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Statistical physics and dynamical systems theory are key tools to study high-impact geophysical
events such as temperature extremes, cyclones, thunderstorms, geomagnetic storms and many more.
Despite the intrinsic differences between these events, they all originate as temporary deviations from
the typical trajectories of a geophysical system, resulting in well-organised, coherent structures at
characteristic spatial and temporal scales. While statistical extreme value analysis techniques are
capable to provide return times and probabilities of occurrence of certain geophysical events, they
are not apt to account for their underlying physics. Their focus is to compute the probability of
occurrence of events that are large or small with respect to some specific observable (e.g. tempera-
ture, precipitation, solar wind), rather than to relate rare or extreme phenomena to the underlying
anomalous geophysical regimes. This paper delineates this knowledge gap, presenting some related
challenges and new formalisms which arise in the study of geophysical extreme events and may help
better understand them.

I. OPEN CHALLENGES IN THE STUDY OF
GEOPHYSICAL EXTREME EVENTS

The aim of this perspective is to bridge statistical
physics, statistics, dynamical systems theory and geo-
physics to provide an overview of current techniques suit-
able to study high-impact events in the earth system.
Examples include temperature extremes, cyclones, thun-
derstorms or geomagnetic storms, all of which can be
interpreted as rare states of the underlying geophysical
dynamical systems.

We build upon the evidence that traditional statisti-
cal extreme value analysis techniques (see, e.g. [1]) only
partly elucidate this class of events. Such techniques suc-
cessfully define a framework for determining the probabil-
ity of occurrence of events that are large or small relative
to some specific observable (e.g. temperature, precipi-
tation, solar wind). Yet, they are not suitable for de-
scribing spatially heterogeneous phenomena or phenom-
ena issuing from largely unprecedented dynamics, such
as may be the case for geophysical extreme events, nor
to account for their underlying physical drivers. This has
motivated the introduction of a number of new mathe-
matical formalisms based on defining extreme events as
rare recurrences in the phase space of high-dimensional
systems [2–13]. We specifically highlight the work by
Lucarini et al. [2], which presents a rigorous framework
for the link between extreme value theory and dynami-
cal systems, and [6] which brings together the dynami-
cal systems theory and nonequilibrium statistical physics
perspectives. Among the main achievements of the above
approaches we note: demonstrating how rare geophysi-
cal events correspond to unstable fixed points of the at-
tractor [2, 7, 8], identifying special sets of trajectories
corresponding to rare events [3, 5, 12], detecting partial
synchronization of system variables [4, 10, 11] and eluci-
dating the spatio-temporal variability of dynamical prop-
erties of complex systems [9, 13]. These approaches have
recently provided information on a number of geophysical
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phenomena, including climate extremes and their atmo-
spheric drivers [14–19], ocean dynamics [20, 21], ecosys-
tems [22], paleoclimate [23, 24], solar wind turbulence
and space weather [13, 25], turbulence [26] and earth-
quake dynamics [27, 28].

Here, we seek to provide a detailed perspective of
the above techniques and their links to established con-
cepts from dynamical systems theory, which are ap-
plied to a range of data from idealised systems to ex-
perimental or observational datasets. Examples in-
clude the Lorenz-63 attractor [29], state-of-the-art cli-
mate data such as the ERA5 reanalysis [30] or global
climate models [31, 32], geomagnetic data [33] and tur-
bulence data [34]. Considering such a wide range of
datasets illustrates how approaches developed for low-
and medium-dimensional systems can provide insights
into high-dimensional chaotic data. The overview also
considers the importance of finite size effects (includ-
ing space and time resolution of the datasets). We thus
bridge the gap between theoretical tools often defined
with asymptotic limit theorems and complex datasets.

While we do not perform a holistic review of all avail-
able mathematical and statistical tools for geophysics and
geophysical extremes, we briefly outline here some rel-
evant review studies. For example, Lucarini et al [35]
emphasizes the need for a comprehensive understanding
of the structural and multiscale properties of climate dy-
namics. It explores various mathematical and theoretical
approaches, including the Nambu formulation of fluid dy-
namics and statistical mechanics, to construct numerical
models and study phenomena like geophysical turbulence
and the nonequilibrium nature of the climate system.
Another promising theoretical framework for studying
geophysical extremes is proposed by [36]. The authors
apply Large Deviation Theory, which issues from statis-
tical physics, to problems in geophysical fluid dynamics
and climate science. A broader overview of the physics of
climate science, including connections to astrophysics is
provided by Ghil and Lucarini[6] who emphasize the com-
plexity and non-equilibrium nature of the climate system,
highlighting the importance of natural variability, exter-
nal forcings, and advanced modeling techniques. In the
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present perspective, we primarily focus on the application
of dynamical systems theory and nonequilibrium statisti-
cal physics to understand geophysical extremes. As is the
nature of a perspective, we highlight selected geophysical
extreme events and the associated relevant formalisms.

Our perspective is structured as follows:

• In Section 2 we introduce a general framework for
the study of rare events in dynamical systems, the
concept of rarity of a recurrence and its link to the
asymptotic theory of extreme events. We further
discuss the theoretical problems arising in finite
datasets and introduce local dynamical systems in-
dicators for rare events.

• In Section 3 we explore how stochastic dynamics
and noise-induced phenomena can help explaining
geophysical rare events.

• In Section 4 we apply dynamical indicators to un-
derstand, model and simulate a variety of geophys-
ical rare events.

• In Section 5 we present opportunities and open
challenges for the study of geophysical extreme
events. We specifically outline lines of research en-
abled by recent findings, but that are yet to be
explored in the literature.

We conclude with a short summary of the key perspec-
tives and findings outlined in the paper (Sections 6 and
7).

II. HOW TO DEFINE AND TRACK RARE
EVENTS IN GEOPHYSICAL DATASETS

Mathematically robust limit theorems allow the char-
acterisation of extreme events in idealised systems. Ex-
amples include the use of Extreme Value Theory (EVT),
including Generalised Extreme Value (GEV) and Gen-
eralised Pareto distributions (GPD), to fit block max-
ima or threshold exceedances. This assumes an infinite
timeseries of i.i.d. random variables. Extremes arising in
real-world dynamical systems however, cannot in prin-
ciple satisfy these requirements. When studying these
systems it is thus important to go beyond a pure statisti-
cal analysis and also include information on the dynam-
ics. This leads to a distinction between extreme events
as defined by classical EVT, and extreme events in a dy-
namical systems theory context, which can be equated
to rare events. In the latter sense, the two terms will
hereafter be used interchangeably.

In order to quantify the rarity of an event, a key tool
in dynamical systems theory is the Poincaré recurrence
theorem. This theorem states that for a conservative dy-
namical system with a finite phase space, if the system
evolves for a sufficiently long time, it will return arbitrar-
ily close to any initial position. In other words, the sys-
tem will exhibit recurrent behavior and, although rare,

certain states of the system will recur infinitely often.
More specifically, let µ(X,T ) be a measure µ-preserving
dynamical system, where X is the phase space and T is
the time evolution map. The Poincaré recurrence theo-
rem states that for almost every point x in X and any
neighborhood U of x, there exists a positive integer n
such that Tn(x) (the point x after n iterations of the
time evolution map) belongs to U . Although the theorem
was formulated for conservative dynamical systems, it
was later shown that similar conclusions hold for chaotic
forced dissipative systems having a strange attractor (e.g.
[37]).

The Poincaré recurrence theorem has applications in
various fields, including statistical mechanics and ergodic
theory. The time required for a trajectory to return to its
initial state, known as the recurrence time, is related to
the system’s phase space volume and the speed of evolu-
tion along the trajectory, and can be extremely long for
rare states. By studying the recurrence times of trajecto-
ries near these rare points, it is possible to gain insights
into the underlying dynamics of the system and to iden-
tify the most likely pathways leading to the rare events.

A. Probabilistic theories for extreme events in
geophysical time series

The two main probabilistic approaches to analyse geo-
physical extreme events are EVT and Large Deviation
Theory (LDT). Whereas EVT deals with tails of proba-
bility distributions, LDT considers, in its basic formula-
tion, probabilities of sample averages. From a mathemat-
ical perspective, these theories are formulated for i.i.d.
random variables. However, from a practical perspec-
tive, the main requirement is that the extreme values or
the sample averages are uncorrelated and homogeneous.
This is a reasonable assumption if the system is chaotic
enough (see Sect. 3.2 in [2]), correlations decay rapidly,
and trivial non-stationarities [38, 39], such as seasonal
or other regular cycles or anthropogenic climate change
signals, are accounted for.

EVT contemplates two main approaches, the block
maxima and the peak over threshold approaches. Both
are asymptotic theories of probability distributions of ex-
treme values, with the limit being approached by select-
ing more and more extreme states. However, the two
approaches differ in the way extreme values are selected.

In case of the block maxima approach, extreme values
are defined as maxima Mn = max{X1, X2, ... Xn} of a
series of i.i.d. random variables X1, X2, ... divided into
blocks of equal length n. If certain conditions are ful-
filled, the distribution of properly normalised block max-
ima Mn converges to a so-called GEV distribution for
n → ∞ [40]. In practice, one selects the maxima over
fixed time periods, e.g. 1 year, and verifies whether their
distribution is properly described by a GEV distribution.
The GEV distribution has three parameters: location pa-
rameter (κ), scale parameter (σ), and shape parameter
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(ξ). The probability density function (PDF) of the GEV distribution is given by:

f(x;κ, σ, ξ) =
1

σ

{
1 + ξ

(
x− κ

σ

)}−1/ξ−1

exp

{
−
[
1 + ξ

(
x− κ

σ

)]−1/ξ
}
. (1)

The sign of the shape parameter determines the type
of GEV distribution:

• ξ > 0: The distribution has a finite upper endpoint,
and is called the Fréchet distribution. It is used to
model distributions with a heavy tail.

• ξ < 0: The distribution has a finite lower endpoint,
and is called the Weibull distribution. It is used to
model distributions with a light tail.

• ξ = 0: The distribution reduces to the Gumbel
distribution, which is used to model the extreme
value distribution of a normal random variable.

In case of the peak over threshold approach, we con-
sider again i.i.d. random variables X1, X2, ... and select
extreme values as values exceeding a certain high thresh-
old u. If u is high enough, the distribution of threshold
exceedances X −u follows a GPD [40]. In practice, simi-
larly to the block maxima approach, one verifies that the
distribution of exceedances of a high threshold is properly
approximated by a GPD. The probability of exceedance
of a high threshold u by Xi, i.e. Yi = Xi −u with Yi > 0
∀ i, is given by a cumulative distribution function that
converges to the GPD family:

H(y) = 1−
(
1 +

ξy

σ

) 1
ξ

for ξ ̸= 0, (2)

H(y) = 1− exp−
y
σ for ξ = 0. (3)

where 1 + ξy
σ > 0 for ξ ̸= 0, y > 0 and σ > 0. In a

similar fashion as the GEV distribution, if ξ = 0 the tail
decays exponentially, if ξ > 0 it decays polynomially and
if ξ < 0 it has an upper bound. The scale parameter
describes how wide the distribution is, and is related to
the variability of the extremes.

If the GEV or GPD are adequate models of the dis-
tribution of extreme values, one can estimate the return
periods of very rare and even unobserved extreme events.

LDT deals with the probability of sample averages
Am = 1

m

∑m
i=1 Xi over blocks of equal length m. Un-

der adequate conditions, the probability of Am decays
exponentially for m → ∞:

P(Am = a) ≈ e−mI(a), (4)

where I(a) ≥ 0 is the so-called rate function [41]. If
(4) holds and I(a) has a unique global minimum, the
probability of averages decays exponentially everywhere
with increasing m, except at the mean E[Am] = ā where

I(ā) = 0 and P (Am = ā) = 1. This points to the conver-
gence of sample averages to the real mean as described
by the law of large numbers [42]. In case of applications
to geophysical time series, one verifies whether (4) holds
for long enough averaging periods m ≥ m∗, i.e. whether
I(am>m∗) ≈ I(am∗). If this is the case, it is possible
to estimate the probabilities of averages far away from
ā over time periods longer than m∗ based on I(am∗).
Hence, one obtains the probability of very rare, even un-
observed anomalies from the long-term mean in terms of
both their average intensity and duration [12, 19].
EVT primarily focuses on the intensity or magnitude

of extreme values. The duration of extreme events can
be incorporated in form of the mean cluster size, based
on the extremal index (see Eq. 7). LDT considers tempo-
rally averaged anomalies, and includes the event duration
via the averaging time length. Thus, it is especially use-
ful to study persistent extreme events, such as heatwaves
or cold spells, and periods during which extreme values
in some observable are unusually frequent [12, 19].
The above description of these methods relies on time

series of observables and takes a stochastic or probabilis-
tic perspective. A number of geophysical systems, such
as the atmosphere or ocean, are (dissipative) chaotic de-
terministic systems. If the system is chaotic enough (see
Sect. 3.2 in [2]), the stochastic perspective is reasonable
and the above methods work. In the following sections,
we show how by combining these probabilistic methods
with dynamical systems theory, new concepts and meth-
ods arise. These have the potential to provide a deeper
understanding of the structure of chaotic attractors and
the dynamics of geophysical systems.

B. An asymptotic framework to study extreme
events in dynamical systems

In the context of dynamical systems, an application
of EVT informed by the dynamics of the system, allows
formalizing two questions related to the recurrence statis-
tics of specific system states. Suppose we have a set U in
the phase space, of small measure, which we accordingly
qualify as a rare set or as the location of an extreme event.
A first interesting question is: What is the probability
that the first visit to U of our physical system is larger
than some prescribed time n? Suppose now that the sys-
tem entered the set U . A second question is: what is the
probability that it resides there k times in a prescribed
time interval? These two questions allow quantifying the
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rarity of an event and its persistence – both essential
characteristics for understanding geophysical extremes.

We next attempt to give mathematically workable an-
swers to the above questions. To do so, we adopt the
framework of discrete dynamical systems, which allow
for a simpler formalism. We will consider the temporal
evolution given by a discrete dynamical system, or map,
T . This acts on some compact metric space M, with
distance dist(·, ·), and carrying a T -invariant measure µ
which will be the underlying (stationary) probability de-
scribing the statistical properties of the system. For a
dissipative system, this defines the system’s attractor.
The rare set U will change with n and we will denote it
with Un, n ≥ 1; moreover µ(Un) → 0 when n goes to
infinity. In order to get rigorous limit theorems, the se-
quence Un is usually taken as monotonically decreasing
and converging to a null set Λ. We now fix a positive
number t and we choose the sets Un in such a way that

µ(Un) =
t

n
. (5)

This is usually possible whenever µ is not atomic, namely
a measure concentrated at a single point, and the sets
Un are sufficiently regular, for instance they are balls
shrinking around a point or strips collapsing on a smooth
submanifold. We then define, for x ∈ M :

τUn
(x) := inf{k ≥ 1, T kx ∈ Un},

which is the first time the initial point x enters the set
Un. To address our first question, we compute:

µ(τUn > n).

The use of EVT combined with strong chaotic prop-
erties of the dynamical systems (T, µ) allows us to prove
the existence of a positive number θ ∈ [0, 1] such that

lim
n→∞

µ(τUn
> n) = e−θt. (6)

This is Gumbel’s law. The number θ is called the ex-
tremal index (EI). We refer the reader to [2] and [9] for
a detailed discussion of the dynamical systems for which
the previous result holds; in a few words: they are hyper-
bolic dynamical systems with exponential decay of cor-
relations.

The EI can be related to a local persistence indica-
tor [43], suitable to estimate the average cluster size of
the trajectories within the neighborhood of the null set
Λ. Such an index is in fact less than one when clus-
ters of successive recurrences happen, which is the case,
for instance, when the set Un shrinks around a periodic
point or, more generally, around an invariant submani-
fold. Given a time interval ∆, the distribution of λl for a
cluster of size l, can be defined as the frequency of visiting
l times the set Un. We give in the Appendix the analytic

expression of λl. This holds in the limit of n → ∞ and
∆ → ∞. It can then be shown that [10]:

θ−1 =
∑
l

lλl. (7)

In other words, the EI can be interpreted as the inverse
of the expected cluster size of recurrences about Un. For
the strongly chaotic systems quoted above, the EI can be
computed by estimating suitable return time functions.
We in fact have the formula:

θ = 1−
∞∑
k=0

qk, (8)

with qk = limn→∞ qk,n, provided the limit exist, and
where the analytic expression of the qk,n is given in the
Appendix. They have however a clear interpretation, be-
ing the probability to start in Un and then return to it
after exactly k + 1 steps. This result is based on a per-
turbative technique introduced by Keller and Liverani
[44, 45]. It has been used in the context of EVT for
both deterministic and random systems, providing very
efficient explicit formulae for the computation of the ex-
tremal index [9, 46, 47].
Let us now suppose that the set Un is a ball B(z, e−un)

of center z ∈ M and radius e−un with µ(B(z, e−un) = t
n

and un → ∞, n → ∞. If we define the process Xi(x) :=
− log dist(T ix, z), we can then elucidate the connection
between hitting times and EVT as:

lim
n→∞

µ(Mn ≤ un) = lim
n→∞

µ(τB(z,e−un ) > n) = e−θt, (9)

where Mn = max(X0, X1, . . . , Xn−1). The condition
µ(B(z, e−un)) = t

n now becomes, for large n,

e−undµ(z) ∼ t

n
,

where dµ(z) is an estimate of the local dimension at the
point z. Leveraging GEV theory [48], it is possible to
fit the boundary level un, and therefore the dimension
dµ(z), provided that the convergence in (9) holds. The
EI θ computed with formula (8) will also be a function
of the point z, and we therefore write θ(z). The couple
(dµ(z), θ(z)) allows us to characterise the local structure
of attractors. In [49] it was shown that an alternative
approach for the selection of the maxima is to use the
peak over threshold approach, allowing to estimate the
couple (dµ(z), θ(z)) by leveraging the GPD. This enables
computing the couple for a larger class of dynamical
systems than those satisfying the conditions for the block
maxima approach [2]. In particular, the GPD approach
is suitable for periodic and quasi-periodic systems,
with the exclusion of periodic points, and non-axiom A
chaotic dynamical systems wih multifractal properties.
The above include a large number of geophysical systems
(see the examples provided in the Introduction).
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We now come to our second question. The orbit of
our dynamical system visits infinitely often the set Un.
We could therefore expect that the exponential law e−θt

given by the extreme value distribution describes the
time between successive events in a Poisson process. To
formalize this, we introduce the random variable

N (n)(t) :=

t
µ(Un)∑
j=0

1Un ◦ T j , (10)

and we consider the following distribution:

µ(N (n)(t) = k). (11)

For a large class of dynamical systems, it has been
proven in [50] and also in [10] that

µ(N (n)(t) = k) → ν({k}),

as n → ∞, where ν is the compound Poisson distribu-
tion for the parameters sλl, where s = θt. The generating
function of a compound Poisson distribution ν with pa-
rameters sλk reads:

φν(z) = e
∑

k≥1 sλk(zk−1).

When λ1 = λ and λk = 0, k ≥ 2, we obtain the Pois-
son distribution with parameter tλ. An integer valued
random variable W is compound Poisson distributed if
there are i.i.d. integer valued random variables {Xi}i≥1,
and an independent Poisson distributed random variable

N so that W =
∑N

j=1 Xj . The Poisson distribution of N
describes the distribution of clusters whose sizes are given
by the random variables Xj whose probability densities
are the values λl = P(Xj) = l, l = 1, 2, . . . . There-
fore, for the class of chaotic systems considered here, we
get the distribution of clusters which occur on a large
timescale, and the number of returns in each cluster is
given by the random variables Xj . These returns are on
a fixed timescale and nearly independent of the size of
the return set as its measure is shrunk to zero.

For instance, when λℓ = (1 − p)pℓ−1 we have that
θ = 1 − p and N ∼ Poisson(t(1 − p)). This specific
case is termed Pólya-Aeppli distribution, with parame-
ter t(1 − p). The mass distribution ν({k}) of such a
distribution is recalled in the Appendix. It is inter-
esting to note that we have two families of indices to
compute respectively the EI and the compound Pois-
son, namely the qk and the λl. The two are related
since θ−1 = (1 −

∑∞
k=0 qk)

−1 =
∑

l lλl, which shows,
as we already pointed out, that the EI is the inverse of
the expected cluster size. This leads to a whole spec-
trum of λl, or alternatively of the associated compound
Poisson statistics, providing insights into the distribution
of the clusters even in systems with multiple timescales
[9, 10, 51]. For example, [9] studied the statistics of the
number of visits of a given observable in the neighbor-
hood of a particular value, for a vector containing the

values of sea-level pressure on a grid of ≈ 100 locations
over the North Atlantic. The resulting distribution was
very close to Pòlya–Aeppli (see Fig. 11 in [9]), with an
excellent agreement with the observational data.

C. Finite time approaches to study rare events in
dynamical systems

The results of EVT are stated with respect to the
physical invariant measure µ supported on the system’s
attractor M , and are asymptotic results. Yet when it
comes to the study of geophysical systems, the measuring
process often allows to collect only a limited amount of
data. These limitations can be due to short time series,
yielding pre-asymptotic estimates, or to a measurement
process that is partial, i.e. that does not account for
all the variables of the system. In this section, we
discuss how such observational data can still be rel-
evant for the study of high-dimensional complex systems.

The term penultimate attractor was coined to describe
the union of the finite-size trajectories along which data
are collected. The characteristics of the actual attractor
of the system can be deduced from those of its penulti-
mate attractor, using the framework of large deviations.
We will here state results concerning the local dimen-
sions as a paradigmatic example, but this framework can
be applied to other dynamical quantities of interest, such
as recurrence times, which are closely related objects [46].
The local dimension at a point x in phase space is defined
as

dµ(x) = lim
r→0

logµ(B(x, r))

log r
, (12)

where B(x, r) as before denotes a ball centered at x of
radius r. Its pre-asymptotic version

dµ,r(x) =
logµ(B(x, r))

log r
, (13)

converges for almost all states x ∈ M to the so-called
information dimension D1 of the system as r → 0. De-
pending on the length of the available time series, one can
fix a small radius r > 0 and evaluate dµ,r at this finite res-
olution, for example by fitting the empirical distribution
of the maximum associated with a suitable observable.
When the radius r is small, but not zero, deviations from
the typical value D1 can be observed, and are modulated
by a rate function [52]:

Q(s) = sup
q∈R

{−qs+ qDq+1}, (14)

which is convex and vanishes at D1. Q depends only
on the generalized dimensions of the system, defined for
q ̸= 1 by:
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Dq = lim
r→0

log
∫
M

µ(B(x, r))q−1dµ(x)

(q − 1) log r
.

This spectrum of dimensions is non trivial for systems
exhibiting a wide variety of scaling behaviors, as expected
for geophysical systems such as the climate system. A
large deviation relation is explicit in the following [46]:

µ ({z ∈ M s.t. dµ(z, r) ∈ I}) ∼
r→0

rinfs∈I Q(s). (15)

Here I denotes an open interval. In the sense of the
above formula, the wide distribution of (finite-resolution)
local dimensions over the phase space originates from the
multi-fractal structure of the attractor, which exhibits a
wide variety of scaling behaviors. It is easy to see from
(13) that for a given radius r, the value of dµ,r(x) is de-
termined by the measure of a ball centered at x. Smaller
values of dµ,r correspond to regions of the attractor that
are more visited by the dynamics, whereas higher values
correspond to less dense regions of the attractor.

Partial observation of the system can be modeled by an
observable f : M → Rk that acts as a projection from the
phase space of the system to the observational space Rk.
Examples of such f include gridded observables, delay-
coordinate observables used in embedding techniques, or
a concatenation of various scalar observables of interest.
The measuring process consists in collecting the values of
f along a typical trajectory of the system. The obtained
observational data are sampled with respect to the image
measure µf . This measure is such that for all A ⊂ Rk,

µf (A) = µ(f−1(A)).

The statistical properties of the observable f are gov-
erned by the geometric structure of the support of this
measure. In particular, the recurrence properties are
modulated by the local dimensions, and the synchroniza-
tion properties (several or all variables of the system at-
tain similar values) are governed by the generalized di-
mensions of µf [9, 53].

It is crucial to understand the relations between the
properties of these observations and the ones of the un-
derlying physical system that is being observed. The fol-
lowing result, by [54], provides an insight into the matter.
For a generic, smooth observable f : M → Rk and for a
generic point x ∈ M , the local dimension of the image
measure at f(x) is given by

dµf
(f(x)) = min(k, dµ(x)). (16)

From here, there are two possibilities:

• If k < d(x), then dµf
(f(x)) = k, and the informa-

tion on the local structure of underlying attractor
is lost.

• If k is large enough, the information dimension of
the underlying system is preserved, since for µ-
almost all x ∈ M :

dµf
(f(x)) = dµ(x)

.

It is therefore possible to access the geometric structure
of the underlying attractor by using observational data.
For instance, in the case of a gridded observable one can
increase the spatial resolution k of the grid, and estimate
for each k the dimensions dµf

until they stabilize around
some values that should correspond to the dimensions of
the underlying attractor.

D. Local dynamical indicators for rare events

The estimation of the above-mentioned local dimen-
sion d rests on the application of extreme value theory
to Poincaré recurrences in dynamical systems. This ap-
proach was first introduced in [2] and [14]. For a given
point z in phase space (e.g., a given sea-level pressure
map over a given geographical domain), one computes
the probability that the system returns within a ball of
radius e−u centered on the point z. The Freitas et al.
[55] theorem, modified by Lucarini et al. [49], states that
the negative logarithmic returns

g(x(t)) = − log(dist(x(t), z)) (17)

yield a probability distribution such that

Pr(z > s(q)) ≃ exp

[
−θ(z)

(
z − κ(z)

σ(z)

)]
, (18)

where z = g(x(t)) and u is a high threshold associated to
a quantile q of the series g(x(t)). Requiring that a point
on the orbit falls within a ball of radius e−u around the
point z is equivalent to asking that the corresponding
value of the series g(x(t)) is above the threshold s; there-
fore, the ball radius r is simply e−u(q). The resulting
distribution is the exponential member of the GPD fam-
ily. The parameters κ and σ, namely the location and the
scale parameter of the distribution, depend on the point
z in phase space. κ(z) corresponds to the threshold u(q)
while the local dimension d(z) can be obtained via the re-
lation σ = 1/d(z). This is the local dimension introduced
in Sect. II C. A metric of persistence can be obtained as
the inverse of the extremal index, dimensionalised by the
timestep of the data being used.
The same framework can also be applied in a bivariate

context. Given two observables x(t) and y(t), one can
define the state z = {zx, zy}. The joint negative loga-
rithmic returns can then be defined as:
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g(x(t), y(t)) = − log

[
dist

(
x(t)

||x||
,
zx
||x||

)2

+ dist

(
y(t)

||y||
,
zy
||y||

)2
] 1

2

(19)

where ||.|| is the average root mean square norm
of the coordinates of a vector. For example, ||x|| =

Et

([∑K
i xi(t)

2
] 1

2

)
, where K is the number of compo-

nents of x and Et is an average over time t. Based on
Eq. (19), one can then compute the co-dimension dx,y.

A similar approach can be applied to persistence. One
can define an adimensional inverse co-persistence θx,y
based on series of consecutive days on which both observ-
ables display recurrences of zx and zy. θx,y is a weighted
average of θx and θy, where the weights depend on the
density of observed neighbours of z.

Finally, in a bivariate setting one can define an addi-
tional indicator, which we term co-recurrence ratio, as:

α(z) =
ν[g(x(t)) > sx(q) ∩ g(y(t)) > sy(q)]

ν[g(x(t)) > sx(q)]
(20)

with 0 ≤ α ≤ 1, provided that the same number of
recurrences is defined for both observables. Here, ν[−]
is the number of events satisfying condition [−], and all
other variables are defined as before. Thus, α quanti-
fies how often the two observables have joint recurrences,
namely their co-recurrence. If the same number of recur-
rences is defined for both observables, then by definition
α is symmetric with respect to the choice of variable (x
or y), since ν[g(x(t)) > sx(q)] ≡ ν[g(y(t)) > sy(q)].
The local dimension, persistence and co-recurrence ra-

tio can be computed at each point in the phase space
of a physical system, including when the phase space is
imperfectly sampled. For the local dimension, averaging
over the whole attractor gives an estimation of the in-
formation dimension of the underlying attractor. In the
limit of an infinite number of infinitely long trajectories,
the local dimension of all points on the attractor will
almost surely tend to the information dimension of the
attractor. Hence, all local dimensions would be equal,
with the exception of a negligible set (which nevertheless
includes objects such as periodic points and chaotic sad-
dles). With a finite size sample, this is not the case and
the value of the local dimension computed at each point
gives information on the recurrences of these points in
the phase space, namely on the geometric characteristics
of the trajectory [2].

The above dynamical systems metrics are typically es-
timated without taking explicitly into account the con-
tinuous nature of the trajectories representing the evolu-
tion of geophysical systems (see e.g. [14]). We propose
here an estimator for the local dimension d targeted to
continuous dynamical systems, and investigate its sec-
ond order properties (i.e. we compute its gradient in the
phase space). The new estimator uses the N closest re-

currences of z within a radius e−u, with u given. The
local dimension du(z) is given by:

du(z) =

∑N
n=1 v

−1
n ln∑N

n=1 v
−1
n (ln − rn cos−1(eurn))

, (21)

where vn is the speed in the phase space at the n-th
closest recurrence, rn is the distance between the point
z and the n-th closest recurrence and ln =

√
e−2u − r2n.

We emphasise that even assuming infinite data, this is
only a consistent estimator as u → 0 for measures with a
continuous density on a submanifold, for example those
generated by stochastic processes. For fractal attractors
it will converge only in the sense of Césaro averaging, and
even in that setting is not known to be consistent. Never-
theless, at finite resolution it provides useful information
about the scaling of the system.
In a simple low-dimensional attractor such as for the

Lorenz-63 system [29], one can visualize the regions with
low and high dimensions (cf. Fig. 1a, b). The two es-
timates of local dimension based on the GPD and on
Eq. 21 are essentially indistinguishable. We further note
that for a point situated in the low-dimensional part of
one of the wings of the attractor, its local dimension can
be increased by moving either towards the exterior of the
wing or towards the fixed point in the middle of the wing.
However, in a high-dimensional system, it is far from

easy to know which direction in the phase space would in-
crease or decrease the local dimension, i.e. which are the
common and rare structures with respect to the sampling
provided by the data set. We therefore propose an esti-
mator of the gradient in the phase space of the quantity
du(z) defined above.
The gradient ∇zdu(z) is a vector in a phase space

which has the point z as its origin. It therefore points
towards the direction of increasing local dimension rel-
ative to the point z. This gradient is computed on the
Lorenz-63 model. The directions of the normalized gra-

dients ∇zdu(z)
||∇zdu(z)|| in Fig. 1c at each phase space point

match the intuition with regards to the distribution of
local dimensions in Fig. 1b.
As discussed in Sect. II C, applications of dynami-

cal systems theory to geophysical data must account for
short or incomplete sets of data. When computed on
a data set with finite size, i.e. undersampling the true
attractor of the dynamical system studied, the local di-
mension provides information on the clustering of nearest
neighbors in the phase space. Here we proposed to ex-
pand this characterization by computing a second order
statistics, namely the gradient in phase space of local
dimension. We illustrate how this can inform on high-
dimensional geophysical systems in Sect. IVB.
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FIG. 1. Gradient of local dimension for the Lorenz-63
system. (a) Local dimension of the Lorenz-63 model using
the GPD estimator; and (b) the estimates based on Eq. 21.
(c) Corresponding gradient of the local dimension.

E. Applying local dynamical indicators to rare
events in turbulent flows

Virtually all geophysical flows present an ubiquitous
property: they are turbulent. One of the properties
of geophysical turbulent flows is their chaotic and un-
predictable nature which suggested to explore the con-
nection between turbulence, chaos, and dynamical sys-
tems. In Sections II B-IID we have presented local dy-
namical systems indicators which are suitable for sys-
tems where the chaotic components dominate over tur-
bulence. Here, we investigate how to treat systems
where chaos and turbulence coexist and shape the sys-
tem dynamics. Nevertheless, a universal underlying tur-
bulent attractor has not been proven to exist for tur-
bulent flows. A promising way to characterized highly
turbulent flows in constrained geometries is the use of
stochastic low-dimensional dynamical systems [56]. This
approach suggests that turbulent flows live on non-
hyperbolic strange stochastic attractors [57]. This prop-
erty, i.e., non-hyperbolicity, is exactly strictly connected
with non-homogeneity in terms of instantaneous prop-
erties of turbulent fluctuations, closely related with the
universality of the statistics of fluctuations with respect
to the mechanisms producing turbulence.

Turbulence, which is one of the unsolved problems of
classical physics, manifests itself via vortices (or eddies)
of different sizes hierarchically organized in a self-similar
way [58]. Turbulent flows are usually described in a sta-
tistical way derived from symmetry assumptions (homo-
geneity, stationarity, self-similarity) of the Navier-Stokes
equations describing the dynamics of averaged quantities
over spatial scales larger than the mean free path length
of molecules [59]. We begin here by outlining the sta-
tistical theory that has been developed by Kolmogorov
[58], based on the universality of the energy spectrum
when normalized to the fluid viscosity ν and the energy
transfer rate ϵ, i.e.,

S2(ℓ) ∝ ϵ2/3 ℓ2/3. (22)

By assuming that vortices are hierarchically organized,

i.e., they are derived from a cascade mechanism, the
Kolmogorov universality concept should extend to higher
moments field fluctuations. This means that if δuℓ is a
measure of the velocity at scale ℓ, then Eq. (22) can be
generalized as

Sq(ℓ) = ⟨δuq
ℓ⟩ ∝ ϵq/3 ℓq/3, (23)

where ⟨· · · ⟩ stands for time average. Unfortunately, the
global self-similarity assumption was one of the main fail-
ures of Kolmogorov theory, as shown by experimental
evidence [60, 61]. The breaking of this assumption re-
sides in the local nature of the energy transfer rate ϵ, i.e.,
the phenomenon of intermittency arising from localized
bursts of activity, both in time and in space. This was the
starting point of the multifractal formalism developed by
Parisi and Frisch [60], based on the assumption that the
energy transfer rate depends on the scale we are focusing
on, i.e.,

Sq(ℓ) ∝ ϵ
q/3
ℓ ℓq/3. (24)

Under the assumption of local self-similarity, i.e., ϵℓ ∼
ℓµ(q/3), Eq. (24) can be written as

Sq(ℓ) ∝ ℓζ(q) (25)

where the scaling exponent ζ(q) accounts for all possi-
ble (infinite) rescaling symmetries of the Navier-Stokes
Equations, i.e., accounts for the existence of singularities
in the energy cascade mechanism [61, 62]. This refined
theory has successfully described the statistical proper-
ties of the velocity field in experiments [63–68]. However,
this approach only provides time-averaged statistical in-
formation on velocity field fluctuations at different scales,
lacking an instantaneous description of the dynamics, the
latter being particularly helpful for exploring the local
statistics of velocity field fluctuations [26, 61].
Very recently, starting from the non-universality of the

statistics of small-scale fluctuations, Alberti et al. [69]
proposed a time-dependent and scale-dependent frame-
work for retrieving information on the symmetries of a
turbulent steady state. The main idea is to overcome
the limitation given by previous measures of singularities
(as the scaling exponents ζ(q) or the generalized dimen-
sionsDq [46]), tracing time-averaged features of field fluc-
tuations, by introducing two measures which are time-
dependent. In this way,one answers Landau’s objection
to the Kolmogorov theory on the time and space fluctu-
ations of the energy transfer rate, providing an instanta-
neous view of scale-dependent fluctuations. Furthermore,
this allows us to deal with the problem of intermittency
and its interpretation as a time- or space-dependent phe-
nomenon. The newly introduced measures can be derived
by searching for extremes of the field fluctuations. We
assume, for simplicity, a 1-D velocity field u(t) (nonethe-
less, the method is suitable for any n-D field) which can
be written as:

u(t) = ⟨u⟩+
∑
ℓ

δuℓ(t) (26)
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where ⟨u⟩ is the mean field value (sometimes, the no-
tation in turbulence is U0) and δuℓ(t) is the fluctuating
component of the velocity field at the scale ℓ [70].

An additional feature associated with non-universality
are intermittent phenomena. These are ubiquitous in
turbulent flows and play an important role in dissipative
energetics [71]. Intermittency can be described using the
multifractal formalism [72], which among other things
showed that turbulence lives on a strange attractor with
sudden, large-amplitude, low-frequency, localized bursts
(i.e., rare events), induced by intermittency. An appro-
priate framework to deal with this behaviour is EVT,
where state(time)-dependent metrics can be derived [2].
We specifically seek to determine time-dependent EVT-
based metrics for each velocity fluctuating component at
each scale ℓ. To this purpose, we use two metrics from
EVT: the local dimension (d(t), introduced in Section
IID) and the extremal index (θ(t), introduced in Sec-
tion II B). In this way, instead of having a single pair
(d(t), θ(t)) of descriptors of the turbulent flow we have
a hierarchy of pairs, each associated with the dynam-
ics of the fluctuating field at a scale ℓ, i.e., (dℓ(t), θℓ(t)).
Thus, a time- and scale-dependent view of the system is
obtained.

A widely studied laboratory setup which displays the
joint properties of chaoticity and turbulence is the von
Karman swirling flow [73]. For such a flow under high
Reynolds number turbulent conditions, the above in-
dicators provide evidence of a scale-dependent under-
lying attractor whose geometric and topological prop-
erties depend on the large-scale forcing and also af-
fect the distribution of the energy across the inertial
range of scales [56]. This mirrors the role of singular-
ities that break the global self-similarity and that can
be considered the main reason of the failure to find a
universal attractor for turbulent flows. These results
also shed new light on the role of the inertial range of
scales, where the turbulent cascade takes place, in dis-
tributing the energy injected at larger scales. Indeed,
around the injection scales the individual scales are in
quasi-equilibrium with low values of the local dimensions
dℓ(t) ∼ 2 − 3. Conversely at smaller scales than the
injection one the mean energy transfer is positive and
the out-of-equilibrium energy cascade transfers energy to
the small scales where viscous effects become relevant.
Thus, while the the statistical equilibrium at large scales
is driven by a few degrees of freedom, generating a well
defined low-dimensional attractor, the dynamics at scales
smaller than the injection scale restore the symmetry bro-
ken by the cascade and generate a stochastic attractor.
Beyond turbulent flows, this formalism can be applied to
any time series and/or dynamical system. As an exam-
ple, Alberti et al. [74] have shown that the formalism can
be used to disentangle the role and the nature of noise
in dynamical systems, allowing to clearly distinguish be-
tween a purely noise-like contribution, being character-
ized by an ergodic coverage of the available phase-space
with dimensions fluctuating around 3 (as expected), and

a more forcing-like contribution for a multiplicative noise,
with dimensions larger than 3 which are distributed dif-
ferently across the attractor.

III. STOCHASTIC DYNAMICS FOR
UNDERSTANDING AND SIMULATING

GEOPHYSICAL RARE EVENTS

The modeling of chaotic systems is a challenging task
because these systems are highly sensitive to initial
conditions and external forcings, and small perturba-
tions can lead to significant changes in their behavior.
Examples include modulating the fine structure of the
attractor [13, 75]; or leading to (abrupt) shifting between
different basins of attraction [76, 77], underlying major
changes in the dynamics of the system. The latter shifts
are often termed critical phenomena [78] or tipping
points [79] in the climate and physical sciences, while
they are referred to as bifurcations leading to shifts be-
tween metastable basins of attraction in a mathematical
context. Thus, the presence of noise can change in a
fundamental way the physics of a complex system [76].
Noise-induced phenomena also exist in the Earth system,
and the possibility of high-impact climate tipping points
has garnered increasing attention in recent years [79, 80].

Indeed, complex systems are multistable systems
characterized by metastability and noise usually mani-
fests itself in a nonmonotonic dependence of the average
lifetime of a metastable state on the noise intensity (or
temperature). The interplay between the nonlinearity
of complex systems and the environmental stochastic
fluctuations can lead to new, counterintuitive dynamical
behavior, such as noise-induced phase transitions,
emergence of ordered spatial structures [81–86], stochas-
tic resonance [87, 88], stochastic resonant activation
[89], noise-induced synchronization [90], noise-induced
switching [91], and noise enhanced stability [89, 92].
The latter phenomenon is a consequence of the interplay
between the random fluctuations and the nonlinearity of
the underlying complex system.

Dynamical systems theory is concerned with the study
of systems that evolve deterministically over time, while
statistical physics deals with the study of systems that
evolve stochastically due to random fluctuations. The
stochastic dynamical systems approach combines these
two perspectives by modeling the deterministic evolu-
tion of a system, yet incorporating stochastic fluctuations
due to environmental noise – for example using stochas-
tic differential equations. This overcomes the limitations
of traditional modeling techniques, such as differential
equations and numerical simulations, that may not cap-
ture the full complexity of physical systems. Stochastic
dynamics are relevant to many real-world systems across
virtually all scales, from electrons or quarks to stars in
a galaxy and galaxies in the Universe. Stochastic dy-
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namical systems theory has consequently emerged as a
useful tool for understanding the behavior of complex
systems that also exhibit chaotic dynamics. By incorpo-
rating randomness and noise, stochastic models can cap-
ture the complexity and unpredictability of chaotic sys-
tems, including the complex behavior that arises from
small perturbations. Dynamical indicators, such as lo-
cal dimensions, persistence and Lyapunov exponents, can
then be used to estimate the rate of divergence of nearby
trajectories in stochastic dynamical systems. In this sec-
tion, we will explore how the application of stochastic
dynamical systems theory can serve as a connection be-
tween the approaches to extreme events described earlier
and the modeling of chaotic systems.

A. Simulating Noise-induced Phenomena in
Nonequilibrium Complex Systems

We present three examples of how environmental noise
plays a crucial role in understanding the dynamics of non-
equilibrium complex systems. We first consider the mean
switching time of a Josephson junction (JJ), directly cou-
pled to a dark matter axion field and subject to both a
continuous bias current and thermal fluctuations. A JJ
is composed of two or more superconductors coupled by
a weak link, while the axion is a hypothetical particle
that was originally proposed to solve a problem in the
theory of strong nuclear interactions, but it has since
been suggested as a candidate for dark matter. One way
to search for axions is to look for their effects on var-
ious physical systems, for example detecting the axion
presence through the analysis of the escape times from
the initial superconducting state of a JJ (Fig. 2). By
studying the switching time statistics we find a resonant
activation phenomenon based on the plasma frequency,
induced on the JJ by the axion (Fig. 3, [93]). This ap-
proach is widely applicable, including to coupled qubit
architectures for quantum computing and other techno-
logical systems.

Next, we consider a sine-Gordon (SG) breather. The
latter is a type of non-linear wave solution that arises in
the study of the sine-Gordon equation. These breathers
are characterized by their ability to form localized, pe-
riodic wave packets that oscillate in time and space.
We explore numerically the influence of both dissipative
and stochastic perturbing terms on the dynamics of the
breather, starting from a stationary breather with a ran-
dom phase value. We find that a spatially homogeneous,
noisy force can make the oscillating state last far beyond
its well-known radiative decay lifetime, which is akin to
noise-enhanced stability. Considering the degree of uni-
versality of the SG model, insights into its fundamen-
tal excitations possess an inherent interdisciplinary scope
[e.g. 94].

Finally, we analyse the effects of randomly fluctuating
solar irradiance on the population dynamics of a marine
ecosystem [22]. The solar irradiance data comes from

the Boussole buoy located in the Gulf of Lion, and spans
2004 to 2013 [95]. By exploting a 0-dimensional stochas-
tic biogeochemical flux model, we find a nonmonotonic
behaviour of the variance of the marine populations’
biomass with respect to both the intensity and the auto-
correlation time of the solar irradiance. This indicates a
noise-induced transition of the ecosystem towards an out-
of-equilibrium steady state. Moreover, we see evidence of
noise-induced effects on the organic carbon cycling pro-
cesses underlying the food web dynamics. These results
clearly show the profound impact the stochastic envi-
ronmental variables can have on both the populations
and the biogeochemistry at the basis of a marine trophic
network. Non-trivial, noise-induced dynamics can push
the ecosystem away from the deterministic attractor and
drive it towards a new non-equilibrium steady state. This
and the previous examples highlight the interdisciplinary
links between stochastic dynamical systems theory and
a variety of complex systems, both geophysical and tech-
nological.

a

I
b

UU

(a)

(b)

FIG. 2. Josephson Junction (JJ) device and wash-
board potential. (a) Schematic illustration of the JJ de-
vice discussed in the text: two superconductors and an axion
field through the weak link. (b) Phase particle in a minimum
of the washboard potential tilted by a bias current Ib. The
phase can overcome the potential barrier ∆U, rolling down
along the potential because of the combined effect of thermal
noise and axion-JJ coupling.

B. Stochastic approaches to simulate ensembles of
unprecedented events

Data limitations (in observations and even numerical
model simulations) are a major challenging in modelling
geophysical extremes. This makes direct application of
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FIG. 3. Mean switching time in a Josephson Junction
(JJ). Log-log plot of the dependence of the mean switch-
ing time τMST and the ratio ε = (mac

2/ℏωp)
2 between the

axion energy (omegac is the characteristic frequency) and
the Josephson plasma energy in underdamped regime for a
JJ subject to thermal noise and coupled with an axion field
against γ, the coupling constant between axion and Josephon
junction.

many mathematical analysis tools sometimes difficult to
implement. Indeed, many methods rely on the assump-
tion of an unlimited amount of data on the system (cf.
Sect. II). Observations of geophysical systems instead
provide one finite trajectory. Even numerical simula-
tions, such as climate model simulations, provide at most
hundreds of O(102) year long trajectories [32], which lim-
its the extremeness of the events that can be studied.
The problem is made more acute by the presence of low
frequency trends (including, but not limited to climate
change) leading to time-scale interactions that may af-
fect extreme events [96].

Record breaking events, like the European heatwave
of 2003 [97] or the Canadian heatwave in 2021 [98],
have opened questions specifically focussed on the non-
stationarity of the underlying system. Indeed, one can
wonder how likely such extreme events are in the present
climate, and how this may change in the future. We
consider here two types of extreme events, where time t
corresponds to the publication of this study:

• Type 1: Events that occur at time t, but never oc-
curred before t (or during a reference period of ob-
servations). Hence there are documented examples
and data for type 1 events, albeit small samples.

• Type 2: Events that have never occurred before
time t. By definition, no observation exists for
type 2 events at t. Note that the 2003 European
and 2021 Canadian summer heatwaves were type 2
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FIG. 4. Empirical probability distribution of extreme
15 day heatwaves in France. The horizontal lines repre-
sent the maximal 15 day averages of 2m temperature (in ◦C)
in the summer, in France, from the ERA5 reanalysis. The
blue lines are between 1950 and 1986. The orange lines are
between 1986 and 2002. The red dashed line is the record
value obtained in 2003. The boxplots represent the empirical
probability distributions of 1000 simulations of the SWG with
importance sampling, with an initial condition in 2003. The
blue boxplot is for analogs in 1950–1985. The orange boxplot
is for analogs in 1986–2022, excluding information from 2003.
The red boxplot is for analogs in 1986–2022, including infor-
mation from 2003.

events before 2003 and 2021, respectively. There-
fore, type 2 events can become type 1 with time, as
observational databases grow.

From the mathematical point of view, there are no
fundamental differences between the two types of events,
when infinite trajectories are available. The difference
stems from the limited amount of “real world” observa-
tions or numerical data. We then ask the following ques-
tion: can type 2 events be deduced from (known) type 1
events, and if so how?
A heuristic and pragmatic approach for simulation of

type 2 events is to identify a set of initial conditions
leading to intense type 1 events, and run ensembles of
a climate model with perturbations around those initial
conditions [99]. This so-called ”ensemble boosting” ap-
proach can provide samples of type 2 events based on
existing type 1 events. In this vein, Ragone et al. [3] pio-
neered the application of rare event algorithms to the
simulation of extreme European heatwaves in climate
models. Such approaches helped exploring type 2 heat-
waves, and showed that the statistics of type 2 (heat-
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wave) events can be deduced from type 1 events. Such
approaches have been applied to ”long lasting” events
(e.g. 90 days or more), i.e. in order to optimize aver-
ages over seasons. Lucarini et al. [98], Gálfi et al. [100]
used the connected principle of large deviation theory to
assess the typicality of extreme seasonal heatwaves and
cold spells.

As climate models yield their own biases and of-
ten underestimate climate variability and extremes,
observation-based approaches are also needed to solve the
type 2 anticipation challenge, given data on type 1 events.
For example, [101, 102] developed an observation-based
stochastic model called a Stochastic Weather Generator
(SWG). This SWG is a Markov chain (e.g. temperature)
with hidden states (which can be the large-scale atmo-
spheric circulation) whose transition probabilities drive
the system. By modifying transition probabilities, the
SWG can emulate through observations the application
of rare event algorithms in a climate model [102]. In-
deed, the SWG simulates a variable Y (t) from sampling
analogs of the hidden states Z(t). The observable to be
optimized is f(Y ).

Let us assume that the most extreme event (with
the variable Y ) in the ”real world” occurs at time tx.
Then the challenge identified above can be solved in a
rather natural way by simulating the observable f(Y )
with analogs of the hidden variable Z that include the
knowledge of tx (cum data) or not (sine data): can the
record value of f(Y (tx)) be reached or exceeded when
we simulate f(Y ) with analogs of Z that never consider
information at tx?

We illustrate this statistical approach on record 15 day
heatwaves in France. We consider the daily mean temper-
ature averaged over France as Y , taken from the ERA5
reanalysis [30] between 1950 and 2022. We determine the
warmest 15 day spell (horizontal lines in Fig. 4). There-
fore, the observable f is a 15 day average of Y . The
record value is obtained in 2003. This value exceeds the
preceding record by almost 2◦C. The hidden variable Z is
geopotential height at 500 hPa (Z500) over the North At-
lantic region. For each day in 1950–2022, we compute the
20 best analogs of Z500 in 1950–1985 and 1986–2022. We
then simulate 1000 trajectories of the SWG with impor-
tance sampling, starting in August 2003 (beginning of the
hottest 15 day heatwave), using analogs in each period in
turn. For the 1986–2022 period, we can exclude analogs
in 2003 or include them, which allows determining the
weight of this record event in the probability distribution
of the simulated extremes, and evaluate to what extent
the 2003 event could be anticipated without information
on 2003. The result is reported in Figure 4.

We find that if an event is initiated in August 2003, but
with meteorological conditions of 1950–1985, the worst
heatwaves cannot reach the value of 2003 (although the
SWG is close to other recent heatwaves, blue boxplot). If
we consider information from 2003, then the 2003 record
can easily be exceeded (red boxplot). If information on
2003 (apart from the initial condition) are removed in

the SWG simulations, the 2003 value can be reached,
although with low probability (orange boxplot). This
means that the record-shattering event of 2003 could be
anticipated. As a caveat, we note that in this example we
used information from other extreme heatwaves, three of
which occurred after 2003.

IV. APPLICATIONS OF DYNAMICAL
INDICATORS TO GEOPHYSICAL DATA

In this section, we provide examples of a number
of applications of the analysis frameworks described in
Sect. II to geophysical rare events. We specifically con-
sider meridional energy transport in the atmosphere, ex-
tremes associated with persistent large-scale atmospheric
circulation states typically termed ”weather regimes”,
and spatially compouding weather extremes, namely ge-
ographically remote weather extremes that co-occur and
are physically connected.

A. Statistical properties, temporal and spatial
scales of meridional energy transport extremes

The atmosphere transports large amounts of energy
meridionally, from the tropical regions to the polar re-
gions. These meridional energy transports are intrin-
sically intermittent in time and space [103–110]. We
hereby review an EVT-based methodology to detect ex-
treme events in meridional energy transports in the mid-
latitudes, as first presented in [110].
Meridional energy transports are obtained at every

spatial point and pressure level as the scalar product of
meridional velocity v and total energy E. The total en-
ergy is given by

E = H +
1

2
v2 = cpT + Lvq + gzg (27)

where v is the horizontal velocity vector, T the tropo-
spheric air temperature, q the specific humidity and zg
the geopotential height, while constants cp, Lv and g are
specific heat at constant pressure, latent heat of vapor-
ization and gravitational acceleration, respectively. The
zonal and vertical mean of this quantity is obtained by
spatial integration: ∮ ∫ 0

ps

vE
dp

g
dx (28)

where ps is surface pressure. Meridional energy trans-
ports are positive when poleward-directed, negative oth-
erwise. We consider ERA5 Reanalysis data for 1979–2014
period [30], in the Northern Hemisphere. We detrend our
time series and remove the seasonal and daily cycles for
every latitude, and analyse winter (DJF) and summer
(JJA) separately.
In order to account for clusters in time that would

possibly bias the estimates of the GPD parameters, we
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FIG. 5. GPD parameters for meridional atmospheric energy transport. Meridional profiles of the GPD (a) threshold,
(b) scale parameter and (c) shape parameter in case of DJF poleward (black), DJF equatorward (red), JJA poleward (blue) and
JJA equatorward (green) meridional energy transport extremes. The shading represents 95% maximum likelihood confidence
intervals of the respective parameters.

FIG. 6. Hovmoller plots and scale of meridional atmospheric energy transport extremes. Hovmoller plots indicating
the occurrence of: (a) DJF poleward (black) and equatorward (red) and (b) JJA poleward (blue) and equatorward (green)
meridional energy transport extremes. (c) Mean cluster size and (d) probability density of the meridional extension of meridional
energy transport extremes.

apply a declustering technique based on the above men- tioned extremal index (Eq. 7) [111, 112]. We estimate
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the extremal index based on the intervals method [111]
and use the obtained information to decluster the time
series, thus ensuring that the selected extreme values are
independent as required by EVT.

In the following, we apply EVT to both tails of the
meridional energy transport distribution, namely pole-
ward and equatroward extremes. Following Lembo et al.
[110], these are defined as events beyond the 90 % and
10 % percentiles of the meridional energy transport dis-
tribution. Based on the peak-over-threshold GPD scale
parameters (Eq. 3), we notice that the magnitude and
variability of extremes is generally larger in winter than
in summer, and it is more intense for poleward extremes
than for equatorward extremes (Fig. 5a, b). The largest
magnitude and variability occur for DJF poleward ex-
tremes. The threshold values for the left tails at each lat-
itude are below zero; these are thus equatorward energy
transport extremes and not weak poleward extremes.
The shape parameters are predominantly negative, sug-
gesting that meridional energy transport extremes have
an upper bound (Fig. 5c). Only in the case of poleward
extremes, do we observe shape parameter values close
to or above zero for the latitudes south of 37 ◦N in DJF,
while in JJA the largest shape parameters occur between
latitudes 37 ◦N and 47 ◦N. This suggests that, in these
regions and seasons, there is a chance for “surprises”, i.e.
exceptionally large poleward energy transport extremes.
The shape parameter values, however, have a substan-
tial uncertainty. Thus, we cannot exclude that shape
parameters related to other types of extremes or in other
regions reach values close or above zero as well, nor that
the near-zero or positive values we highlight above are
indeed such.

The above-discussed GPD parameters do not provide
information on the temporal or spatial scales of the
energy transport extremes. To illustrate these scales,
we mark the occurrence of extremes in the DJF (JJA)
energy transport time series. For illustration purposes,
we identify the timesteps of the extreme events using
latitude 45 ◦N, and then verify whether the transport
attains extreme values also at other latitudes (Fig. 6a,
b). We summarise the information regarding the
duration and meridional extension of the extremes in
Fig. 6c, d, respectively. The duration is expressed in
terms of the mean cluster size, which is computed as the
inverse of the extremal index. The meridional extension
is given in degrees latitude, and is defined as the number
of consecutive latitudes affected by an extreme event
at a given time step. In case of multiple extremes
occurring at a given time, marked by vertical lines with
interruptions, we compute the size of the largest one.
DJF extremes often last close to one day, and their
most common meridional extension is around 17°. Their
distribution is skewed to the right, and we notice that
the probability of large events extending over the full
latitude band is substantially higher than the probability
of small events of a few degrees latitude. JJA extremes
are slightly shorter-lived – with mean duration shorter

than 1 day but longer than 0.5 days – and smaller in
meridional extent. Their distribution is skewed to the
left, and the most common event has a meridional extent
of approximately 9 °N in case of poleward extremes and
is slightly smaller in case of equatorward extremes. The
probability of events extending over the full latitudinal
band is much smaller than in winter. However, the
distribution has a long right tail, thus the probability
of large events is not negligible. The temporal and
spatial scales of meridional energy transport extremes
discussed here underlines their intermittent nature, and
hints at their large-scale coherence and their signature
in extratropical atmospheric dynamics.

B. Identifying rare features in the large-scale
atmospheric circulation associated with extreme

weather events

We consider here the application of the estimator of
the local dimensions and their gradients, discussed in
Sect. IID, to sea-level pressure (SLP) data over the
Euro-Atlantic region. We specifically consider the years
1950–2020 in the NCEP/NCAR reanalysis data [113] and
take two extreme events as examples: the 1987 Great
Storm [114] and the June 2019 French heatwave [115].
The former was a severe extratropical cyclone that af-
fected primarily France and the United Kingdom in Oc-
tober 1987. The latter was a heatwave which set record
high temperatures in multiple European countries, in-
cluding France. The aim is to obtain information on the
dynamical characteristics of the large-scale atmospheric
circulation features associated with these extremes, as
diagnosed through SLP. Each point z in the dataset we
use is defined by a daily SLP map over the chosen geo-
graphical domain. The maps for the two extremes being
analysed are shown in Fig. 7a, b.
We then compute the normalised gradient in phase

space of the local dimension. At a point z, this is given

by: ∇zdu(z)
||∇zdu(z)|| . This is a vector of the same dimension as

z, and can therefore be represented on a map. The two
gradient vectors for the 1987 Great Storm and the June
2019 French heatwave are shown in Fig. 7c, d. Scalars at
each grid point are components of the full vector. Since
∇zdu(z)

||∇zdu(z)|| has an origin, which is z itself, care should be

taken in the interpretation of the directions in the phase
space indicated by this gradient. Indeed, they must be
read with respect to the point where the gradient is com-
puted. Negative (blue) gradients mean that if one wants
to increase d, then one should decrease the SLP values
at that grid point. Positive (red) gradients means that
one should increase SLP to increase d. As a consequence,
the geographical regions where the absolute values of the
normalized gradient are the largest, correspond to direc-
tions in the phase space where d would change the most
for a given change in SLP. In a finite data set, the geo-
graphical regions with the strongest gradients correspond
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to phase-space directions in which z has the least number
of analogues (or analogues which are further away from
z for a given distance metric, if a fixed number of ana-
logues is identified). The geographical regions with very
high gradients hence correspond to uncommon features
of an SLP map.

Fig. 7b shows that the key structure in the SLP field of
the 1987 Great Storm that makes the atmospheric situa-
tion uncommon is not the low pressure situated just south
of Iceland, but rather the storm itself (which also corre-
sponds to a low pressure) situated south-east of Brittany.
Similarly for the June 2019 French heatwave, Fig. 7d
shows that the atmospheric feature which determines the
rarity of the situation is the low pressure situated above
Russia. The low pressure to the east of Ireland and the
high pressure in Northern Europe are also uncommon
atmospheric features.

For each point in the phase space of some geophysical
system, the gradient of the local dimension thus indicates
structures which are rare or common with respect to the
sampling done by the data set. We foresee that investi-
gating the link between this gradient and the dynamics
of the system may be a fruitful future line of research.

C. From transition probabilities to the
predictability of midlatitude extreme weather

Atmospheric motions are chaotic, which implies an un-
avoidable loss of predictability with increasing lead time.
However, in chaotic systems it is possible to identify re-
current patterns. These patterns have often been con-
ceptualized as so-called weather regimes, namely clus-
ters of similar atmospheric states [116]. Weather regimes
are then recurrent, quasi-stationary, and persistent large-
scale atmospheric circulation states [117] usually defined
as typical clusters of atmospheric flows that are observed
in an specific geographical region. Weather regimes ap-
pear as sticky regions of the phase-space where the tra-
jectories slow down, possible due to the vicinity of sta-
tionary or quasi-stationary solutions (e.g. [116, 118]).

Weather regimes have been defined over a number of
different geographical regions, but their use has been
most widespread in the Euro-Atlantic sector. There, the
optimal number of weather regimes is typically taken to
be four [119], although fewer [120] or more [121] have
been proposed. Figure 8 shows the four canonical regimes
using sea-level pressure (SLP) over the region [80ºW-
50Eº, 20º-70ºN]. These are, ordered by decreasing fre-
quency of occurrence:

(a) the Atlantic Ridge (AR), with a high pressure
anomaly over the center of the North Atlantic; (b) the
positive phase of North-Atlantic Oscillation (NAO+)
with a dipole of anomalously low pressure in the north-
ern North Atlantic and anomalously high pressure to the
south; (c) Scandinavian Blocking (BLO), with an anoma-
lous high pressure center over Scandinavia; (d) the nega-
tive phase of North-Atlantic Oscillation (NAO-), showing

a dipole which is roughly inverse to that of the NAO+.

Weather regimes can establish conditions favorable for
large-scale extremes ([122–128]), and are used in the
context of medium-range and sub-seasonal to seasonal
weather forecasts and climate projections ([129–131]).
This motivates an interest in studying the large-scale at-
mospheric evolution during extreme weather events in a
weather regimes perspective.

The weather regimes and their transitions have also
been connected to the dynamics of the underlying at-
mospheric system. Faranda et al. [14], showed a sta-
tistical link between anomalies in d and θ computed on
the SLP in the Euro-Atlantic sector and the four canon-
ical weather regimes (see labels in Fig. 9 here). Later,
[118] and [132] found that d and θ reflect the regimes’
life cycles. Specifically, d and θ decrease when a regime
is established, and increase during transitions between
different regimes, albeit with some regime dependence.

The two dynamical systems metrics have also been
connected to the intrinsic predictability of the atmo-
sphere, making the argument that low-dimension, high
persistence atmospheric patterns should afford a higher
predictability than high-dimension, low persistence cases
[14, 15, 133–135].

We illustrate here how combining an analysis based on
d and θ as described in Sect. IID with one of regime
transitions can shed light on weather extremes. As ex-
ample, we pick storm Filomena (Fig. 9): a storm which
affected the Iberian Peninsula in January 2021, bringing
heavy snowfall to large regions of Spain [136, 137].

The first days of storm Filomena corresponded to an
NAO- type regime regime. This transitioned very rapidly
to a rare atmospheric configuration, which was very un-
usual in terms of d and θ values and which did not
correspond closely to any of the four canonical weather
regimes. The very low persistence (high θ) and high d
on these days suggests that the atmosphere was in a low
predictability situation. It was during these days that in-
tense snowfall occurred in Spain. Next, the atmosphere
transitioned towards AR and from AR to BLO.

The example of Filomena shows that rare and low-
predictability weather regimes as diagnosed by d and θ
can be associated with extreme events. This was also
noted by [138] when investigating snowfall events in the
middle-east. This type of analysis in d–θ space can be ap-
plied to a range of different extreme event categories, as
a complement to a categorical study of weather regimes
and their transitions. Indeed, the case of Filomena shows
that the circulation associated with extremes does not
always fit neatly in one of the canonical regimes. The
proposed analysis also informs on the temporal evolution
of the large-scale atmospheric predictability during the
extreme event from a dynamical systems perspective.
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FIG. 7. Sea level pressure and gradient of local dimension for two extreme case studies: the 1987 Great Storm
and the June 2019 French Heatwave. SLP (hPa) for (a1) the 1987 Great Storm and (b1) the June 2019 French Heatwave.
(a2, b2) Corresponding direction of the normalized gradient of local dimension on the dates indicated in the panel titles. Scalars
at each grid point are components of the full vector. The figure uses NCEP/NCAR reanalysis data.
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FIG. 8. Euro-Atlantic Weather regimes. Weather regimes in the Euro-Atlantic sector [80ºW-50Eº, 20º-70ºN] computed
using sea level Pressure from NCEP/NCAR reanalysis [113] over 1948–2021, following the methodology of [122].

D. Co-recurrence statistics for spatially
compounding weather extremes

Understanding the drivers and dynamics of weather
extremes is facilitated by a multivariate analysis frame-
work. Indeed, different weather extremes are often as-
sociated to common physical drivers (for example a cy-
clone causing both strong winds and heavy rain), and
even geographically remote extremes can be physically
connected [e.g. 139] – so-called spatially compounding
extremes. Even extreme events that relate to a single im-
pact variable benefit from a multivariate analysis. They
can be associated with multiple drivers (e.g. a heatwave
may be driven by both the atmospheric circulation and
soil moisture characteristics [140]) or require investigat-
ing the impact variable and a possible driving variable
jointly. In all these cases, a multivariate analysis frame-
work is advantageous.

Here, we consider both a monovariate extreme and the
case of spatially compounding extremes. Such extremes
can pose a greater threat to human societies than single,
isolated extremes, as their effects may exacerbate each
other and lead to correlated losses [e.g. 141, 142]. We
specifically illustrate the application of multivariate dy-
namical systems indicators to first study drivers of cold
spells in North America and next their co-occurrence
with cold spells in North America and wet or windy ex-
tremes in Europe – sets of extreme weather events which
have been highlighted in the literature as being spatially
compounding [139, 143–145].

We implement here the previously discussed esitmation
of d, θ and α in a bivariate context (Sect. IID). We illus-
trate in Fig. 10b these indicators computed for SLP and
2-meter temperature (t2m) over North America. The at-
mospheric configurations with a high co-recurrence ratio
α between SLP and t2m tend to be those with relatively
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FIG. 9. A dynamical systems and weather regime anal-
ysis of storm Filomena. The grey points in the scatter-
plot show daily d and θ values computed using SLP from the
NCEP/NCAR reanalysis over the period 1948–2021, in the
region [80ºW-50Eº, 20º-70ºN]. Red dots show the values dur-
ing storm Filomena, numbered consecutively starting from
the 5th of January 2021. The weather regime labels in the
different quadrants of the plot are based on [14].

low d and θ. When a given pair of SLP and t2m patterns
recurs, it thus tends to coincide with low-dimensional and
persistent configurations.

We next focus specifically on days displaying high α
in winter, and look at the corresponding SLP and t2m
anomalies (Fig. 11) – the focus of our analysis here. High
co-recurrence ratio days display a tripolar SLP anomaly
pattern, favouring the meridional advection of cold air
and below average temperatures over a large part of the
North American continent. Coupled with the informa-
tion provided by Fig. 10b, this points to cold wintertime
spells being favoured by persistent circulation patterns,
and to the fact that whenever cold days occur, simi-
lar large-scale t2m and SLP patterns are found. This
connects back to the concept of large-scale meteorologi-
cal patterns, whereby specific regional climate extremes
are associated with recurrent atmospheric configurations
[e.g. 147, 148].

We next consider how the co-recurrence ratio can
provide information on spatially compounding climate
extremes. We again analyse wintertime cold spells over
North America, but now investigate their connection
to wet or windy European extremes. We specifically
compute the co-recurrence ratio between SLP over North
America and Europe. We then select the 50 winter
days with the highest co-recurrence ratio and investigate
whether they correspond to local climate extremes (de-
fined here as t2m temperature anomalies below the local
5th percentiles and precipitation and 10-metre wind
anomalies above the local 95th percentiles). There is a
clear signal of heightened frequency of cold extremes over
south-eastern North America and wet or windy extremes
over western-continental Europe on high-coupling days
(Fig. 12). This supports previous literature arguing for

FIG. 10. Geographical domains and scatter plot for
the dynamical systems indicators computed on SLP
and t2m. a) The black rectangle highlights the domain over
which the dynamical systems metrics are computed. b) d–θ
scatter plot coloured with the values of the co-recurrence ratio
α. The figure is adapted from [146] and uses NCEP/NCAR
reanalysis data [113] over 1948–2018.

FIG. 11. Composite SLP and t2m anomalies for win-
ter days with a high co-recurrence ratio. Composite
SLP anomalies in hPa (a) and t2m anomalies in K (b) cor-
responding to the 10% most positive anomalies of α relative
its seasonal cycle, during DJF. The black lines bound regions
where at least 2/3 of the composited anomalies have the same
sign. The figure is adapted from [146] and uses NCEP/NCAR
reanalysis data [113] over 1948-–2018.

a systematic physical and statistical connection between
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these sets of extremes [17, 139, 143, 145]. We thus
conclude that the application of the above dynamical
systems metrics in a bivariate context can provide
useful information of compound climate extremes. We
foresee that a full multivariate implementation could be
profitably applied to the study of a range of different
geophysical systems.

V. OPPORTUNITIES AND OPEN
CHALLENGES FOR THE STUDY OF

GEOPHYSICAL RARE EVENTS

While several advances have been made in the un-
derstanding, modeling and simulation of geophysical
extreme or rare events, several challenges still limit our
capabilities of modeling small-scale or sporadic extreme
events. Two examples of geophysical extreme events
having these characteristics are heavy thunderstorms
and tropical cyclones (TCs). Both are highly localized
convective events, which are affected by physical pro-
cesses on a large number of spatial scales. This makes it
challenging to monitor and predict their occurrence.

A final challenge in studying all these geophysical
extremes is the impact of climate change, which can alter
the frequency, duration, and intensity of these events
(see also Sect. III B). Predicting the impact of climate
change requires the integration of non-stationarity in
statistical and dynamical models, to separate the role
of forced versus natural variability in the occurrence
of these phenomena. In this perspective, a growing
attention has been devoted to so-called ”attribution”
studies, namely determining whether a specific extreme
geophysical event may be ascribed to anthropogenically-
forced climate change [149].

In this section we discuss in more detail the recent ad-
vances and challenges in studying the above-discussed
geophysical extremes, with a focus on the opportuni-
ties issuing from dynamical systems theory and statis-
tical physics, not least for extreme event attribution. We
specifically outline lines of research that have been made
possible by recent findings, but are yet to be explored in
the literature.

A. Physics and dynamics of convective
precipitation phenomena

Convective events are some of the most intense
precipitation events on the planet, associated with rising
plumes of moist air in response to instability in the
atmosphere. Convection triggers updraft and downdraft

and as a result is the main process of vertical exchange
of water vapour, heat and chemical species between the
lower and upper troposphere.

Convection plays an important role in both the
mid-latitudes and the tropics. In the mid-latitudes it
can give rise to heavy thunderstorms; in the tropics,
it is a key ingredient of TCs. TCs are synoptic-scale
(O(103) km) vortices fueled by the thermal energy
accumulated in the ocean. This is transferred to the
atmosphere through evaporation and convective pro-
cesses, and finally released through precipitation and
partly converted into kinetic energy (extreme winds).
Specifically, the aggregation of convective towers, or
clusters of thunderstorms, can lead to the formation of
a TC as the energy released from the towers fuels the
development of a low-pressure center, which can then
intensify into a cyclonic system.

The study of thunderstorms and TCs is an active area
of research, with significant progress having been made
in understanding the physical processes that drive these
events. Examples include the role of atmospheric insta-
bility in the development of thunderstorms [150] and the
role of large-scale atmospheric circulation patterns in
the formation and intensification of thunderstorms and
TCs e.g. [151–153]. A further area of research is the
role of kinetic energy, moisture and heat budgets in the
development of thunderstorms and TCs. These budgets
describe the exchanges of energy and moisture between
the atmosphere and the surface, span a continuum of
spatial scales and are important for understanding how
storms and TCs develop and intensify [26, 154]. We
begin here by considering statistical physics approaches
to the study of energy tranfers in convective systems.

Diagnostics of inertial energy transfers typically rely
on filtering approaches that separate resolved fields from
subfilter-scale fields [155]. Filtering is broadly used in
the study of turbulent geophysical flows, including both
atmospheric and oceanographic flows [156–160]. In all
these studies, a filter is applied to the Navier-Stokes
equation, and this is used to infer the energy transfers
from the reference filtered lengthscale ℓ to larger and
smaller scales arising due to non-linear interactions [157].
Using this approach, [161] diagnosed organised regions
of upscale and downscale inertial energy transfers in
the hurricane boundary layer, based on remotely sensed
wind observations during Hurricane Rita (2005).

In an alternative approach based on the weak solu-
tion formalism, [162] showed that energy transfers in a
fluid at an arbitrary scale ℓ satisfy a local energy balance
equation:
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FIG. 12. Normalised occurrence of extreme climate events for winter days with a high co-recurrence ratio.
Normalised occurrence of (a) cold spells, (b) extreme 10-metre wind and (c) extreme precipitation during the 50 winter days
with the highest co-recurrence ration between SLPs over North America and Europe. Cross-hatching marks regions where
the occurrence of extremes during high co-recurrence days is significantly higher than climatology at the 5% one-sided level,
determined using 1000 random sampling iterations. The figure is taken from [144] and uses ERA5 reanalysis data [30] over
1979–2020.
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where ui are the components of the velocity field, p
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2 is the kinetic energy per

unit mass at scale ℓ (such that limℓ→0 E
ℓ = u2/2). The

term Dℓ is expressed in terms of velocity increments

δu⃗(r⃗, x⃗)
def
= u⃗(x⃗ + r⃗) − u⃗(x⃗) ≡ δu⃗(r⃗) (the dependence

on ℓ and x⃗ is kept implicit) as:

Dℓ(u⃗) =
1

4ℓ

∫
V
dr⃗ (∇⃗Gℓ)(r⃗) · δu⃗(r⃗) |δu⃗(r⃗)|2. (30)

In this definition, G is a smooth filtering function, non-
negative, spatially localized and such that

∫
dr⃗ G(r⃗) = 1,

and
∫
dr⃗ |r⃗|2G(r⃗) ≈ 1. The function Gℓ is rescaled for a

given volume with ℓ as Gℓ(r⃗) = ℓ−3G(r⃗/ℓ).

The 2D filter is adapted from [163] as a circular sym-
metric filtering function of the scalar increment r given

by

G(r) =

{
1
N exp(− 1

1−(r/2a)2 ), if r < 2a,

0, otherwise.
(31)

where N is a normalization constant such that∫
d2rG(r) = 1

We provide here an example of applying the framework
from [162] to the spatial distribution of instantaneous en-
ergy transfers in TCs. We specifically consider Typhoon
Jolina, which hit Japan in September 2005. We use the
NCEP/NCAR reanaylsis data [113] and a scale ℓ = 250
km. Positive Dℓ indicate transfers from the mesoscale
(≃250 km) towards the smaller convective scales, while
negative values correspond to tranfers towards the
larger synoptic scales. Fig. 13 suggests that energy
transfers are organized around the eye of the cyclone
and that intense downscale energy transfers occur in a
relatively small region of the planetary boundary layer,
where hazards such as heavy rainfall and wind-gusts
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are also concentrated. However, both the direct and
inverse energy cascades coexist, and transfers towards
the synoptic scales are found in cyclone’s outflow in
the upper troposphere. Following such energy transfers
over time along the trajectory of TCs would offer a
way to study, in scale spaces, rapid intensification and
rapid weakening phenomena. The above approach could
also be used to investigate other convective events such
as medicanes, mesocyclones, squall lines or derechoes.
However, such systematic investigations are still absent
from the literature.

B. Statistics and modelling of convective
precipitation phenomena

A complementary approach to studying the energy cas-
cades in individual TCs is to take a bulk view of cyclones
as point vortices and investigate the environmental con-
ditions that favour or suppress their growth. In fact, TCs
can be viewed as a type of heat engine, where the warm
ocean surface provides the fuel for the storm to extract
energy and convert it into wind. Despite the advances in
understanding the dynamics of individual TCs, key open
questions remain on TC bulk statistics. These include:

1. What controls the yearly number of observed TCs
(global rate of about 70–90 events per year [164])?

2. What is the response of TC activity to variations
in the mean state of climate?

Using a bulk perspective, [165] developed the po-
tential intensity theory, which predicts the maximum
possible wind speed that a TC can attain based on
the underlying ocean and atmospheric conditions. This
theory has helped researchers to explain the occurrence
of TCs, and has led to the development of a number of
semi-empirical indices know as Genesis Potential Indices
(GPIs) [166–171]). However, GPIs are by construction
not able to address question 1 above, since they do not
take into account the small-scale dynamics leading to
the “seeding”. In other words, the process or family of
processes responsible for the formation of the precursor
disturbances, from which self-organized convection and
then the cyclones originate [172]. Indeed, the actual
number of TCs is only partially accounted for by the
large-scale factors entering the GPI, the remaining
part depending on the amount of seeds [172]. The GPI
approach also struggles in addressing question 2. Indeed,
when using high-resolution climate model simulations to
estimate future TC activity, it is found that the trends of
GPI are not consistent with those of simulated cyclones,
often disagreeing even in the sign of change [173].

These limitations have motivated new lines of re-
search, such as synthetic tracking. This involves using
dynamical systems and statistical methods to generate

large numbers of virtual TCs, which are then used to
study the bulk statistical properties of the cyclones [e.g.
174, 175]. Specifically, a combination of deterministic
and stochastic approaches are used to iteratively test
”seeding” cyclone cores at different locations with
different environmental conditions and then identifying
how different possible tracks affect the development
of the cores. Synthetic tracking has proven to be a
valuable tool for predicting the paths and impacts of
TCs, which can have significant implications for disaster
planning and response efforts [e.g. 176, 177]. The very
large number of tracks generated by synthetic tracking
algorithms has supported a better understanding of the
global rate of TC occurrence, for example by informing
on the likelihood of TC occurrences in regions that
may not have experienced any in the historical period
[178, 179]. Similarly, it has aided in exploring the
implications of climate change for TC frequency and
characteristics [180, 181]. These points are of direct
relevance to the two questions listed above.

Like TCs, convective precipitation and thunderstorms
have also been also been investigated leveraging concepts
from dynamical systems theory and statistical physics.
An example is a framework for predicting the onset and
evolution of thunderstorms using large scale environmen-
tal conditions [151, 182, 183]. This approach involves
using statistical mechanics to derive probabilistic models
of the atmospheric processes that govern the behavior
of thunderstorms, including the interaction between
convection and the large-scale atmospheric circulation.
Another approach that has been used to study thun-
derstorms is the application of Ising models [184]. Ising
models are statistical physics models that are typically
used to describe the behavior of interacting spins in a
lattice. However, they have been adapted to describe
the atmosphere as a grid of interacting variables, with
each variable representing a particular atmospheric state
or parameter. By analyzing the statistical properties of
the variables and their interactions, researchers can gain
insights into the behavior of thunderstorms, including
the onset, growth, and decay of convective activity.
While Ising models are a relatively new approach to
studying thunderstorms, they have shown promise in
capturing some of the complex dynamics of these storms
and could potentially lead to more accurate predictions
of their behavior in the future [185].

Modelling convection presents several challenges. Per-
haps the most pressing is the scale mismatch between the
small scales at which convection occurs and the larger
scales that can be directly resolved by numerical climate
models. To address this challenge, parameterization
schemes are used to represent the effects of convection
on larger scales. However, these schemes are a major
source of uncertainty in climate simulations. Convection
also involves interactions between the atmosphere, the
surface, and other physical processes such as radiation
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FIG. 13. Mesoscale to convective scale energy transfer in Typhoon Jolina. Energy transfer Dℓ, with ℓ = 250 km
computed using the 3D velocity fields from the NCEP/NCAR reanalysis dataset for the cyclone Jolina (2nd September 2005,
12h UTC, when the cyclone reached peak intensity). The colorscale indicates energy transfers directed towards smaller scales.
The dark blue patch the energy transfers towards scales larger than ℓ.

and moisture transport. Additionally, the behaviour
of clouds and their evolution is affected by factors
such as aerosols and atmospheric dynamics, which
further complicates the modelling process. Accurately
capturing all of these processes precludes a clear sep-
aration of scales as often performed in the study of
stochastic dynamical systems. In fact, while ad-hoc
studies employing scale decomposition approaches
are possible [13, 154, 162], they cannot account for the
full range of processes leading to convective precipitation.

A possible fashion to address this challenge, and
reduce the uncertainties associated with parametrisation
schemes, is to develop numerical climate models with
km-scale resolution. These allow to directly resolve
the small scales of convection. Both single-model and
multi-model ensembles of such models are important for
improving robustness of results, rather than relying on

individual model simulations. Single-model ensembles
involve running multiple simulations with slightly
different initial or boundary conditions, or with slightly
different model parameter settings, while multi-model
ensembles refer to the use of different models, typically
using identical initial or boundary conditions. These ap-
proaches allow us to account for the uncertainty inherent
in the climate system’s chaotic evolution and reduce the
uncertainty associated with model structure and param-
eters. Over the past years, several coordinated efforts
have emerged to develop such ensembles (e.g. [186–189]).
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C. Dynamical systems attribution of extreme
weather events under climate change

Attribution studies seek to answer the question: how
has human-induced climate change modulated the likeli-
hood and/or physical characteristics of a given extreme
event? A wide range of statistical and modelling tools
have been used in attribution studies, including a range
of modelling and statistical approaches [149]. Relatively
recently, dynamical systems theory has also been used in
attribution studies [153, 190]. Since the atmosphere is a
complex system whose dynamics is influenced by many
factors, including the ocean, land surface, and human ac-
tivities, dynamical systems theory provides a framework
for understanding how changes in one part of the system
can affect the behavior of the entire system, including the
occurrence of extreme weather events. One key concept
in dynamical systems theory is the use of ”recurrences”
(see Sect. II). This involves comparing the observed
weather patterns during an extreme event to those that
have occurred in the past, in order to identify whether
the event is more or less likely to occur, or has occurred
with a different intensity, as a result of human-induced
climate change. For example, if a given heatwave and
the associated circulation is found to have a high prob-
ability of recurrence in a world without human-induced
climate change, then it is less likely that the heatwave is
solely due to climate change. However, if the probability
of recurrence is found to be much higher in a world with
human-induced climate change, then it is more likely that
climate change played a significant role in the event. Dy-
namical systems theory therefore helps to condition at-
tribution to a specific circulation. The approach can also
support diagnosing the physical processes associated with
the attribution. For example, if there is a persistent at-
mospheric circulation pattern that is associated with ex-
treme weather events, such as a blocking high-pressure
system, then researchers can use dynamical systems the-
ory to understand how changes in the climate system can
affect the persistence and intensity of the circulation pat-
tern, and how this can modulate the associated extreme
weather events. [153, 191, 192]. The above analogue ap-
proaches can be complemented by narratives that de-
scribe the physical mechanisms that led to an extreme
weather event, namely storylines [193–195]. Storylines
support a detailed understanding of the factors that con-
tributed to an event, and how they may have been influ-
enced by human-induced climate change. For example,
a storyline for a heatwave event might describe how a
persistent high-pressure system led to hot and dry con-
ditions, which were then exacerbated by human-induced
climate change.

By combining analogues approaches and storylines, re-
searchers can provide a complete picture of the link be-
tween climate change and extreme weather events [196].
Analogues approaches can quantify the probability of the
event occurring, while storylines contextualise the phys-
ical mechanisms behind the event. This can help policy-

makers and the public to better understand the risks of
climate change, and to develop strategies for adapting to
and mitigating these risks.

Despite the success of dynamical systems attribution-
based techniques, the mathematical justification of
these approaches is still largely missing. For several
physical processes it is unclear whether there exists some
invariant or stationary measure which could be used for
computing statistics of extreme or rare events. In this
context it can be useful to return to discrete dynamical
systems, for which recent results pave the way for a
rigorous application of EVT-based dynamical systems
approaches in an non-stationary setting. We specifically
consider the following two non-stationary systems:
sequential and non-autonomous. They are defined by
concatenating maps chosen in some set, usually in the
close neighborhood of a given map. As a probability
measure one typically takes some ambient measure like
Lebesgue.

The extreme value theory and the extremal index
must then be redefined. Sect. 4.5 of [38] presents an
example of a sequential system modeled on maps chosen
in the neighborhood U of a given β-transformation, say
Tβ0

. According to suitable choices of U it is possible to
show either that the EI of the unperturbed map and of
the sequential system are the same, or the two differ,
in particular when the elements of the concatenation
are far enough from Tβ0

. In this case the EI is simply
1. A second relevant example is in the Appendix of
[9]. There, sequentially composed maps of the one-
dimensional torus of the type Ti = 2x + bi-mod 1, are
considered. The constants bi and the Dirac masses pi
associated to each Ti vary randomly respectively in some
spaces Bk, Pk, k = 1, 2... which in turn change every
10 temporal steps. The empirical distribution of the
number of visits in a ball centered at the origin is in
perfect agreement with a Pòlya-Aeppli distribution.

The second set of systems we consider are non-
autonomous random (quenched) dynamical systems.
They are constructed by taking a deterministic driv-
ing map σ on the space E and preserving a probabil-
ity measure P which codes a family of transformations
Tω for ω ∈ E on the space M via the composition rule
Tn
ω (x) = Tσn−1 ◦ · · · ◦ Tω(x). One can prove the exis-

tence of sample measure µω, verifying, for each measur-
able set A ∈ M : µω(T

−1
ω (A)) = µσω(A). These mea-

sures describe the statistical properties in M and they
do not give rise to stationary processes. The first ap-
plications of EVT to these random systems are given
in [38, 197]. A recent article [39] further developed a
new spectral approach for a quenched extreme value the-
ory that considers random dynamics with general ergodic
invertible driving σ, and random observations. It also
provided a general formula for the computation of the
extremal index which will be also random. To give a
flavour of such results, we quote here the following ex-
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ample, taken from [39]. Consider the bi-infinite sequence
ω = {. . . , ω−1, ω0, ω1, . . . }, where each ωl takes values in
the finite alphabet {1, . . . , d}, and move it with the shift
σ. Each symbol will be taken with the same probability
1/d. We then take d maps T1, . . . , Td, and random rare
sets of the form Bω,n := B(v(ω0), e

−zn(ω)). Notice that
the centers of these balls, v(ω0), are random (ω0 denotes
the 0-th coordinate of ω), and we also allow random radii

satisfying the scaling 2e−zn(ω) =
t+ξω,n

n , t being a non-
random constant and |ξω,n| bounded uniformly in n and
ω and going to zero when n → ∞ and for P-a.a. ω. We
then define the first random hitting time as

τω,n(x) = inf{k ≥ 1, T k
ω (x) ∈ Bσkω,n},

which gives the first time the random orbit of x enters
an element of the sequence of random balls Bσkω,n. This
covers, for instance, the interesting case of rare sets which
are known with a limited precision, or cases when the
iterations at each step are affected by some disturbance.
For particular choices of the maps T for which all the
sample measures coincide and are equal to η, we have

lim
n→∞

η{τω,n > n} = e−t
∫
θωdP(ω),

where θω is the random EI, defined by suitable random
generalizations of formulae (8) and (33), see [39] for
the details. It is interesting to note that the previous
example can be worked out in such a way that the
expectation of θω is strictly less than 1, thus showing
that we could have the formation of clusters even in the
absence of periodic or invariant structures, which could
not persist forever in the presence of noise.

The above idealised examples show that the behaviour
of non-stationary systems can be described by EI distri-
butions, which depend on the systems’ non-stationarity
characteristics and on the (stochastic) system’s reali-
sation. This underscores the existence of an extreme
value law for such systems, which opens the possibility
of computing other dynamical quantities beyond the EI.
These notions may in the future be expanded to more
complex real-world systems.

VI. PERSPECTIVES

Geophysical extremes, spanning phenomena as diverse
as thunderstorms, tropical cyclones, earthquakes, and
geomagnetic storms, encompass a broad array of spa-
tial and temporal scales. Thunderstorms exhibit fine-
scale microphysical processes occurring at the microme-
ter level, juxtaposed with the kilometer-scale dynamics
of towering storm clouds or the scales of up to thou-
sands of kilometers of tropical cylones. The pursuit of
understanding geophysical extremes thus exemplifies the
mathematical intricacies and dynamical complexities in-
herent to multiscale dynamics. To elucidate the multi-
scale fabric of these events, mathematical models must

bridge multiple magnitudes in both spatial and tempo-
ral scales. We envision developments in mathematical
methods such as coupled dynamical systems and net-
work theory as instrumental to capture complex inter-
scale and inter-variable dependencies. Multiscale decom-
position techniques may also play a key role in further
research on the topic. These involve breaking down com-
plex geophysical systems into multiple scales, each with
its own set of governing equations and dynamics, sup-
porting an improved understanding of how small-scale
processes interact with large-scale phenomena. For ex-
ample, in studying thunderstorms, multiscale decompo-
sition can reveal how microphysical processes related to
nucleation within clouds interact with the broader atmo-
spheric circulation, or how accessory phenomena such as
tornadoes and hail form in the convective clouds. This
type of knowledge is essential for improving the accuracy
of climate projections and weather forecasts, and more
broadly for the understanding of the physical mechanisms
driving multiple geophysical extremes.

The mathematical modeling of multiscale geophysi-
cal dynamics is rooted in partial differential equations
(PDEs). Nevertheless, the severe numerical constraints
posed by the direct simulations of partial differential
equations necessitate multiscale modeling approaches.
As we have shown in this perspective, stochastic param-
eterizations are a useful tool to this effect, and are able
to reconcile the interactions between disparate geophys-
ical scales. Stochastic systems further provide a proba-
bilistic framework for modeling the inherent randomness
and uncertainty in geophysical extremes, making them
valuable for risk assessment and prediction. Incorporat-
ing these mathematical and analytical approaches into
large deviation theory, multivariate extreme value anal-
ysis, analogue-based methods and multiscale decomposi-
tion techniques will further enhance our ability to quan-
tify, predict, and manage geophysical extreme events, ul-
timately improving our resilience to their impacts. We
specifically view developments in multivariate extreme
value analysis as crucial to capture the joint behavior of
multiple geophysical variables. In the context of geophys-
ical extremes, this would advance the study of compound
geophysical extreme events, such as the co-occurrence
of high wind speeds and heavy precipitation during a
(tropical) cyclone, enable devising novel bias correction
techniques, or improved downscaling of extreme weather
events.

In addition to the mathematical challenges mentioned
above, the study of geophysical extremes presents sev-
eral other dimensions. One such aspect is the need
to develop methods that can accurately separate the
natural variability of the climate system from the ef-
fects of human-induced climate change in engendering
extreme geophysical events – namely the so-called ex-
treme event attribution. This requires statistical tech-
niques that can distinguish between short-term, internal
fluctuations of geophysical systems and long-term, forced
trends. The above-mentioned mathematical advances for
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non-stationary systems can support this effort.
Another important challenge is the need to account for

the spatial and temporal dependence of extreme events.
Extreme weather events often occur in clusters or spe-
cific spatial patterns, and their occurrence in one loca-
tion can be associated with the occurrence of extremes in
other regions or influenced by remote drivers (see Sect.
IVD). Understanding the origin of spatially co-occurring
extremes requires the use of advanced spatial and tem-
poral statistical models that can account for complex
dependencies within the climate system and other geo-
physical systems. As we have shown when discussing
co-recurrence statistics (Sect. IID, IVD) understanding
the dependence structure of extreme events is crucial
for assessing compound risks, where multiple extreme
events co-occur, potentially leading to cascading impacts.
In this sense the analogues-based approach presented in
Sect. IID could be combined with multivariate extreme
value analyses to assess the likelihood and potential im-
pacts of extreme events. More generally, the work out-
lined in this perspective provides some initial steps in
this direction, laying the bases for a more general math-
ematical treatment of spatially or temporally clustered
geophysical extremes.

VII. CONCLUSIONS

This paper has provided an overview of techniques for
studying geophysical extreme events, focusing on the in-
terplay between statistical physics, dynamical systems
theory, and geophysics. By identifying the limitations of
traditional statistical extreme value analysis techniques
to study geophysical rare events, we have motivated the
introduction of new mathematical formalisms based on
rare recurrences in high-dimensional systems.

The application of these techniques to various geo-
physical phenomena, such as temperature extremes, cy-
clones, thunderstorms and geomagnetic storms, has pro-
vided valuable insights into the underlying dynamics and
physical drivers of these events. Additionally, the ex-
amination of diverse data, including climate reanalysis,
numerical climate models, geomagnetic data and turbu-
lence measurements has illustrated how approaches de-
veloped for low-dimensional systems can be applied to
high-dimensional chaotic data. While significant insights
have been gained regarding the dynamics of rare events
in geophysical systems, further investigation is neces-
sary to fully comprehend the underlying mechanisms and
drivers.

Understanding and analyzing high-impact events in
the Earth system involves addressing several challenges,
spanning both the mathematical and physical sciences.
In terms of mathematical challenges, one major con-
cern is the non-stationarity of geophysical systems. The
multifarious interactions and feedback loops within the
Earth system introduce a further level of complexity. An-
other critical challenge lies in accounting for finite size

effects, including the spatial and temporal resolution of
the datasets used for analysis. Moreover, geophysical sys-
tems exhibit high dimensionality, necessitating an exam-
ination of how data resolution affects the identification
and characterization of rare events. Properly addressing
finite size effects is essential to avoid potential biases or
artifacts in the analysis [10, 12].
Finally, the limited availability of high-quality obser-

vational data poses a significant challenge, for example
for the study of tropical cyclones that often occur over
remote ocean regions. Insufficient observations make it
difficult to validate and improve the accuracy of models,
as well as to gain a robust understanding of the physical
processes that drive these events.
To overcome these challenges, interdisciplinary re-

search efforts combining mathematics, physics, and geo-
physics are crucial. Advances in mathematical tech-
niques, continuing to build upon the novel indicators,
approaches and modeling frameworks presented in this
perspective, will provide a stepping stone for future ad-
vances. In parallel with this, a comprehensive under-
standing of the physics behind rare geophysical events
requires a combination of observational data and theo-
retical insights. In this context, it is crucial to devise
stochastic dynamic models, which account for the effects
of environmental random fluctuations and can serve as
a connection between the extreme events approach and
the dynamical systems modeling. We view collaborative
endeavors among researchers from various disciplines as
instrumental in this respect. We specifically encourage
continued collaboration between researchers in statistical
physics, statistics, dynamical systems theory and geo-
physics, whose expertise this perspective has sought to
gather. In the longer term, we envision the integration of
tailored machine learning algorithms and advanced data
assimilation techniques with dynamical systems and sta-
tistical physics approaches to further enhance our under-
standing of geophysical extremes and improve their pre-
diction capabilities. Ultimately, our hope is that these
collective efforts of researchers across various disciplines
will contribute to building a more resilient and sustain-
able future.
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VIII. APPENDIX

We collect here a few formulas and quantities intro-
duced in section II.B. First of all the quantities λl given
in (7) are formally defined as

λl := lim
∆→∞

lim
n→∞

µ(x;
∑∆

j=0 1Un
(T j(x)) = l)

µ(x;
∑∆

j=0 1Un(T
j(x)) ≥ 1)

, (32)

provided the limits exist.

We now quote the analytic expression of the quantities
qk,n entering the definition of the extremal index (8):

qk,n =
µ(x ∈ Un, T (x) ∈ U c

n, · · · , T k(x) ∈ U c
n, Xk+1 ∈ Un)

µ(Un)
.

(33)
We finally quote the mass distribution of the Pòlya-

Aeepli distribution

ν̃({k}) = e−(1−p)t
k∑

j=1

(
k − 1

j − 1

)
((1− p)2t)j

j!
pk−j . (34)
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