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Theorem (Metrics Convergence Theorem) Let . z 0 and . ζ 0 be points in the domain M, such that .ω 1 0 ({z 0 }) < 2π and .ω 1 0 ({ζ 0 }) < 2π. For any sequences .(z n ) n ≥1 and .(ζ n ) n ≥1 , converging to . z 0 and . ζ 0 , respectively, then

. ρ λ 0 (z 0 , ζ 0 ) = lim n→∞ ρ λ n (z n , ζ n ) .
This Theorem was reduced to three basic lemmas in part I. of this article. Let us introduce the following notation. If A is a subset of the plane, then .d( A) is the diameter of A, . A is its closure, and . A • its interior.

By . C r (z 0 ) we denote the circle

. {|z -z 0 | = r } , by . Q r (z 0 ) the disc . {|z -z 0 | < r } .
The closed disc .{| zz 0 | ≤ r } will be denoted by . Q r (z 0 ).

If the integration domain in a multiple integral is not specified then it is the whole plane. For convenience, the plane of variable z is denoted by . C. §1 First Basic Lemma 2. The statement and the proof of the first basic lemma are given at the end of the present section. The proof is based on a sequence of lemmas that are proved below. Meanwhile, we prove several statements used below that are also of independent interest.

All measures considered in the present section have support contained in . Q = {|z| ≤ R}. All curves considered in what follows lie in the disc Q.

Let .λ(z) = λ(z; ω). We have: .ω = ω + -ω -, so . λ(z; ω) = λ(z; ω + ) λ(z; ω -) .

Note that each of the functions .λ(ω + ) and .λ(ω -) is bounded from below in Q under the hypothesis made for . ω. Indeed, for .z ∈ Q and .ζ ∈ Q,

. ln

1 z -ζ ≥ ln 1 2R .
It is thus evident that .λ(z; ω ± ) = exp

1 π ∬ ln 1 z -ζ dω ± (ζ) ≥ exp 1 π ω ± (C) ln 1 2R (2.1)
for all .z ∈ Q.

The estimates of several integrals along rectifiable curves.

In what follows, .K = {z(s) : 0 ≤ s ≤ l} denotes an arc length parameterized rectifiable curve in the plane.

We say that the curve K satisfies the condition . Γ(h), where .0 < h < 1, if for any . s 1 and . s 2 . |z(s 1 )z(s 2 )| ≥ h|s 1s 2 | .

Lemma 3.1 If a curve K satisfies the condition . Γ(h), then

.

∫ l 0 ds |z -z(s)| β < 2 1+β l 1-β (1 -β)h β , (3.1) 
where .0 ≤ β < 1.

Proof Let .z(s 0 ) be the point of the curve K the closest to z. Then we have: Proof Taking into account the inequality

. ln |1 + z| ≤ ln(1 + |z|) = 1 β ln(1 + |z|) β ≤ 1 β ln(1 + |z| β ) ≤ |z| β β ,
where .0 < β < 1, we obtain:

. P(ζ 2 ) -P(ζ 1 ) ≤

1 β ∫ l 0 ζ 1 -ζ 2 z(s) -ζ 2 β ds ≤ A|ζ 1 -ζ 2 | β ,
where A is a constant defined by the inequality of the previous lemma. 

)| ≤ A|ζ 1 -ζ 2 | β , (3.2) 
what we had to prove.

Remark

The estimate obtained in the proof of this lemma shows that, for a family of curves K in a bounded domain M in the plane, satisfying the condition .Γ(h) with the same h, the corresponding functions . P k are uniformly continuous. In (3.2) , A depends on the length of the curves. But, because of the condition . Γ(h), the length of the curves of .K ⊂ M does not exceed . d h , where .d = d(K) is the diameter of a curve in K. This implies that for the curves of the given family, the A are uniformly bounded. The lemma is proved.

Lemma 3.3 Let

We will need the following Cauchy Inequality about the geometric and arithmetic means [START_REF] Hardy | Inequalities[END_REF]. Let . μ be a positive measure, such that . μ(C) > 0. Then for any function . f ≥ 0 measurable with respect to . μ,

. exp 1 μ(C) ∫ C ln f dμ ≤ 1 μ(C) ∫ C f dμ .
(3.4) Theorem 3.1 Let .λ(z) = λ(z; ω), K be a rectifiable curve satisfying the condition . Γ(h), .K (r) be the set of all points z such that the distance to the curve K is less than r.

Then for any . α such that

. 0 ≤ β = α π ω + (K(r)) < 1 ,
we have:

. ∫ K (λ(z)) α ds ≤ A 1 l 1-β h -β r -b , (3.5) 
where .b = α π ω + (C \ K(r)) and the constant . A 1 depends only on . β, 2R, . ω + (C \ K(r)) and .ω(C).

Proof We have

. λ(z) ≤ k 1 λ(z; ω + ) . Let .ω 1 (E) = ω + (E ∩ K(r)), .ω 2 (E) = ω + (E \ K(r)). Obviously, . ω + = ω 1 + ω 2
and .λ(z; ω + ) = λ(z; ω 1 )λ(z; ω 2 ). The function .λ(ω 2 ) over . K admits the following estimate:

. λ(z; ω 2 ) = exp 1 π ∬ C\K(r) ln 1 z -ζ dω + (ζ) ≤ exp ω + (C \ K(r)) π ln 1 r = r -b α , from which we obtain . λ(z; ω) ≤ k 1 r b α λ(z; ω 1 ) .
If .ω + (K(r)) = 0, then the required estimate is evident, because in that case . λ(z; ω 1 ) = 1. Let .ω + (K(r)) 0. Then we have

. ∫ K (λ(z(s))) α ds ≤ k α 1 r b ∫ K (λ(z; ω 1 )) α ds .
Applying Cauchy Inequality, we obtain

. (λ(z; ω 1 )) α = exp 1 ω + (K(r)) ∬ K(r) ln 1 z -ζ αω + (K (r )) π dω + (ζ) ≤ 1 ω + (K(r)) ∬ K(r) 1 z -ζ αω + (K (r )) π dω + (ζ) .
From which, by integrating with respect to s, because of Lemma 3.1, we have

. ∫ K (λ(z(s))) α ds ≤ k α 1 r b ω + (K(r)) ∬ K(r) ∫ K ds |z(s) -ζ | β dω + (ζ) ≤ A 1 l 1-β r b h β ,
what we wanted to prove.

4.

By limiting ourselves to the case .α = 1 2 , we will find several estimates from below for the integrals of the type (3.5).

Lemma 4.1 The function defined by

. u(z) = ∬ ln 1 z -ζ dω(ζ) ,
where . ω is a positive measure, and the integral is understood in the sense of Lebesgue-Stieltjes, is lower semicontinuous for all z.

Proof Let

.

[ln x] N = N when ln x ≥ N , ln x when ln x < N , and

. u N (z) = ∬ ln 1 z -ζ N dω(ζ) . The function . u N is continuous, .u N 1 ≤ u N 2 when .N 1 ≤ N 2 , .u N (z) → u(z) when .N → ∞
for all z by the definition of the Lebesgue-Stieltjes integral. Let .(z n ) n be a converging sequence, .z 0 = lim n→∞ z n . We have

. u N (z 0 ) ≤ lim n→∞ u N (z n ) ≤ lim inf n→∞ u(z n ) .
Passing to the limit as .N → ∞, we obtain

. u(z 0 ) ≤ lim inf n→∞ u(z n ) ,
what we had to prove.

Remark From Lemma 4.1, it follows that .ln λ(z), where .λ(z) = λ(z; ω), is the difference of two semicontinuous functions, and hence .ln λ(z) and .λ(z) are Borel measurable.

Lemma 4.2 Let .λ(z) = λ(z; ω), and for .0 < h < 1, let . Q h be the set of all . z ∈ Q such that .λ(z) < h. The orthogonal projection of the set . Q h onto any straight line is a set whose outer Lebesgue measure does not exceed

. 2dω -(C) π ln 1 h -ω(C) ln d , (4.1) 
where .d = 2R.

Proof We have, for .z ∈ Q, . λ(z) = exp 1 π ∬ ln d |z -ζ | dω(ζ) - ω(M) π ln d ≥ exp - 1 π ∬ ln d |z -ζ | dω -(ζ) + k 0 , where 1 π ω(Q) ln d, d = 2R .
We set:

.

u(z) = ∬ ln d |z -ζ | dω -(ζ) .
Let . G h be the set of all .z ∈ M such that

. u(z) > π ln

1 h + πk 0 = h 0 .
As it is easy to see, .G h ⊃ Q h , and hence, for the proof of the lemma it is sufficient to show that the estimate of the lemma holds for the projection of the set Q n be such a representation and .z n = x n + iy n be the center of the disc . Q n .

The projection of the disc . Q n onto a is some open segment . I n . We set

. A n = n m=1 I m .
Obviously . μ(A h ) = lim n→∞ μ(A n ) (. μ means the Lebesgue measure). For .x ∈ A n , let . f n (x) be the smallest of the ordinates of the centers of the discs . Q 1 , Q 2 , . . . , Q n , whose projections contain the point x. The function . f n , defined on . A n , is piecewise constant and its graph, as it is clear from the construction, is contained in the set . G h . The function .x → u (x, f n (x)), defined on the set . A n , is measurable, and moreover

. T n = ∫ A n u (x, f n (x)) dx ≥ h 0 μ(A n ) .
From the other hand, we have

.

T n = ∬ M ∫ A n ln d (x -ξ) 2 + ( f n (x) -η) 2 dx dω -(ζ) ≤ ∬ M ∫ A n ln d |x -ξ | dx dω -(ζ) .
The inner integral is estimated as follows:

.

∫ A n ln d |x -ξ | dx ≤ ∫ x 2 x 1 ln d |x -ξ | dx ≤ 2 ∫ d 0 ln d x dx = 2d ,
where .[x 1 , x 2 ] is a closed segment, containing the set . A n . Hence:

. T n ≤ 2dω -(M) .

It follows that

.

μ(A n ) ≤ 2dω -(M) h 0 = 2dω -(M) π ln 1 h -ω(M) ln d .
Passing to the limit as .n → ∞, we obtain the required result.

Theorem 4.1 Let .λ(z) = λ(z; ω). Then the distance . ρ λ,Q (z 1 , z 2 ) between points . z 1 and . z 2 of the domain Q admits the following estimate from below:

. ρ λ,Q (z 1 , z 2 ) ≥ A|z 1 -z 2 | exp - B |z 1 -z 2 | ,
where . A > 0 and .B > 0 depend only on .d = 2R, .ω + (C) and .ω -(C).

Proof We pass through the points . z 1 and . z 2 a line a. Let .| z 1z 2 | = l. We take . h > 0 and consider the set . M h of all z such that .λ(z) < h. By the previous lemma, the projection . A h of the set . M h onto the line a has measure less than

. 2dω -(M) π ln 1 h + ω(M) ln 1 d ---→ h→0 0 .
We choose h such that . μ(A h ) < l 2 . Obviously, it is sufficient to take

. h = exp - 6d πl ω -(M) + 1 π ω(M) ln 1 d .
For any broken line .L ⊂ M, which joins the points . z 1 and . z 2 , the set . L h of the points of this broken line for which .λ(z) ≥ h, is projected onto the line a in a set of measure greater than . l 2 . From which it follows that the linear measure of the set . L h is greater than . l 2 , and hence

. s λ (L) ≥ ∫ L h λ(z)ds ≥ 1 2 l √ h .
Because of the arbitrariness of the broken line L, it follows that

. ρ λ (z 1 , z 2 ) ≥ 1 2 l √ h .
We have:

.

1 2 l √ h = 1 2 le -a l +b ,
where .a > 0, . a, b are constants. As .l → 0, . l 2 √ h → 0, and thus the theorem is completely proved. Theorem 4.2 Let K be a rectifiable curve satisfying the condition . Γ(h), and let . r > 0 be such that the set .K (r) of points at distance less than r from K is contained in Q. Let . α be such that .αω -(K(r)) < π.

Then . ∫ K |λ(z)| α ds ≥ A 2 l 1+β h β , β = αω -(K(r)) π ,
where . A 2 depends only on .α, d = 2R, r, ω + (M) and .ω -(M).

Proof We have . λ(z; ω) = λ(z; ω + ) λ(z; ω -) ≥ k 2 λ(z; ω -) ,
where . k 2 depends only on 2R and .ω + (C). Together with Minkowski Inequality, we have

. ∫ K (λ(z; ω)) α ds ≥ k α 2 ∫ K (λ(z; ω -)) -α ds ≥ k α 2 l 2 ∫ K (λ(z; ω -)) α ds .
Applying to the integral in the denominator the estimate of Theorem 3.1, the result follows.

5.

Theorem 5.1 Let the disc . Q r 0 = Q r 0 (z 0 ) be such that

. ω + Q r 0 (z 0 ) < 2π .
Then, when . r < r 0 , the integral .s λ (C r ) for the circle . C r (z 0 ) admits the following estimate:

. s λ (C r ) ≤ A r 1-β (r 0 -r) b .
For any radius . L r of the circle . C r (z 0 ), we have:

. s λ (L r ) ≤ B r 1-β (r 0 -r) b .
Here

. β = ω + (Q r 0 ) 2π , .b = ω + (C\Q r 0 ) 2π
, A and B are constants that depend only on . β, .ω(C) and .ω + (Q r 0 ). This theorem is a simple corollary of Theorem 3.1. 6. Lemma 6.1 If all the tangent lines of an arc length parameterized curve . K = {z(s) : 0 ≤ s ≤ l} make an angle .θ < π 2 with some vector . e 0 , then

. |z(s 2 ) -z(s 1 )| ≥ |s 2 -s 1 | cos θ .
In other words, the curve K satisfies the condition .Γ(h) with .h = cos θ.

Proof We have . z(s 2 ) -z(s 1 ) = ∫ s 2 s 1 z (s)ds .
By rotating the curve K, we can obtain that the vector . e 0 lies on the x axis and look to the right. Under this condition we have: .Re(z(s)) ≥ cos θ and, hence, when . s 2 ≥ s 1

. |z(s 2 ) -z(s 1 )| ≥ Re (z(s 2 ) -z(s 1 )) = ∫ s 2 s 1 Re z (s)ds ≥ (s 2 -s 1 ) cos θ ,
what we wanted to prove.

Let .(K n ) n be a sequence of one-sidedly smooth curves. We say that the curves . K n are uniformly partitionable by tangent lines if, for any . > 0, we can find a natural number N such that each curve . K n can be partitioned into N arcs, in such a way that the tangent lines at points of one arc make between them angles which are less than . . Note that, if the absolute rotation of the curves . K n are bounded from above by the same number, then the curves . K n are uniformly partitionable by tangent lines. Lemma 6.2 Let .(K n ) n be a sequence of one-sidedly smooth curves converging to a one-sidedly smooth curve . K 0 as .n → ∞. If the curves . K n are uniformly partitionable by tangent lines, then the length of the curves . K n converge to the length of the curve . K 0 . Proof Choose . < π 2 and take N which satisfies the definition of uniform partitionability by tangent lines. We partition each of the curves . K n into N arcs, such that the tangent lines at the points of each of these arcs make angles which are less than . . From the sequence . K n , we extract a subsequence for which .s(K n ) converge to the upper-limit .lim sup n→∞ s(K n ), and from the last one we extract a subsequence so that the points of partition of the curves . K n of the subsequence converge to some point of the curve . K 0 . Let .(K n m ) n m be such a subsequence, .X 0 n m , X 1 n m , . . . , X N n m be the points of partition of the curve . K n m , numbered in the order of the placement in the curve .K n m (. X 0 n m is the starting point, . X N n m is the endpoint of the curve . K n m ). By construction we have: .X k n m → X k when .n m → ∞, where .X 0 , X 1 , . . . , X n are points of the curves . K 0 . By joining coherently the points . X k n m and, respectively, the points . X k by segments, we obtain broken lines . L n m and . L 0 , inscribed into the curves . K n m and . K 0 , respectively. Obviously, we have:

. lim m→∞ s(L n m ) = s(L 0 ) ≤ s(K 0 ) .
The estimate from the previous lemma shows that the length of the arc .

X i n m X i+1 n m ⊂ K n m does not exceed . 1 cos l i n m , where . l i n m is the length of the segment .X i n m X i+1 n m . Hence . s(K n m ) ≤ 1 cos s(L n m ) .
From which, by passing to the limit when .n → ∞, we obtain:

. lim sup

n→∞ s(K n ) = lim n→∞ s(K n m ) ≤ lim m→∞ 1 cos s(L n m ) ≤ 1 cos s(K 0 ) . Since . > 0 is arbitrary, . lim sup n→∞ s(K n ) ≤ s(K 0 ) .
Considering the known inequality

. lim inf n→∞ s(K n ) ≥ s(K 0 ) , we obtain that .s(K n ) → s(K 0 ) as .n → ∞
, what we wanted to prove.

7.

At last, we can prove the first basic lemma.

Basic Lemma I (Lengths Convergence Lemma)

Let the conditions of the paragraph 1 hold, and let .(K n ) n∈N * be a sequence of one-sidedly smooth curves converging to a one-sidedly smooth curve . K 0 . Then, if the curve . K 0 does not contain any point z such that .ω 1 0 ({z}) ≥ 2π, and the curves . K n are uniformly partitionable by tangent line, then

.

s λ n (K n ) ----→ n→∞ s λ 0 (K 0 ) .
The proof is based on the estimates obtained in paragraph 3 and on the results of the paragraphs 4-6. There is no additional hypothesis for the measures . ω j n , . j = 1, 2, .n ∈ N * .

Let .(K n ) n∈N * be a sequence of one-sidedly smooth curves, uniformly partitionable by tangent lines, converging to a one-sidedly smooth curve . K 0 , such that . K 0 does not contain any point z with .ω 1 0 ({z}) ≥ 2π. We have to prove that, as .n → ∞, .s λ n (K n ) → s λ 0 (K 0 ). First of all, note that by partitioning into arcs the curves . K n and . K 0 , .n ∈ N * , we can reduce the proof to the case .ω 1 0 (K 0 ) < 2π for the limit curve, and for each of the curve . K n there is a vector . e 0 such that all the tangent lines of . K n make an angle less than .θ < π 2 with the vector . e 0 , where . θ is a constant. Indeed, the curve . K 0 does not have points z with .ω 1 0 ({z}) ≥ 2π, and hence can be partitioned into arcs L with .ω 1 0 (L) < 2π, and the curves . K n are uniformly partitionable by tangent lines. In what follows, we will implicitly assume that we deal with this particular case of the lemma. Under this hypothesis, the curves . K n satisfies the condition .Γ(h) with the same h. Moreover, as .n → ∞, .s(K n ) → s(K 0 ) (as usual, .s(K 0 ) means the Euclidean length).

Let .{z n (t) : 0 ≤ t ≤ 1}, .n ∈ N * , be a parameterization of the curve . K n proportional to the arc length, i.e., .t = s l n , where s is the arc length and . l n is the length of the whole curve . K n . When .n → ∞, the complex functions .z n → z 0 uniformly on .[0, 1] because of the convergence of the curves . K n to the curve . K 0 together with the lengths.

We have to prove that

. l n ∫ K n λ n (z n (t))dt ----→ n→∞ l 0 ∫ K 0 λ 0 (z 0 (t))dt .
We first prove that, as .n → ∞, the functions

.F n = √ λ n • z n converge in measure to the function .F 0 = √ λ 0 • z 0 .
In order to prove the convergence of the integrals, we will use the following La Vallée Poussin Theorem [START_REF] Natanson | The method of orthogonal projections in the theory of curves[END_REF].

Let the functions . F n converge in measure to the functions . F 0 as .n → ∞. If there exists a function .Φ ≥ 0 such that

. Φ(y) y ----→ y→∞ ∞ ,
and for all n

. ∫ 1 0 Φ(F n (t))dt ≤ A < ∞ , (7.1) 
where A is a constant, then

.

∫ 1 0 F 0 (t)dt = lim n→∞ ∫ 1 0 F n (t)dt .
We will prove that, in our case, the inequalities (7.1) hold for .Φ(y) = y 1+ , where . > 0, for an appropriate choice of . . The proof uses the estimate obtained in Theorem 3.1.

Lemma 7.1 Let . f i n (t) = ∬ M ln 1 |z n (t) -ζ | dω i n (ζ), n ∈ N . Then . f i 0 (t) ≤ lim inf n→∞ f i n (t) . Proof We define .[ln x] N = ln x when .ln x ≤ N, .[ln x] N = N when .ln x ≥ N, . [ f i n (t)] N = ∬ ln 1 |z n (t) -ζ | N dω i n (ζ) . The function .x → [ln x] N is continuous. As .n → ∞, .z n → z uniformly, .[ f i n (t)] N → [ f i 0 (t)] N . As .[ f i n (t)] N ≤ f i n (t) for all t, then . lim inf n→∞ f i n (t) ≥ lim n→∞ [ f i n (t)] N = [ f i 0 (t)] N .
By passing to the limit as .N → ∞, we obtain the wanted inequality.

Lemma 7.2 If a curve . K 0 does not degenerate into a point, then

. ∫ 1 0 f i 0 (t)dt = lim n→∞ ∫ 1 0 f i n (t)dt .
Proof We set:

. P n (ζ) = l n ∫ 1 0 ln 1 |z n (t) -ζ | dt, l n = s(K n ) → l 0 0 .
We suppose that the curves 

f i n (t)dt = 1 l n ∬ P n (ζ)dω i n (ζ), n ∈ N .
The result obviously follows from the uniform convergence of . P n to . P 0 .

The next lemma follows from the lemma above.

Lemma 7.3 If the curve . K 0 does not degenerate into a point, then as .n → ∞ the functions .F n = √ λ n • z n converge in measure to the function

. F 0 = λ 0 • z 0 .
Indeed, from the previous lemmas, it follows that, as .n → ∞, . f i n → f i 0 in measure. The wanted result follows from the equality:

. F n (t) = exp 1 2 f 1 n (t) -f 2 n (t) .
Proof of the Lengths Convergence Lemma Let .K (r) be the closure of the rneighborhood of. K 0 . The set. K(r) is closed and, as. r → 0,. ω 1 0 (K(r)) → ω 1 0 (K 0 ) < 2π. Let . r < 1 be such that .ω 1 0 (K(r)) < 2π and .K (r) ⊂ M. Because of the weak convergence of the measures . ω 1 n to . ω 1 0 ,

.

ω 1 0 (K(r)) ≥ lim sup n→∞ ω 1 n (K(r)) ,
and hence, there is . n 1 such that, for .n > n 1 ,

.

ω 1 n (K(r)) < 2π 1 + α ,
where .α > 0, .α = const. Next, the curves . K n converge to the curve . K 0 as .n → ∞, and hence, there is .n 2 ≥ n 1 such that, for .n > n 2 , .K n ⊂ K(r), and moreover all the points of the curve . K n are at distance at most . r 2 from the domain . K(r). For simplicity we will assume that the diameter d of the domain M is greater than 1. (We can always achieve this by enlarging the domain M if needed.) Let .K (r) • be the interior of . K(r), and .a > 0, b > 0, .0 < β < 1, be numbers such that, for all n:

. a ≥

1 π ω 1 n (M \ K(r) • ) -ω n (M) ≥ 1 π ω + n (M \ K(r) • ) -ω n (M) , b ≥ 1 π ω 1 n (M \ K(r) • ) ≥ 1 π ω + n (M \ K(r) • ) , β ≥ t 2π ω 1 n (K(r)) ≥ t 2π ω + n (K(r)), 1 ≤ t < 1 + α .
By applying the estimate of Theorem 3.1, from here we obtain:

.

∫ K n (λ n (z)) t 2 ds ≤ Al 1-β n , A = 2 1+β (1 -β)h β d at 2 r bt .
In the case .s(K 0 ) = l 0 = 0, .l n → 0 and assuming here .t = 1, we obtain that

. s λ n (K n ) ----→ n→∞ 0 .
Let .s(K 0 ) 0. By the condition .l nl 0 0 we fix arbitrarily .t = 1 + < 1 + α, > 0. We have

. ∫ 1 0 (F n (u)) t du = 1 l n ∫ K n (λ n (z)) t 2 ds ≤ 2 1+β (1 -β)(l n h) β d at 2 r bt ≤ A < ∞ ,
where A is a constant. Thus, the functions .F n (t) satisfies the condition of La Vallée Poussin Theorem with .Φ(y) = y 1+ . Hence

. lim n→∞ ∫ 1 0 F n (t)dt = ∫ 1 0 F 0 (t)dt ,
what we had to prove. §2 Second Basic Lemma 8. We prove several lemmas about curves of bounded rotation in the plane.

Let K be a curve contained in a straight line l. The point X of the curve K is said to be a point of return of K, if it has a neighborhood in the curve K that lies on one side of the line l, with respect to the point X.

Let .l (ϕ) be a line in the plane, which makes an angle . ϕ with some starting direction, and let .K = {z(u) : a ≤ u ≤ b} be a curve in the plane. Let .𝒲(u) be the orthogonal projection of the point . z(u) onto the straight line . l(ϕ). The function .u → 𝒲(u), .a ≤ u ≤ b, defines a curve . K ϕ , contained in the line . l(ϕ). This curve is called the projection of the curve K onto the straight line . l(ϕ). If the absolute rotation of the curve . K ϕ is finite, then it consists of a finite number of segments, which join each other, and, possibly, overlapping each other. The absolute rotation of the curve . K ϕ is always equal to . πm, where m is the number of points of return of the curve . Lemma 8.2 If the absolute rotation of the curve K is finite, then the absolute rotation of the curve . K ϕ is a measurable function of . ϕ, and moreover

. |κ|(K) = 1 2π ∫ 2π 0 |κ|(K ϕ )dϕ .
The above statement was proven by I. Fáry [START_REF] Fáry | Sur certaines inégalités géométriques[END_REF] for the case of a regular curve. The general case can be obtained by passing to the limit (see also [4]).

Let .K = {z(t) : a ≤ t ≤ b} be a curve in the plane, and let . z 0 be a point on the plane which does not lie on K. Define the function .t → ϕ K (t, K 0 ) so that the following conditions are satisfied:

1. .ϕ K (a, z 0 ) = 0. 2. .ϕ K (t, z 0 ) is continuous as a function of t. 3. For any .t 0 ∈ [a, b], there exists .δ > 0, such that for .0 ≤ t -t 0 < δ, the difference .ϕ K (t, z 0 )-ϕ K (t 0 , z 0
) is equal to the angle at the vertex . z 0 of the triangle .z(t 0 )z 0 z(t).

We assign the sign . + to the angle if we go around the vertices of the triangle in the order .z 0 z(t 0 )z(t), and the sign .otherwise. The function .t → ϕ K (t, z 0 ) is uniquely defined by these conditions. We will call it the angle under which the arc at of the curve K is seen from the point . z 0 .

Lemma 8.3 Let .K = {z(t) : 0 ≤ t ≤ 1} be a curve in the plane and let . z 0 a point which does not lie on K. Then the following inequality holds:

. 

1 0 ϕ K (•, z 0 ) ≤ |κ|(K) + π . Proof Let .0 ≤ t 1 < t 2 < • • • < t m ≤
K (•, z 0 ) is less than . < π. Let .z(t i ) = A i , .a i = z 0 A i . Obviously, . 1 0 ϕ K (•, z 0 ) = sup n-1 i=1 | (a i , a i+1 )| ,
where the upper bound is taken over the set of all partitions of the above kind. Next, let . ϕ be a direction not orthogonal to any of the vectors .a 1 , a 2 , . . . , a m , let l be a straight line passing thought the point . z 0 in the given direction . ϕ, . K ϕ be the projection of the curve K onto l, . A 1 , A 2 , . . . , A m be the projections onto l of the points

. A 1 , A 2 , . . . , A m , . a i be the projection onto l of the vector . a i . Note that . (a i , a i+1 ) = π if and only if the points . A i and . A i+1 lie on the line l on different sides with respect to . z 0 , and hence

. 1 π n-1 i=1 | (a i , a i+1 )|
does not exceed the number of transitions of the curve . K ϕ from one side with respect to the point . z 0 to another. This last number does not exceed the number of points of return of the curve . K ϕ , increased by 1, i.e.,

.

1 π n-1 i=1 | (a i , a i+1 )| ≤ 1 + 1 π |κ|(K ϕ ) .
Integrating by . ϕ and taking into account Lemma 8.1 and Lemma 8.2, we obtain the wanted result.

Lemma 8.4 If a curve K is contained in a straight line and its absolute rotation is infinite, then the curve K has infinitely many points of return.

Proof Let .{(x(t), y(t)) : 0 ≤ t ≤ 1} be a parameterization of the curve K. Without loss of generality, we can consider that the line l coincides with the x axis. Then .y(t) ≡ 0. If at .t = t 0 we have a point of return of the curve K, then the function x has a local minimum or maximum at t. The problem is reduced to show that in this case,

x has an infinite number of points of local extrema. We take a parameterization x of the curve which is not constant on any interval. Suppose that x has a finite number of points of local extrema. Let .t 1 , t 2 , . . . , t n be all these points. They partition the segment .[0, 1] into a finite number of parts, on each of which the function x is obviously monotonic, and the corresponding curve K is simple, i.e., it is a straight segment. Thus, K consists of a finite number of segments, and hence, .| κ|(K) < ∞. The obtained contradiction proves the lemma.

9.

Let us find an estimate for the absolute rotation of a shortest arc for a Riemannian metric when we suppose that the domain, which contains the shortest arc, is small enough.

Let the function . λ and the domain M satisfy the conditions of the paragraph 1 of the present article.

Let K be a curve in the domain M, shortest for the metric . ρ λ . The set of points on the curve K, which do not lie on the boundary . Γ of the domain M, consists of an at most countable set of arcs. Let .K 1 , K 2 , . . . , K ν , . . . be all these arcs. At last, let .Γ 1 , Γ 2 , . . . , Γ μ , . . . be open arcs of the boundary of M such that

. K ∩ Γ ⊂ μ Γ μ .
Lemma 9.1 Under the conditions stated above, the following inequality holds:

. |κ|(K) ≤ ν |κ|(K ν ) + μ |κ|(Γ μ ) .
Proof Any of the curves . K ν is a geodesic in the sense of differential geometry for the metric .ds 2 = λ(dx 2 + dy 2 ). It follows that, if we parameterize . K ν by the arc length s (for the metric .ds 2 = λ(dx 2 + dy 2 )), then the coordinates of the points of the curve will be . C 2 functions. Hence any curve . K ν is a curve of bounded rotation.

Let the direction . ϕ in the plane be such that the straight lines which are orthogonal to . ϕ intersect each of the curves . Γ and . K ν , .ν = 1, 2, . . . in a finite number of points, and moreover the tangent lines at the endpoints of the curves . K ν are not perpendicular to . ϕ. From the integral geometric Lemma 8.2, because the absolute rotation of the arcs . K ν and . Γ is finite, it follows that almost all directions . ϕ satisfy the assumption.

Let .X ∈ K ∩ Γ. Let us show that if the projection . X of the point X onto the straight line of direction . ϕ is a point of return of the curve . K ϕ , then it is also a point of return of the curve . Γ μ,ϕ , where . Γ μ is the arc containing the point X. We take the line l orthogonal to . ϕ through the point X. In this case, some neighborhood of the point X on the curve K lies on one side with respect to the line l. Let X be not an endpoint of any of the arcs . K ν . Then there exist two sequences of points belonging to . K ∩ Γ and converging to X, on the left and on the right, respectively. These points lie on one side with respect to the line l. As, by hypothesis, l intersects . Γ at a finite number of points, then some neighborhood of the point X on . Γ lies entirely on one side of l. Hence, in this case the projection of the point X is a point of return of the curve . Γ μ,ϕ . If X is an endpoint of one of the arcs . K ν , then X is necessarily an angular point, because of the choice of . ϕ, l does not coincide with a tangent line at the endpoints of the arc . K ν . The angle from the side of the domain M between semitangents of the shortest arc K at the point X is necessarily greater than . π, because otherwise the shortest arc K could be shortened, while staying in the domain M. It follows that a neighborhood of the point X on . Γ lies in the same angle between these semitangents, which is less than . π, i.e., at the same side of the line l, as some neighborhood of X on K. Hence, in this case also, the projection of X is a point of return of the curve . Γ μ,ϕ . .| κ|(K ϕ ) is equal to . πp, where p is the number of points of return of the curve . K ϕ . This number is equal to the sum of the number of points of return on all curves .K ν,ϕ plus the number of points of return on the curves . Γ μ,ϕ . This last number does not exceed . 1 π |κ| Γ μ,ϕ . Thus, we have:

. |κ|(K ϕ ) ≤ ν |κ|(K ν,ϕ ) + μ |κ| Γ μ,ϕ .
Integrating, we obtain the wanted inequality.

Corollary Any shortest arc in M for the Riemannian metric . ρ λ is a curve of bounded rotation. Indeed, the Euclidean curvature at any point of the curve . K ν does not exceed some constant A. Hence .| κ|(K ν ) ≤ Aσ(K ν ) and thus .| κ|(K) ≤ Aσ(K)+ |κ|(Γ) (where . σ is the Euclidean length).

Let . Q r be an open disc of radius . r < 1 centered at a .z 0 ∈ M. The intersection . Q r ∩ Γ consists of an at most countable set of open arcs. Let .k (r) be the sum of the absolute rotations of these arcs. Let . Q r be a closed disc of radius .

√ r, concentric with . Q r .

Theorem 9.1 Let . φ(r) = 1 2π |ω|( Q r ) + 2 √ r π 2 (1 - √ r) |ω|(M) .
If .φ(r ) < 1, then the absolute rotation of any arc shortest for the Riemannian metric . ρ λ and contained in the domain . Q r ∩ M, does not exceed

. πφ(r) + k(r) 1 -φ(r) .
Proof The set of points of the curve K which do not lie on . Γ consists of an at most countable set of arcs .K 1 , K 2 , . . . , K ν , . . . Let .Γ 1 , Γ 2 , . . . , Γ μ , . . . be the arcs that form the intersection . Q r ∩ Γ.

Then, by the previous lemma, we have

. |κ|(K) ≤ ν |κ|(K ν ) + μ |κ|(Γ μ ) = ν |κ|(K ν ) + k(r) .
Let .{z(t) : 0 ≤ t ≤ 1} be a parameterization of the curve K, and the extremities of the arc . K ν are . α ν and . β ν , .α ν < β ν . The curve . K ν is geodesic in the sense of differential geometry, and hence its geodesic turn is equal to zero. Using the formula for the geodesic turn deduced in [5, (8)] (Chap. 7), we obtain

. κ ν (t) = 1 2π ∬ M ϕ K ν (t, ζ)dω(ζ) ,
where .κ ν (t) is the rotation of the arc .α ν ≤ t ≤ β ν of the curve . K ν , and .ϕ K ν (t, ζ) is the angle under which this arc is seen from the point . ζ. Therefore

. |κ|(K ν ) = β ν α ν κ ν ≤ 1 2π ∬ M β ν α ν ϕ K ν (•, ζ)d|ω|(ζ) ,
and hence

. |κ|(K) ≤ ν |κ|(K ν ) + k(r) ≤ 1 2π ∬ M ν β ν α ν ϕ K ν (•, ζ) d|ω|(ζ) + k(r) .
For any . ν,

. β ν α ν ϕ K ν (•, ζ) = β ν α ν ϕ K (•, ζ) , because the functions .ϕ K ν (•, ζ) and .ϕ K (•, ζ) differ by a constant. It follows that . |κ|(K) ≤ k(r) + ∬ M 1 0 ϕ K (•, ζ) d|ω|(ζ) .
We split the integral which lies in the right-hand side of the last inequality into two integrals, so that one is evaluated on . Q r , and the second one on .M \ Q r . By Lemma 8.3, we estimate from above the function under the first integral. In the second integral we use the following estimate:

.

1 0 ϕ K (•, ζ) ≤ σ(K) ρ ≤ 4r πρ (|κ|(K) + π) , where .σ(K ) is the Euclidean length of the curve K, .ζ ∈ M \ Q r , . ρ ≥ √ r -r. Using the estimate above, we obtain . |κ|(K) ≤ 1 2π |ω|( Q r ) (|κ|(K)| + π) + 2r π 2 ρ |ω|(M \ Q r ) (|κ(K)| + π) + k(r) ≤ 1 2π |ω|( Q r ) + 4r |ω|(M) π( √ r -r) (|κ|(K) + π) + k(r) = φ(r)(|κ|(K) + π) + k(r) .
For .φ(r ) < 1, the required estimate obviously follows.

Using the results above, we can at last prove the second basic lemma.

Basic Lemma II (Local Estimate of Shortest Arc Rotations Lemma)

Under the conditions of Paragraph 1, let the measure . ω 1 n and . ω 2 n , .n ∈ N\{0}, have . C 1 Lebesgue density. Then for any point .z ∈ M such that .(ω 1 0 + ω 2 0 )({z}) < 2π, there exists a number . A < ∞ and a neighborhood V of the point z, such that the absolute rotation of any curve, shortest for the metric . ρ λ n and connecting two points of the closure of the neighborhood V, does not exceed A.

Proof Let . z 0 be such a point. Let us take . r 0 > 0 such that

. (ω 1 0 + ω 2 0 ) Q r 0 (z 0 ) < 2π(1 -) ,
where .0 < < 1. Because of the weak convergence

. (ω 1 0 + ω 2 0 ) Q r 0 (z 0 ) ≥ lim sup n→∞ (ω 1 n + ω 2 n ) Q r 0 (z 0 ) ,
and hence, there is . n 0 such that, for .n > n 0 ,

.(ω

1 n + ω 2 n ) Q r 0 (z 0 ) < 2π(1 -) . (9.1)
As the measures .(ω 1 n + ω 2 n ) are absolutely continuous for .n > 0, decreasing . r 0 if necessary, we can obtain that the inequality (9.1) holds also for .n ≤ n 0 . For . z 0 , let . φ(r) be given by Theorem 9.1. For . r < r 0 , . r < 1, we have:

. |ω n |( Q r ) ≤ (ω 1 n + ω 2 n )( Q r ) < 2π(1 -) and . φ(r) < 1 -+ 2 √ r π 2 (1 - √ r) (ω 1 n + ω 2 n )(C) ≤ 1 -+ 2 √ r π 2 (1 - √ r) A 0 ,
where . A 0 < ∞, . A 0 = const. We can clearly find a . r 1 such that, for . r < r 1

. φ(r) < 1 - 2 .
From the estimate of Theorem 4.1, it follows that there exists .δ > 0 such that for all n, the boundary of the disc . Q r 1 (z 0 ) stays at a distance larger than . δ from the point . z 0 , for the metric . ρ λ n . The estimate of Theorem 5.1 allows to conclude that there is . ρ 1 > 0, . ρ 1 < r 1 , such that the diameter of the set . Q ρ 1 (z 0 ) ∩ M for the metric . ρ λ n is less than . δ 3 for all n. The shortest arc for the metric . ρ λ n , joining two points of the set . U = Q ρ 1 (z 0 ) ∩ M, lies entirely in . Q r 1 (z 0 ) for all n, because otherwise its length would be at least . 4 3 δ, which contradicts the fact that the diameter of . Q ρ 1 (z 0 ) is less than . δ 3 . By what was said, and because of Theorem 9.1, the absolute rotation of the shortest arc joining the points of the disc . Q ρ 1 (z 0 ) does not exceed

. 2π + 2k(r) = A(z 0 ) .
Thus, the disc . Q ρ 1 (z 0 ) is the neighborhood of the point . z 0 that we were looking for. Therefore the lemma is completely proved. §3 Third Basic Lemma 10. In the first part of the present work, we showed that the results of the previous paragraphs are sufficient to prove the Metrics Convergence Theorem in the case the domain M does not any contain point z with .(ω 1 n + ω 2 n )({z}) ≥ 2π. If the domain M contains such points, then to finish the proof of the theorem, we need to consider with more detail the construction of the subharmonic metric, in the neighborhood of a point of the domain where the metric is defined. To do this, we use a technique which consists, roughly speaking, in stretching a small neighborhood of the point. By the way, we assume the Metrics Convergence Theorem to be proved when the domain M does not contain z with .(ω 1 n + ω 2 n )({z}) ≥ 2π. Let us introduce the following notation. Let .λ = λ(ω) be defined over the plane. For . r > 0, we define

.σ λ (r, z) = s λ (C r (z)) , (10.1) 
where . C r (z) is the circle of radius r centered at z. Later it will be established that, for any point z which is not a point at infinity for the distance . ρ λ , .σ λ (r, z) → 0 when . r → 0. When .ω({z}) < 2π, this fact is contained in Theorem 5.1 and the main difficulty is when .ω({z}) = 2π. For .ω({z}) > 2π, a point z is a point at infinity and .σ λ (r, z) → ∞ when . r → 0. When .ω({z}) = 2π, the point z can be either a point at infinity or an ordinary point for the metric . ρ λ . In order for a point z with .ω({z}) = 2π to be a point at infinity, it is necessary and sufficient for the integral

. ∫ L λ(z)ds
to be divergent at a point z at least on one curve L of bounded rotation starting from the point z.

In conclusion of the present paragraph, it will be proved that for any point which is not a point at infinity for the metric . ρ λ, M , the diameter for the metric . ρ λ, M of the neighborhood . Q r (z) ∩ M of the point z, goes to 0 as . r → 0 and, finally, we give the proof of the third basic lemma.

11. Let us define the notion of canonical stretching of a subharmonic metric.

Let . z 0 be a point in the plane. Substituting

. z = z -z 0 r , 0 < r < 1, r = const , we obtain . ds 2 = λ(z)|dz| 2 = r 2 λ(z 0 + rz )|dz | 2 .
We set . λ r (z) = r 2 λ(z 0 + rz). The disc . Q a = {|z| ≤ a} with the metric defined by the linear element .ds 2 = λ r |dz| 2 is isometric to the disc . Q r a = {|zz 0 | ≤ ra} with the metric . ρ λ . Indeed, we send the point z of the disc . Q a to the point .φ(z) = z 0 + rz. The mapping . φ is a similarity. For any curve .K ⊂ Q a there is a similar curve in the disc . Q r a . Moreover the length of the curve K for the metric . ρ λ r is equal to the length of the corresponding curve .φ(K ) for the metric . ρ λ . Hence, the map . φ is an isometry between the disc . Q a endowed with the metric . ρ λ r , and the disc . Q r a endowed with the metric . ρ λ , what we wanted to prove. Let us prove a lemma about change of variable in the Lebesgue-Stieltjes integral. Let A be a subset of the plane. Denote by r A the set of all points z such that . z r ∈ A Two metric spaces . R 1 and . R 2 are called similar if there exists a mapping . φ from . R 1 onto . R 2 such that for any .X, Y ∈ R 1 , .ρ 1 (X, Y) = αρ 2 (φ(X), φ(Y)), where . α is a constant, .α > 0. and by . A + z 0 the set of all points z such that .zz 0 ∈ A. The set r A is the result of the similarity stretching of A with similarity coefficient r with respect to the point .z = 0, . A + z 0 is the result of the parallel translation of the set A by the vector . z 0 .

Lemma 11.1 Let . ω be a signed measure. Suppose that .ω r,z 0

(E) = ω E-z 0 r . Then . ∫ A f (ζ)dω(ζ) = ∫ r A+z 0 f ζ -z 0 r dω r,z 0 (ζ) ,
for any function f such that the left-hand side of this equality is well-defined.

Proof We have

.

∫ A f (ζ)dω(ζ) = lim j f (ζ j )ω(E j ) ,
where .ζ j ∈ E j , and the sets . E j are such that

. E j E k = 0 when j k, j E j = A .
Next, by setting .ζ j = r ζ j + z 0 , .E j = rE j + z 0 , we have

. j f (ζ j )ω(E j ) = j f ζ j -z 0 r ω E j -z 0 r = j f ζ j -z 0 r ω r,z 0 (E j ) .
Passing to the limit, we obtain the wanted result.

We now define .λ r (z) = c(r) λ r (z), where the constant . c(r) is such that the length of the circle . C 1 (0) for the metric . ρ λ r is equal to . 2π. Obviously, .c(r ) = 2π s λ (C r (z 0 )) . The metric . ρ λ r will be called the canonical stretching of the metric . ρ λ .

Lemma 11.2 Let

.h r (z) = 1 π ∬ |ζ | ≥r ln 1 z -ζ dω(ζ) , (11.1) 
where . ω is a signed measure with compact support. Then for .| z| < r, we have the equality:

. h r (z) =

1 π ∬ ln 1 z -ζ dψ r (ζ) + h r (0) ,
where . ψ r is a measure with support the circle . C r (0), and whose total variation does not exceed Proof The function . h r is harmonic, and hence is defined by its normal derivative on the boundary of the disc:

.h r (z) = r π ∫ 2π 0 ∂h r (re iα ) ∂ν ln 1 zre iα dα + h r (0) .

We set:

.ψ r (α) = r

∫ α 0 ∂h r (re iθ ) ∂ν dθ . (11.2)
Let us define a signed measure . ψ r with support the circle .{| z| = r }, such that if E is the arc . 0α of the circle .{| z| = r }, then .ψ r (E) = ψ r (α).

For .| z| ≤ r we have:

. h r (z) =

1 π ∬ ln 1 z -ζ dψ r (ζ) + h r (0) .
Let us estimate the total variation of the measure . ψ r . From the formula (11.1) , we have

. ψ r (α) = r ∫ α 0 ∂h r (re iθ ) ∂ν dθ = 4r π ∫ α 0 ∂ ∂ν ∬ |ζ | ≥r ln 1 re iθ -ζ dω(ζ) dθ .
By differentiating the function which lies under the sign of the integral on the right-hand side, and by changing the integration order, we obtain Theorem 11. [START_REF] Fáry | Sur certaines inégalités géométriques[END_REF] The metrics . ρ λ r ,K , where . K is the ring .{0 < ≤ |z| ≤ 1}, converge uniformly in . K to the metric . ρ λ 0 ,K as . r → 0, where

. ψ r (α) = 1 π ∬ | ≥r ∫ α 0 r ∂ ∂ν ln 1 re iθ -ζ dθ dω(ζ) = 1 π ∬ |ζ | ≥r ϕ(α, ζ )dω(ζ) ,
.λ 0 (z) = 1 z ω({0}) π
.

Proof By Lemma 11.2, we have:

. ln λ(z) =

1 π ∬ |ζ | ≤2r ln 1 z -ζ dω(ζ) + 1 π ∬ ln 1 z -ζ dψ r (ζ) ,
where the measure . ψ r has the circle .{| z| = 2r } as support, and its variation is estimated as follows:

.|ψ r |(E) ≤ We define .ω r (E) = ω(rE) + ψ r (rE). We have:

. ln λ r (z) = c(r)

∬ |ζ | ≤1 ln 1 z -ζ dω r (ζ) .
As . r → 0, the measures . ω r converge weakly to the measure . ω 0 , which is equal to 0 if .0 E and equal to .ω({0}) if .0 ∈ E. In turn, the variation of the measure . ω r obviously converges weakly to the variation of the measure . ω 0 , i.e., to the measure . |ω 0 |. In the ring .K = {0 < ≤ |z| ≤ 1} the variation of the measures . ω r converge weakly to zero. It follows that we can apply the Metrics Convergence Theorem to the domain . K . Therefore, the metrics . ρ λ r ,K converge uniformly to the metric . ρ λ 0 ,K as . r → 0, that is what we wanted to prove.

12.

Lemma 12.1 Let . ρ λ be a metric over the plane, with .λ(z) = |z| α and .α ∈ R. Then the distance between the two circles .{| z| = r 1 } and .{| z| = r 2 } is equal to .s λ (L), where L is the segment of a ray starting at the beginning of the coordinate system and contained between these circles. Proof Let . r 1 < r 2 and let .K = {r = r(s), ϕ = ϕ(s) : 0 ≤ s ≤ l} (. r, ϕ are polar coordinates) be an arc length parameterized rectifiable curve, contained in the ring .{r 1 ≤ |z| ≤ r 2 } and joining the circles .{| z| = r 1 } and .{| z| = r 2 }. Then

. s λ (K) = ∫ l 0 r α 2 (s) r (s) 2 + r 2 ϕ (s) 2 ds ≥ ∫ l 0 r α 2 (s)|r (s)|ds ≥ ∫ r 2 r 1 r α 2 dr ,
what we wanted to prove, because the last integral is obviously equal to .s λ (L), where L is the segment mentioned in the statement of the lemma.

Theorem 12.1 If a point . z 0 is such that .σ λ (r, z 0 ) does not go to zero when . r → 0, then . z 0 is a point at infinity for the metric . ρ λ over the plane. Proof Obviously, in this case .ω({z 0 }) ≥ 2π. We set . ω({z 0 }) 2π = α. For simplicity, we assume that .z 0 = 0. Let . r 1 > r 2 > • • • > r m > • • • be a sequence such that . r m → 0 as .m → ∞, and for all m, .σ λ (r m ) ≥ σ 0 > 0, .σ 0 = const. Choose h, .0 < h < 1, and consider the ring . K h,m = {hr m ≤ |z| ≤ r m } .

Let . ρ λ m be the canonical stretching of the metric . ρ λ with coefficient . r m . The ring .K h = {h ≤ |z| ≤ 1} with the metric . ρ λ m is similar to the ring .K h,m with the metric . ρ λ . Here the similarity coefficient is equal to . 2π σ λ (r m ) . By Theorem 11.1, as . m → ∞ the metrics . ρ λ m converge uniformly to the metric . ρ λ 0 ,K h , where .λ 0 (z) = 1 z 2α . The distance between the circles . C h and . C 1 , in the limit metric . ρ λ 0 ,K h , is equal to

. f (h) = ∫ 1 h r -α dr = 1 α-1 [h 1-α -1] when α > 1 , ln 1 h when α = 1 .
The distance . f m (h) between . C h and . C 1 for the metric . ρ λ m tends to . f (h) as .m → ∞. The distance between the circles . C hr m and . C r m for the metric . ρ λ is equal to

. σ(r m ) 2π f m (h) ≥ σ 0 2π f m (h) -→ σ 0 2π f (h) . As .h → 0, . f (h) → ∞. Choose .N > 0 and take h such that . σ 0 2π f (h) > N .
Then the distance between the two circles . C hr m and . C r m for the metric . ρ λ or, which is the same, the distance between the disc . Q hr m and the exterior of the disc . Q r m , will be greater than N for m big enough.

Hence, by the arbitrariness of N, z is a point at infinity, what was required to be proved.

Theorem 12.2 If .ω({z 0 }) = ω 0 > 2π, then .σ(r ) = σ λ (r, z 0 ) → ∞ as . r → 0. Proof Let . ω be a measure equal to . ω if .z 0 E and equal to .ω -ω 0 if .z 0 ∈ E. We clearly have . λ(z) = 1 z -z 0 ω 0 π exp 1 π ∬ M ln 1 |z -ζ | d ω(s) = 1 z -z 0 ω 0 π λ 1 (z) . It follows that . σ(r) = 1 r ω 0 2π s λ 1 (C r ) .
We estimate .s λ 1 (C r ) from below, using the inequality from Theorem 4.2. We fix . r 0 > 0 and let . r <

1 2 r 0 , . β(r 0 ) = ω(Q r 0 ) 2π . Then we have .σ(r ) = 1 r ω 0 2π s λ 1 (C r ) ≥ A 1 r 1+β(r 0 )-ω 0 2π , . h ρ (z) = ∫ 2π 0 ln 1 |z| -ρe i(ϕ-θ) dϕ = ∫ 2π 0 ln 1 |z| -ρe iϕ dϕ ,
where .θ = arg z. Thus the function . h ρ depends only on . |z|, and hence

. h ρ (z) = c when |z| < ρ , a ln 1 z + b when |z| > ρ ,
where . a, b, and c are constants. Assuming that .z = 0, we get that .c = 2π ln 1 ρ . The difference .h ρ (z) -2π ln 1 z goes to 0 as .| z| → ∞, which implies that .a = 2π and .b = 0. It follows that

.λ(z) = 1 z 2 exp 2 ∫ |z | 0 ln 1 z f (ρ)ρdρ + 2 ∫ 1 |z | ln 1 ρ f (ρ)ρdρ . (12.1) Define . ϕ(t) = ∫ t 0 f (ρ)ρdρ .
By an integration by parts in the second integral in the brackets in (12.1) , at last we obtain

. λ(z) = 1 z 2 exp 2 ∫ 1 |z | ϕ(t) t dt .
Let L be the segment .[0, 1] of the real axis. Then

. s λ (L) = ∫ 1 0 λ(x)dx = ∫ 1 0 exp ∫ 1 x ϕ(t)dt t dx x .
Let us now take . f (x) = -1+α x 2 (ln e x )

2 as .0 ≤ x ≤ 1, where .α > 0. The function .z → f (|z|), as it is not difficult to see, is integrable in the disc .{| z| ≤ 1} and

. ϕ(t) = ∫ t 0 f (x)xdx = - 1 + α ln e t , . ∫ 1 x ϕ(t) t dt = -(1 + α) ∫ 1 x dt t ln e t = -(1 + α) ln ln e x , . exp ∫ 1 x ϕ(t) t dt = ln e x - (1+α) 
, and finally

. s λ (L) = ∫ 1 0 dx x ln e x 1+α .
The last integral converges, because of the condition. α > 0, and we obtain. s λ (L) < ∞, and hence the point .z = 0 is not a point at infinity for the metric . ρ λ .

13.

Theorem 13.1 If a point . z 0 is not a point at infinity for the metric . ρ λ , then there is h such that, for any segment L of length h starting from the point . z 0 , .s λ (L) is finite.

Proof If .ω({z 0 }) < 2π, the result follows from the lemma about the estimate of the diameter of small neighborhoods. If .ω({z 0 }) > 2π, then the point . z 0 is a point at infinity. Let us consider that .ω({z 0 }) = 2π. Let us take . r > 0 such that the disc . Q r (z 0 ) does not contain points . z z 0 with .ω({z}) ≥ 2π, and let .h < r. Note that for any segment .L ⊂ L such that 

ρ 1 + ρ 2 + • • • + ρ m .
As .m → ∞, this converges to a finite limit, from which it follows that the series

. ρ 1 + ρ 2 + • • • + ρ m + • • • converges. Then we have . s λ (L) = l 1 + l 2 + • • • + l m + • • •
We will prove that, as .m → ∞, . l m ρ m → 1. Indeed, let . ρ λ m be the canonical stretching of the metric . ρ λ with coefficient . r m . The ring .{ 1 2 ≤ |z| ≤ 1} with the metric . ρ λ m is similar to the ring .{r m+1 ≤ |zz 0 | ≤ r m } with the metric . ρ λ ,

. r m = |z 1 -z 0 | 2 m-1 . The similarity coefficient is equal to . 2π σ(r m ) . Let K be the segment of the ray .(z 0 , z 1 ) enclosed between the circles . |z| = Theorem 13.2 Let the point . z 0 be a point not at infinity for the metric . ρ λ , where .λ(z) = λ(z; ω), and let . d(r) be the diameter of the disc . Q r (z 0 ) for the metric . ρ λ,Q r . Then .d(r ) → 0 when . r → 0.

Proof Let L be a segment starting from the point . z 0 , and choose a point . z 1 on L such that .s λ ([z 0 , z 1 ]) < , for a given . > 0. After this we choose . r 1 ≤ |z 1z 0 |, . r 1 > 0, such that as . r < r 1 , .σ(r ) < . Let now . z and . z be in the disc . Q r (z 0 ), where . r < r 1 . Let . C and . C be the circles centered at . z 0 and passing through . z and . z , respectively. The points . z and . z are joined by a curve K of bounded rotation, which consists of the arcs of the circles . C and . C , joining the points . z and . z with the segment L, and of a part of the segment L, enclosed between these circles. For this curve .s λ (K) < 3 . Hence, . ρ λ (z , z ) < 3 and because of the arbitrariness of the points . z and . z , it follows that .d(r ) ≤ 3 . Thus the theorem is proved.

Theorem 13.3 Let . ρ λ, M be a subharmonic metric over an open domain M, where, as usual, .λ(z) = λ(z; ω). The topology defined by the metric . ρ λ, M in a neighborhood of any point of the domain M which is not a point at infinity for the metric . ρ λ, M , coincides with the usual topology of the plane. Proof Let .z 0 ∈ M. Denote by . U r (z 0 ) the set of all points z of the domain M such that . ρ λ (z, z 0 ) < r. We need to prove that (a) For any . r > 0 there is . ρ > 0 such that . Q ρ (z 0 ) ⊂ U r (z 0 ). (b) For any . ρ > 0 there is . r > 0 such that . U r (z 0 ) ⊂ Q ρ (z 0 ).

Let us prove (a)

. By the previous theorem, for any r there exists . ρ such that, as .z ∈ Q ρ (z 0 ), . ρ λ,Q ρ (z, z 0 ) < r. But for . ρ small enough, . Q ρ (z 0 ) ⊂ M and, hence, . ρ λ, M (z, z 0 ) ≤ ρ λ,Q ρ (z, z 0 ). Therefore, there exists . ρ > 0 such that . ρ λ, M (z, z 0 ) < r as .| zz 0 | < ρ, i.e., . Q ρ ⊂ U r , and the statement a) is proved.

Let us prove (b). By Theorem 4.1, . ρ λ, M (z, ζ) ≥ f (|z -ζ |), where . f (l) > 0 for .l 0, and . f (l) → 0 as .l → 0. We set . r = f (ρ). Then, as .| zz 0 | ≥ ρ, . ρ λ, M (z, z 0 ) ≥ f (ρ) = r, because of the monotonicity of the function f , and hence, as . ρ λ, M (z, ζ) < r, .| zz 0 | < ρ, i.e., . U r (z 0 ) ⊂ Q ρ (z 0 ), what was required to be proved.

In conclusion of this paragraph, we shall prove the lemma about exceptional points, which is necessary to complete the proof of the Metrics Convergence Theorem.

Basic Lemma III Under the hypothesis of the Metrics Convergence Theorem, let

.z = z 0 ∈ M and . C r (z 0 ) be a circle of radius r centered at . z 0 . If .s λ (C r (z)) does not go to zero when . r → 0, then for any . > 0 and any .N > 0, there are circles . C r 1 (z) and . C r 2 (z) and a number . n(z) such that, as . r 1 < r 2 < and as .n > n(z), the distance between the sets . C r 1 (z) ∩ M and . C r 2 (z) ∩ M is greater than N for the metric . ρ λ n .

Proof By Theorem 12.1, the point . z 0 is a point at infinity, and, hence, for any . r 2 the distance between the circles . C r 1 (z) and . C r 2 (z) goes to . ∞ as . r 1 → 0. Let . > 0 and take . r 2 < such that the disc . Q r 2 (z 0 ) does not contain points z different from . z 0 , for which .ω 1 0 ({z 0 }) + ω 2 0 ({z 0 }) ≥ 2π. Let . r 1 < r 2 be such that the distance between the circles . C r 1 and . C r 2 for the metric . ρ λ 0 is greater than N. In the ring K, enclosed between the circles . C r 1 and . C r 2 , the functions . ρ λ n ,K converge uniformly to . ρ λ 0 ,K and, hence . ρ λ n (C r 1 , C r 2 ) → ρ λ 0 (C r 1 , C r 2 ). Hence, there is .n(z 0 ) such that, as .n > n(z 0 ), . ρ λ n (C r 1 , C r 2 ) > N. The lemma is proved.
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 32 |z(s 0 )z(s)| ≤ |z(s 0 ) -z| + |zz(s)| ≤ 2|zz(s)| , because .| z(s 0 ) -z| ≤ |zz(s)|.Because of the condition . Γ(h), we have:. |zz(s)| ≥ β)h β ,what we wanted to prove. If a curve .K = {z(s) : 0 ≤ s ≤ l} satisfies the condition . Γ(h), then the function . P(ζ) =

1 z

 1 and .K = {z(s) : 0 ≤ s ≤ l} be a rectifiable curve satisfying the condition . Γ(h). Then the function .u • z is measurable and integrable on the segment . [0, l].Proof The function defined by. P(ζ) = ∫ K ln 1 z(s) -ζ ds is continuous and hence, integrable with respect to the measure . ω. The function .ln -ζ is bounded from below in Q. Applying Fubini Theorem, we obtain that . u • z is integrable. Moreover the following equality holds: ) -ζ ds dω(ζ) .

  K ϕ . Lemma 8.1 Let . a and . b be two vectors in the plane, . a ϕ and . b ϕ be their orthogonal projections onto the line . l(ϕ). Then . (a, b) , b ϕ )dϕ . Proof For simplicity, we assume that the vector . a has the direction from which we start to count angles. Define . (a, b) = θ. Then . (a ϕ , b ϕ ) = π for .0 ≤ ϕ ≤ θ and for .π ≤ ϕ ≤ π + θ, and . (a ϕ , b ϕ ) = 0 for all other . ϕ. The result follows.

.

  

  where .ϕ(α, ζ ) is the angle under which the arc . 0α is seen from the point . ζ. It follows that. |ψ r |(E)

  •, ζ) is the doubled angle under which the circle .{| z| = r } is seen from the point . ζ, i.e.,

∬

  α r (ζ)d|ω|(ζ) , (11.3) where .α r (ζ) = arcsin r |ζ | for .| ζ | ≥ r, and .α r (ζ) = 0 for .| ζ | < r. As . r → 0, the expression under the integral sign in (11.3) goes to 0 for all . ζ, and hence the integral (11.3) goes to zero as . r → 0. Therefore, .|ψ r |(E) → 0 as . r → 0.

.z 0 L

 0 , .s λ (L ) < ∞. Consider a sequence of points .(z m ) m on the segment L, where .z m = z 0 + z 1 -z 0 2 m-1 and let . C m be the circle centered at . z 0 and passing though the point . z m . Denote by . L m the segment .[z m , z m+1 ]. Let .l m = s λ (L m ), and . ρ m be the distance between the circles . C m and . C m+1 for the metric . ρ λ . The distance between . C 1 and . C m+1 is clearly less than the sum .

1 2 , 1 .

 21 and .{ |z| = 1}. Clearly,. s λ m (K) = 2π σ(r m ) s λ (L m ) = 2π σ(r m ) l m = α m .The distance between the circles. |z| = 1 2 and .{ |z| = 1} for . ρ λ m is equal to . 2π σ(r m ) ρ m = R m .As .m → ∞, it follows from Theorem 11.1 and Lemma 12.1 that . α m and . R m go to the same limit, which is different from 0. Thus .It follows that the series. l 1 + l 2 + • • • + l m + • • •also converges, and hence .s λ (L) < ∞, what was required to be proved.

  . G h . As u is a lower semicontinuous function, the set . G h is open. Let a be a line in the plane, . A h be the projection of . G h on the line a. Let us introduce Cartesian coordinates by taking a for the axis Ox. The set . G h can be presented as a sum of countable open discs. Let

. G h = ∞ n=1

  1 be a sequence of points of the segment . [0, 1] such that, on each of the arcs .[t i , t i+i ], the oscillation of the function .ϕ

where . A 1 depends only on . r 0 and on the diameter of the domain M. By hypothesis . ω 0 2π > 1. As . r 0 → 0, . β(r 0 ) → 0. We choose . r 0 such that .1 + β(r 0 ) < ω 0 2π . Then we obtain

where .k > 0, and hence .σ(r ) → ∞ as . r → 0, what we wanted to prove.

Summing up the results of Theorems 12.1 and 12.2, we obtain that the points of the plane can be separated in several classes:

• The points z, for which .ω({z}) < 2π are finite points. For them, .σ(r ) → 0 when

. r → 0. • The points z with .ω({z}) > 2π are points at infinity. For them, .σ(r ) → ∞ when

. r → 0.

Let us give examples, illustrating that the points z with .ω({z}) = 2π can be either points at infinity or as well finite points.

Example 1 Let

. λ(z) =

The length of the circle .{| z| = r } is equal to . 2π for any r. Hence the point 0 is a point at infinity in the plane because of the Theorem 12.1. Remark that the plane with the metric . ρ λ is isometric to the surface of the cylinder .S 1 × R, with the radius of the circle equal to 1.

Example 2

Let us look for a measure .ω(E ) of the following form:

. ω(E) = ∬ E f (|z|)dxdy + 2πδ 0 (E) , where . δ 0 (E) = 1 when 0 ∈ E 0 when 0 E and f is a measurable function such that .z → f (|z|) is integrable, and . f (x) = 0 when .x > 1. We have:

. λ(z) =

Remark that the function defined by