self-adjoint operator A. Then, the Z-valued index of
the overlap Dirac operator is given by

ind(Dov) = −1

2
tr sgnH = −1

2
η(H) . (1.4)

1 Another realization of GW relation is achieved by the perfect action [13].
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This index agrees with the bulk topological invariant associated with the gapped
Hamiltonian H [4,5]. In fact, this agreement also holds for the Z2-topological invariant
and the mod-two index of the overlap Dirac operator.

Theorem 1.5 (Theorem 4.5). The mod-two index of overlap Dirac operator, ν =
ind(Dov) = dimker(Dov), is given by

(−1)ν = detV . (1.5)

The use of determinant signature to define the mod-two index has been proposed
specifically for (8n+2)-dimensional Majorana–Weyl fermion [15, 16]. We remark that
the mod-two index has been recently formulated in the domain-wall fermion formal-
ism [25], which has a similar expression using the sign factor appearing in the Dirac op-
erator determinant. See also recent approaches to the index theorem on a lattice [26,27].

Organization of the paper

The remaining part of this paper is organized as follows. In Sec. 2, we discuss pre-
liminary facts, including the relation between Hamiltonian formalism and Lagrangian
formalism, and the symmetry classification. In Sec. 3, we apply the formalism, that we
call the bulk extension, to obtain the band flattened Hamiltonian. For each symmetry
class, we prove that the effective Dirac operator takes a value in the corresponding
classifying space. In Sec. 4, we explore the overlap Dirac operator obtained through the
bulk extension with the open boundary condition. We prove that the overlap operator
obeys GW relation with respect to C and T symmetries, and discuss the anomalous
behavior under C and T transformations. We also establish the mod-two index of the
overlap Dirac operator.

Acknowledgements

We would like to thank Mikio Furuta for insightful comments on the preliminary ver-
sion of the draft. The work of TK was in part supported by EIPHI Graduate School
(No. ANR-17-EURE-0002) and Bourgogne-Franche-Comté region. MW is supported in
part by Grant-in-Aid for JSPS Fellows (No. 22J00752).

Note added
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Kaplan–Singh [28] also addressing the overlap fermion associated with C and T sym-
metries, and the mod-two index discussed in Sec. 4.

4



2 Preliminaries

Notations

• For x ∈ K, let x∗ be its K-conjugate. We denote the conjugate matrix of M by
M † := M∗T. We define the set of self-conjugate matrices (real symmetric for R,
complex hermitian for C, quaternion self-dual for H) of size n by

H(n,K) = {M ∈ Kn×n |M † =M} . (2.1)

• We define the set of skew-conjugate matrices of size n by

H̃(n,K) = {M ∈ Kn×n |M † = −M} . (2.2)

• We denote a compact symplectic group by Sp(n) = Sp(2n,C) ∩ U(2n).

• We denote a commutator and an anti-commutator by [a, b] = ab−ba and {a, b} =
ab+ ba.

• We denote Zn = Z/nZ.

2.1 Lagrangian vs Hamiltonian

Let d be the spacial dimension, and the spacetime dimension d+ 1. Let {γµ}µ=0,...,d be
the Euclidean gamma matrices, which are hermitian and obey the relation {γµ, γν} =
γµγν + γνγµ = 2δµ,ν . The free Dirac Lagrangian in the (d + 1)-dimensional Euclidean
spacetime is given by

L = ψ̄(γµ∂µ +m)ψ =: ψ̄Dψ , D = γµ∂µ +m, (2.3)

where the associated Dirac operator D is non-hermitian in general.2 In fact, non-
hermitian Hamiltonian discussed in, e.g., [29], has a direct interpretation as a Dirac
operator. We remark that the Dirac operator becomes anti-hermitian in the case m = 0,
D† = −D. Considering the 0-direction as a “time” direction, and putting ψ̄ = ψ†γ0, we
then obtain the hermitian Hamiltonian as follows:

L = ψ†
(
∂0 + γ0γ⃗ · ∂⃗ +mγ0

)
ψ =: ψ†(∂0 +H)ψ , (2.4a)

H = ψ†Hψ = ψ†
(
γ0γ⃗ · ∂⃗ +mγ0

)
ψ = ψ†

(
−i⃗̃γ · ∂⃗ +mγ0

)
ψ (2.4b)

where γ̃j = iγ0γj is a hermitian gamma matrix for j = 1, . . . , d. Hence, we have the
relation between the Dirac operator and the Hamiltonian,

D = γ0H + γ0∂0 . (2.5)

In other words, we may identify the mass matrix in the Hamiltonian with the zero-th
gamma matrix γ0, so that the mass term is proportional to the identity matrix in the
Dirac operator.

2 The Dirac operator becomes hermitian in the Lorentzian signature.
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Example 2.1 (d = 2). Let {σi}i=1,2,3 be the Pauli matrices. The momentum space
representation of the massive Dirac Hamiltonian of class A in d = 2 is given by

H = p1σ1 + p2σ2 +mσ3 . (2.6)

In this case, we identify the mass matrix, γ0 = σ3. The corresponding Dirac operator
in 2 + 1 dimensions is given by

D = p1(σ3σ1) + p2(σ3σ2) + ip0σ3 +m = ip1σ2 − ip2σ1 + ip0σ3 +m, (2.7)

which is not hermitian. In the massless case m = 0, D† = −D, and it shows the parity
symmetry.

Example 2.2 (d = 3). The massive Dirac Hamiltonian of class A in d = 3 is given as
follows:

H = p⃗ · (σ⃗ ⊗ σ3) +m(1⊗ σ2) =

(
p⃗ · σ⃗ −im
+im −p⃗ · σ⃗

)
. (2.8)

Then, having the mass matrix γ0 = 1⊗ σ2, the Dirac operator is given by

D = −ip⃗ · (σ⃗ ⊗ σ1) + ip0(1⊗ σ2) +m(1⊗ 1) =

(
m +p0 − ip⃗ · σ⃗

−p0 − p⃗ · σ⃗ m

)
. (2.9)

If m = 0, it shows the chiral symmetry {D,Γ} = 0 where Γ = 1⊗ σ3.

2.2 Symmetry and classification

Let us introduce the discrete symmetries, C and T , which play an essential role in the
classification of Hamiltonian and Dirac operator.

Definition 2.3. Let C and T be unitary operators, which act on a Hamiltonian as
follows,

CHC−1 = −H∗ , THT−1 = +H∗ . (2.10)

In the momentum space representation, we have CH(p)C−1 = −H(−p)∗ and TH(p)T−1 =
+H(−p)∗. We define the complex conjugation operator K, KXK = X∗ for any opera-
tor X. Then, we define anti-unitary operators, that we call charge conjugation operator
C and time reversal operator T ,

C = CK , T = TK . (2.11)

If there exist C and T operators for a given Hamiltonian H, we say that the Hamiltonian
H has C and T symmetry, respectively.
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Symmetry class C Classifying space SC T-evolution operator UC T 2 C2 χ

A C0 U/U× U U 0 0 0
AIII C1 U U/U× U 0 0 1

AI R0 O/O×O U/O +1 0 0
BDI R1 O O/O×O +1 +1 1
D R2 O/U O 0 +1 0

DIII R3 U/Sp O/U −1 +1 1
AII R4 Sp/Sp× Sp U/Sp −1 0 0
CII R5 Sp Sp/Sp× Sp −1 −1 1
C R6 Sp/U Sp 0 −1 0
CI R7 U/O Sp/U +1 −1 1

Table 1: The AZ tenfold way classification of the classifying spaces and the associated time-
evolution operators with respect to T , C, and chiral (χ) symmetries.

Remark 2.4. If the Hamiltonian H has both C and T symmetries, it also has the chiral
symmetry, i.e., there exists an unitary operator Γ ∝ CT , which anti-commutes with H,
{Γ, H} = 0.

There are two possible realizations of C and T operators, such that

C2 = ±1 , T 2 = ±1 , (2.12)

from which we obtain the AZ tenfold way classification [6]. We provide the summary
of the classification in Table 1. The left-most column shows the symmetry class C :
We both use the Cartan notation and the classifying space notation. There are two
complex and eight real classes. Then, we show the classifying space and the space
of time-evolution operator UC = eiH for each symmetry class. We observe that the
classifying space of class Cp agrees with the space of UCp+1 , where p ∈ Z2 (C = C) and
p ∈ Z8 (C = R). The right-most column shows C and T symmetries of each class.

3 Bulk extension

Utilizing both formalisms of Lagrangian and Hamiltonian, we introduce the process
of the bulk extension, which gives rise to the band flattened Hamiltonian. We start
with a d-dimensional gapped Hamiltonian of class C denoted by H. Applying the
Lagrangian formalism, we then obtain a (d+ 1)-dimensional Dirac operator by adding
the 0-direction, D = γ0H + γ0∂0. We apply lattice discretization to deal with this
direction.
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Definition 3.1. We define the shift operator in the 0-direction denoted by ∇0, such
that ∇0ψn0 = ψn0+1, where ψn0 is the field operator with the 0-direction coordinate
n0 ∈ {1, . . . , N} with N the size of the 0-direction.

We do not explicitly write d-dimensional dependence of the field ψ for simplicity.
Then, we define the (d+ 1)-dimensional Wilson–Dirac operator as follows.

Definition 3.2. Let H be a d-dimensional gapped Hamiltonian of class C . Let γ ≡ γ0
and let a be the lattice spacing constant in the 0-direction. Denoting the projection
operator given by P± = 1

2
(1 ± γ), we define the (d + 1)-dimensional Wilson–Dirac

operator,

D = γH − 1

a
P+∇0 −

1

a
P−∇†

0 +
1

a
. (3.1)

Remark 3.3. If we do not impose the Wilson term, we instead have

D = γH − 1

2a

(
∇0 −∇†

0

)
, (3.2)

which involves additional contributions of species doublers in the low-energy regime.

We evaluate the functional determinant of the Wilson–Dirac operator with the fol-
lowing boundary conditions in the 0-direction,

∇0ψN =


0 (open)
+ψ1 (periodic)
−ψ1 (anti-periodic)

(3.3)

Definition 3.4. Denoting the functional determinant with the boundary condition
by detDbc (bc ∈ {op (open), p (periodic), ap (anti-periodic)}), we define the effective
Dirac determinant,

det D̃op =
detDop

detDap
, det D̃p =

detDp

detDap
. (3.4)

The denominator contribution with the anti-boundary contribution is known to be the
Pauli–Villars regulator. Then, we have the following.

Proposition 3.5. Taking the large scale limit Na→ ∞, and then the continuum limit
a→ 0 in 0-direction, we have the d-dimensional effective Dirac operator given by

Dop := lim
a→0

lim
Na→∞

D̃op =
1

2
(1 + V ) , Dp := lim

a→0
lim

Na→∞
D̃p = V , (3.5)

where we define

V = γ sgnH = γ
H√
H2

. (3.6)
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Hence, from the effective Dirac operator with the periodic boundary condition, we
obtain the band flattened Hamiltonian H = sgn(H).

Theorem 3.6. We have

H = γDp . (3.7)

Proof. It immediately follows from Proposition 3.5.

On the other hand, the effective Dirac operator with the open boundary condition
provides the so-called overlap Dirac operator Dop = Dov [7–9]. We will discuss it in
more detail in Sec. 4.

Remark 3.7. Redefining the V -operator V → −V , and changing the normalization, we
have the determinant of Dop as follows,

det(1− V ) =
rkV∑
i=0

(−1)i tr∧iV , (3.8)

which is interpreted as an equivariant analogue of Euler characteristic. See also Re-
mark 3.18. Moreover, the ratio of determinants used in Definition 3.4 also implies a
K-theory formulation, which involves the difference of vector bundles associated with
each boundary condition.

The operator V is unitary, V † = V −1 since γ and sgnH are hermitian, and γ2 =
(sgnH)2 = 1. In fact, it has been known that the non-hermitian point-gap Hamiltonian
is topologically equivalent to the unitary operator [30]. We remark that such a unitary
operator is also discussed in the context of Floquet systems (see, e.g., [31, 32]).

For each symmetry class based on the AZ tenfold way classification, we have the
following.

Proposition 3.8. For class C system, the unitary operator V , hence the effective Dirac
operator Dp takes value in the corresponding classifying space SC in the d-dimensional
bulk limit.

The remaining part of this Section is devoted to a proof of Proposition 3.5 and
Proposition 3.8 for each symmetry class C .

Corollary 3.9. For class Cp system, the operator HV defined by V = eiHV ∈ SCp

belongs to class Cp+1. In other words, the symmetry of HV agrees with that of the
Hamiltonian of class Cp in the gapless limit.

Proof. This follows from that the classifying space SCp agrees with the space of time-
evolution operators of class Cp+1 as shown in Table 1. In the gapless limit, the mass
matrix γ plays a role of the additional symmetry operator, which changes the symmetry
class Cp to Cp+1.
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3.1 Wigner–Dyson class

We first apply the bulk extension formalism to the Wigner–Dyson class (class A, AI,
AII; threefold way). We in particular discuss the class A case (C-hermitian Hamiltonian
with no symmetry). The class AI and AII cases can be discussed in parallel by replacing
the C-Hamiltonian with those for R and H.

3.1.1 Class A

The class A Hamiltonian is given by a C-hermitian matrix with no additional symmetry.

Definition 3.10. We consider a d-dimensional gapped system of class A, which is
described by the following size k Hamiltonian,

H =

(
A C

C† Ã

)
∈ H(k,C) , (3.9)

where k = k1 + k2 and

A ∈ H(k1,C) , Ã ∈ H(k2,C) , C ∈ Ck1×k2 . (3.10)

This block matrix structure is taken with respect to the mass matrix,

γ ≡ γ0 =

(
1k1 0

0 −1k2

)
, (3.11)

and hence we have the projection operators,

P+ =
1 + γ

2
=

(
1k1 0

0 0

)
, P− =

1− γ

2
=

(
0 0

0 1k2

)
. (3.12)

In this case, applying Definition 3.2, the Wilson–Dirac operator is given by

aD =

(
A C

−C† B

)
− P+∇0 − P−∇†

0 (3.13)

where

A = 1k1 + aA , B = 1k2 − aÃ , C = aC . (3.14)

The next step is to compute the determinant of size Nk = N(k1 + k2) to consider
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the effective Dirac operator,

det aD =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A C 0 Y 0

−C† B 0 −1k2 0 0

−1k1 0 A C 0

0 −C† B 0 −1k2

−1k1 0 A C
. . .

. . . . . . . . .

0 0 A C

0 X −C† B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.15)

where we take X and Y depending on the boundary condition in the 0-direction,

X, Y =


0 (open)
−1 (periodic)
+1 (anti-periodic)

(3.16)

In order to write down the determinant, we define the following operator.

Definition 3.11. We define the hermitian T -operator (transfer matrix) as follows,

T =

(
CB−1C† + A CB−1

B−1C† B−1

)
. (3.17)

Remark 3.12. The determinant of the T -operator is given by

detT = det
(
CB−1C† + A− CB−1 ·B ·B−1C†) det (B−1

)
=

detA

detB
. (3.18)

Lemma 3.13. The Wilson–Dirac operator determinant is given as follows,

det aD = (−1)n detAN det

((
1k1

−X

)
− T−N

(
−Y

1k2

))

=


(−1)n detAN det

1

2

(
1− T−N +

(
1 + T−N

)
γ
)

(open)

(−1)n detAN det
(
1− T−N

)
(periodic)

(−1)n detAN det
(
1 + T−N

)
γ (anti-periodic)

(3.19)

where n = (N − 1)k22 +Nk2.

A proof of Lemma 3.13 is given in Appendix A.

From this expression, we obtain the effective Dirac operator determinant (Defini-
tion 3.4).
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Lemma 3.14. Define the effective Hamiltonian H through the T -operator T =: eaH.
Then, the Wilson–Dirac operator determinant is given by

det D̃op =
detDop

detDap
= det

1

2

(
1 + γ

1− T−N

1 + T−N

)
= det

1

2

(
1 + γ tanh

(
Na

2
H
))

, (3.20a)

det D̃p =
detDp

detDap
= det

(
γ
1− T−N

1 + T−N

)
= det

(
γ tanh

(
Na

2
H
))

, (3.20b)

from which we obtain the effective Dirac operator,

D̃op =
1

2

(
1 + γ tanh

(
Na

2
H
))

, D̃p = γ tanh

(
Na

2
H
)
. (3.20c)

Proof. This follows from Lemma 3.13.

In order to prove Proposition 3.5 in this case, we take the following limits.

1. Large scale limit: Na→ ∞
In this limit, the tanh function behaves as

lim
Na→∞

tanh

(
Na

2
H
)

= sgnH =
H√
H2

, (3.21)

where the spectrum is given by Spec(sgnH) = {±1}.

2. Continuum limit: a→ 0

In this limit, we have the expansion,

T = 1k + aH +O(a2) . (3.22)

On the other hand, we also have

T =

(
aC(1k1 − aÃ)−1aC† + 1k1 + aA aC(1k2 − aÃ)−1

(1k2 − aÃ)−1aC† (1k2 − aÃ)−1

)
= 1k + aH +O(a2) ,

(3.23)

from which we obtain

lim
a→0

H = H . (3.24)

Proposition 3.15. Proposition 3.5 holds for class A.

Proof. Taking the large scale limit, and then the continuum limit, we have

lim
a→0

lim
Na→0

γ tanh

(
Na

2
H
)

= γ sgnH = V . (3.25)

Then, it follows from Lemma 3.14.
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Proposition 3.16. Proposition 3.8 holds for class A.

Proof. We first remark that the unitary operator V obeys γV γ = sgn(H)γ = V †.
Hence, parametrizing V = eX , we obtain X† = −X and also {γ,X} = 0, which implies
that V takes a value in the complex Grassmannian, which becomes the classifying space
of class A in the inductive limit,

V ∈
⋃

k1+k2=k

U(k)

U(k1)× U(k2)

k→∞−−−→ C0 . (3.26)

This large k limit corresponds to the thermodynamic limit of the d-dimensional bulk
system (bulk limit).

The classifying space plays an important role to discuss the topological property of
the system. The zero-th homotopy group of C0 is given by π0(C0) = Z, and in general
we have πd(C0) = Z for d ∈ 2Z≥0. In this case, we obtain the topological invariant of
the d-dimensional gapped system ν ∈ Z.

Proposition 3.17. Identifying the case ν = 0 as a topologically trivial case, we
parametrize k1 = n− ν, k2 = n+ ν. Then, we obtain

ν = −1

2
tr sgnH = −1

2
η(H) , (3.27)

where the eta invariant η(H) is defined by

η(H) = tr sgnH . (3.28)

This bulk topological invariant agrees with the index of the overlap Dirac operator,
ind(Dov) = ν [11,24]. See Sec. 4. We also remark that the eta invariant appears in the
formalism of the domain-wall fermion from the Dirac determinant together with the
Pauli–Villars regularization, which is analogous to the definition of D̃p and Dp. See,
e.g., a recent review [33] for details.
Remark 3.18. Writing the mass matrix γ = (−1)F and the V -operator V = eiHV ,
the overlap operator index (bulk topological invariant) is written in the form of the
equivariant Witten index,

ν = −1

2
tr
[
(−1)F eiHV

]
. (3.29)

See also Remark 3.7.

Wilson–Dirac fermion in d = 2

Let us demonstrate the bulk extension formalism for a gapped class A system in d = 2.
We consider the following Wilson–Dirac Hamiltonian,

H =

(
m+ 2− (cos p1 + cos p2) sin p1 − i sin p2

sin p1 + i sin p2 −m− 2 + (cos p1 + cos p2)

)
, (3.30)
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Figure 1: The band spectra E of the Wilson–Dirac Hamiltonian HN with m = −1. The case
N = 0 shows the spectrum of the Hamiltonian (3.30).

and the two-dimensional part of the corresponding Wilson–Dirac operator,

D = γH =

(
m+ 2− (cos p1 + cos p2) sin p1 − i sin p2

− sin p1 − i sin p2 m+ 2− (cos p1 + cos p2)

)
, (3.31)

where the mass matrix is given by γ = σ3. We define the intermediate Hamiltonian
and the V -operator of the finite size N as follows,

HN = tanh

(
N

2
H
)
, VN = γHN . (3.32)

The band spectra E of the Hamiltonian HN with m = −1 are presented in Fig. 1.
The case N = 0 shows the spectrum of the Hamiltonian (3.30) itself. We see that the
spectrum becomes flat as N becomes large.

The complex spectrum of the Wilson–Dirac operator (3.31) for m = −1 is given in
Fig. 2: The horizontal and vertical axes are for the real part and imaginary part of the
spectrum. We show the spectra of the V -operator at finite N denoted by VN in Fig. 3.
The spectrum approaches to a unit circle as N becomes large.

3.1.2 Class AI, AII

Let us consider the other Wigner–Dyson classes, class AI and AII. In these cases, we can
apply the same analysis after replacing the C-hermitian Hamiltonian of class A (3.9)

14
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Figure 2: The complex spectrum λ of d = 2 Wilson–Dirac operator with m = −1.

with the R-symmetric and the H-self-dual matrices for class AI and AII, respectively,

(AI) A ∈ H(k1,R) , Ã ∈ H(k2,R) , C ∈ Rk1×k2 , (3.33a)

(AII) A ∈ H(k1,H) , Ã ∈ H(k2,H) , C ∈ Hk1×k2 . (3.33b)

Proposition 3.19. Proposition 3.5 and Proposition 3.8 hold for class AI and AII.

Proof. In the real and quaternion cases, we should replace the imaginary unit i =
√
−1

with the gamma matrix γ obeying γ2 = −1. Since we have not used it explicitly in
Sec. 3.1.1, we may apply the same argument to these cases as before. The V -operator
takes a value in the real and quaternion Grassmannians, which become the classifying
spaces of class AI and AII in the bulk limit,

V ∈


⋃

k1+k2=k

O(k)

O(k1)×O(k2)

k→∞−−−→ R0 (AI)⋃
k1+k2=k

Sp(k)

Sp(k1)× Sp(k2)

k→∞−−−→ R4 (AII)
(3.34)

For class AI and AII, we have π0(R0) = π0(R4) = Z. We can similarly obtain the
bulk topological invariant (3.27), which agrees with the index of overlap Dirac operator.

3.2 Chiral class

Let us then consider the chiral class. We focus on the complex case (class AIII) for the
moment. The other classes (class BDI, CII) are discussed in the same way by replacing
by R and H matrices.
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Figure 3: The complex spectra of VN . The horizontal and vertical axes are for the real part
and imaginary part of the spectrum.

Definition 3.20. We define the d-dimensional gapped class AIII Hamiltonian of size
2n by

H =

(
0 C

C† 0

)
, C ∈ Cn×n . (3.35)

This Hamiltonian is obtained by taking A, Ã → 0 of Hamiltonian of class A (3.9) with
k1 = k2 ≡ n (k = 2n). This Hamiltonian possesses the chiral symmetry, {Γ, H} = 0
with Γ = σ3 ⊗ 1n, and the mass matrix is taken to be γ ≡ γ0 = σ1 ⊗ 1n. Due to
this chiral symmetry, all the non-zero eigenvalues make a pair, ±λ ∈ Spec(H). Since
we assume that the Hamiltonian is gapped, the matrix size must be even, and the
Hamiltonian takes a form as given in Definition 3.20.

In order to apply the same analysis as in Sec. 3.1.1 to the current case, we apply an
orthogonal transformation. We define an orthogonal matrix,

O =
1√
2

(
1 1

1 −1

)
⊗ 1n , O2 = 12n , (3.36)
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which converts the gamma matrices,

Γ̃ = OΓO = σ1 ⊗ 1n , γ̃ = OγO = σ3 ⊗ 1n , (3.37)

and the Hamiltonian,

H̃ = OHO =
1

2

(
C+ C† −C+ C†

C− C† −C− C†

)
. (3.38)

Applying the bulk extension formalism to this case, we obtain the band flattened
HamiltonianH from the unitary operator V = γ̃ sgn(H̃) having the following properties.

Lemma 3.21. The unitary operator V = γ̃ sgn(H̃) obeys

V † = V −1 , γ̃V γ̃ = V † , Γ̃V Γ̃ = V . (3.39)

Proof. The first two relations are straightforward. The third relation can be shown
using {γ̃, Γ̃} = 0 and {Γ̃, H̃} = 0.

Proposition 3.22. Proposition 3.5 and Proposition 3.8 hold for the chiral classes AIII,
BDI, and CII.

Proof. Proposition 3.5 can be shown in the same way as class A. For Proposition 3.8,
we parametrize the V -operator as V = eX for class AIII. We can fix it from the relations
in Lemma 3.21 as follows,

X =

(
0 Y

Y 0

)
, Y † = −Y , (3.40)

which transforms under the unitary transformation, X → UXU † with U ∈ U(n) ×
U(n)/U(n) = U(n). In other words, X ∈ Lie(U(n) × U(n)/U(n)) = u(n). Hence, the
V -operator takes a value in the unitary group, which becomes the classifying space of
class AIII in the bulk limit,

V ∈ U(n)
n→∞−−−→ C1 (AIII) . (3.41)

For the other chiral classes (class BDI and CII), we can show by replacing the C-
matrix with R- and H-matrices that the V -operator takes a value in the corresponding
classifying space,

V ∈

{
O(n)

n→∞−−−→ R1 (BDI)
Sp(n)

n→∞−−−→ R5 (CII)
(3.42)

We recall that π0(R1) = Z2 and π0(R5) = 0, and the mod-two bulk topological
invariant of class (B)DI system denoted by ν is determined by the determinant of V
(see, e.g., [5]),

(−1)ν = detV , (3.43)

which would be identified with the mod-two index of the corresponding overlap Dirac
operator ind(Dov) ∈ Z2. See Sec. 4.2.
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3.3 BdG class

There are four Bogoliubov-de Gennes (BdG) classes (class D, DIII, C, CI) described by
the following Hamiltonian.

Definition 3.23. We define the d-dimensional gapped Hamiltonian of size 2n,

H =

(
A C

C† −AT

)
(3.44)

with

A ∈ H(n,C) , C ∈ Cn×n , (3.45)

which describes four BdG classes,

D : CT = −C , DIII : CT = −C , A = 0 , (3.46a)
C : CT = +C , CI : CT = +C , A = 0 . (3.46b)

3.3.1 Class D

We consider the gapped Hamiltonian of class D in the form of (3.44) with the condition
CT = −C. We define a unitary matrix,

U =
1√
2

(
1 1

i −i

)
⊗ 1n ∈ U(2n) , (3.47)

which converts the mass matrix γ = σ3 ⊗ 1n to γ̃ = UγU † = σ2 ⊗ 1n, and the Hamil-
tonian,

H̃ = UHU † = i

(
αI + βI −αR + βR

αR + βR αI − βI

)
, (3.48)

where we denote A = αR+iαI , C = βR+iβI with αR, αI , βR, βI ∈ Rn×n. We remark that
αT
R = αR, αT

I = −αI , βT
R = −βR, βT

I = −βI , and hence M := −iH̃ ∈ H̃(2n,R) = o(2n).

Proposition 3.24. Proposition 3.5 and Proposition 3.8 hold for class D.

Proof. The proof of Proposition 3.5 is the same as before. Applying the bulk extension
formalism for class D, we obtain the flat band Hamiltonian from V = U(γ sgnH)U † =
γ̃ sgn H̃, which is an orthogonal matrix V T = V −1 with the property γ̃V γ̃ = V −1.
Parametrizing V = eX , the matrix X is given in the form of

X =

(
α β

β −α

)
(3.49)
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where αT = −α, βT = −β. On the other hand, a generic R-skew-symmetric matrix
Z ∈ o(2n) has a decomposition,

Z =

(
α + δ β + β′

β − β′ −α + δ

)
=

(
α β

β −α

)
+

(
δ β′

−β′ δ

)
, (3.50)

where δT = −δ, β′T = β′. Writing the second matrix as 12⊗δ+iσ2⊗β′, it is isomorphic
to an anti-hermitian matrix, which is an element of the Lie algebra u(n). Hence, we
have X ∈ Lie(O(2n)/U(n)), which shows that the V -operator takes a value in the
classifying space of class D in the bulk limit,

V ∈ O(2n)

U(n)

n→∞−−−→ R2 (class D) . (3.51)

Remark 3.25. Recalling π0(R2) = Z2, the mod-two topological invariant is given in the
same way as class BDI (3.43).

3.3.2 Class C

Let us discuss the class C system described by the BdG Hamiltonian (3.44) with CT = C.
We apply the same basis change matrix (3.47), and define an H-matrix of size n as

follows,

Ȟjk = i

(
αI,jk − iβI,jk −αR,jk + iβR,jk

αR,jk + iβR,jk αI,jk + iβI,jk

)
∈ iH , j, k = 1, . . . , n , (3.52)

where αT
R = αR, αT

I = −αI , βT
R = βR, βT

I = βI . We then define M := −iȞ ∈ Hn×n. In
fact, M ∈ sp(n).

Proposition 3.26. Proposition 3.5 and Proposition 3.8 hold for class C.

Proof. The proof of Proposition 3.5 is the same as before. In this case, we have the
H-valued V -operator V = γ̃ sgn Ȟ, and hence the flat band Hamiltonian is given by
H = γ̃V . Parametrizing V = eX , each element of X is given by

Xjk = i

(
αjk βji

βjk −αjk

)
∈ H (3.53)

where α = (αjk)j,k=1,...,n and β = (βjk)j,k=1,...,n are R-symmetric matrices. Compared
with a generic sp(n) element

Zjk =

(
δjk + iαjk β′

jk + iβjk

−β′
jk + iβjk δjk − iαjk

)
= i

(
αjk βjk

βjk −αjk

)
+

(
δjk β′

jk

−β′
jk δjk

)
, (3.54)
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with δT = −δ and β′T = β′, we have X ∈ Lie(Sp(n)/U(n)). Hence, the V -operator
takes a value in the classifying space of class C in the bulk limit,

V ∈ Sp(n)

U(n)

n→∞−−−→ R6 (class C) . (3.55)

3.3.3 Class DIII

For class DIII, the Hamiltonian is given by

H =

(
0 C

C† 0

)
, CT = −C , (3.56)

which has C and T symmetries, such that C2 = +1, T 2 = −1 (See Table 1). Provided
that the Hamiltonian has a gap, we consider the matrix C of size 2n, C ∈ C2n×2n.
Hence, in this case, we may apply the following form of the symmetry matrices,

C = σ1 ⊗ σ3 ⊗ 1n , T = iσ2 ⊗ σ3 ⊗ 1n , (3.57a)
Γ = σ3 ⊗ 12 ⊗ 1n , γ = σ1 ⊗ σ1 ⊗ 1n . (3.57b)

Lemma 3.27. We have the V -operator, V = γ sgnH, which behaves as follows,

CV C−1 = TV T−1 = V ∗ , ΓV Γ = V , γV γ = V † . (3.58)

Proof. It follows from Definition 2.3 together with the relations {C, γ} = 0, [T, γ] = 0,
[Γ, γ] = 0.

Proposition 3.28. Proposition 3.5 and Proposition 3.8 hold for class DIII.

Proof. The proof of Proposition 3.5 is the same as before. We parametrize V = eX .

From the behavior under the Γ-matrix shown in Lemma 3.27, we have X = i

(
Y 0

0 Ỹ

)
where Y , Ỹ ∈ H(2n,C). We denote Σi = σi ⊗ 1n for i = 1, 2, 3. Then, from the other
relations, we have {

Σ3Y Σ3 = −Ỹ ∗

Σ3Ỹ Σ3 = −Y ∗ ,

{
Σ1Y Σ1 = −Ỹ
Σ1Ỹ Σ1 = −Y

. (3.59)

Hence, we have Σ2Y Σ2 = Y ∗ and Σ2Ỹ Σ2 = Ỹ ∗, from which we deduce that they are
isomorphic to H-self-conjugate matrices. Recalling H(n,H) = Lie(U(2n)/Sp(n)), the
V -operator takes a value in the classifying space of class DIII in the bulk limit,

V ∈ U(2n)

Sp(n)

n→∞−−−→ R3 . (3.60)
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3.3.4 Class CI

For class CI, we again have the Hamiltonian in the form (3.56) with a symmetric C,
CT = C. It has C and T symmetries, such that C2 = −1, T 2 = +1 (See Table 1),
and we consider the matrix C of size 2n, C ∈ C2n×2n. In this case, we may apply the
following form of the symmetry matrices,

C = iσ2 ⊗ σ1 ⊗ 1n , T = σ1 ⊗ σ1 ⊗ 1n , (3.61a)
Γ = σ3 ⊗ 12 ⊗ 1n , γ = σ2 ⊗ σ2 ⊗ 1n . (3.61b)

Proposition 3.29. Proposition 3.5 and Proposition 3.8 hold for class CI.

Proof. The proof of Proposition 3.5 is the same as before. Having V = γ sgnH, we have
the same relations as shown in Lemma 3.27 with the symmetry matrices (3.61). As in

the case of class DIII, under the parametrization V = eX , we have X = i

(
Y 0

0 Ỹ

)
where Y , Ỹ ∈ H(2n,C). From the other relations, we have{

Σ1Y Σ1 = −Ỹ ∗

Σ1Ỹ Σ1 = −Y ∗ ,

{
Σ2Y Σ2 = −Ỹ
Σ2Ỹ Σ2 = −Y

, (3.62)

from which we deduce that Y, Ỹ ∈ H(2n,R). Recalling H(n,H) = Lie(U(n)/O(n)), the
V -operator takes a value in the classifying space of class CI in the bulk limit,

V ∈ U(2n)

O(2n)

n→∞−−−→ R7 . (3.63)

4 Overlap Dirac operator

In this Section, we discuss the symmetry of the overlap Dirac operator of class C ,

D ≡ Dov =
1

a
(1 + V ) , V = γ sgn(H) ∈ SC , (4.1)

where we change the normalization of the operator for simplicity: We denote the lattice
spacing parameter by a with mass dimension [a] = −1.

4.1 Ginsparg–Wilson relation

First of all, it is clear from the unitarity of the V -operator, V † = V −1, that the overlap
operator obeys the following relation, that we call Ginsparg–Wilson (GW) relation.
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Proposition 4.1 (Bietenholz–Nishimura [14]). The overlap Dirac operator obeys Ginsparg–
Wilson relation,

D +D† = aD†D = aDD† . (4.2)

Remark 4.2. GW relation is originally formulated as “a remnant of chiral symme-
try” [12], and hence the relation shown in (4.3) is usually called GW relation.

We remark that the RHS of (4.2) is suppressed in the continuum limit a→ 0, from
which we deduce a simplified relation, D+D† = 0. Namely, D becomes anti-hermitian,
D† = −D in this limit, which is a generic property of gapless Dirac operators. From
this point of view, GW relation (4.2) is interpreted as a non-linear deformation of the
anti-hermiticity of gapless Dirac operator.

4.1.1 Chiral symmetry

We then discuss GW relation of the overlap operator with additional symmetries. We
use the parametrization V = eX again. For the class with the chiral symmetry in the
gapless limit (e.g., class A), we have {γ,X} = 0, which gives rise to the γ-hermiticity,
γDγ = D†. Hence, we may rewrite GW relation (4.2) as follows.

Proposition 4.3 (Neuberger [9]). The overlap operator for the class having the chiral
symmetry in the gapless limit obeys Ginsparg–Wilson relation,

γD +Dγ = aDγD . (4.3)

This was shown originally for class A. As discussed before, this is interpreted as a non-
linear deformation of the chiral symmetry, which reproduces {γ,D} = 0 in the limit
a→ 0.

From GW relation, we can discuss a non-linear deformation of chiral transformation.
We may rewrite the relation (4.3) as follows,

γD +Dγ̂ = 0 , γ̂ = γ(1− aD) = γV . (4.4)

Then, the Dirac Lagrangian (2.3) is invariant under the following transformation,

ψ −→ γ̂ψ , ψ̄ −→ ψ̄γ , (4.5)

which, on the other hand, gives rise to a non-trivial contribution to the Jacobian
providing the chiral anomaly [11, 34, 35]. We remark that this is not a unique way
to write down the transformation: In general, we may rewrite GW relation (4.3) as
(1− abD)γD +Dγ(1− ab′D) = 0 where b+ b′ = 1.
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4.1.2 C and T symmetries

For the system with C, T symmetry, we have C, T analog of GW relation as follows.

Theorem 4.4. For the class with C, T symmetry in the gapless limit, the overlap Dirac
operator obeys C and T analog of Ginsparg–Wilson relation,

CD +DTC = aDTCD , TD +D∗T = aD∗TD . (4.6)

Proof. We parametrize V = eiHV with H†
V = HV . For the class with C symmetry in the

gapless limit, we have CHVC
−1 = −H∗

V , which gives rise to CV C−1 = V ∗. Noticing
D† = (CDC−1)T, we obtain GW relation with respect to C symmetry,

CD +DTC = aDTCD . (4.7)

For the class with T symmetry in the gapless limit, we instead have TV T−1 = V T and
D† = (TDT−1)∗, from which we obtain the corresponding GW relation,

TD +D∗T = aD∗TD . (4.8)

They are again interpreted as a non-linear deformation of C and T symmetries of the
gapless Dirac operator.

Let us discuss the corresponding non-linear transformations. We may rewrite GW
relations (4.6) as follows,

CD +DTĈ = 0 , TD +D∗T̂ = 0 , Ĉ = CV , T̂ = TV . (4.9)

The corresponding non-linear C and T transformations are given by

C : ψ −→ Ĉψ̄T , ψ̄ −→ ψTC−1 , T : ψ −→ T̂ψ , ψ̄ −→ ψ̄T−1 . (4.10)

Hence, under these transformations, the fermion path integral measure behaves as

dψdψ̄ −→ (detV )−1 dψdψ̄ . (4.11)

This Jacobian factor is related to the anomalous behavior of Majorana(–Weyl) fermion
(hence, C transformation) [15–19], and of the T -invariant system [20, 21]. We also
remark that a similar discussion is applied for the parity anomaly [14]. These arguments
are consistent with that the mod-two bulk topological invariant is given by the sign of
detV as shown in (3.43).
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4.2 Index theorem

It has been known that the overlap formalism provides a concise way to understand the
index theorem. As mentioned in Proposition 1.4, the Z-valued index coincides with the
bulk topological invariant of the corresponding system. We have the following result
for the mod-two index.

Theorem 4.5. The mod-two index of overlap Dirac operator, ν = ind(D) = dimker(D),
is given by

(−1)ν = detV . (4.12)

We may have a non-trivial mod-two index when πd(Rp) = Z2. For d = 0, we have
π0(R1) = π0(R2) = Z2 corresponding to class BDI and class D. In fact, all the cases in
d > 0 are reduced to these two classes via the dimensional reduction. Hence, we focus
on the case d = 0 to prove this Theorem. We first consider a simplified situation.

Lemma 4.6. Let V ∈ O(2) and D = 1+ V . Then, the mod-two index ν = dimker(D)
is given by

(−1)ν = detV . (4.13)

Proof. We consider the following two elements of O(2),

V+ =

(
cosλ sinλ

− sinλ cosλ

)
, V− =

(
cosλ sinλ

sinλ − cosλ

)
, (4.14)

with the determinant detV± = ±1. Then, we have

dimker(1 + V+) =

{
0 (λ ̸= π)

2 (λ = π)
, dimker(1 + V−) = 1 . (4.15)

Hence, the mod-two index of D depends only on the sign of detV .

Then, we apply this result to prove Theorem 4.5.

Proof of Theorem 4.5. We consider the case V ∈ O(n) for the moment. Let vi ∈ O(2)
(i = 1, . . . ,m, m ≤ n/2) and σj ∈ {±1} = O(1) (j = 2m+1, . . . , n). Then, there exists
an orthogonal matrix O, such that

OV OT =



v1
. . . 0

vm

σ2m+1

0
. . .

σn


. (4.16)
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Hence, in this basis, we can apply Lemma 4.6 for each block to obtain the index of Dov,
ν = ind(D) = dimker(D) as follows,

(−1)ν = detV . (4.17)

For the case V ∈ O(2n)/U(n), we may apply the same argument as in the case
V ∈ O(2n). Taking the inductive limit n → ∞, the V -operator takes a value in
the corresponding classifying space.

A Proof of Lemma 3.13

We follow the approach discussed in [9, 36]. We first define the permutation matrix,

P =

 0 1k1

1k2 0

 , detP = (−1)k1k2 . (A.1)

Defining

Π = diag (P,P, . . . ,P) , detΠ = (−1)Nk1k2 , (A.2)

we have

det aD = det(aDΠ) detΠ−1

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C A 0 0 Y

B −C† −1k2 0 0 0

0 −1k1 C A 0

0 B −C† −1k2
. . .

. . . . . . . . . . . . 0

0 0 −1k1 C A

X 0 0 B −C†

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

× (−1)Nk1k2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A 0 Y C

−C† −1k2 0 0 B

−1k1 C A 0

0 B −C† −1k2 0
. . . . . . . . . . . . . . .

−1k1 C A 0

0 B −C† X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
× (−1)(N−1)k22 . (A.3)
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We then define the following matrices,

α =

(
A 0

−C† −1k2

)
, α̃ =

(
A 0

−C† X

)
, β =

(
−1k1 C

0 B

)
, β̃ =

(
Y C

0 B

)
,

(A.4)

from which we deduce a simple form,

det aD =

∣∣∣∣∣∣∣∣∣∣∣

α β̃

β α
. . . . . .

β α̃

∣∣∣∣∣∣∣∣∣∣∣
× (−1)(N−1)k22 . (A.5)

Noticing that detα = (−1)k2 detA, we evaluate the Dirac determinant as follows,

det aD = (−1)(N−1)k22 detαN det
(
α−1α̃− (−α−1β)Nβ−1β̃

)
= (−1)n detAN det

((
1k1 0

0 −X

)
− T−N

(
−Y 0

0 1k2

))
(A.6)

where n = (N − 1)k22 + Nk2 and the T -operator is defined in Definition 3.11. This is
the expression shown in (3.19). □
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