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Statistical physics and dynamical systems theory are key tools to study high-impact geophysical
events such as temperature extremes, cyclones, thunderstorms, geomagnetic storms and many more.
Despite the intrinsic differences between these events, they all originate as temporary deviations from
the typical trajectories of a geophysical system, resulting in well-organised, coherent structures at
characteristic spatial and temporal scales. While statistical extreme value analysis techniques are
capable to provide return times and probabilities of occurrence of certain geophysical events, they
are not apt to account for their underlying physics. Their focus is to compute the probability of
occurrence of events that are large or small with respect to some specific observable (e.g. tempera-
ture, precipitation, solar wind), rather than to relate rare or extreme phenomena to the underlying
anomalous geophysical regimes. This paper outlines this knowledge gap, presenting some related
challenges, new formalisms and briefly commenting on how stochastic approaches tailored to the
study of extreme geophysical events can help to advance their understanding.

I. OPEN CHALLENGES IN THE STUDY OF
GEOPHYSICAL EXTREME EVENTS

The aim of this perspective is to bridge statistical
physics, statistics, dynamical systems theory and geo-
physics to provide an overview of current techniques suit-
able to study high-impact events in the earth system.
Examples include temperature extremes, cyclones, thun-
derstorms or geomagnetic storms, all of which can be
interpreted as rare states of the underlying geophysical
dynamical systems.

The properties of geophysical extreme events have been
extensively studied by using parametric extreme value
theory (EVT) approaches [e.g. 1–7]. Such approaches
identify and characterise extremes by identifying their
underlying distribution, from which one may for exam-
ple infer the probability of occurrence of events that are
large or small relative to some specific observable (e.g.
temperature, precipitation, solar wind).

Nonetheless, conventional EVT techniques come with
some limitations (see, e.g. [8]). They are for example not
suitable for describing spatially heterogeneous phenom-
ena or phenomena issuing from largely unprecedented dy-
namics, such as may be the case for some geophysical
extreme events. Similarly, conventional EVT does not
account for the physical drivers underlying the extremes.
This has motivated the introduction of a number of
new mathematical formalisms based on defining extreme
events as rare recurrences in the phase space of high-
dimensional systems [9–20]. We specifically highlight the
work by Lucarini et al. [9], which presents a rigorous
framework for the link between extreme value theory and
dynamical systems, and [13] which brings together the
dynamical systems theory and nonequilibrium statistical
physics perspectives. Among the main achievements of
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the above approaches we note: demonstrating how rare
geophysical events correspond to unstable fixed points of
the attractor [9, 14, 15], identifying special sets of trajec-
tories corresponding to rare events [10, 12, 19], detecting
partial synchronization of system variables [11, 17, 18]
and elucidating the spatio-temporal variability of dynam-
ical properties of complex systems [16, 20]. These ap-
proaches have recently provided information on a number
of geophysical phenomena, including climate extremes
and their atmospheric drivers [21–27], ocean dynam-
ics [28, 29], ecosystems [30, 31], paleoclimate [32, 33],
solar wind turbulence, space weather and exoplanetary
atmospheres [20, 34, 35], turbulence [36] and earthquake
dynamics [37, 38].

Here, we seek to provide a detailed perspective of
the above techniques and their links to established con-
cepts from dynamical systems theory, which are ap-
plied to a range of data from idealised systems to ex-
perimental or observational datasets. Examples in-
clude the Lorenz-63 attractor [39], state-of-the-art cli-
mate data such as the ERA5 reanalysis [40] or global
climate models [41, 42], geomagnetic data [43] and tur-
bulence data [44]. Considering such a wide range of
datasets illustrates how approaches developed for low-
and medium-dimensional systems can provide insights
into high-dimensional chaotic data. The overview also
considers the importance of finite size effects (includ-
ing space and time resolution of the datasets). We thus
bridge the gap between theoretical tools often defined
with asymptotic limit theorems and complex datasets.

While we do not perform a holistic review of all avail-
able mathematical and statistical tools for geophysics and
geophysical extremes, we briefly outline here some rel-
evant review studies. For example, Lucarini et al [45]
emphasizes the need for a comprehensive understanding
of the structural and multiscale properties of climate dy-
namics. It explores various mathematical and theoretical
approaches, including the Nambu formulation of fluid dy-
namics and statistical mechanics, to construct numerical
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models and study phenomena like geophysical turbulence
and the nonequilibrium nature of the climate system.
Another promising theoretical framework for studying
geophysical extremes is proposed by [46]. The authors
apply Large Deviation Theory, which issues from statis-
tical physics, to problems in geophysical fluid dynamics
and climate science. A broader overview of the physics
of climate science, including connections to astrophysics
is provided by Ghil and Lucarini[13] who emphasize the
complexity and nonequilibrium nature of the climate sys-
tem, highlighting the importance of natural variability,
external forcings, and advanced modeling techniques. In
the present perspective, we primarily focus on the appli-
cation of dynamical systems theory and nonequilibrium
statistical physics to understand geophysical extremes.
As is the nature of a perspective, we highlight selected
geophysical extreme events and the associated relevant
formalisms.

Our perspective is structured as follows:

• In Section 2 we introduce a framework for the study
of rare events in dynamical systems, the concept of
rarity of a recurrence and its link to the asymp-
totic theory of extreme events. We further discuss
the theoretical problems arising in finite datasets
and introduce local dynamical systems indicators
for rare events.

• In Section 3 we comment on the stochastic ap-
proach useful for investigating extreme geophysical
events and explore how stochastic dynamics and
phenomena induced by environmental noise can
help explain rare geophysical events.

• In Section 4 we apply dynamical indicators to un-
derstand, model and simulate a variety of geophys-
ical rare events.

• In Section 5 we present opportunities and open
challenges for the study of geophysical extreme
events. We specifically outline lines of research en-
abled by recent findings, but that are yet to be
explored in the literature.

• In Section 6 we discuss practical and theoretical
limitations in applying the frameworks described
and implemented in the previous sections to geo-
physical systems.

The paper ends with a summary of key perspectives
and findings (Sections 7 and 8).

We conclude this introductory section by providing
concise definitions of some of the technical terms used
in the later sections of the paper.

• Atomic: A measure µ (see ”Measure” below) is said
to be atomic if it gives positive mass to a measur-
able set, say A (the atom), and all the measurable
subsets of A have measure zero. In other words,
the measure is concentrated in a small subset of
phase-space.

• Axiom A: an Axiom-A diffeomorphism is a smooth
map T of a manifold into itself which displays two
properties: (i) the invariant set of T (the attractor)
is the closure of the periodic points of T ; (ii) on the
attractor the derivative of T has a uniform splitting
into contracting and expanding directions. Cru-
cially, the trajectories of a perturbed Axiom A sys-
tem have a one-to-one topological correspondence
with those of the unperturbed system.

• Invariant Measure: µ is said to be a T -invariant
measure in a phase-space M if for all A ⊂ M,

µ(T−1A) = µ(A).

In the dual space of summable functions f, the in-
variance reads:∫

f(Tx)dµ(x) =

∫
f(x)dµ(x).

• Image Measure: The image measure of the measure
µ by the function f : M → Rk is the measure such
that for all A ⊂ Rk,

µf (A) = µ(f−1(A)).

• Information Dimension: We call the information
dimension of the measure µ the quantity

D1 = lim
r→0

∫
M

logµ(B(x, r))dµ(x)

log r
,

provided the limit exists and where B(x, r) denotes
a ball of radius r centered at point x ∈ M .

• Local dimension: We call the local dimension of
the measure µ at the point x ∈ M the following
quantity:

dµ(x) := lim
r→0

logµ(B(x, r))

log r
, (1)

provided the limit exists.

• Manifold: A manifold of dimension n is a space for
which each point has a neighborhood which is the
image of an open subset of Rn.

• Measure: A measure is a function associating a
non-negative number to A ⊂ M . Measures addi-
tionally need to be countable additive. They are in
practice a mathematical generalisation of concepts
such as length, area, mass etc.

• Penultimate attractor: The union of the observed
(measured or simulated) finite-size trajectories of
the system.

• Submanifold: A subset of a manifold which has in
turn the structure of a manifold, see above.



4

II. HOW TO DEFINE AND TRACK RARE
EVENTS IN GEOPHYSICAL DATASETS

Mathematically robust limit theorems allow the char-
acterisation of extreme events in idealised systems. Ex-
amples include the use of Extreme Value Theory (EVT),
including Generalised Extreme Value (GEV) and Gener-
alised Pareto distributions (GPD), to fit block maxima or
peaks over threshold. This assumes an infinite timeseries
of i.i.d. random variables. Extremes arising in real-world
dynamical systems however, cannot in principle satisfy
these requirements (see Sect. VI). When studying these
systems it is thus important to go beyond a pure statisti-
cal analysis and also include information on the dynam-
ics. This leads to a distinction between extreme events
as defined in a probabilistic way via EVT, and extreme
events in a dynamical systems theory context, which can
be equated to rare events. In the latter sense, the two
terms will hereafter be used interchangeably.

In order to quantify the rarity of an event, a key tool
in dynamical systems theory is the Poincaré recurrence
theorem. This theorem states that for a conservative dy-
namical system, if the system evolves for a sufficiently
long time, it will return arbitrarily close to any initial
position. In other words, the system will exhibit recur-
rent behavior and, although rare, certain states of the
system will recur infinitely often. Moreover, for µ(X,T )
a measure µ-preserving dynamical system, where X is
the phase space and T is the time evolution map, the
Poincaré recurrence theorem states that for almost ev-
ery point x in X and any neighborhood U of x, there
exists a positive integer n such that Tn(x) (the point x
after n iterations of the time evolution map) belongs to
U . Although the theorem was formulated for conserva-
tive dynamical systems, it was later shown that similar
conclusions hold for chaotic forced dissipative systems
having a strange attractor (e.g. [47]).

The Poincaré recurrence theorem has applications in
various fields, including statistical mechanics and ergodic
theory. The time required for a trajectory to return to its
initial state, known as the recurrence time, is related to
the system’s phase space volume and the speed of evolu-
tion along the trajectory, and can be extremely long for
rare states. By studying the recurrence times of trajecto-
ries near these rare points, it is possible to gain insights
into the underlying dynamics of the system and to iden-
tify the most likely pathways leading to the rare events.

The rest of this section provides technical background
for the study of rare events in dynamical systems. At
the beginning of each subsection, we present a qualitative
summary of the key points it touches upon.

A. Probabilistic theories for extreme events in
geophysical time series

The two main probabilistic approaches to analyse geo-
physical extreme events are EVT and Large Deviation

Theory (LDT). In this section we give a short overview
of the basic mathematical formulation for both theoreti-
cal frameworks. We also point out practical aspects when
applying them to geophysical data.
While EVT deals with tails of probability distribu-

tions, LDT considers, in its basic formulation, probabil-
ities of sample averages. From a mathematical perspec-
tive, these theories are formulated for i.i.d. random vari-
ables. However, from a practical perspective, the main
requirement is that the extreme values or the sample av-
erages are uncorrelated and homogeneous. This is a rea-
sonable assumption if the system is chaotic enough (see
Sect. 3.2 in [9]), correlations decay rapidly, and trivial
non-stationarities [48, 49], such as seasonal or other reg-
ular cycles or anthropogenic climate change signals, are
accounted for.
EVT contemplates two main approaches, the block

maxima and the peak over threshold approaches. Both
are asymptotic theories of probability distributions of ex-
treme values, with the limit being approached by select-
ing more and more extreme states. However, the two
approaches differ in the way extreme values are selected.
In case of the block maxima approach, extreme val-

ues are defined as maxima Mn = max{X1, X2, ... Xn}
of a series of i.i.d. random variables X1, X2, ... divided
into blocks of equal length n. If certain conditions are
fulfilled, the distribution of properly normalised block
maxima Mn converges to a so-called GEV distribution
for n → ∞ [3]. In practice, one selects the maxima over
fixed time periods, e.g. 1 year, and verifies whether their
distribution is properly described by a GEV distribution.
The GEV distribution has three parameters: location pa-
rameter (κ), scale parameter (σ), and shape parameter
(ξ). The cumulative distribution function of the GEV
distribution is given by:

G(z) = exp

{
−
[
1 + ξ

(
z − κ

σ

)]− 1
ξ

}
for ξ ̸= 0, (2)

G(z) = exp

{
− exp

[
−
(
z − κ

σ

)]}
for ξ = 0. (3)

where 1 + ξ(z−κ))
σ > 0, −∞ < ξ < ∞, σ > 0 and −∞ <

κ < ∞. The sign of the shape parameter determines the
type of GEV distribution:

• ξ > 0: The distribution has an infinite upper end-
point, and is called the Fréchet distribution. It is
used to model distributions with a heavy (power-
law) tail decay.

• ξ < 0: The distribution has a finite upper endpoint,
and is called the Weibull distribution. It is used to
model distributions with a light tail.

• ξ = 0: The distribution reduces to the Gumbel
distribution, featuring an infinite upper endpoint
and exponential tail decay.
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In case of the peak over threshold approach, we con-
sider again i.i.d. random variables X1, X2, ... and select
extreme values as values exceeding a certain high thresh-
old u. If u is high enough, the distribution of threshold
exceedances X − u follows a GPD [3]. In practice, simi-
larly to the block maxima approach, one verifies that the
distribution of exceedances of a high threshold is properly
approximated by a GPD. The probability of exceedance
of a high threshold u by Xi, i.e. Yi = Xi −u with Yi > 0
for i = 1, 2, ... is given by a cumulative distribution func-
tion, with shape parameter (ξ) and scale parameter (σ̂),
that converges to the GPD family:

H(y) = 1−
(
1 +

ξy

σ̂

)− 1
ξ

for ξ ̸= 0, (4)

H(y) = 1− exp
(
− y

σ̂

)
for ξ = 0, (5)

where 1 + ξy
σ̂ > 0, −∞ < ξ < ∞, y > 0 and σ̂ > 0. In

a similar fashion as the GEV distribution, if ξ = 0 the
tail decays exponentially, if ξ > 0 it decays polynomially
and if ξ < 0 it has an upper bound. The scale parameter
refers to the width of the distribution, and is related to
the variability of the extremes.

If the GEV or GPD are adequate models of the dis-
tribution of extreme values, one can estimate the return
periods of very rare and even unobserved extreme events.

LDT deals with the probability of sample averages
Am = 1

m

∑m
i=1 Xi over blocks of equal length m. Un-

der adequate conditions, the probability of Am decays
exponentially for m → ∞:

P(Am = a) ≈ e−mI(a), (6)

where I(a) ≥ 0 is the so-called rate function [50]. If
(6) holds and I(a) has a unique global minimum, the
probability of averages decays exponentially everywhere
with increasing m, except at the mean E[Am] = ā where
I(ā) = 0 and P (Am = ā) = 1. This points to the conver-
gence of sample averages to the real mean as described
by the law of large numbers [51]. In case of applications
to geophysical time series, one verifies whether (6) holds
for long enough averaging periods m ≥ m∗, i.e. whether
I(am>m∗) ≈ I(am∗). If this is the case, it is possible
to estimate the probabilities of averages far away from
ā over time periods longer than m∗ based on I(am∗).
Hence, one obtains the probability of very rare, even un-
observed anomalies from the long-term mean in terms of
both their average intensity and duration [19, 26].

EVT primarily focuses on the intensity or magnitude
of extreme values. The duration of extreme events can
be incorporated in form of the mean cluster size, based
on the extremal index (see Eq. 9). LDT considers tempo-
rally averaged anomalies, and includes the event duration
via the averaging time length. Thus, it is especially use-
ful to study persistent extreme events, such as heatwaves
or cold spells, and periods during which extreme values
in some observable are unusually frequent [19, 26].

The above description of these methods relies on time
series of observables and takes a stochastic or probabilis-
tic perspective. A number of geophysical systems, such
as the atmosphere or ocean, are (dissipative) chaotic sys-
tems. If the system is chaotic enough (see Sect. 3.2
in [9]), the stochastic perspective is reasonable and the
above methods may be applied. In the following sections,
we show how by combining these probabilistic methods
with dynamical systems theory, new concepts and meth-
ods arise. These have the potential to provide a deeper
understanding of the structure of chaotic attractors and
the dynamics of geophysical systems.

B. An asymptotic framework to study extreme
events in dynamical systems

In this section we elucidate the relation between ex-
treme value theory and the statistical property of recur-
rence. Given a sufficiently long timeseries, the latter can
be investigated on a quantitative basis allowing to derive
precise asymptotic behaviours. In particular we explore
here two questions, namely: how to determine the typical
time needed to observe an extreme event; and the typical
duration of such events when they do occur.
In the context of dynamical systems, EVT allows for-

malizing these two questions in terms of the recurrence
statistics of specific system states. Suppose we have a
set U in the phase space, of small measure, which we
accordingly qualify as a rare set or as the location of an
extreme event.

• A first question is: What is the probability that
the first visit to U of our physical system is larger
than some prescribed time n? Suppose now that
the system entered the set U .

• A second question is: what is the probability that it
resides there k times in a prescribed time interval?

These two questions allow quantifying the rarity of an
event and its persistence – both essential characteristics
for understanding geophysical extremes.
To give mathematically workable answers to the above

questions, we adopt the framework of discrete dynamical
systems. We will consider the temporal evolution given
by a discrete dynamical system, or map, T . This acts on
some compact metric space M, with distance dist(·, ·),
and carrying a T -invariant measure µ which will be the
underlying (stationary) probability describing the statis-
tical properties of the system. For a dissipative system,
this defines the system’s attractor. The rare set U will
change with n and we will denote it with Un, n ≥ 1;
moreover µ(Un) → 0 when n goes to infinity. In order
to get rigorous limit theorems, the sequence Un is usu-
ally taken as monotonically decreasing and converging to
a null set Λ. We now fix a positive number t and we
choose the sets Un in such a way that

µ(Un) =
t

n
. (7)
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This is usually possible whenever µ is not atomic, namely
a measure concentrated at a single point, and the sets
Un are sufficiently regular, for instance they are balls
shrinking around a point or strips collapsing on a smooth
submanifold. We then define, for x ∈ M :

τUn(x) := inf{k ≥ 1, T kx ∈ Un},

which is the first time the initial point x enters the set
Un. To address our first question, we compute:

µ(τUn
> n).

The use of EVT combined with strong chaotic prop-
erties of the dynamical systems (T, µ) allows us to prove
the existence of a positive number θ ∈ [0, 1] such that

lim
n→∞

µ(τUn
> n) = e−θt. (8)

This is Gumbel’s law. The number θ is called the ex-
tremal index (EI). We refer the reader to [9] and [16]
for a detailed discussion of the dynamical systems for
which the previous result holds; in a few words: they are
hyperbolic dynamical systems with exponential decay of
correlations.

The EI can be related to a local persistence indica-
tor [52], suitable to estimate the average cluster size of
the trajectories within the neighborhood of the null set
Λ. Such an index is in fact less than one when clus-
ters of successive recurrences happen, which is the case,
for instance, when the set Un shrinks around a periodic
point or, more generally, around an invariant submani-
fold. Given a time interval ∆, the distribution of λl for a
cluster of size l, can be defined as the frequency of visiting
l times the set Un. We give in the Appendix the analytic
expression of λl. This holds in the limit of n → ∞ and
∆ → ∞. It can then be shown that [17]:

θ−1 =
∑
l

lλl. (9)

In other words, the EI can be interpreted as the inverse
of the expected cluster size of recurrences about Un. For
the strongly chaotic systems quoted above, the EI can be
computed by estimating suitable return time functions.
We in fact have the formula:

θ = 1−
∞∑
k=0

qk, (10)

with qk = limn→∞ qk,n, provided the limit exist, and
where the analytic expression of the qk,n is given in the
Appendix. This result is based on a perturbative tech-
nique introduced by Keller and Liverani [53, 54]. It has
been used in the context of EVT for both determin-
istic and random systems, providing very efficient ex-
plicit formulae for the computation of the extremal in-
dex [16, 55, 56]. In practice, in the limit of an infinite

timeseries, θ differs from 1 only at periodic points, where
θ < 1. However, when estimated at finite resolution θ
differs from 1, and its value indicates the stickiness of
the state of the system being analysed (see Sect. IID).
Let us now suppose that the set Un is a ball B(z, e−un)

of center z ∈ M and radius e−un with µ(B(z, e−un)) = t
n

and un → ∞, n → ∞. If we define the process Xi(x) :=
− log dist(T ix, z), we can then elucidate the connection
between hitting times and EVT as:

lim
n→∞

µ(Mn ≤ un) = lim
n→∞

µ(τB(z,e−un ) > n) = e−θt,

(11)
where Mn = max(X0, X1, . . . , Xn−1). The condition
µ(B(z, e−un)) = t

n now becomes, for large n,

e−undµ(z) ∼ t

n
, (12)

where dµ(z) is an estimate of the local dimension at
the point z. Leveraging GEV theory [57], it is possible to
fit the boundary level un, and therefore the dimension
dµ(z), provided that the convergence in (11) holds. The
EI θ computed with formula (10) will also be a function
of the point z, and we therefore write θ(z). The couple
(dµ(z), θ(z)) allows us to characterise the local structure
of attractors. In [58] it was shown that an alternative
approach for the selection of the maxima is to use the
peak over threshold approach, allowing to estimate dµ(z)
by leveraging the GPD. This enables computing d for a
larger class of dynamical systems than those satisfying
the conditions for the block maxima approach [9]. In
particular, the GPD approach is suitable for non-axiom
A chaotic dynamical systems with multifractal proper-
ties, periodic systems and quasi-periodic systems with
the exclusion of periodic points [58]. The above include
a large number of geophysical systems (see the examples
provided in the Introduction).

We now come to our second question. The orbit of
our dynamical system visits infinitely often the set Un.
We could therefore expect that the exponential law e−θt

given by the extreme value distribution describes the
time between successive events in a Poisson process. To
formalize this, we introduce the random variable

N (n)(t) :=

t
µ(Un)∑
j=0

1Un
◦ T j , (13)

and we consider the following distribution:

µ(N (n)(t) = k). (14)

For a large class of dynamical systems, it has been
proven in [59] and also in [17] that

µ(N (n)(t) = k) → ν({k}),

as n → ∞, where ν is the compound Poisson distribu-
tion for the parameters sλl, where s = θt. The generating
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function of a compound Poisson distribution ν with pa-
rameters sλk reads:

φν(z) = e
∑

k≥1 sλk(zk−1).

When λ1 = λ and λk = 0, k ≥ 2, we obtain the Pois-
son distribution with parameter tλ. An integer valued
random variable W is compound Poisson distributed if
there are i.i.d. integer valued random variables {Xi}i≥1,
and an independent Poisson distributed random variable

N so that W =
∑N

j=1 Xj . The Poisson distribution of N
describes the distribution of clusters whose sizes are given
by the random variables Xj whose probability densities
are the values λl = P(Xj) = l, l = 1, 2, . . . . There-
fore, for the class of chaotic systems considered here, we
get the distribution of clusters which occur on a large
timescale, and the number of returns in each cluster is
given by the random variables Xj . These returns are on
a fixed timescale and nearly independent of the size of
the return set as its measure is shrunk to zero.

For instance, when λℓ = (1− p)pℓ−1 we have that θ =
1 − p and N ∼ Poisson(t(1 − p)). This specific case is
termed Pólya-Aeppli distribution, with parameter t(1 −
p). The mass distribution ν({k}) of such a distribution
is recalled in the Appendix. It is interesting to note that
we have two families of indices to compute respectively
the EI and the compound Poisson, namely the qk and the
λl. The two are related since θ−1 = (1 −

∑∞
k=0 qk)

−1 =∑
l lλl, which shows, as we already pointed out, that the

EI is the inverse of the expected cluster size. This leads to
a whole spectrum of λl, or alternatively of the associated
compound Poisson statistics, providing insights into the
distribution of the clusters even in systems with multiple
timescales [16, 17, 60]. For example, [16] studied the
statistics of the number of visits of a given observable
in the neighborhood of a particular value, for a vector
containing the values of sea-level pressure on a grid of
≈ 100 locations over the North Atlantic. The resulting
distribution was very close to Pòlya–Aeppli (see Fig. 11 in
[16]), with an excellent agreement with the observational
data.

C. Finite time approaches to study rare events in
dynamical systems

Many geophysical dataseries are of limited length or
focus on specific parts of a more complex system. This
hinders the direct application of asymptotic results to
this data. In this section, we discuss how the analysis
tools discussed in the previous sections may be used for
the study of high-dimensional complex systems.

Formally, the results of EVT are stated with respect to
the physical invariant measure µ supported on the sys-
tem’s attractor M , and are asymptotic results. Nonethe-
less, the characteristics of the actual attractor of the sys-
tem can be deduced from those of its penultimate at-
tractor, using the framework of large deviations. We will

here state results concerning the local dimensions as a
paradigmatic example, but this framework can be ap-
plied to other dynamical quantities of interest, such as
recurrence times, which are closely related objects [55].
The local dimension at a point x in phase space is defined
as

dµ(x) = lim
r→0

logµ(B(x, r))

log r
, (15)

where B(x, r) as before denotes a ball centered at x of
radius r. Its pre-asymptotic version

dµ,r(x) =
logµ(B(x, r))

log r
, (16)

converges for almost all states x ∈ M to the so-called
information dimension D1 of the system as r → 0.
This happens for ergodic exact-dimensional systems and
therefore the local dimensions dµ will be almost every-
where constant with common value D1. Depending on
the length of the available time series, one can fix a small
radius r > 0 and evaluate dµ,r at this finite resolution,
for example by fitting the empirical distribution of the
maximum associated with a suitable observable. When
the radius r is small, but not zero, (large) deviations from
the typical value D1 can be observed and they decay ex-
ponentially fast with a rate function given by [61]:

Q(s) = sup
q∈R

{−qs+ qDq+1}, (17)

which is convex and vanishes at D1. Q depends only
on the generalized dimensions of the system, defined for
q ̸= 1 by:

Dq = lim
r→0

log
∫
M

µ(B(x, r))q−1dµ(x)

(q − 1) log r
. (18)

We note that [62] perform a related calculation but
computing the distance between different pairs of points
rather than selecting a single point ζ, and thereby obtain
D2. This is in turn similar to the approach in [63].
The spectrum of dimensions Dq is non trivial for sys-

tems exhibiting a wide variety of scaling behaviors, as
expected for geophysical systems such as the climate sys-
tem. A large deviation relation is given explicitly in [55]
and reads:

µ ({z ∈ M s.t. dµ(z, r) ∈ I}) ∼
r→0

rinfs∈I Q(s), (19)

where I denotes an open interval around D1. In the sense
of the above formula, the wide distribution of (finite-
resolution) local dimensions over the phase space origi-
nates from the multi-fractal structure of the attractor.
We see from (16) that for a given radius r, the value of
dµ,r(x) is determined by the measure of a ball centered
at x. Smaller values of dµ,r correspond to regions of the
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attractor that are more visited by the dynamics, whereas
higher values correspond to less dense regions of the at-
tractor.

Partial observation of the system can be modeled by an
observable f : M → Rk that acts as a projection from the
phase space of the system to the observational space Rk.
Examples of such f include gridded observables, delay-
coordinate observables used in embedding techniques, or
a concatenation of various scalar observables of interest.
The measuring process consists in collecting the values of
f along a typical trajectory of the system. The obtained
data are sampled with respect to the image measure µf .
This measure is such that for all A ⊂ Rk,

µf (A) = µ(f−1(A)).

The statistical properties of the observable f are gov-
erned by the geometric structure of the support of this
measure. In particular, the recurrence properties are
modulated by the local dimensions, and the synchroniza-
tion properties (several or all variables of the system at-
tain similar values) are governed by the generalized di-
mensions of µf [16, 64].
It is crucial to understand the relations between the

properties of these observations and the ones of the un-
derlying physical system that is being observed. The fol-
lowing result, by [65], provides an insight into the matter.
For a generic differentiable observable [66] f : M → Rk

and for a generic point x ∈ M , the local dimension of the
image measure at f(x) is given by

dµf
(f(x)) = min(k, dµ(x)). (20)

From here, for a generic observable, there are two pos-
sibilities:

• If k < d(x), then dµf
(f(x)) = k, and the informa-

tion on the local structure of the underlying attrac-
tor is lost.

• If k is large enough, the information dimension of
the underlying attractor is preserved, since for µ-
almost all x ∈ M :

dµf
(f(x)) = dµ(x)

.

For instance, if we properly decompose a dynamical
system into K modes, and estimate for a growing
number of k modes the dimensions dµf

, as k → K we
approach the dimensions of the underlying attractor [67].

D. Local dynamical indicators for rare events

As discussed in Sect. II C, applications of dynami-
cal systems theory to geophysical data must account for

short or incomplete sets of data. Here, we investigate
whether two local dynamical systems indicators and as-
sociated second-order statistics can provide information
on data-limited chaotic systems.
The estimation of the local dimension dµ, mentioned

in Sect. II C above rests on the application of extreme
value theory to Poincaré recurrences in dynamical sys-
tems. This approach was first introduced in [9] and [21].
For a given point z in phase space (e.g., a given sea-
level pressure map over a given geographical domain),
one computes the probability that the system returns
within a ball of radius e−u centered on the point z. To
do so we first define negative logarithmic returns as:

g(x(t)) = − log(dist(x(t), z)) (21)

Requiring that a point on the orbit falls within a ball
of radius e−u around the point z is equivalent to asking
that the corresponding value of the series g(x(t)) is above
the threshold u. Under the hypothesis of independence
of the exceedances, we leverage the theorem from [68] to
obtain:

µ((X − u(q)) > y|X ≥ u(q)) ≈ exp
(
− y

σ

)
, (22)

where u(q) is a high threshold associated to a quan-
tile q of the series X ≡ g(x(t)). As observed by [58] the
resulting distribution is the exponential member of the
GPD family. The parameter σ, namely the scale param-
eter of the distribution, depends on the point z in phase
space and, for finite time series, on t. The local dimen-
sion d(z) can be obtained via the relation σ = 1/dµ(z).
This is the local dimension introduced in Sect. II C. In
practice, to compute the local dimension, one explicitly
fits an exponential distribution to the exceedances above
u(q) (see discussions in [62] and [69]). If, instead of as-
suming an exponential distribution, one fits a GPD to
the data, then the resulting σ will not be the inverse of
a local dimension, as it will also be a function of the
distribution’s shape parameter ξ.
By combining eq. 11 with eq. 12, we can obtain:

µ(Mn ≤ y) ≈ exp
(
−θne−

y
σ

)
, (23)

Where we recall that Mn = max(X0, X1, . . . , Xn−1).
A metric of persistence can then be obtained as the in-
verse of the extremal index θ, dimensionalised by the
timestep of the data being used. As also shown by [70],
in presence of clustering the extreme value law corre-
sponding to the asymptotic limit of recurrences within a
neighbourhood around a given phase-space point is mod-
ulated by θ (see their eq. 2.8).
The local dimension d and persistence θ thus provide

complementary information. θ relates to the dynamics
around a point, and its calculation depends on preserv-
ing the chronological order of the data. The extremal
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index can be estimated following [71], who proposes a
maximum likelihood estimator based on block maxima.
d instead gives the scaling of the measure around a point
(and its calculation is insensitive to time reshuffling of
the data). d can be computed using either block maxima
or peaks over threshold, and the two can be connected
in the asymptotic limit through the result of [3, p. 75]:
“[...] if block maxima have approximating distribution G
[N.B. here G is the GEV], then threshold excesses have a

corresponding approximated distribution within the gen-
eralized Pareto family”. The POT formulation including
θ in the exponent, first introduced in Eq. 4 by [21], thus
only holds in the asymptotic limit. For practical pur-
poses, θ is not estimated using POT, as explained above.
The above framework can also be applied in a bivari-

ate context. Given two observables x(t) and y(t), one
can define the state z = {zx, zy}. The joint negative
logarithmic returns can then be expressed as:

g(x(t), y(t)) = − log

[
dist

(
x(t)

||x||
,
zx
||x||

)2

+ dist

(
y(t)

||y||
,
zy
||y||

)2
] 1

2

(24)

where || · || is the average root mean square norm
of the coordinates of a vector. For example, ||x|| =

Et

([∑K
i xi(t)

2
] 1

2

)
, where K is the number of compo-

nents of x and Et is an average over time t. Based on
Eq. (24), one can then compute the co-dimension dx,y
and inverse co-persistence θx,y.
Finally, in a bivariate setting one can define an addi-

tional indicator, which we term co-recurrence ratio, as:

α(z) =
ν[g(x(t)) > sx(q) ∩ g(y(t)) > sy(q)]

ν[g(x(t)) > sx(q)]
(25)

with 0 ≤ α ≤ 1, provided that the same number of
recurrences is defined for both observables. Here, ν[−]
is the number of events satisfying condition [−], and all
other variables are defined as before. Thus, α quanti-
fies how often the two observables have joint recurrences,
namely their co-recurrence. If the same number of recur-
rences is defined for both observables, then by definition
α is symmetric with respect to the choice of variable (x
or y), since ν[g(x(t)) > sx(q)] ≡ ν[g(y(t)) > sy(q)].
The local dimension, persistence and co-recurrence ra-

tio can be computed at each point in the phase space of a
physical system, including when the phase space is imper-
fectly sampled. In the limit of an infinite number of in-
finitely long trajectories, the local dimension of all points
on the attractor will almost surely tend to the informa-
tion dimension of the attractor (see Sect. II C). With
a finite size sample, this is not the case and the value
of the local dimension computed at each point gives in-
formation on the recurrences of these points in the phase
space, namely on the geometric characteristics of the tra-
jectory [9].

The above dynamical systems metrics are typically es-
timated without taking explicitly into account the con-
tinuous nature of the trajectories representing the evolu-
tion of geophysical systems (see e.g. [21]). We propose
here an estimator for the local dimension d targeted to
continuous dynamical systems, and investigate its sec-
ond order properties (i.e. we compute its gradient in the

phase space). The new estimator uses the N closest re-
currences of z within a radius e−u, with u given. The
local dimension du(z) is given by:

du(z) =

∑N
n=1 v

−1
n ln∑N

n=1 v
−1
n (ln − rn cos−1(eurn))

, (26)

where vn is the speed in the phase space at the n-th
closest recurrence, rn is the distance between the point
z and the n-th closest recurrence and ln =

√
e−2u − r2n.

We emphasise that even assuming infinite data, this is
only a consistent estimator as u → 0 for measures with a
continuous density on a submanifold, for example those
generated by stochastic processes. For fractal attractors
it will converge only in the sense of Césaro averaging, and
even in that setting is not known to be consistent. Never-
theless, at finite resolution it provides useful information
about the scaling of the system.
In a simple low-dimensional attractor such as for the

Lorenz-63 system [39], one can visualize the regions with
low and high dimensions (cf. Fig. 1a, b). The two es-
timates of local dimension based on the GPD and on
Eq. 26 are essentially indistinguishable. We further note
that for a point situated in the low-dimensional part of
one of the wings of the attractor, its local dimension can
be increased by moving either towards the exterior of the
wing or towards the fixed point in the middle of the wing.
However, in a high-dimensional system, it is far from

easy to know which direction in the phase space would in-
crease or decrease the local dimension, i.e. which are the
common and rare structures with respect to the sampling
provided by the data set. We therefore propose an esti-
mator of the gradient in the phase space of the quantity
du(z) defined above.
The gradient ∇zdu(z) is a vector in a phase space

which has the point z as its origin. It therefore points to-
wards the direction of increasing local dimension relative
to the point z. We show the directions of the normalized

gradients ∇zdu(z)
||∇zdu(z)|| for the Lorenz ’63 model in Fig. 1c.

The vectors at each phase space point match the intu-
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FIG. 1. Gradient of local dimension for the Lorenz-63
system. (a) Local dimension of the Lorenz-63 model using
the GPD estimator; and (b) the estimates based on Eq. 26.
(c) Corresponding gradient of the local dimension.

ition with regards to the distribution of local dimensions
in Fig. 1b.

When computed on a data set with finite size, i.e.
undersampling the true attractor of the dynamical sys-
tem studied, the local dimension thus provides informa-
tion on the clustering of nearest neighbors in the phase
space. Here we proposed to expand this characterization
by computing a second order statistics, namely the gradi-
ent in phase space of local dimension. We illustrate how
this can inform on high-dimensional geophysical systems
in Sect. IVB.

III. STOCHASTIC DYNAMICS FOR
UNDERSTANDING AND SIMULATING

GEOPHYSICAL RARE EVENTS

The modeling of chaotic systems is a challenging task
because these systems are highly sensitive to initial
conditions and external forcings, and small perturba-
tions can lead to significant changes in their behavior.
Examples include modulation of the fine structure of the
attractor [20, 72]; or (abrupt) shifting between different
basins of attraction [73, 74], underlying major changes in
the dynamics of the system. The latter shifts are often
termed critical phenomena [75] or tipping points [76] in
the climate and physical sciences, while they are referred
to as bifurcations leading to shifts between metastable
basins of attraction in a mathematical context. Thus,
the presence of noise can change in a fundamental way
the physics of a complex system [73]. Noise-induced
phenomena also exist in the Earth system, and the
possibility of high-impact climate tipping points has
garnered increasing attention in recent years [76–78].

Indeed, complex systems are multistable systems
characterized by metastability, and noise usually
manifests itself in a nonmonotonic dependence of the
average lifetime of a metastable state on the noise
intensity (or temperature). The interplay between the
nonlinearity of complex systems and the stochastic
fluctuations can lead to a wealth of dynamical behaviors,

such as noise-induced phase transitions, emergence
of ordered spatial structures [79–83], stochastic reso-
nance [84–88], stochastic resonant activation [30, 89, 90],
noise-induced synchronization [91], and noise enhanced
stability [90, 92–94]. It is worth highlighting noise-
induced effects in climate change in the framework
of the stochastic resonance phenomenon [86–88], the
central role of stochastic parameterizations [87, 95],
the scale dependent nature of noise fluctutations in
chaotic turbulent systems [96–98], the non-monotonic
dependence of the lifetime of transient dynamics on noise
intensity in ecological systems [94], and the stochastic
stabilization of metastable states in atmospheric dynam-
ical regimes [92].
Dynamical systems theory is often concerned with the

study of systems that evolve deterministically over time,
while statistical physics deals with the study of systems
that evolve stochastically due to random fluctuations.
The stochastic dynamical systems approach combines
these two perspectives by modeling the deterministic
evolution of a system, yet incorporating stochastic
fluctuations due to environmental noise – for example
using stochastic differential equations. This overcomes
the limitations of traditional modeling techniques, such
as differential equations and numerical simulations, that
may not capture the full complexity of physical systems.
Furthermore, conventional deterministic climate models
show systematic biases when compared to observed
data [95]. The complexity of the evolution of atmo-
spheric carbon dioxide over time, for example, highlights
the need to consider nondeterministic models, in which
the key variables are inherent stochastic processes [99].
Furthermore, asymmetric stochastic resetting is an
appealing tool to understand the fundamental features
of natural disaster dynamics in different contexts,
including ecosystems [100].
Stochastic dynamics are relevant to many real-world

systems across virtually all scales, from electrons or
quarks to stars in a galaxy and galaxies in the Universe.
The Earth System is no exception, and is characterized
by different physical processes that act on multiple
spatiotemporal scales. In particular, extreme events are
characterized by the coexistence of intrinsic high dimen-
sionality, complex nonlinear dynamics and stochasticity
or environmental noise [101]. Furthermore, stochasticity
manifests itself spontaneously in weather and climate
extreme events. Indeed, stochastic weather and climate
models arise because we are unable to resolve all pro-
cesses and scales needed in predictive models [102–104],
and stochastic approaches can improve the match
between observational data and model predictions [105].
Finally, stochastic approaches could contribute to the
evolution of artificial intelligence techniques, opening
new perspectives to understand and improve the perfor-
mance of weather and climate models [95].

Stochastic dynamical systems theory has consequently
emerged as a useful tool for understanding the behavior
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of complex systems that also exhibit chaotic dynamics.
Dynamical indicators, such as local dimensions, persis-
tence and Lyapunov exponents, can then be used to es-
timate the rate of divergence of nearby trajectories in
stochastic dynamical systems. In this section, we will
explore how the application of stochastic dynamical sys-
tems theory can serve as a connection between the ap-
proaches to extreme events described earlier in Sect. II
and the modeling of chaotic and turbulent systems.

A. Local dynamical indicators for rare events in
turbulent flows

Virtually all geophysical flows present an ubiquitous
property: they are turbulent. One of the properties of
geophysical turbulent flows is their chaotic and unpre-
dictable nature which suggested to explore the connec-
tion between turbulence, chaos, and dynamical systems.
In Sections II B-IID we have presented local dynamical
systems indicators which are suitable for systems where
the chaotic components dominate over turbulence. Here,
we investigate how to treat systems where chaos and tur-
bulence coexist and shape the system dynamics.

We highlight that a universal underlying turbulent at-
tractor has not been proven to exist for turbulent flows.
A promising way to characterized highly turbulent flows
in constrained geometries is the use of stochastic low-
dimensional dynamical systems [106]. This approach sug-
gests that turbulent flows live on non-hyperbolic strange
stochastic attractors [107]. This property, i.e., non-
hyperbolicity, is exactly strictly connected with non-
homogeneity in terms of instantaneous properties of tur-
bulent fluctuations, closely related with the universality
of the statistics of fluctuations with respect to the mech-
anisms producing turbulence.

Turbulence, which is one of the unsolved problems of
physics, manifests itself via vortices (or eddies) of dif-
ferent sizes hierarchically organized in a self-similar way
[108]. Turbulent flows are usually described in a sta-
tistical way derived from symmetry assumptions (homo-
geneity, stationarity, self-similarity) of the Navier-Stokes
equations describing the dynamics of averaged quantities
over spatial scales larger than the mean free path length
of molecules [109]. We begin here by outlining the sta-
tistical theory that has been developed by [108], based
on the universality of the correlation function (or equiva-
lently its Fourier transform, the energy spectrum) when
normalized to the fluid viscosity ν and the mean energy
dissipation ⟨ϵ⟩, i.e.,

S2(ℓ) ≡ ⟨δu2
ℓ⟩ ∝ ⟨ϵ⟩2/3 ℓ2/3, (27)

where ⟨· · · ⟩ stands for ensemble or statistical average. By
assuming that vortices are hierarchically organized, i.e.,
they are derived from a cascade mechanism, the Kol-
mogorov universality concept should extend to higher
moments field fluctuations. This means that if δuℓ is

a measure of the velocity at scale ℓ, then Eq. (27) can
be generalized as

Sq(ℓ) = ⟨δuq
ℓ⟩ ∝ ⟨ϵ⟩q/3 ℓq/3. (28)

Unfortunately, the global self-similarity assumption was
one of the main failures of Kolmogorov theory, as shown
by experimental evidence [97, 110]. The breaking of this
assumption resides in the local nature of the energy dissi-
pation rate ϵ, i.e., the phenomenon of intermittency aris-
ing from localized bursts of activity, both in time and
in space. This was the starting point of the multifractal
formalism developed by [110], based on the assumption
that the energy dissipation rate is a statistical quantity,
the probability density function (PDF) of which depends
on the scale we are focusing on, i.e.,

Sq(ℓ) ∝ ⟨ϵq/3ℓ ⟩ ℓq/3. (29)

where ϵℓ is the energy dissipation inside a local ball of
radius ℓ. Under the assumption of local self-similarity,

i.e., ⟨ϵq/3ℓ ⟩ ∝ ℓµ(q/3), Eq. (29) can be written as

Sq(ℓ) ∝ ℓζ(q) (30)

where the scaling exponent ζ(q) = q/3 + µ(q/3) ac-
counts for all possible (infinite) rescaling symmetries of
the Navier-Stokes Equations, i.e., accounts for the exis-
tence of singularities in the energy cascade mechanism
[97, 111]. This refined theory has successfully described
the statistical properties of the velocity field in experi-
ments [96, 112–116]. However, this approach only pro-
vides time-averaged statistical information on velocity
field fluctuations at different scales, lacking an instan-
taneous description of the dynamics, the latter being
particularly helpful for exploring the local statistics of
velocity field fluctuations [36, 97].
Starting from the non-universality of the statistics of

small-scale fluctuations, [98] proposed a time-dependent
and scale-dependent framework for retrieving informa-
tion on the symmetries of a turbulent steady state. The
main idea is to overcome the limitations of previous mea-
sures of singularities (as the scaling exponents ζ(q) or the
generalized dimensions Dk [55]), tracing time-averaged
features of field fluctuations, by introducing two mea-
sures which are time-dependent. In this way, one answers
Landau’s objection to the Kolmogorov theory regarding
the time and space fluctuations of the energy dissipation
rate, providing an instantaneous view of scale-dependent
fluctuations. The newly introduced measures can be
derived by searching for extremes of the field fluctua-
tions. We assume, for simplicity, a 1-D velocity field u(t)
(nonetheless, the method is suitable for any n-D field)
which can be written as:

u(t) = ⟨u⟩+
∑
ℓ

δuℓ(t) (31)

where ⟨u⟩ is the mean field value (sometimes, the no-
tation in turbulence is U0) and δuℓ(t) is the fluctuating
component of the velocity field at the scale ℓ [117].
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An additional feature associated with non-universality
are intermittent phenomena. These are ubiquitous in tur-
bulent flows and play an important role in dissipative en-
ergetics [118]. Intermittency can be described using the
multifractal formalism [119], which among other things
means that energy dissipation or velocity fluctuations
lives on a strange attractor with sudden, large-amplitude,
low-frequency, localized bursts (i.e., rare events), induced
by intermittency. An appropriate framework to deal with
this behaviour is EVT, where state(time)-dependent met-
rics can be derived [9]. We specifically seek to determine
time-dependent EVT-based metrics for each velocity fluc-
tuating component at each scale ℓ. To this purpose, we
use two metrics from EVT: the local dimension d(t) and
the extremal index θ(t), as introduced in Sections II B
, and IID. In this way, instead of having a single pair
(d(t), θ(t)) of descriptors of the turbulent flow we have
a hierarchy of pairs, each associated with the dynam-
ics of the fluctuating field at a scale ℓ, i.e., (dℓ(t), θℓ(t)).
Thus, a time- and scale-dependent view of the system is
obtained.

A widely studied laboratory setup which displays the
joint properties of chaoticity and turbulence is the von
Karman swirling flow [120]. For such a flow under high
Reynolds number turbulent conditions, the above indi-
cators provide evidence of a scale-dependent underly-
ing attractor whose geometric and topological proper-
ties depend on the large-scale forcing and also affect the
distribution of the energy across the inertial range of
scales [106]. This mirrors the role of singularities that
break the global self-similarity and that can be consid-
ered the main reason of the failure to find a universal at-
tractor for turbulent flows. These results also shed new
light on the role of the inertial range of scales, where the
turbulent cascade takes place, in distributing the energy
injected at larger scales. Indeed, around the injection
scales the individual scales are in quasi-equilibrium with
low values of the local dimensions dℓ(t) ∼ 2 − 3. Con-
versely at smaller scales than the injection one the mean
energy transfer is positive and the out-of-equilibrium en-
ergy cascade transfers energy to the small scales where
viscous effects become relevant. Thus, while the statisti-
cal equilibrium at large scales is driven by a few degrees
of freedom, generating a well defined low-dimensional at-
tractor, the dynamics at scales smaller than the injection
scale restore the symmetry broken by the cascade and
generate a stochastic attractor. Beyond turbulent flows,
this formalism can be applied to any time series and/or
dynamical system. As an example, [67] have shown that
the formalism can be used to disentangle the role and the
nature of noise in dynamical systems, allowing to clearly
distinguish between a purely noise-like contribution, be-
ing characterized by an ergodic coverage of the available
phase-space with dimensions fluctuating around 3 (as ex-
pected), and a more forcing-like contribution for a multi-
plicative noise, with dimensions larger than 3 which are
distributed differently across the attractor.

B. Noise-induced Phenomena in an
Out-of-equilibrium Ecosystem

Extreme geophysical events are characterized by a non-
Gaussian PDF of occurrence, with rare but large fluctua-
tions of the state variable [121]. These fluctuations, char-
acterized by power law tails in the PDF, are peculiar of
a multiplicative noise source. This means that stochas-
tic models for geophysical extreme events with the above
characteristics should be driven by multiplicative noise,
with the strength of the stochastic forcing depending on
the value of the state variable. For example, many rel-
evant meteorological and climate phenomena in the at-
mosphere and ocean follow a non-Gaussian distribution
with power-law tails and can be described by multiplica-
tive noise forcing. This stochastic approach thus makes
it possible to evaluate extreme events by understanding
their underlying physics [121].
Here, we present an example of how multiplicative noise
plays a crucial role in modelling the dynamics of non-
equilibrium ecosystems. We specifically consider the ef-
fects of randomly fluctuating solar irradiance on the pop-
ulation dynamics of a marine ecosystem [30]. The solar
irradiance data comes from the Boussole buoy located in
the Gulf of Lion, and spans 2004 to 2013 [122]. Fig. 2
shows a block diagram of the ecosystem. The blue time
series indicates the random fluctuating component of the
solar irradiance, which directly affects the photosinthesis
process, with effects propagating across the whole ecosys-
tem. By exploiting a 0-dimensional stochastic biogeo-
chemical flux model, we find a nonmonotonic behaviour
of the coefficient of variation CV (the ratio between the
standard deviation σ and mean µ) of the marine popula-
tions’ biomass with respect to noise intensity of the solar
irradiance, for different values of the noise autocorrela-
tion time τ (see Fig. 3). This indicates a noise-induced
transition of the ecosystem towards an out-of-equilibrium
steady state. Moreover, we see evidence of noise-induced
effects on the organic carbon cycling processes underly-
ing the food web dynamics. Different curves correspond
to different values of the correlation time τ . These plots
show that, for a fixed value of τ , there exists a value of the
noise intensity for which the planktonic concentrations
are maximally spread around their mean values, corre-
sponding to the maximum value of CV . Furthemore,
such a nonmonotonic behaviour suggests the presence of
a resonance, which can be interpreted as the effect of
the interplay between the nonlinearity of the system and
the environmental random fluctuations. These results
clearly show the profound impact that stochastic envi-
ronmental variables can have on both the populations
and the biogeochemistry at the basis of a marine trophic
network. Non-trivial, noise-induced dynamics can push
the ecosystem away from the deterministic attractor and
drive it towards a new nonequilibrium steady state. This
highlights the interdisciplinary link between stochastic
dynamical systems theory and geophysical complex sys-
tems.
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Noise Effects on the System Dynamics

FIG. 2. Block diagram of a marine ecosystem. The blue
time series indicates the random fluctuating component of
the solar irradiance, which directly affects the photosinthesis
process, with effects propagating across the whole ecosystem.

C. Stochastic approaches to simulate ensembles of
unprecedented events

Data limitations (in observations and even numerical
model simulations) are a major challenging in modelling
geophysical extremes. This makes direct application of
many mathematical analysis tools sometimes difficult to
implement. Indeed, many methods rely on the assump-
tion of an unlimited amount of data on the system (cf.
Sect. II). Observations of geophysical systems instead
provide one finite trajectory. Even numerical simula-
tions, such as climate model simulations, provide at most
hundreds of O(102) year-long trajectories [42], which lim-
its the extremeness of the events that can be studied.
The problem is made more acute by the presence of low
frequency trends (including, but not limited to climate
change) leading to time-scale interactions that may af-
fect extreme events [123].

Record breaking events, like the European heatwave
of 2003 [124] or the Western North American heatwave
in 2021 [125, 126], have opened questions specifically fo-
cussed on the non-stationarity of the underlying system.
Indeed, one can wonder how likely such extreme events
are in the present climate, and how this may change in
the future. We consider here two types of extreme events,
where time t corresponds to the publication of this study:

• Type 1: Events that occur at time t, but never oc-
curred before t (or during a reference period of ob-
servations). Hence there are documented examples
and data for type 1 events, albeit small samples.

• Type 2: Events that have never occurred before
time t. By definition, no observation exists for type

FIG. 3. Coefficient of variation versus noise intensity.
The coefficient of variation (CV = σ/µ) (y-axis) of four pop-
ulations resulting from numerical integration of model equa-
tions plotted as a function of the noise intensity (x-axis). Dif-
ferent curves correspond to different values of the correlation
time τ .

2 events at t. Note that the 2003 European and
2021 Western North American summer heatwaves
were type 2 events before 2003 and 2021, respec-
tively. Therefore, type 2 events can become type 1
with time, as observational databases grow.

From the mathematical point of view, there are no
fundamental differences between the two types of events,
when infinite trajectories are available. The difference
stems from the limited amount of “real world” observa-
tions or numerical data. We then ask the following ques-
tion: can type 2 events be deduced from (known) type 1
events, and if so how?
A heuristic and pragmatic approach for simulation of

type 2 events is to identify a set of initial conditions
leading to intense type 1 events, and run ensembles of
a climate model with perturbations around those initial
conditions [127]. This so-called ”ensemble boosting” ap-
proach can provide samples of type 2 events based on
existing type 1 events. In this vein, [10, 25] pioneered
the application of large deviation theory to the simula-
tion of extreme European heatwaves in climate models,
using importance sampling algorithms. In importance
sampling, climate model trajectories are cloned or killed
based on statistical rules aiming at maximising a specific
observable, such as temperature. Always using large de-
viation theory, [26, 125, 128] showed that the statistics
of ”long lasting” type 2 events can be inferred from type
1 events by leveraging the notion of typicality of events
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FIG. 4. Empirical probability distribution of extreme
15 day heatwaves in France. The horizontal lines repre-
sent the maximal 15 day averages of 2m temperature (in ◦C)
in the summer, in France, from the ERA5 reanalysis. The
blue lines are between 1950 and 1986. The orange lines are
between 1986 and 2002. The red dashed line is the record
value obtained in 2003. The boxplots represent the empirical
probability distributions of 1000 simulations of the SWG with
importance sampling, with an initial condition in 2003. The
blue boxplot is for analogs in 1950–1985. The orange boxplot
is for analogs in 1986–2022, excluding information from 2003.
The red boxplot is for analogs in 1986–2022, including infor-
mation from 2003.

for a given level of ”extremeness”.

As climate models yield their own biases and of-
ten underestimate climate variability and extremes,
observation-based approaches are also needed to solve the
type 2 anticipation challenge, given data on type 1 events.
For example, [129, 130] developed an observation-based
stochastic model called a Stochastic Weather Generator
(SWG). This SWG is a Markov chain (e.g. temperature)
with hidden states (which can be the large-scale atmo-
spheric circulation) whose transition probabilities drive
the system. By modifying transition probabilities, the
SWG can emulate through observations the application
of rare event algorithms in a climate model [130]. In-
deed, the SWG simulates a variable Y (t) from sampling
analogs of the hidden states Z(t). The observable to be
optimized is f(Y ).

Let us assume that the most extreme event (for the
variable Y ) in the ”real world” occurs at time tx. Then
the challenge identified above can be solved by simulating
the observable f(Y ) with analogs of the hidden variable
Z that include the knowledge of tx (cum data) or not

(sine data): can the record value of f(Y (tx)) be reached
or exceeded when we simulate f(Y ) with analogs of Z
that never consider information at tx?

We illustrate this statistical approach on record 15 day
heatwaves in France [131]. We consider the daily mean
temperature averaged over France as Y , taken from the
ERA5 reanalysis [40] between 1950 and 2022. We deter-
mine the warmest 15 day spells (horizontal lines in Fig.
4). Therefore, the observable f is a 15 day average of
Y . The record value is obtained in 2003. This value ex-
ceeds the preceding record by almost 2◦C. The hidden
variable Z is geopotential height at 500 hPa (Z500) over
the North Atlantic region. For each day in 1950–2022,
we compute the 20 best analogs of Z500 in 1950–1985
and 1986–2022. We then simulate 1000 trajectories of
the SWG with importance sampling, starting in August
2003 (beginning of the hottest 15 day heatwave), using
analogs in each period in turn. For the 1986–2022 pe-
riod, we can exclude analogs in 2003 or include them,
which allows determining the weight of this record event
in the probability distribution of the simulated extremes,
and evaluate to what extent the 2003 event could be an-
ticipated without information on 2003. The result is re-
ported in Figure 4.

We find that if an event is initiated in August 2003, but
with meteorological conditions of 1950–1985, the most se-
vere heatwaves cannot reach the value of 2003 (although
the SWG is close to other recent heatwaves, blue box-
plot). If we consider both the meteorological conditions
of 1986–2022 and information from 2003, then the 2003
record can easily be exceeded (red boxplot). If infor-
mation on 2003 (apart from the initial condition) are
removed in the 1986–2022 SWG simulations, the 2003
value can be reached, although with low probability (or-
ange boxplot). This means that the record-shattering
event of 2003 could be anticipated. As a caveat, we note
that in this example we used information from other ex-
treme heatwaves, three of which occurred after 2003.

IV. APPLICATIONS OF DYNAMICAL
INDICATORS TO GEOPHYSICAL DATA

In this section, we provide examples of a number
of applications of the analysis frameworks described in
Sect. II to geophysical rare events. We specifically con-
sider meridional energy transport in the atmosphere, ex-
tremes associated with persistent large-scale atmospheric
circulation states typically termed ”weather regimes”,
and spatially compouding weather extremes, namely ge-
ographically remote weather extremes that co-occur and
are physically connected.
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FIG. 5. GPD parameters for meridional atmospheric energy transport. Meridional profiles of the GPD (a) threshold,
(b) scale parameter and (c) shape parameter in case of DJF poleward (black), DJF equatorward (red), JJA poleward (blue) and
JJA equatorward (green) meridional energy transport extremes. The shading represents 95% maximum likelihood confidence
intervals of the respective parameters.

A. Statistical properties, temporal and spatial
scales of meridional energy transport extremes

The atmosphere transports large amounts of energy
meridionally, from the tropical regions to the polar re-
gions. These meridional energy transports are intrin-
sically intermittent in time and space [132–139]. We
hereby review an EVT-based methodology to detect ex-
treme events in meridional energy transports in the mid-
latitudes, as first presented in [139].

Meridional energy transports are obtained at every
spatial point and pressure level as the scalar product of
meridional velocity v and total energy E. The total en-
ergy is given by

E = H +
1

2
v2 = cpT + Lvq + gzg (32)

where v is the horizontal velocity vector, T the tropo-
spheric air temperature, q the specific humidity and zg
the geopotential height, while constants cp, Lv and g are
specific heat at constant pressure, latent heat of vapor-
ization and gravitational acceleration, respectively. The
zonal and vertical mean of this quantity is obtained by
spatial integration: ∮ ∫ 0

ps

vE
dp

g
dx (33)

where ps is surface pressure. Meridional energy trans-
ports are positive when poleward-directed, negative oth-
erwise. We consider ERA5 Reanalysis data over 1979–
2014 [40], in the Northern Hemisphere. We detrend our
time series and remove the seasonal and daily cycles for
every latitude, and analyse boreal winter (DJF) and sum-
mer (JJA) separately.

In order to account for clusters in time that would pos-
sibly bias the estimates of the GPD parameters, we apply
a declustering technique based on the above-mentioned
extremal index (Eq. 9) [140, 141]. We estimate the ex-
tremal index based on the intervals method [140] and

use the obtained information to decluster the time se-
ries, thus ensuring that the selected extreme values are
independent as required by EVT.

In the following, we apply EVT to both tails of the
meridional energy transport distribution, namely pole-
ward and equatorward extremes. Following [139], these
are defined as events beyond the 90 % and 10 % per-
centiles of the meridional energy transport distribution.
Based on the peak-over-threshold GPD scale parameters
(Eq. 4, 5), we notice that the magnitude and variability
of extremes is generally larger in winter than in summer,
and it is more intense for poleward extremes than for
equatorward extremes (Fig. 5a, b). The largest magni-
tude and variability occur for DJF poleward extremes.
The threshold values for the left tails at each latitude
are below zero; these are thus equatorward energy trans-
port extremes and not weak poleward extremes. The
shape parameters are predominantly negative, suggest-
ing that meridional energy transport extremes have an
upper bound (Fig. 5c). Only in the case of poleward
extremes, do we observe shape parameter values close
to or above zero for the latitudes south of 37 ◦N in DJF,
while in JJA the largest shape parameters occur between
latitudes 37 ◦N and 47 ◦N. This suggests that, in these
regions and seasons, there is a chance for “surprises”, i.e.
exceptionally large poleward energy transport extremes.
The shape parameter values, however, have a substan-
tial uncertainty. Thus, we cannot exclude that shape
parameters related to other types of extremes or in other
regions reach values close to or above zero as well, nor
that the near-zero or positive values we highlight above
are indeed such.

The above-discussed GPD parameters do not provide
information on the temporal or spatial scales of the en-
ergy transport extremes. To illustrate these scales, we
mark the occurrence of extremes in the DJF (JJA) en-
ergy transport time series. For illustration purposes, we
identify the timesteps of the extreme events using lati-
tude 45 ◦N, and then verify whether the transport at-
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FIG. 6. Hovmoller plots and scale of meridional atmospheric energy transport extremes. Hovmoller plots indicating
the occurrence of: (a) DJF poleward (black) and equatorward (red) and (b) JJA poleward (blue) and equatorward (green)
meridional energy transport extremes. (c) Mean cluster size and (d) probability density of the meridional extension of meridional
energy transport extremes.

tains extreme values also at other latitudes (Fig. 6a, b).
We summarise the information regarding the duration
and meridional extension of the extremes in Fig. 6c, d,
respectively. The duration is expressed in terms of the
mean cluster size, which is computed as the inverse of
the extremal index. The meridional extension is given in
degrees latitude, and is defined as the number of consec-
utive latitudes affected by an extreme event at a given
time step. In case of multiple extremes occurring at a
given time, marked by vertical lines with interruptions,
we compute the size of the largest one.

DJF extremes often last close to one day, and their
most common meridional extension is around 17◦. Their
distribution is skewed to the right, and we notice that

the probability of large events extending over the full
latitude band is substantially higher than the probability
of small events of a few degrees latitude. JJA extremes
are slightly shorter-lived – with mean duration shorter
than 1 day but longer than 0.5 days – and smaller in
meridional extent. Their distribution is skewed to the
left, and the most common event has a meridional extent
of approximately 9◦ in case of poleward extremes and
is slightly smaller in case of equatorward extremes. The
probability of events extending over the full latitudinal
band is much smaller than in winter. However, the
distribution has a long right tail, thus the probability
of large events is not negligible. The temporal and
spatial scales of meridional energy transport extremes
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discussed here underline their intermittent nature, and
hint at their large-scale coherence and their signature in
extratropical atmospheric dynamics.

B. Identifying rare features in the large-scale
atmospheric circulation associated with extreme

weather events

We consider here the application of the estimator of
the local dimensions and their gradients, discussed in
Sect. IID, to sea-level pressure (SLP) data over the
Euro-Atlantic region. We specifically consider the years
1950–2020 in the NCEP/NCAR reanalysis data [142] and
take two extreme events as examples: the 1987 Great
Storm [143] and the June 2019 French heatwave [144].
The former was a severe extratropical cyclone that af-
fected primarily France and the United Kingdom in Oc-
tober 1987. The latter was a heatwave which set record
high temperatures in multiple European countries, in-
cluding France. The aim is to obtain information on the
dynamical characteristics of the large-scale atmospheric
circulation features associated with these extremes, as
diagnosed through SLP. Each point z in the dataset we
use is defined by a daily SLP map over the chosen ge-
ographical domain. The domain for the two extremes
being analysed and their SLP map is shown in Fig. 7a,b.

We then compute the normalised gradient in phase
space of the local dimension. At a point z, this is given

by: ∇zdu(z)
||∇zdu(z)|| . This is a vector of the same dimension as

z, and can therefore be represented on a map. The two
gradient vectors for the 1987 Great Storm and the June
2019 French heatwave are shown in Fig. 7c, d. Scalars at
each grid point are components of the full vector. Since
∇zdu(z)

||∇zdu(z)|| has an origin, which is z itself, care should be

taken in the interpretation of the directions in the phase
space indicated by this gradient. Indeed, they must be
read with respect to the point where the gradient is com-
puted. Negative (blue) gradients mean that if one wants
to increase d, then one should decrease the SLP values
at that grid point. Positive (red) gradients means that
one should increase SLP to increase d. As a consequence,
the geographical regions where the absolute values of the
normalized gradient are the largest, correspond to direc-
tions in the phase space where d would change the most
for a given change in SLP. In a finite data set, the geo-
graphical regions with the strongest gradients correspond
to phase-space directions in which z has the least number
of analogues (or analogues which are further away from
z for a given distance metric, if a fixed number of ana-
logues is identified). The geographical regions with very
high gradients hence correspond to uncommon features
of an SLP map.

Fig. 7c shows that the key structure in the SLP field of
the 1987 Great Storm that makes the atmospheric situa-
tion uncommon is not the low pressure situated just south
of Iceland, but rather the storm itself (which also corre-

sponds to a low pressure) situated south-east of Brittany.
Similarly for the June 2019 French heatwave, Fig. 7d
shows that the atmospheric feature which determines the
rarity of the situation is the low pressure situated above
Russia. The low pressure to the east of Ireland and the
high pressure in Northern Europe are also uncommon
atmospheric features.
For each point in the phase space of some geophysical

system, the gradient of the local dimension thus indicates
structures which are rare or common with respect to the
sampling done by the data set. We foresee that investi-
gating the link between this gradient and the dynamics
of the system may be a fruitful future line of research.

C. From transition probabilities to the
predictability of midlatitude extreme weather

Atmospheric motions are chaotic, which implies an un-
avoidable loss of predictability with increasing lead time.
However, in chaotic systems it is possible to identify re-
current patterns. These patterns have often been con-
ceptualized as so-called weather regimes, namely clus-
ters of similar atmospheric states [145]. Weather regimes
are then recurrent, quasi-stationary, and persistent large-
scale atmospheric circulation states [146] usually defined
as typical clusters of atmospheric flows that are observed
in an specific geographical region. Weather regimes ap-
pear as sticky regions of the phase-space where the tra-
jectories slow down, possible due to the vicinity of sta-
tionary or quasi-stationary solutions (e.g. [145, 147]).
Weather regimes have been defined over a number of

different geographical regions, but their use has been
most widespread in the Euro-Atlantic sector. There, the
optimal number of weather regimes is typically taken to
be four [148], although fewer [149] or more [150] have
been proposed. Figure 8 shows the four canonical regimes
using sea-level pressure (SLP) over the region [80ºW-
50Eº, 20º-70ºN]. These are, ordered by decreasing fre-
quency of occurrence:
(a) the Atlantic Ridge (AR), with a high pressure

anomaly over the center of the North Atlantic; (b) the
positive phase of North-Atlantic Oscillation (NAO+)
with a dipole of anomalously low pressure in the north-
ern North Atlantic and anomalously high pressure to the
south; (c) Scandinavian Blocking (BLO), with an anoma-
lous high pressure center over Scandinavia; (d) the nega-
tive phase of North-Atlantic Oscillation (NAO-), showing
a dipole which is roughly inverse to that of the NAO+.
Weather regimes can establish conditions favorable for

large-scale extremes ([151–157]), and are used in the
context of medium-range and sub-seasonal to seasonal
weather forecasts and climate projections ([158–160]).
This motivates an interest in studying the large-scale at-
mospheric evolution during extreme weather events from
a weather regimes perspective.
The weather regimes and their transitions have also

been connected to the dynamics of the underlying atmo-
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FIG. 7. Sea level pressure and gradient of local dimension for two extreme case studies: the 1987 Great Storm
and the June 2019 French Heatwave. SLP (hPa) for (a) the 1987 Great Storm and (b) the June 2019 French Heatwave.
(c, d) Corresponding direction of the normalized gradient of local dimension on the dates indicated in the panel titles. Scalars
at each grid point are components of the full vector. The figure uses NCEP/NCAR reanalysis data.
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FIG. 8. Euro-Atlantic Weather regimes. Weather regimes in the Euro-Atlantic sector [80ºW-50Eº, 20º-70ºN] computed
using sea level Pressure from NCEP/NCAR reanalysis [142] over 1948–2021, following the methodology of [151].

spheric system. [21], showed a statistical link between
anomalies in d and θ computed on the SLP in the Euro-
Atlantic sector and the four canonical weather regimes
(see labels in Fig. 9 here). Later, [147, 161, 162] found
that d and θ reflect the life cycles of both Euro-Atlantic
and North American regimes. Specifically, d and θ de-
crease when a regime is established, and increase during
transitions between different regimes, albeit with some
regime dependence.

The two dynamical systems metrics have also been con-
nected to the intrinsic predictability of the atmosphere.
The argument is that low-dimension, high persistence at-
mospheric patterns should afford a higher predictability
than high-dimension, low persistence cases [21, 22, 163–
165], although this may not always directly map to the
performance of numerical weather forecasts [163].

We illustrate here how combining an analysis based on
d and θ as described in Sect. IID with one of regime

transitions can shed light on weather extremes. As ex-
ample, we pick storm Filomena (Fig. 9): a storm which
affected the Iberian Peninsula in January 2021, bringing
heavy snowfall to large regions of Spain [166, 167].
The first days of storm Filomena corresponded to an

NAO- type regime regime. This transitioned very rapidly
to a rare atmospheric configuration, which was very un-
usual in terms of d and θ values and which did not
correspond closely to any of the four canonical weather
regimes. The very low persistence (high θ) and high d
on these days suggests that the atmosphere was in a low
predictability situation. It was during these days that in-
tense snowfall occurred in Spain. Next, the atmosphere
transitioned towards AR and from AR to BLO.
The example of Filomena shows that rare and low-

predictability weather regimes as diagnosed by d and θ
can be associated with extreme events. This was also
noted by [168] when investigating snowfall events in the
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middle-east. This type of analysis in d–θ space can be ap-
plied to a range of different extreme event categories, as
a complement to a categorical study of weather regimes
and their transitions. Indeed, the case of Filomena shows
that the circulation associated with extremes does not
always fit neatly in one of the canonical regimes. The
proposed analysis also informs on the temporal evolution
of the large-scale atmospheric predictability during the
extreme event from a dynamical systems perspective.

FIG. 9. A dynamical systems and weather regime anal-
ysis of storm Filomena. The grey points in the scatter-
plot show daily d and θ values computed using SLP from the
NCEP/NCAR reanalysis over the period 1948–2021, in the
region [80ºW-50Eº, 20º-70ºN]. Red dots show the values dur-
ing storm Filomena, numbered consecutively starting from
the 5th of January 2021. The weather regime labels in the
different quadrants of the plot are based on [21].

D. Co-recurrence statistics for spatially
compounding weather extremes

Understanding the drivers and dynamics of weather
extremes is facilitated by a multivariate analysis frame-
work. Indeed, different weather extremes are often as-
sociated to common physical drivers (for example a cy-
clone causing both strong winds and heavy rain), and
even geographically remote extremes can be physically
connected [e.g. 169] – so-called spatially compounding
extremes. Even extreme events that relate to a single im-
pact variable benefit from a multivariate analysis. They
can be associated with multiple drivers (e.g. a heatwave
may be driven by both the atmospheric circulation and
soil moisture characteristics [170]), or require investigat-
ing the impact variable and a possible driving variable
jointly.

Here, we consider both a monovariate extreme and the
case of spatially compounding extremes. Such extremes
can pose a greater threat to human societies than single,
isolated extremes, as their effects may exacerbate each
other and lead to correlated losses [e.g. 171, 172]. We
specifically illustrate the application of multivariate dy-

namical systems indicators to first study drivers of cold
spells in North America and next their co-occurrence
with cold spells in North America and wet or windy ex-
tremes in Europe – sets of extreme weather events which
have been highlighted in the literature as being spatially
compounding [169, 173–176].
We implement here the previously discussed estimation

of d, θ and α in a bivariate context (Sect. IID). We illus-
trate in Fig. 10 these indicators computed for SLP and
2-meter temperature (t2m) over North America. The at-
mospheric configurations with a high co-recurrence ratio
α between SLP and t2m tend to be those with relatively
low d and θ. When a given pair of SLP and t2m patterns
recurs, it thus tends to coincide with low-dimensional and
persistent configurations.

FIG. 10. Geographical domain and scatter plot for
the dynamical systems indicators computed on SLP
and t2m. a) The black rectangle highlights the domain over
which the dynamical systems metrics are computed. b) d–θ
scatter plot coloured with the values of the co-recurrence ratio
α. The figure is adapted from [177] and uses NCEP/NCAR
reanalysis data [142] over 1948–2018.

We next focus specifically on days displaying anoma-
lously high α in winter, and look at the corresponding
SLP and t2m anomalies (Fig. 11) – the focus of our
analysis here. High co-recurrence ratio days display a
tripolar SLP anomaly pattern, favouring the meridional
advection of cold air and below average temperatures
over a large part of the North American continent. Cou-
pled with the information provided by Fig. 10b, this
points to cold wintertime spells being favoured by persis-
tent circulation patterns, and to the fact that whenever
cold days occur, similar large-scale t2m and SLP pat-
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terns are found. This connects back to the concept of
large-scale meteorological patterns, whereby specific re-
gional climate extremes are associated with recurrent at-
mospheric configurations [e.g. 178, 179] and, albeit qual-
itatively, to the notion of typicality (See Sect. IIIc) .

FIG. 11. Composite SLP and t2m anomalies for win-
ter days with a high co-recurrence ratio. Composite
SLP anomalies in hPa (a) and t2m anomalies in K (b) corre-
sponding to the 10% most positive anomalies of α relative to
its seasonal cycle, during DJF. The black lines bound regions
where at least 2/3 of the composited anomalies have the same
sign. The figure is adapted from [177] and uses NCEP/NCAR
reanalysis data [142] over 1948-–2018.

We next consider how the co-recurrence ratio can
provide information on spatially compounding climate
extremes. We again analyse wintertime cold spells over
North America, but now investigate their connection
to wet or windy European extremes. We specifically
compute the co-recurrence ratio between SLP over North
America and Europe. We then select the 50 winter
days with the highest co-recurrence ratio and investigate
whether they correspond to local climate extremes (de-
fined here as t2m temperature anomalies below the local
5th percentiles and precipitation and 10-metre wind
anomalies above the local 95th percentiles). There is a
clear signal of heightened frequency of cold extremes over
south-eastern North America and wet or windy extremes
over western-continental Europe on high-coupling days
(Fig. 12). This supports previous literature arguing for
a systematic physical and statistical connection between
these sets of extremes [24, 169, 173, 174, 176]. We thus
conclude that the application of the above dynamical
systems metrics in a bivariate context can provide
useful information on compound climate extremes. We
foresee that a full multivariate implementation could be
profitably applied to the study of a range of different
geophysical systems.

V. OPPORTUNITIES AND OPEN
CHALLENGES FOR THE STUDY OF

GEOPHYSICAL RARE EVENTS

While several advances have been made in the un-
derstanding, modeling and simulation of geophysical
extreme or rare events, several challenges still limit our
capabilities of modeling small-scale or sporadic extreme
events. Two examples of geophysical extreme events
having these characteristics are heavy thunderstorms
and tropical cyclones (TCs). Both are highly localized
convective events, which are affected by physical pro-
cesses on a large range of spatial scales. This makes it
challenging to monitor and predict their occurrence.

A final challenge in studying all these geophysical
extremes is the impact of climate change, which can
alter the frequency, duration, and intensity of these
events (see also Sect. III C). In this perspective,
a growing attention has been devoted to so-called
”attribution” studies, namely determining whether a
specific extreme geophysical event may be ascribed to
anthropogenically-forced climate change [180]. Predict-
ing the impact of climate change requires the integration
of non-stationarity in statistical and dynamical models,
to separate the role of forced versus natural variability
in the occurrence of these phenomena. This challenge is
contextualised mathematically in Sect. V.D.

In this section we discuss in more detail the recent ad-
vances and challenges in studying the above-discussed
geophysical extremes, with a focus on the opportuni-
ties issuing from dynamical systems theory and statis-
tical physics, not least for extreme event attribution. We
specifically outline lines of research that have been made
possible by recent findings, but are yet to be explored in
the literature.

A. Physics and dynamics of convective
precipitation phenomena

Convective events are some of the most intense
precipitation events on the planet, associated with rising
plumes of moist air in response to instability in the
atmosphere. Convection triggers updraft and downdraft
and as a result is the main process of vertical exchange
of water vapour, heat and chemical species between the
lower and upper troposphere.

Convection plays an important role in both the
mid-latitudes and the tropics. In the mid-latitudes it
can give rise to heavy thunderstorms; in the tropics,
it is a key ingredient of TCs. TCs are synoptic-scale
(O(103) km) vortices fueled by the thermal energy
accumulated in the ocean. This is transferred to the
atmosphere through evaporation and convective pro-
cesses, and finally released through precipitation and
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FIG. 12. Normalised occurrence of extreme climate events for winter days with a high co-recurrence ratio.
Normalised occurrence of (a) cold spells, (b) extreme 10-metre wind and (c) extreme precipitation during the 50 winter days
with the highest co-recurrence ratio between SLPs over North America and Europe. Cross-hatching marks regions where
the occurrence of extremes during high co-recurrence days is significantly higher than climatology at the 5% one-sided level,
determined using 1000 random sampling iterations. The figure is taken from [175] and uses ERA5 reanalysis data [40] over
1979–2020.

partly converted into kinetic energy (extreme winds).
Specifically, the aggregation of convective towers, or
clusters of thunderstorms, can lead to the formation of
a TC as the energy released from the towers fuels the
development of a low-pressure center, which can then
intensify into a cyclonic system.

The study of thunderstorms and TCs is an active area
of research, with significant progress having been made
in understanding the physical processes that drive these
events. Examples include the role of atmospheric insta-
bility in the development of thunderstorms [181] and the
role of large-scale atmospheric circulation patterns in
the formation and intensification of thunderstorms and
TCs e.g. [182–184]. A further area of research is the
role of kinetic energy, moisture and heat budgets in the
development of thunderstorms and TCs. These budgets
describe the exchanges of energy and moisture between
the atmosphere and the surface, span a continuum of
spatial scales and are important for understanding how
storms and TCs develop and intensify [36, 185]. We

begin here by considering statistical physics approaches
to the study of energy tranfers in convective systems.

Diagnostics of inertial energy transfers typically rely
on filtering approaches that separate resolved fields from
subfilter-scale fields [186]. Filtering is broadly used in
the study of turbulent geophysical flows, including both
atmospheric and oceanographic flows [187–191]. In all
these studies, a filter is applied to the Navier-Stokes
equation, and this is used to infer the energy transfers
from the reference filtered lengthscale ℓ to larger and
smaller scales arising due to non-linear interactions [188].
Using this approach, [192] diagnosed organised regions
of upscale and downscale inertial energy transfers in
the hurricane boundary layer, based on remotely sensed
wind observations during Hurricane Rita (2005).

In an alternative approach based on the weak solu-
tion formalism, [193] showed that energy transfers in a
fluid at an arbitrary scale ℓ satisfy a local energy balance
equation:

∂tE
ℓ + ∂j

(
ujE

ℓ +
1

2
(uj p̂+ ûjp) +

1

4

(
û2uj − û2uj

)
− ν∂jE

ℓ

)
= −ν∂jui∂j ûi − Dℓ, (34)
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where ui are the components of the velocity field, p the
pressure, û and p̂ their coarse-grained components at
scale ℓ, and Eℓ =

∑
i
ûiui

2 the kinetic energy per unit

mass at scale ℓ (such that limℓ→0 E
ℓ = u2/2). The

term Dℓ is expressed in terms of velocity increments

δu⃗(r⃗, x⃗)
def
= u⃗(x⃗ + r⃗) − u⃗(x⃗) ≡ δu⃗(r⃗) (the dependence

on ℓ and x⃗ is kept implicit) as:

Dℓ(u⃗) =
1

4ℓ

∫
V
dr⃗ (∇⃗Gℓ)(r⃗) · δu⃗(r⃗) |δu⃗(r⃗)|2. (35)

In this definition, G is a smooth filtering function, non-
negative, spatially localized and such that

∫
dr⃗ G(r⃗) = 1,

and
∫
dr⃗ |r⃗|2G(r⃗) ≈ 1. The function Gℓ is rescaled for a

given volume with ℓ as Gℓ(r⃗) = ℓ−3G(r⃗/ℓ).

The 2D filter is adapted from [194] as a circular sym-
metric filtering function of the scalar increment r given
by

G(r) =

{
1
N exp(− 1

1−(r/2a)2 ), if r < 2a,

0, otherwise.
(36)

where N is a normalization constant such that∫
d2rG(r) = 1

We provide here an example of applying the framework
from [193] to the spatial distribution of instantaneous en-
ergy transfers in TCs. We specifically consider Typhoon
Jolina, which hit Japan in September 2005. We use the
NCEP/NCAR reanaylsis data [142] and a scale ℓ = 250
km. Positive Dℓ indicate transfers from the mesoscale
(≃250 km) towards the smaller convective scales, while
negative values correspond to tranfers towards the
larger synoptic scales. Fig. 13 suggests that energy
transfers are organized around the eye of the cyclone
and that intense downscale energy transfers occur in a
relatively small region of the planetary boundary layer,
where hazards such as heavy rainfall and wind-gusts
are also concentrated. However, both the direct and
inverse energy cascades coexist, and transfers towards
the synoptic scales are found in cyclone’s outflow in
the upper troposphere. Following such energy transfers
over time along the trajectory of TCs would offer a
way to study, in scale spaces, rapid intensification and
rapid weakening phenomena. The above approach could
also be used to investigate other convective events such
as medicanes, mesocyclones, squall lines or derechoes.
However, such systematic investigations are still absent
from the literature.

B. Statistics and modelling of convective
precipitation phenomena

A complementary approach to studying the energy cas-
cades in individual TCs is to take a bulk view of cyclones

as point vortices and investigate the environmental con-
ditions that favour or suppress their growth. In fact, TCs
can be viewed as a type of heat engine, where the warm
ocean surface provides the fuel for the storm to extract
energy and convert it into wind. Despite the advances in
understanding the dynamics of individual TCs, key open
questions remain on TC bulk statistics. These include:

1. What controls the yearly number of observed TCs
(global rate of about 70–90 events per year [195])?

2. What is the response of TC activity to variations
in the mean state of climate?

Using a bulk perspective, [196] developed the potential
intensity theory, which predicts the maximum possible
wind speed that a TC can attain based on the underlying
ocean and atmospheric conditions. This theory has rep-
resented a step forward in understanding the frequency
of TCs, and has led to the development of a number
of semi-empirical indices know as Genesis Potential
Indices [197–202]). However, GPIs only partly address
question 1 above, since they do not take into account the
small-scale dynamics leading to the “seeding”. In other
words, the process or family of processes responsible
for the formation of the precursor disturbances, from
which self-organized convection and then the cyclones
originate [203]. Indeed, the actual number of TCs is
only partially accounted for by the large-scale factors
entering the GPI, the remaining part depending on
the amount of seeds [203]. The GPI approach also
struggles in addressing question 2. Indeed, when using
high-resolution climate model simulations to estimate
future TC activity, it is found that the trends of GPI are
not consistent with those of simulated cyclones, often
disagreeing even in the sign of change [202].

These limitations have motivated new lines of re-
search, such as synthetic tracking. This involves using
dynamical systems and statistical methods to generate
large numbers of virtual TCs, which are then used to
study the bulk statistical properties of the cyclones [e.g.
204, 205]. Specifically, a combination of deterministic
and stochastic approaches are used to iteratively test
”seeding” cyclone cores at different locations with
different environmental conditions and then identifying
how different possible tracks affect the development
of the cores. Synthetic tracking has proven to be a
valuable tool for predicting the paths and impacts of
TCs, which can have significant implications for disaster
planning and response efforts [e.g. 206, 207]. The very
large number of tracks generated by synthetic tracking
algorithms has supported a better understanding of the
global rate of TC occurrence, for example by informing
on the likelihood of TC occurrences in regions that
may not have experienced any in the historical period
[208, 209]. Similarly, it has aided in exploring the
implications of climate change for TC frequency and
characteristics [210, 211]. These points are of direct
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FIG. 13. Mesoscale to convective scale energy transfers in Typhoon Jolina. Energy transfer Dℓ, with ℓ = 250 km
computed using the 3D velocity fields from the NCEP/NCAR reanalysis dataset for cyclone Jolina (2nd September 2005, 12h
UTC, when the cyclone reached peak intensity). The colorscale indicates energy transfers directed towards smaller (red) or
larger (blue) scales than ℓ.

relevance to the two questions listed above.

In addition to TCs, thunderstorms and other con-
vective precipitation phenomena have also been also
been investigated leveraging concepts from dynamical
systems theory and statistical physics. An example
is a framework for predicting the onset and evolution
of thunderstorms using large scale environmental con-
ditions [182, 212, 213]. This approach involves using
statistical mechanics to derive probabilistic models of
the atmospheric processes that govern the behavior
of thunderstorms, including the interaction between
convection and the large-scale atmospheric circulation.
Another approach that has been used to study thun-
derstorms is the application of Ising models [214]. Ising
models are statistical physics models that are typically
used to describe the behavior of interacting spins in a
lattice. However, they have been adapted to describe

the atmosphere as a grid of interacting variables, with
each variable representing a particular atmospheric state
or parameter. By analyzing the statistical properties of
the variables and their interactions, researchers can gain
insights into the behavior of thunderstorms, including
the onset, growth, and decay of convective activity.
While Ising models are a relatively new approach to
studying thunderstorms, they have shown promise in
capturing some of the complex dynamics of these storms
and could potentially lead to more accurate predictions
of their behavior in the future [215].

Modelling convection presents several challenges. Per-
haps the most pressing is the scale mismatch between the
small scales at which convection occurs and the larger
scales that can be directly resolved by numerical climate
models. To address this challenge, parameterization
schemes are used to represent the effects of convection
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on larger scales. However, these schemes are a major
source of uncertainty in climate simulations. Convection
also involves interactions between the atmosphere, the
surface, and other physical processes such as radiation
and moisture transport. Additionally, the behaviour
of clouds and their evolution is affected by factors
such as aerosols and atmospheric dynamics, which
further complicates the modelling process. Accurately
capturing all of these processes precludes a clear sep-
aration of scales as often performed in the study of
stochastic dynamical systems. In fact, while ad-hoc
studies employing scale decomposition approaches
are possible [20, 185, 193], they cannot account for the
full range of processes leading to convective precipitation.

A possible fashion to address this challenge, and
reduce the uncertainties associated with parametrisation
schemes, is to develop numerical climate models with
km-scale resolution, akin to the latest generation of
numerical weather prediction models. These allow to
directly resolve the small scales of convection. Both
single-model and multi-model ensembles of such models
are important for improving robustness of results, rather
than relying on individual model simulations. Single-
model ensembles involve running multiple simulations
with slightly different initial or boundary conditions,
or with slightly different model parameter settings,
while multi-model ensembles refer to running differ-
ent models in comparable set-ups. These approaches
allow us to account for the uncertainty inherent in
the climate system’s chaotic evolution and reduce the
uncertainty associated with model structure and param-
eters. Over the past years, several coordinated efforts
have emerged to develop such ensembles (e.g. [216–219]).

C. Dynamical systems attribution of extreme
weather events under climate change

Attribution studies seek to answer the question: how
has human-induced climate change modulated the prob-
ability and/or physical characteristics of a given extreme
event? A wide range of statistical and modelling tools
have been used in attribution studies, including numer-
ous different modelling and statistical approaches [180].
Relatively recently, dynamical systems theory has also
been used in attribution studies [184, 220]. Since the at-
mosphere is a complex system whose dynamics is influ-
enced by many factors, including the ocean, land surface,
and human activities, dynamical systems theory provides
a framework for understanding how changes in one part
of the system can affect the behavior of the entire sys-
tem, including the occurrence of extreme weather events.
A key concept in dynamical systems theory is the use of
”recurrences” (see Sect. II). This involves identifying
weather patterns similar to those associated with a given
event, but occurring at a different time. To study the in-

fluence of climate change on a specific event (e.g. a heat-
wave), one can select analogues for the circulation (e.g.
sea-level pressure maps) associated to that event in past
and present periods in an observational-based dataset.
Differences between present and past analogues can en-
able to make an attribution statement. Going back to
our example, if analogues of a heatwave in a past period
results in significantly cooler near-surface temperatures
than those associated with the analogues in the present
period, this may be used to argue for a measurable im-
pact of anthropogenic climate change on the event. Dy-
namical systems theory therefore helps to condition at-
tribution to a specific circulation. A related approach
can also support diagnosing the physical processes asso-
ciated with the attribution. For example, if there is a
persistent atmospheric circulation pattern that is asso-
ciated with extreme weather events, such as a blocking
high-pressure system, then researchers can use dynamical
systems theory to understand how changes in the climate
system can affect the persistence and intensity of the cir-
culation pattern, and how this can modulate the associ-
ated extreme weather events. [184, 221, 222]. The above
approaches can be complemented by narratives that de-
scribe the physical mechanisms that led to an extreme
weather event, namely storylines [223–225]. Storylines
support a detailed understanding of the factors that con-
tributed to an event, and how they may have been influ-
enced by human-induced climate change. For example,
a storyline for a heatwave event might describe how a
persistent high-pressure system led to hot and dry con-
ditions, which were then exacerbated by human-induced
climate change.
By combining analogues approaches and storylines, re-

searchers can provide a complete picture of the link be-
tween climate change and extreme weather events [131].
Analogues approaches can quantify the probability of the
event occurring, while storylines contextualise the phys-
ical mechanisms behind the event. This can help policy-
makers and the public to better understand the risks of
climate change, and to develop strategies for adapting to
and mitigating these risks.

D. Mathematics for non-autonomous systems

Despite the success of dynamical systems attribution-
based techniques, the mathematical justification of these
approaches is still largely missing (see Sect. VI). For
several physical processes it is unclear whether there ex-
ists some invariant or stationary measure which could be
used for computing statistics of extreme or rare events.
In this context it can be useful to return to discrete
dynamical systems, for which recent results pave the
way for a rigorous application of EVT-based dynamical
systems approaches in an non-stationary setting. We
specifically consider the following two non-stationary
systems: sequential and non-autonomous. They are
defined by concatenating maps chosen in some set,
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usually in the close neighborhood of a given map. As a
probability measure one typically takes some ambient
measure like Lebesgue.

The extreme value theory and the extremal index
must then be redefined. Sect. 4.5 of [48] presents an
example of a sequential system modeled on maps chosen
in the neighborhood U of a given β-transformation, say
Tβ0 . According to suitable choices of U it is possible to
show either that the EI of the unperturbed map and of
the sequential system are the same, or the two differ,
in particular when the elements of the concatenation
are far enough from Tβ0 . In this case the EI is simply
1. A second relevant example is in the Appendix
of [16]. There, sequentially composed maps of the
one-dimensional torus of the type Ti = 2x + bi-mod 1,
are considered. The constants bi and the Dirac masses
pi associated to each Ti vary randomly respectively in
some spaces Bk, Pk, k = 1, 2... which in turn change
every 10 temporal steps. The empirical distribution of
the number of visits in a ball centered at the origin is in
perfect agreement with a Pòlya-Aeppli distribution.

The second set of systems we consider are non-
autonomous random (quenched) dynamical systems.
They are constructed by taking a deterministic driv-
ing map σ on the space E and preserving a probabil-
ity measure P which codes a family of transformations
Tω for ω ∈ E on the space M via the composition rule
Tn
ω (x) = Tσn−1 ◦ · · · ◦ Tω(x). One can prove the exis-

tence of sample measure µω, verifying, for each measur-
able set A ∈ M : µω(T

−1
ω (A)) = µσω(A). These mea-

sures describe the statistical properties in M and they
do not give rise to stationary processes. The first ap-
plications of EVT to these random systems are given
in [48, 226]. A recent article [49] further developed a
new spectral approach for a quenched extreme value the-
ory that considers random dynamics with general ergodic
invertible driving σ, and random observations. It also
provided a general formula for the computation of the
extremal index which will be also random. To give a
flavour of such results, we quote here the following ex-
ample, taken from [49]. Consider the bi-infinite sequence
ω = {. . . , ω−1, ω0, ω1, . . . }, where each ωl takes values in
the finite alphabet {1, . . . , d}, and move it with the shift
σ. Each symbol will be taken with the same probability
1/d. We then take d maps T1, . . . , Td, and random rare
sets of the form Bω,n := B(v(ω0), e

−zn(ω)). Notice that
the centers of these balls, v(ω0), are random (ω0 denotes
the 0-th coordinate of ω), and we also allow random radii

satisfying the scaling 2e−zn(ω) =
t+ξω,n

n , t being a non-
random constant and |ξω,n| bounded uniformly in n and
ω and going to zero when n → ∞ and for P-a.a. ω. We
then define the first random hitting time as

τω,n(x) = inf{k ≥ 1, T k
ω (x) ∈ Bσkω,n},

which gives the first time the random orbit of x enters
an element of the sequence of random balls Bσkω,n. This

covers, for instance, the interesting case of rare sets which
are known with a limited precision, or cases when the
iterations at each step are affected by some disturbance.
For particular choices of the maps T for which all the
sample measures coincide and are equal to η, we have

lim
n→∞

η{τω,n > n} = e−t
∫
θωdP(ω),

where θω is the random EI, defined by suitable random
generalizations of formulae (10) and (38), see [49] for
the details. It is interesting to note that the previous
example can be worked out in such a way that the
expectation of θω is strictly less than 1, thus showing
that we could have the formation of clusters even in the
absence of periodic or invariant structures, which could
not persist forever in the presence of noise.

The above idealised examples show that the behaviour
of non-stationary systems can be described by EI distri-
butions, which depend on the systems’ non-stationarity
characteristics and on the (stochastic) system’s reali-
sation. This underscores the existence of an extreme
value law for such systems, which opens the possibility
of computing other dynamical quantities beyond the EI.
These notions may in the future be expanded to more
complex real-world systems.

VI. LIMITATIONS

It is crucial to acknowledge the limitations inherent to
the methodologies presented in this paper. Indeed, as
already partly touched upon in Sect. II, many of the
theoretical results for sampling properties of dynamical
systems rely on assumption that are seldom respected
by geophysical data, such as stationarity and hyperbol-
icity. We however note that non-stationary and/or non-
hyperbolic systems may sometimes be modelled by lever-
aging stochastic approaches, as discussed in Sect. III.
Stationarity is fundamental for any application of ex-
treme value theory (EVT). This poses a challenge in
forced systems, such as the climate system or weather
patterns. With the advent of global warming, these sys-
tems have become non-stationary, including in the statis-
tics of extreme events, questioning the validity of a sta-
tionary distribution as asymptotic limit. In practice, one
can incorporate trends in the GEV parameters (mainly
location and scale) [227]. Complementary to this ap-
proach, many of the metrics introduced in this perspec-
tive are capable of highlighting the non-stationary behav-
ior of long trajectories of geophysical systems [23, 228].
Moreover, empirical tests on non-stationary climate data
emphasise the very strong correlation between metrics
computed on raw versus detrended data. We present
in Fig. 14 an example for the local dimension d and
persistence θ computed on a raw and detrended Z500
dataset, the latter being a climate variable with a very
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marked trend (see e.g. [162], who find a decadal trend
of almost 6m area-averaged over a large mid-latitude do-
main). Both indicators show an extremely high correla-
tion, sufficient to limit qualitative differences in the con-
clusions that one would draw for typical climate science
applications. Indeed, using this same data [229] recently
showed that atmospheric analogues were not markedly
affected by non-stationarity. This suggests that the tech-
niques presented in this review can in many cases be ap-
plied to weakly non-stationary cases, namely whenever
the system does not drift too rapidly away from the orig-
inal attractor. This conclusion is also supported by the
results of [230], who applied the local dimension to a sta-
tionary climate setting and concluded that the results
they found were ”broadly consistent with the results for
reanalysis data sets” (i.e. a non-stationary setting) pre-
sented by other authors. This empirical evidence, which
we recognise is yet to be grounded in corresponding the-
oretical results, opens avenues for further mathematical
research in this field.

A second assumption of the approaches that we present
for sampling properties of dynamical systems is hyperbol-
icity. Geophysical systems often exhibit characteristics
like intermittency, long-range correlations and multiple
timescales, which diverge from the assumption of hyper-
bolicity [13]. However, recent research has highlighted
how many of the approaches we present in this study can
inform on non-hyperbolic behavior [55, 67, 231]. Depar-
tures from hyperbolicity give rise to a rich phenomenol-
ogy, characterized by nonlinear interactions and emer-
gent behavior, in many cases associated with geophysical
extreme events [232]. While we recognise that there is
no formal proof that the tools we discuss are applicable
to non-hyperbolic systems, empirical attempts show that
they can provide information on such systems. We thus
argue for the need to investigate their applicability in
the grey area beyond the asymptotic limits. An analogy
may be drawn to the notion of penultimate distributions
in EVT, which are used to formally account for finite-
length timeseries [233]. Thus, we argue that the implica-
tions of deviations from hyperbolicity should be studied
further rather than being viewed as a priori precluding
the applicability of the methodologies we discuss here.

We note several other challenges in applying EVT,
large deviations, recurrence theory for dynamical sys-
tems and related approaches to geophysical extremes.
As noted by [62], the application of EVT to dynami-
cal systems is problematic to falsify. Without the ability
to test hypotheses against contradictory evidence, long-
standing controversies such as that surrounding the frac-
tal dimension of a ”global climate attractor” persist un-
resolved [234]. A further challenge is that EVT typically
assumes independence between extreme events, which
may require intermediate declustering steps. However,
this leads to actively suppressing correlations that may
issue from processes of physical interest. Moreover, ig-
noring these dependencies may lead to biased estima-
tions of extreme event probabilities for example when

looking at future climate projections. Similarly, most
geophysical systems are high-dimensional and can only
be described by considering a large number of variables
simultaneously. The work we highlight in this study in-
cludes some multivariate approaches (e.g. Sect. IVD),
but these are mostly applicable to small numbers of vari-
ables. EVT also relies on the availability of sufficient
data to accurately estimate extreme event probabilities,
but in many cases geophysical data, especially for rare
or unprecedented events, may be sparse. Additionally,
extreme events in geophysical systems often exhibit non-
linear dynamics and can occur across a wide range of tem-
poral and spatial scales, requiring sophisticated modeling
techniques to describe them. However, these models may
contain uncertainties or inaccuracies [106, 194] , which
can propagate to the application of the methodologies
we present in this paper. Lastly, EVT typically requires
the selection of a threshold above which events are con-
sidered extreme, and choosing an appropriate threshold
can be challenging, influencing the results obtained from
the analysis [235]. Some of these limitations are not spe-
cific to geophysical extremes, and addressing them relies
on broad advances in several disciplines such as statistics,
mathematics and physics. We provide a flavour of some
potential future research directions in Sect. VII.

VII. PERSPECTIVES

Geophysical extremes, spanning phenomena as diverse
as thunderstorms, tropical cyclones, earthquakes, and
geomagnetic storms, encompass a broad array of spa-
tial and temporal scales. Thunderstorms exhibit fine-
scale microphysical processes occurring at the microme-
ter level, juxtaposed with the kilometer-scale dynamics
of towering storm clouds or the scales of up to thou-
sands of kilometers of tropical cylones. The pursuit of
understanding geophysical extremes thus exemplifies the
mathematical intricacies and dynamical complexities in-
herent to multiscale dynamics. To elucidate the multi-
scale fabric of these events, mathematical models must
bridge multiple magnitudes in both spatial and temporal
scales. We envision developments in mathematical meth-
ods such as coupled dynamical systems and network the-
ory as instrumental to capture complex inter-scale and
inter-variable dependencies. Multiscale decomposition
techniques may also play a key role in further research on
the topic. These involve breaking down complex geophys-
ical systems into multiple scales, each with its own set
of governing equations and dynamics, supporting an im-
proved understanding of how small-scale processes inter-
act with large-scale phenomena. For example, in study-
ing thunderstorms, multiscale decomposition can reveal
how microphysical processes related to nucleation within
clouds interact with the broader atmospheric circulation,
or how phenomena such as tornadoes and hail form in
the convective clouds. This type of knowledge is essen-
tial for improving the accuracy of climate projections and
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FIG. 14. Local dimension and persistence applied to trended and detrended climate data. Local dimension d and
persistence θ computed on ERA5 Z500 data over 25–75◦N, 15◦W–50◦E and 1979-2018. The scatterplots show values computed
on the raw Z500 field and on a Z500 field where a linear trend has been removed from every gridpoint. The plots show anomalies
computed relative to daily climatology smoothed with a 31-day running mean.

weather forecasts, and more broadly for the understand-
ing of the physical mechanisms driving multiple geophys-
ical extremes.

The mathematical modeling of multiscale geophysi-
cal dynamics is rooted in partial differential equations
(PDEs). Nevertheless, the severe numerical constraints
posed by the direct simulations of partial differential
equations necessitate multiscale modeling approaches.
As we have shown in this perspective, stochastic param-
eterizations are a useful tool to this effect, and are able
to reconcile the interactions between disparate geophys-
ical scales. Stochastic systems further provide a proba-
bilistic framework for modeling the inherent randomness
and uncertainty in geophysical extremes, making them
valuable for risk assessment and prediction. Incorporat-
ing these mathematical and analytical approaches into
large deviation theory, multivariate extreme value anal-
ysis, analogue-based methods and multiscale decomposi-
tion techniques will further enhance our ability to quan-
tify, predict, and manage geophysical extreme events, ul-
timately improving our resilience to their impacts. We
specifically view developments in multivariate extreme
value analysis as crucial to capture the joint behavior of
multiple geophysical variables. In the context of geophys-
ical extremes, this would advance the study of compound
geophysical extreme events, such as the co-occurrence
of high wind speeds and heavy precipitation during a

(tropical) cyclone, enable devising novel bias correction
techniques, or improved downscaling of extreme weather
events.

In addition to the mathematical challenges mentioned
above, the study of geophysical extremes presents sev-
eral other dimensions. One such aspect is the need to
develop methods that can accurately separate the natu-
ral variability of the climate system from the effects of
human-induced climate change in engendering extreme
geophysical events – namely the so-called extreme event
attribution (Sect. V.C). This requires statistical tech-
niques that can distinguish between short-term, inter-
nal fluctuations of geophysical systems and long-term,
forced trends. The above-mentioned mathematical ad-
vances for non-stationary systems can support this effort
(Sect. V.D).

Another important challenge is the need to account for
the spatial and temporal dependence of extreme events.
Extreme weather events often occur in clusters or spe-
cific spatial patterns, and their occurrence in one loca-
tion can be associated with the occurrence of extremes in
other regions or influenced by remote drivers (see Sect.
IVD). Understanding the origin of spatially co-occurring
extremes requires the use of advanced spatial and tem-
poral statistical models that can account for complex
dependencies within the climate system and other geo-
physical systems. As we have shown when discussing
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co-recurrence statistics (Sect. IID, IVD) understanding
the dependence structure of extreme events is crucial
for assessing compound risks, where multiple extreme
events co-occur, potentially leading to cascading impacts.
In this sense the analogues-based approach presented in
Sect. IID could be combined with multivariate extreme
value analyses to assess the likelihood and potential im-
pacts of extreme events. More generally, the work out-
lined in this perspective provides some initial steps in
this direction, laying the bases for a more general math-
ematical treatment of spatially or temporally clustered
geophysical extremes.

VIII. CONCLUSIONS

This paper has provided an overview of techniques for
studying geophysical extreme events, focusing on the in-
terplay between statistical physics, dynamical systems
theory, and geophysics. By identifying the limitations of
traditional statistical extreme value analysis techniques
to study geophysical rare events, we have motivated the
introduction of new mathematical formalisms based on
rare recurrences in high-dimensional systems.

The application of these techniques to various geo-
physical phenomena, such as temperature extremes, cy-
clones, thunderstorms and geomagnetic storms, has pro-
vided valuable insights into the underlying dynamics and
physical drivers of these events. Additionally, the ex-
amination of diverse data, including climate reanalysis,
numerical climate models, geomagnetic data and turbu-
lence measurements has illustrated how approaches de-
veloped for low-dimensional systems can be applied to
high-dimensional chaotic data. While significant insights
have been gained regarding the dynamics of rare events
in geophysical systems, further investigation is neces-
sary to fully comprehend the underlying mechanisms and
drivers.

Understanding and analyzing high-impact events in
the Earth system involves addressing several challenges,
spanning both the mathematical and physical sciences.
In terms of mathematical challenges, one major con-
cern is the non-stationarity of geophysical systems. The
multifarious interactions and feedback loops within the
Earth system introduce a further level of complexity. An-
other critical challenge lies in accounting for finite size
effects, including the spatial and temporal resolution of
the datasets used for analysis. Moreover, geophysical sys-
tems exhibit high dimensionality, necessitating an exam-
ination of how data resolution affects the identification
and characterization of rare events. Properly addressing
finite size effects is essential to avoid potential biases or
artifacts in the analysis [17, 45].

To overcome these challenges, interdisciplinary re-
search efforts combining mathematics, physics, and geo-
physics are crucial. Advances in mathematical tech-
niques, continuing to build upon the novel indicators,
approaches and modeling frameworks presented in this

perspective, will provide a stepping stone for future ad-
vances. In parallel with this, a comprehensive under-
standing of the physics behind rare geophysical events
requires a combination of observational data and theo-
retical insights. In this context, it is crucial to devise
stochastic dynamic models, which account for the effects
of environmental random fluctuations and can serve as
a connection between the extreme events approach and
the dynamical systems modeling. We view collaborative
endeavors among researchers from various disciplines as
instrumental in this respect. We specifically encourage
continued collaboration between researchers in statistical
physics, statistics, dynamical systems theory and geo-
physics, whose expertise this perspective has sought to
gather. In the longer term, we envision the integration of
tailored machine learning algorithms and advanced data
assimilation techniques with dynamical systems and sta-
tistical physics approaches to further enhance our under-
standing of geophysical extremes and improve their pre-
diction capabilities. Ultimately, our hope is that these
collective efforts of researchers across various disciplines
will contribute to building a more resilient and sustain-
able future.
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IX. APPENDIX

We collect here some formulas and quantities intro-
duced in section II.B. First of all the quantities λl given
in (9) are formally defined as

λl := lim
∆→∞

lim
n→∞

µ(x;
∑∆

j=0 1Un
(T j(x)) = l)

µ(x;
∑∆

j=0 1Un
(T j(x)) ≥ 1)

, (37)

provided the limits exist.

We now quote the analytic expression of the quantities
qk,n entering the definition of the extremal index (10):

qk,n =
µ(x ∈ Un, T (x) ∈ U c

n, · · · , T k(x) ∈ U c
n, Xk+1 ∈ Un)

µ(Un)
.

(38)
We finally quote the mass distribution of the Pòlya-

Aeppli distribution

ν̃({k}) = e−(1−p)t
k∑

j=1

(
k − 1

j − 1

)
((1− p)2t)j

j!
pk−j . (39)
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de l’Institut Henri Poincaré, Probabilités et Statistiques,
Vol. 53 (Institut Henri Poincaré, 2017) pp. 1341–1370.
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