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We introduce an approach to sampling equilibrium solvent water molecule configurations within proteins
that leverages analog quantum computing. We present a complete end-to-end study from the molecular biology
application to the development of the quantum algorithm to the implementation on a neutral atom quantum
processing unit (QPU). To do so, we combine a quantum placement strategy to the 3D Reference Interaction
Site Model, an approach capable of predicting continuous solvent distributions. The intrinsic quantum nature
of such coupling guarantees molecules not to be placed too close to each other, a constraint usually imposed
by hand in classical approaches. We present first a full quantum adiabatic evolution model that uses a local
Rydberg Hamiltonian to cast the general problem into an antiferromagnetic Ising model. Its solution is embodied
into a Rydberg atom array QPU. Following a classical emulator implementation, a QPU portage allows to
experimentally validate the algorithm performances on an actual quantum computer. As a perspective of use
on next generation devices, we emulate a second hybrid quantum-classical version of the algorithm. Such a
variational quantum approach uses a classical Bayesian minimization routine to find the optimal laser parameters.
Overall, these Quantum-3D-RISM algorithms open a route towards the application of analog quantum computing
in molecular modeling and drug design.

DOI: 10.1103/PhysRevResearch.6.043020

I. INTRODUCTION

The direct manipulation of quantum systems to perform
quantum computations has become an intense field of in-
terdisciplinary research aiming to apply quantum computing
to various fields ranging, from theoretical chemistry and
many-body physics to material sciences and drug design. For
example, such technologies are believed to be ultimately able
to improve the accuracy of quantum chemistry methods [1–4]
through algorithms exponentially faster than classical ones
[1,2,5]. If no widely accepted proof of exponential advantage
for quantum computing calculations has been yet provided
[6], then in practice a polynomial advantage could still
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contribute to bring more accurate simulations at hand in near-
term quantum devices [1,5–7]. More pragmatically, a lower
energy consumption of quantum devices is expected to be
more rapidly envisioned.

Reasons for this present situation are linked to near-term
quantum technologies limitations in term of qubit count and
to the absence of fully error-corrected gate-based machines,
whose simulations are thus still suffering from a high level of
noise [2,7,8]. In that context, analog quantum computing is an
alternative promising strategy [9,10].

On the software side, many groups have contributed to de-
veloping algorithms that are expected to scale efficiently with
the size of chemical systems, once that more advanced hard-
ware will become available [1,2]. Such techniques include
the variational quantum algorithms (VQAs) [5,7], a family
of algorithms allowing to exploit present hardware through
coupling with classical optimization. In a nutshell, if one is
able to formulate a problem in terms of a mathematical cost
function to be minimized or maximized with respect to the
parameters of the quantum machine, then the search for the
best parameters can be outsourced to a classical hardware,
the quantum computer being used to compute the cost
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function, a task usually too expensive to compute classically.
The solution to the problem is then given in terms of the best
parameters for the quantum evolution. VQAs have nowadays
well-known limitations, e.g., barren plateaus encountered in
the classical optimization loop [11], so that their interest in
practical usage in the near and long term is still an open
question. Further research is compulsory to address this issue
and to further progress in the understanding of this class of
algorithms, that lead the way in different fields of applications
and research in quantum computing.

Concerning the application of quantum computing to drug
design, a necessary tool for accurate drug-target affinity pre-
dictions in structure-based drug discovery (DD) is related
to methods capable of addressing the problem of predicting
the hydration sites in protein structures or any biomolecu-
lar system of interest. Predicting the solvent structure inside
important protein pockets thanks to user-friendly and compu-
tationally efficient methods is a determining task to improve
the predicting power of numerical simulations. An often com-
plex balance between enthalpic and entropic contributions
of the water hydration effect is known to potentially affect
the molecular recognition mechanism at the protein-ligand
interface or on a larger scale the biomolecule structure sta-
bility and their conformational changes. The role of water
has been especially investigated in protein hydration, both nu-
merically and experimentally. Simulations based on molecular
dynamics approaches (MD) have shown the dynamic nature
of protein hydration: Water molecules networks can be tem-
porarily present or absent in nonpolar regions of the protein,
or exchange between the bulk of the solvent and more polar
regions [12–15]. Such dynamic equilibrium and the usual
size of the molecular systems targeted in DD (and not only),
characterized by a daunting number of degrees of freedom,
requires to deal with the computational effort of sampling
a highly dimensional phase space. The relevance of water
effects can be even more relevant in cases of poorly accessible
regions in the interior of the protein as deeply buried pockets
[14]. There are methods such as the three-dimensional (3D)
Reference Interaction Site Model (3D-RISM) that can avoid
this effort through the use of continuous distributions [16–21]
based on a statistical mechanics integral equation formalism.
However they lack information about the exact locations of
molecules. In this work, we present the first algorithms, ex-
ploiting the analog quantum computing paradigm, to analyze
the hydration structures within proteins’ binding sites thanks
to the 3D-RISM continuous distribution. Indeed, a poor treat-
ment of the protein-hydration problem is often a limiting
factor preventing the access to accurate protein-ligand affinity
predictions, a crucial step for practitioners in drug discovery.
Our strategy is applied to small molecules of interest in drug
design for which the effect of solvent water molecules is
substantial. The main advantage of this proposed approach
is its potential to efficiently sample the distribution of wa-
ter molecules inside protein cavities. Therefore, this work
presents the design of quantum algorithmic strategies in that
direction. To do so, we implemented the approach on both
PASQAL’s Pulser emulator and real neutral atom quantum
computer, which, thanks to its flexible connectivity and ease
of implementation of analog operations, has demonstrated the
potential to solve combinatorial problems. The sampling of

water molecules in biological systems distribution can also
be seen as a combinatorial problem on a graph, since it cor-
responds to finding the most probable disposition of solvent
molecules given the constraints imposed by both the protein
structure and the rest of the solvent atomistic structure.

We remark here that a number of similar applications, in
combinatorial optimization with quantum annealers [22,23],
can be found in the literature, e.g., using photonic hardware
[24–28] or superconductive qubits [29–33]. A portion of these
works present extremely promising theoretical applications
[24,26,27] of Gaussian boson sampling in photonic technolo-
gies. Recent advances have also been done in developing
the photonic approach towards real-life applications, as in
drug discovery to address the molecular docking problem
[25,28] or macromolecules folding [25]. Two alternative for-
mulations of the docking problem in QUBO form are found
in Refs. [30,31], which have been implemented on D-Wave
annealers. The former uses the Rosetta energy function to en-
code atomic interactions, while the latter is purely geometric
and leverages a weighted subgraph isomorphism representa-
tion of the affinity between ligand and protein cavity. From a
classical method perspective, molecular docking and solvent
configuration predictions are addressed with radically differ-
ent approaches. From a theoretical perspective their aim is not
equivalent: Molecular docking is a screening technique used
to predict optimal configurations of a molecule in interaction,
often, with a protein, under defined structural constraints [34].
It is used as a cheap computational approach to screen large
libraries of compounds, to efficiently find the most promis-
ing ones for a given target biomolecule. The problem of
solvation is instead related to statistical mechanics, to find
the distribution of solvent molecules in interactions with a
desired chemical species (the solute). The amount of solvent
molecules is usually overwhelming compared to that of so-
lutes, and its configuration not only depends on the solute,
but on the mutual effects between solute and solvents [35].
An accurate account of such effects have implications in drug
discovery, and numerically expensive methods can be needed
due to the large dimensionality of the problem and the intrin-
sically slow solvent dynamics around solutes [35].

II. THE IMPORTANCE OF WATER PLACEMENT

The distribution of water molecules impacts the protein’s
structure and determines its overall shape. Water molecules
also mediate the interaction between proteins and other small
molecules, the so-called ligands. The presence of water gen-
erally influences the binding capacity of a ligand to a specific
protein site [35,36], a problem of particular interest for the
discovery of new drugs. In practice, water molecules can
occupy ligand-protein interaction sites, and clusters of water
molecules, inducing complex solvation or desolvation ther-
modynamics processes, can deeply affect the thermodynamics
of ligand binding modes. Consequently, accounting for pro-
tein solvation effects is crucial in structure-based drug design
to reliably model the ligand activity through a rational design
of the ligand properties [35,36]. To a certain extent, the pres-
ence of water molecules can be experimentally established
using x-ray crystallography, or other techniques. However,
experiments can present accuracy limitations due to poor
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resolution [37] and crystal structures with resolution >2.7 Å
[38] represent a limit for a reliable modeling of water
molecules and it is then critical to refine the structure using
accurate molecular modeling tools. Therefore a consistent,
reliable, and fast water placement procedure is relevant in
different application scenarios.

The use of grid-based techniques such as 3D-RISM [20] is
useful to complement experimental information, avoiding the
use of long and more expensive, even if accurate, sampling
methods. 3D-RISM has theoretical basis in the statistical me-
chanical integral equation theories of liquids [20]. A grid of
points, on which the equations are solved, has to be defined
in real space around the solute system, e.g., a protein. One of
the main outputs is the solvent structure distribution function,
namely g(r) around that solute. More details about 3D-RISM
can be found by the interested reader in the Supplemental
Material (SM) [39]. A realistic grid size for applications in
DD can easily be represented by a cube with 80 points for
each side, spaced by 0.5 Å, for a total of around 512 000
points. These are quite standard parameters [40–43], even if
the number of grid points rapidly increases for higher accu-
racy in the representation of the solvent distribution. The g(r)
density represents in a continuous fashion (in practice on a
given set of grid points) the water networks around the solute,
and maxima of this function can be associated to stable water
molecules in the region of space where the value is localized
(i.e., the grid point location). Maxima, in the distribution or
in the associated thermodynamics functions, can be mislead-
ing since the structure of the g(r) is potentially not trivial,
representing clusters of water molecules organized around the
solute. Increasing the number of grid points to achieve a better
accuracy has also the effect of increasing the complexity of
decomposing the full density in localized atomic positions.

To address this problem, we translate the search for dis-
crete water molecule positions from a 3D-RISM density to a
Gaussian mixture problem. In this formulation each Gaussian
component represents a water molecule position. There is a
vast literature on learning mixtures of Gaussians in arbitrary
dimensions, especially where a separation condition in the
centers of the Gaussians is imposed [44–47]. Such algorithms
would be in principle suitable for our purposes, since in our
setting a clear separation is naturally required by the min-
imal physical distance between water molecules. However,
it should be noted that these methods are very sensitive to
outliers, where data are corrupted by noise [48]. Although
in this sense robust and efficient algorithms with theoretical
guarantees have been developed [48,49], we have developed
an alternative approach based on an Ising model that presents
certain favorable characteristics: It scales independently of
the number of centers, and it can be applied equally well to
non-Gaussian mixtures. Such algorithm can be implemented
on near-term quantum computers, as shown in the next few
sections in the special case of a neutral atom quantum pro-
cessing unit (QPU).

III. ANALOG QUANTUM COMPUTING
WITH NEUTRAL ATOMS

To address the solvent sampling problem, we propose an
approach based on a neutral atom QPU coupled to a 3D-RISM

computation. The machine employs arrays of rubidium atoms
arranged in arbitrary 2D configurations defined by a layout
of optical traps of the type shown in Fig. 1(a). Each atom is
described by its position �qi and its internal state, which can
be in general an arbitrary superposition of the ground state |0〉
and a highly excited Rydberg state |1〉.

A laser system is tuned close to the resonant frequency of
the |0〉 to |1〉 transition, so that each atom is effectively a qubit
living in a two-dimensional Hilbert space. The programmable
time-dependent control fields of the driving laser are the Rabi
frequency and detuning, denoted �(t ) and �(t ), respectively.
After evolving for a period of time T , the system can be mea-
sured in the computational basis by a fluorescence imaging
process that will find certain atoms in |0〉, while the rest are
inferred to be in |1〉 [9].

The term ground state will be used in two different con-
texts. The ground state of a single isolated atom is denoted |0〉,
and the all-ground state of a noninteracting M-qubit system
refers to the state |ψ0〉 := |0〉 ⊗ · · · ⊗ |0〉 = |0〉⊗M which is
often the initial state of any quantum algorithm. The ground
state of the system coupled with interactions and a driving
laser, however, corresponds to the state of minimal energy of
the Hamiltonian, which is not necessarily the all-ground state.
For instance, the Hamiltonian at � = 0 and � > 0 can be
related to a known graph-theoretical problem. By interpreting
each neutral atom as a vertex in a graph, and connecting with
an edge vertices situated at a distance closer than a certain
threshold dictated by the physics of interactions, the ground
state is a solution to the maximum independent set (MIS)
problem [50], i.e., the problem of selecting the largest number
of vertices in a graph that are not connected to each other
directly by an edge. The connection between neutral atoms
and the MIS problem has been extensively explored in recent
experimental implementations with up to 256 qubits [51,52].

In the following we will show how to translate the water
placement problem to a combinatorial optimization problem,
and how the neutral atom Hamiltonian can be used to sample
approximate solutions via an adiabatic quantum algorithm.

IV. A QUANTUM ISING MODEL FORMULATION
OF THE PLACEMENT PROBLEM

To study the water placement problem from a quantum
perspective, we first place ourselves in the formalism of 3D-
RISM. Indeed, this algorithm produces a continuous map of
the oxygen atom density inside the protein cavity. We want
to translate this continuous information into a discrete set of
water molecule positions. In order to do so, we assume that
each water molecule randomly oscillates around a definite
stable position in the protein cavity. If one tracks over time
the oscillating motion of a water molecule and assigns to each
unit of space the probability of finding the molecule there,
then the resulting probability map should resemble a Gaussian
of a certain width centered around the stable position. In this
ansatz, the 3D-RISM density is interpreted as the sum of all
the Gaussians associated to each water molecule in the cavity.
Therefore, the joint density is decomposed into several single-
particle densities expressing the uncertainty in the position of
each water molecule, and the problem of locating the position
of water molecules is transposed to the problem of finding
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(a)

(b)

(c)

FIG. 1. (a) An example of layout of optical traps in a neutral atom QPU. Each circle represents a site were a Rubidium atom can be trapped
and used for quantum computations. The units correspond to the physical size of the trap layout in μm. (b) and (c) Schematic example of an
adiabatic path parametrized by �i(t ) and �i(t ) in the Rydberg Hamiltonian (13) for three qubits. The Rabi frequency is kept the same for all
qubits, so �i(t ) = �(t ) for all i, and it vanishes at the extremal points of the path. The Detunings �i(t ) are ramped up from a negative value
to some final value related to the one-body terms of the problem Hamiltonian (3), and therefore they will be different for each qubit.

the best Gaussian mixture that approximates the 3D-RISM
density.

Formally, a protein cavity can be modeled as a connected
subset C ⊂ R3 and a 3D-RISM density is a scalar function
g : C → R normalized such that

∫
C g(r)dr = 1. Denote by

G(μ, σ 2) a normalized isotropic Gaussian with mean μ ∈ R3

and variance σ 2. For practical purposes, we restrict the pos-
sible values of the mean of the Gaussians to a finite discrete
lattice Q := {q1, . . . , qM} ⊂ C rather than the whole contin-
uous space. Assigning a binary variable ni ∈ {0, 1} to each
point of Q, an arbitrary sum of Gaussians can be written:

M∑
i=1

G(qi, σ
2)ni. (1)

The value of each ni will then act as a switch that indicates
whether or not a Gaussian is placed in position qi. We want
to find the optimal assignment of {ni}i=1,...,M such that the
following L2 norm is minimized:

I2 :=
∫
C

(
g(r) −

M∑
i=1

G(qi, σ
2)(r) ni

)2

dr. (2)

Expanding the square, one sees that I2 defines the energy of
an Ising model:

I2 = K −
M∑

i=1

�ini +
M∑

i �= j=1

Vi jnin j, (3)

where K is an unimportant constant, and the coefficients of
the linear and quadratic terms are given by:

�i := 2
∫
C

g(r) G(qi, σ
2)(r) dr −

∫
C

(G(qi, σ
2)(r))2 dr (4)

and

Vi j :=
∫
C
G(qi, σ

2)(r) G(q j, σ
2)(r) dr. (5)

For fixed σ 2, the coefficients can be computed numerically,
but it is helpful to gain further insight into the interaction term
Vi j . When the Gaussians are concentrated far enough from the
boundary of C, it is possible to approximate the integral by
extending the integration to the whole of R3. By performing
the change of variables r → r + qi, the term becomes the
convolution of two Gaussians centered in zero:

Vi j 	
∫
R3

G(0, σ 2)(r)G(ri j, σ
2)(r)dr

= [G(0, σ 2) ∗ G(0, σ 2)](ri j ), (6)

where ri j = q j − qi. It is a known result that the convolution
of two Gaussians is itself a Gaussian, therefore one has:

Vi j ∼ exp(−α|ri j |2). (7)

Equation (3) is therefore a classical Ising model with exponen-
tially decaying interactions. In addition, the water placement
problem requires two water molecules to be placed at a min-
imal physical distance from each other. This translates to
an extra constraint on the Ising model (3) in the form of
ni = n j = 1 ⇒ |ri − r j | > R for some R > 0. If {n∗

1, . . . , n∗
M}

is the ground state of the constrained Ising model, then the
solution to the water placement problem is then defined as:

W := {qi ∈ Q | n∗
i = 1}, (8)

N :=
M∑

i=1

n∗
i , (9)

with N the number of placed water molecules and W their
positions. This formulation has far-reaching applications to
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general finite Gaussian mixture models. See the SM for more
details.

The quantum version of an Ising model is obtained by
replacing the binary variable ni with the number operator n̂i,
whose spectrum is {0, 1}. In terms of Pauli matrices, the num-
ber operator is n̂i = (σ̂ z

i + 1)/2. Performing the substitution
ni → n̂i, we can establish a direct identification between the
classical Ising model (3) and the (diagonal) Hamiltonian of a
system of interacting spins located in q1, . . . , qM :

I2 → Î2 := −
N∑

i=1

�in̂i +
N∑

i �= j=1

Vi j n̂in̂ j (10)

which we will be referring to as the problem Hamiltonian.
If H denotes the Hilbert space of the quantum system and
B(H) denotes its computational basis (the basis in which the
operator in Eq. (10) is diagonal), then the ground state of
(10) corresponds to the bitstring that minimizes (3), but it is
now seen as the computational basis vector |e∗〉 ∈ B(H) that
minimizes the expectation value of Î2:

|e∗〉 := arg min
|e〉∈B(H)

〈e| Î2 |e〉 . (11)

The position and number of the water molecules are then
given by:

W := {qi ∈ Q | 〈e∗| n̂i |e∗〉 = 1}

N :=
M∑

i=1

〈e∗| n̂i |e∗〉 . (12)

V. SOLVING THE QUANTUM ISING PROBLEM
WITH A LOCAL RYDBERG HAMILTONIAN

A system of neutral atoms coupled to an optical laser
can be crafted in such a way as to evolve according to the
following time-dependent Hamiltonian:

Ĥ (t ) =
M∑

i=1

�i(t )

2
σ̂ x

i −
M∑

i=1

�i(t )n̂i +
M∑

i< j=1

Ui j n̂in̂ j, (13)

where �i(t ) is the Rabi frequency of the driving laser on
qubit i, �i(t ) is the detuning of the laser, Ui j is the interaction
coefficient between Rydberg excitations:

Ui j = C6

|ri j |6 , (14)

and C6 is a physical constant. Before describing each term
more in detail, one can immediately see the similarity be-
tween (10) and (13), and consequently why systems of neutral
atoms might be particularly suited for solving such a problem.
The biggest difference lies in the coefficient of the two-body
term: In the Rydberg Hamiltonian Ui j decays as a power law,
while in the problem Hamiltonian Vi j decays exponentially.
However, one should keep in mind that (10) does not directly
encode the proximity constraint between neighboring excita-
tions, which is taken care of precisely by the r−6 part of the
Rydberg Hamiltonian.

To see this point more explicitly, We compare the two
functions e−r2

and r−6. At r = 0 the former is capped at

a finite value, while the latter goes rapidly to infinity. Un-
der the problem Hamiltonian Î2, two nearby qubits i and j
subject to strong one-body terms will be able to be excited
simultaneously, since there always exist finite values of �i, � j

that can overcome the interaction penalty Vi j . In the Rydberg
Hamiltonian instead the physical repulsion between Rydberg
excitations becomes so strong at close distance that whole
sectors of the Hilbert space characterized by nearby excita-
tions are effectively inaccessible. This means that using the
Rydberg Hamiltonian (13) as a replacement for the problem
Hamiltonian (10) would only be valid for those problem in-
stances where low-energy states of the problem Hamiltonian
have no closeby excitations. We expect, based on physical
grounds that is indeed the case, since excitations represent
the positions of physical objects, water molecules, that would
naturally be subject to strong repulsion at close distance. This
translates to the impossibility of having in Î2 linear coeffi-
cients that prevail over the interactions at close distance. To
understand better this point, we show in Fig. 2 the close-,
medium-, and long-range interaction sectors. In the r ∼ 0
region (sector 1 in Fig. 2) the Rydberg interaction diverges,
as opposed to the exponential interaction which is capped at
a finite value. This is the largest numerical discrepancy be-
tween the two potentials; however, the numerical discrepancy
is not necessarily relevant: At close range, both the Rydberg
and the problem Hamiltonian are strong enough to prevent
nearby excitations; they only differ in their absolute strength.
The relevant sectors for the dynamics are the medium- and
long-range ones (sector 2 in Fig. 2), where interactions are
comparable to the linear coefficients of the Hamiltonian. For
this reason the similarity in the behavior of the two Hamiltoni-
ans is better understood by neglecting the close-range sector 1.

Moving away from sector 1, we give now an indication
of how well the medium- and long-range interactions match
in both models. To this end, we selected a test problem with
14 qubits, and calculated the total interaction strength felt
by each qubit using both interaction potential forms, i.e.,
for qubit i:

∑
j Vi j and

∑
j Ui j . However, we include in the

sum only pairs at a distance lying in sector 2 of Fig. 2, in
order to see past the close-distance discrepancy between the
two interaction potentials discussed above. The plot is shown
in Fig. 2. Although not matching perfectly, the qualitative
behavior is nearly identical, reflecting the importance of the
interaction strength being in general a decaying function of
the distance between qubits, giving indication of the fact that
the Rydberg Hamiltonian could indeed work as a replacement
for the problem Hamiltonian.

Having control over the Rydberg Hamiltonian (13), the
solution to the water placement problem can be found by
using the quantum adiabatic algorithm [53]. In a nutshell, the
strategy is to identify a path Ĥ (t ) in the space of admissible
Hamiltonians for some time parameter t ∈ [0, T ] such that
the system is initialized in the ground state of Ĥ (0) (which
therefore has to be known and easy to prepare), while the only
known property of the ground state of Ĥ (T ) is that it encodes
the solution to a hard combinatorial optimization problem. If
the evolution is performed slowly enough, then the system
remains at all times in the instantaneous ground state of Ĥ (t )
for all t , and therefore measurements of the system at t = T
give the solution to the optimization problem.
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(a)

(b)

FIG. 2. (a) In a test system with 14 qubits, the total medium- and
long-range interaction strength felt by each qubit is reported for the
problem Hamiltonian (blue) and the Rydberg Hamiltonian (orange).
The curves present a comparable behavior confirming the viability of
using the Rydberg Hamiltonian as an approximation to the problem
Hamiltonian. The discrepancy in the raw numerical value of the
interaction strength in the two models is just a consequence of a scale
difference between the two, which can be adjusted by adjusting the
scale of the linear coefficients. (b) Plot of the corresponding problem
and Rydberg interaction strength as a function of particle-particle
distance; the threshold described in the text corresponds to the r value
at the crossing between sector 1 (yellow region) and sector 2 areas.

We can exploit the quantum adiabatic evolution (QAE) al-
gorithm by choosing Ĥ (0) to be (13) with �i(0) = 0, �i(0) =
−c for some large positive constant c, so that the ground state
of Ĥ (0) is, to a very good approximation, the all-ground state
|0〉⊗M . The final Hamiltonian Ĥ (T ) instead is chosen in such
a way as to maximize the overlap between its low-energy
spectrum and the one of the problem Hamiltonian Î2. This can
be achieved by mapping the one-body terms �i in (3) to the
final detunings �i(T ) in (13). A schematic example of �i(t )
and �i(t ) is shown in Figs. 1(b) and 1(c).

The QAE algorithm, described in Algorithm 1, can be
tested using the Pulser classical emulator [54].

We first tested this approach using synthetic densities. Re-
sults can be found in the Supplemental Material [39].

FIG. 3. (a) MUP-I protein complexed with the small molecule
2-sec-butyl-4,5-dihydrothiazole (PDB entry: 1i06.pdb), inside the
protein binding pocket. The small molecule is represented in licorice
style; the red spheres represent the two oxygen atoms of the crystal
water molecules inside the protein binding pocket, while the protein
scaffold is represented in gray. (b) The 3D-RISM density isosurface
(isovalue 5.5) superposed to the protein and ligand cocrystal struc-
ture; the density is represented in wireframe style, in cyan. The VMD
software is used for the visualization.

VI. LOCAL ALGORITHM EMULATION
USING 3D-RISM DENSITIES

To test the algorithm just presented, we compute the 3D-
RISM solvent density within a real protein. We chose the
major urinary protein (MUP-I) pocket, where a small ligand,
the 2-sec-butyl-4,5-dihydrothiazole, is binding to the protein
(see Fig. 3). This choice is motivated by the fact that the
protein-ligand complex structure has been cocrystallized, its
complete atomic structure being available from the Protein
Data Bank (PDB). Interestingly, the crystal structure presents
two structural (i.e., stable) water molecules in the vicinity of
the ligand. Such water molecules are clearly visible in the 3D-
RISM density, which exhibits high density spots in the same
region as the positions of the oxygen atoms belonging to the
two water molecules present in the protein crystal structure,
near the ligand (see Fig. 3).

Despite the algorithm being well defined in any dimen-
sion, only a few current generation neutral atom quantum
computers can operate in 3D [55], while the majority

ALGORITHM 1. QAE algorithm that solves the corresponding
Ising problem in Eq. (10) using local lasers.

inputs: reference 2D density g(�r) and set of qubit positions
Q := {�qi}.
outputs: water molecule positions W and their number N .
1: procedure QAEAlgog(�r), { �qi}
2: Build the adiabatic pulses �(t ),�i(t ) as shown in Figs. 1(b)

and 1(c), where the final detunings �i(T ) are obtained from the
mapping of Eq. (15) and maxt �(t ) is defined to enforce the
correct Rydberg blockade

3: Select |e∗〉, the basis state sampled from the quantum state
after adiabatic evolution, that best represents g(�r)

4: return (W,N ), the positions and number of water
molecules in the protein cavity extracted from |e∗〉 as defined in
Eq. (12)
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FIG. 4. (a) Example representation of a 3D-RISM density as a
closed isosurface, with a define, constant, density value, as obtained
starting from the AmberTools output, discretized on a given chosen
grid of point. (b) Projection of the 3D-RISM density on 2D planes,
namely slices, passing through the cross section of the density; each
slice is a 2D density map, where the 3D-RISM density value dis-
cretized on the grid is projected on the plane according to a proximity
criterion. (c) Process of selection of the qubits array on each 2D
density slice: Starting from the slice, a regular mesh of traps is
disposed uniformly on the density, to then select a limited number of
locations where to place qubits according to the local density value;
a threshold on the density is set, so that only traps close to a defined
density or higher will be occupied.

operates in 2D. For this reason we cut the 3D-RISM density
(which, by construction, is defined in three dimensions) into
two-dimensional slices, and we apply the algorithm separately
to each slice. For simplicity, we restrict ourselves to a small
region of the protein around the two crystal water molecules.
The plane corresponding to the first slice is defined by the
axis connecting the two crystallographic water molecules and
a third random direction. A series of slices is then produced
from this first one in the direction normal to this plane, sepa-
rated by a spacing of 0.5 Å, for a total of six different slices.
To smooth the 3D-RISM density in each slice, we apply a
Laplacian of Gaussian filter as provided in the SciPy Python
library [56], with a σ = 8 (a.u.). The high-density regions of
each smoothed-out slice are then covered with a qubit register.
The process is depicted schematically in Fig. 4. Overall, this
test implementation requires 4 to 14 qubits, which remains in
the range of qubit count that can be classically emulated with
high precision by a state vector solver with a realistic noise
model. In order to mimic a physical implementation, we fit
the registers in the same trap layout of Fig. 1(a), as shown in
Fig. 5. The density slices with associated qubit registers are
shown in Fig. 6.

For each register, we design an adiabatic pulse to find the
low energy states of the Rydberg Hamiltonian (13). The final
detunings �i(T ) are computed from the �i coefficients of
each problem Hamiltonian by using the following heuristic
mapping:

�̃i := �i − 1

|N (i)|
∑

j∈N (i)

� j, �i(T ) := �̃i
�max

maxi |�̃i|
, (15)

where N (i) denotes nodes situated within a Rydberg blockade
distance from node i, and �max is a fixed value. The mapping

(15) can be understood as a two-step process. First, each �i

is shifted so that it is centered around the mean value of
neighboring nodes, obtaining the intermediate detunings �̃i.
Then, the �̃i are rescaled so that the maximum one cor-
responds to a certain fixed value �max, obtaining the final
value �i(T ).

We simulate the resulting adiabatic dynamics with Pulser,
and sample the final state 1000 times. For each computational
basis state sampled, we calculate its cost according to the
problem Hamiltonian, and select as a solution the one with
the minimal cost. The resulting sampling, where the basis
states are represented as bitstrings, is shown in Fig. 7 for
all six slices. The orange bar in each plot identifies the bit-
string corresponding to the best solution for that slice. The
fact the bitstring with the lowest cost is not always the most
sampled one is a consequence of the differences between the
low energy spectrum of problem and Rydberg Hamiltonians,
which is due to the different nature of the interaction terms.
The main limitation of the algorithm is indeed getting the two
Hamiltonians to match as closely as possible, but on the other
hand no pulse shaping or variational procedure is needed,
making it in principle scalable to larger sizes without much
of an overhead.

Once the best bitstring for each slice is identified, the
coordinates of the excited qubits are mapped back to coordi-
nates in the protein cavity, obtaining a list of water molecule
positions. Since each 2D slice is treated independently, this
procedure produces several water molecules, some of which
might actually be the same water molecule replicated through-
out several slices. To avoid this replica effect, we chose to
employ a k-means algorithm as provided in the scikit-learn
Python package [57], to bring down the final number of water
molecules to just 2. The final prediction for the water molecule
positions in the protein cavity is shown in Fig. 8(b). The
agreement with the known crystallographic positions is good,
with a maximum discrepancy of 0.83 Å.

VII. EXPERIMENTAL MEASUREMENT ON QPU
EXPLOITING THE LOCAL ALGORITHM RESULTS

The emulations presented in the previous section corre-
spond to the capabilities of a neutral atom QPU capable of
local addressing. At the time the experiment was performed,
no commercial neutral atom device was capable of local
addressing. Only recently a neutral atom device with local
addressing has been made available [52]. For this reason we
tested here instead a device with global addressing.

In this simplified setting we exploit the results obtained
in the previous section with the local algorithm to perform
a grid-based search of the best solution for each register un-
der a constant global pulse. Schematically, the experiment is
comprised of the following steps:

(1) For each register presented in Fig. 6 perform a numer-
ical emulation of the local algorithm to select the bitstring bi

that encodes the solution to the water placement problem for
the ith register.

(2) Prepare the registers in the QPU in the all-ground state
|0〉⊗N .

(3) Evolve the state under a constant pulse �(t ) = � =
const., �(t ) = � = const. for a time T .
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FIG. 5. Registers of Fig. 6, reshaped to fit in the trap layout available on the QPU [see Fig. 1(a)]. The units correspond to the physical
dimension of the registers in micrometers.

(4) Estimate the expectation value of the projector |bi〉 〈bi|
by averaging over 500 measurements in the computational
basis.

(5) Repeat the procedure for several values of � and T
spanning a two-dimensional parameter space, keeping � fixed
to a value that would enforce nearest-neighbour blockade.

The parameter space window was pre-selected to explore a
region where the probability of measuring the correct bitstring

is large and presents a good contrast. The parameters space
being composed of 8×9 = 72 points, each point obtained by
attempting 500 measurements of the final state, gives a total
of 36 000 measurements per register. The average execution
time per register was measured to be 2 h and 47 min, resulting
in a raw repetition rate (number of measurements per second)
of 3.4 Hz. On 500 measurements attempted, on average 377
were successful, the unsuccessful ones being those for which
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FIG. 6. Two-dimensional 3D-RISM density slices and qubit registers used in the local algorithm emulation. The registers vary in size from
4 to 14 qubits. The units displayed in the x and y directions correspond to the 3D-RISM discretization grid, and they are not representative of
neither the size of the protein cavity in Å, nor the size of the qubit registers in μm. To get an idea of the physical size of the registers, consider
the spacing between neighboring qubits to be fixed at 5 μm.

initial state preparation failed. This gives a state preparation
success of 75.4%, and an effective repetition rate of 2.5 Hz.

The experimental measurements of the projector for all
four registers are shown in Fig. 9, together with theoretical
expectations given a reasonable estimate for false-positive and
false-negative error rates on the machine. On a qualitative
level, the experiments can be seen to be compatible with
theoretical predictions obtained from emulation. These results
indicate that meaningful solutions to the water placement
problem belong to the space of physically allowed configu-

rations of the QPU. To our knowledge, such use of Rydberg
physics had not been explored before in a real quantum
physics experiment. Furthermore, the experiment shows that
probability landscapes in this simplified setting can be accu-
rately resolved by the machine, even in the absence of error
correction or error mitigation techniques. This is a key result
knowing the small magnitude of the involved probabilities that
are capped at only a few percentages in certain systems.

In order to better understand and quantitatively validate
the experimental data produced by the setup, we considered
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FIG. 7. Histogram of 1000 samples of the quantum state obtained with the local algorithm based on adiabatic evolution. Each plot
corresponds to one of the registers shown in Fig. 6. The orange bar corresponds to the bitstring with the minimal cost among the ones
that were sampled, and it is taken as the solution of the water placement problem for that register.
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FIG. 8. (a) MUP-I protein complexed with the 2-sec-butyl-4,5-dihydrothiazole, represented as in Fig. 3. (b) Zoom inside the protein cavity:
oxygens of the crystal water molecules position (red) compared with the placement performed by the QAE Algorithm 1, combining all the
slices (cyan semitransparent spheres); the cyan wireframe represents a 3D-RISM isosurface. (c) Zoom inside the protein cavity: oxygens
of the crystal water molecules position (red) compared with the placement performed by the VQA Algorithm 2, using a single slice (blue
semitransparent spheres); the cyan wireframe represents a 3D-RISM isosurface.

a more sophisticated error model. Calibration of the control
devices can only be achieved with finite precision, result-
ing in static uncertainties in global spacing of the atomic
array (≈1%) or in the spatial homogeneity of � on this
array (≈4%). In addition, fluctuations of laser intensity in-
duces a shot-to-shot variation of � (≈5%). While the laser
frequency can be set with high precision, variation in � indi-
rectly alters �, resulting in small detuning shifts of the order
of 2π×0.06 MHz. Decay processes are also taken into ac-
count by solving the Master equation with an effective decay
rate �eff/2π . Finally, the measurement phase is inherently
flawed by several physical processes like atomic losses due
to background-gas collisions or Rydberg state finite lifetime,
whose effects can all be encompassed as first approximation
into two detection error terms, ε and ε′. The various values of
experimental and noise parameters are usually fitted by com-
paring the expectation value of easy-to-access observables
between simulated and experimentally acquired data. For in-
stance, emulating the dynamics described by the Hamiltonian
(16) in presence or absence of noise processes and measuring
the occupation n̂i at each site enables to estimate for the
magnitude of the various error sources. An example of fitting
curves at a given detuning � for the first register is shown in
Fig. 10. While the errors on calibration parameters are directly
measured on the experiment, the remaining effective noise
parameter are found to be �eff/2π = 0.05 MHz, ε = 2%, and
ε′ = 18%.

Overall, given the experimental errors sources that were
discussed, the experimental data appear fully compatible with
the emulated ones (see Figs. 9 and 10) confirming the viability
of the proposed approach on an actual neutral atom device.
We want to stress here that thanks to the quantum nature of
the algorithm, two water molecules are guaranteed to never be
placed too close to each other, a constraint that is imposed by
hand in classical approaches such as Placevent [58] or GAsol
[59] with the risk of incurring in suboptimal local solutions or
nonergodicity. This constitutes one of the main advantage of
the algorithm.

VIII. BEYOND A LOCAL ALGORITHM:
VARIATIONAL ALGORITHM USING A
GLOBAL RYDBERG HAMILTONIAN

As we discussed, technical limitations of the present hard-
ware prevent us from using a local Hamiltonian as in Eq. (13).
However, through emulation, we can still plan for an algo-
rithm that will be able to run on more short-term devices using
a global Rydberg Hamiltonian:

Ĥ (t ) = �(t )

2

M∑
i=1

σ̂ x
i − �(t )

M∑
i=1

n̂i +
M∑

i< j=1

C6

r6
i j

n̂in̂ j . (16)

Such formulation allows to further approximate the prob-
lem Hamiltonian in Eq. (10), since the linear term in the qubits
excitation is no longer local. A variational procedure is then
established to minimize the cost function 〈
| Î2 |
〉, where
Î2 is the problem Hamiltonian (10) and |
〉 is a quantum
state obtained from the quantum evolution under the physical
Hamiltonian (16).

The variational procedure models the cost function land-
scape using a set of laser parameters {�k (t ),�k (t )} indexed
by an integer k as the result of a Bayesian search algorithm,
for which the solution is computed as:

(�(t ),�(t ))∗ = arg min
�k (t ),�k (t )

{〈
k (T )| Î2 |
k (T )〉}, (17)

where |
k (T )〉 is the quantum state obtained from an evo-
lution of duration T with paramters �k (t ),�k (t ). This
algorithm is therefore part of the VQA family. The full VQA
developed for this scope is described in Algorithm 2.

The objective of the numerical procedure is to maximize
the probability of sampling the basis state (11), from the op-
timized N-qubits wave function. This corresponds to finding
one or more configurations of excited qubits best representing
the 3D-RISM density distribution as a sum of gaussian distri-
butions. The final output is still described by the quantities in
Eq. (12).
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FIG. 9. Expectation value of the projector operator |bi〉 〈bi| associated to the solutions bi, i = 1, 2, 3, 4 of the four of the 3D-RSM 2D slices.
The area scanned is a two-dimensional region parametrized by pulse duration (horizontal axis) and detuning (vertical axis) of the driving laser.
The plot on the left represents the experimental values, while the plot on the right represents the values obtained from a classical simulation
of the Rydberg Hamiltonian with measurement errors ε = 0.02 and ε′ = 0.15 related to the probability of false-positive and false-negative
detection.
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FIG. 10. (a) A laser pulse of constant � and � is applied for various times on the first atomic register comprising of 4 qubits (colored).
(b) For a fixed detuning �/2π = −0.87 MHz, the expectation value of the occupation of each qubit site, 〈ni〉, is plotted for noiseless simulation
(dashed), noisy simulation (line) and experimental data (dot). The error bars and uncertainty regions are the standard deviation computed over
Nshots = 500 samples, σni = √〈ni〉(1 − 〈ni〉)/Nshots.

To test the performances of the algorithm we use again
simple synthetic densities to limit the number of qubits to
employ, so that a cycle of optimization, emulating multiple
times the quantum evolution of the system on the CPU, is
performed for each test case. The results are reported in the
Supplemental Material [39]. They show that the algorithm is
able to give the correct positions of the Gaussian distributions
centroids. Due to the high computational cost involved in
the emulation of a numerical solution of the time-dependent

ALGORITHM 2. Hybrid quantum-classical VQA using global
lasers, with cost function issued from the Ising model, namely
〈
| Î2 |
〉.

inputs: reference 2D density g(�r) and set of qubit positions
Q := {�qi}. nc and nr < nc are parameters for the Bayesian
optimization procedure, being, respectively, the total number of
cycles and the number of cycles initiated with randomized values
of laser parameters � and �.
outputs: water molecule positions W and their number N .
1: procedure VQAlgog(�r), { �qi}, nr, nc

2: for k = 1, . . . , nc do
3: if k � nr then
4: �k (t ), �k (t ) are generated uniformly at random
5: else
6: �k (t ),�k (t ) are obtained as trial parameters for the

Bayesian minimization of the cost function in Eq. (17)
7: Perform quantum evolution with parameters (�(t ),�(t ))∗,

the laser parameters that minimize the cost function according
to Eq. (17), to obtain |
∗(T )〉

8: Select |e∗〉, the basis state sampled from |
∗(T )〉 that best
represents g(�r)

9: return (W,N ), the positions and number of water
molecules in the protein cavity extracted from |e∗〉 as defined
in Eq. (12)

Shrödinger equation, we could not extend our tests towards
larger systems.

Furthermore, We used as an additional test case one
of the slices obtained from the 3D-RISM density in the
MUP-I system already presented for the QAE approach. The
sliced density, together with the qubit register, are shown in
Fig. 11(a). We perform 50 cycles of Bayesian optimization,
using 200 samples to represent each wave function produced
by the corresponding set of laser parameters. The Gaussians
used to dress the excited qubits, so to assign scores to the
corresponding bitstring, have amplitudes proportional to the
local value of the 3D-RISM density and an uniform variance
σ 2 = 5 (a.u.). The final state obtained using the best laser pa-
rameters is represented in the histogram in Fig. 11(b), in terms
of the computational basis. From the resulting final wave
function, we obtain the 3D coordinates of the oxygen atoms
of the placed water molecules. In Fig. 8 we report the best
water molecules configuration found by the algorithm (cyan
atoms), corresponding to the best bitstring |101001〉 found in
the optimization. We want to stress here that also two excited
qubits states, as |010100〉 and |010001〉 show good sampling
probability [see corresponding histogram in Fig. 11(b)].

Additional emulated experiments are performed on all the
other slices and the results are reported in the SM. The
algorithm exhibits equivalent performances in all these cases.
Again, we stress that this variational quantum algorithm,
like the version using the local lasers, prevents two water
molecules from being placed too close to each other, a con-
straint that is imposed by hand in classical approaches.

IX. ALTERNATIVE FORMULATIONS
AND QUANTUM ADVANTAGE

There exists a general connection between physical qubit
Hamiltonians on one side and combinatorial optimization
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FIG. 11. (a) Representation of the smoothed 3D-RISM density slice used for testing VQA, with the six qubits, orange and blue circles,
array used for the emulation on CPU through Pulser. The orange circles are used to highlight the solution obtained from the emulation,
corresponding to the bitstring |101001〉. (b) Histograms reporting the six-qubit quantum state composition, in terms of basis states, as obtained
from the VQA emulated on CPU, without noise, with most sampled bitstring highlighted.

problems formulated in a quadratic minimization framework
on the other [60,61]. Solving combinatorial optimization
problems through quantum annealing boils down to finding
the ground state of the qubit Hamiltonian, which maps to the
ground state of the combinatorial optimization problem, using
algorithms such as the quantum adiabatic algorithm [53] or
QAOA [62]. See Ref. [63] for a recent review on this subject
for neutral atoms. Results regarding the performance of the
quantum algorithms compared to classical approaches such as
simulated annealing [64] are mostly numerical in nature, and
not decisive. Depending on the specific problem instance, a
quantum speedup is only possible at times [65–68].

The aim of the present work is to showcase a complete
end-to-end solution from problem formulation and algorithm
development to implementation on a real neutral atom QPU.
We are not interested at this stage to show unequivocal
quantum computational advantage over classical methods.
A quantification and comparison of speed and accuracy of
both classes of methods has not been investigated extensively
enough for such a claim. A more comprehensive study in this
sense might include an implementation of the present algo-
rithm on other quantum architectures, as well as alternative
quantum formulations.

As an example, the algorithm presented could be imple-
mented on quantum annealers that allow configurability of
all the coupling strengths, such as the D-Wave Advantage
System [69]. However, the flexibility in atomic position, high
scalability, and long coherence times of neutral atoms would
arguably constitute a major asset in potential future large-scale
implementations. Moreover, an important improvement of the
present quantum algorithm is treating the full 3D problem
instead of working with 2D slices. This would happen natively
in neutral atoms once the technology will be mature enough,
while it would introduce a large overhead in architectures with
a rigid and incomplete 2D connectivity.

Among possible quantum alternatives to the present ap-
proach, we want to highlight [25,28], based on a mapping
between docking and the maximum weighted clique problem

[70]. In light of the trivial mapping between the maximum
weighted clique problem and the maximum weighted inde-
pendent set problem on the complement graph [71], such
approach is of potential interest in neutral atom quantum
computing. In terms of alternative QUBO formulations of
the docking problem, we highlight [30,31], which have been
implemented on D-wave annealers.

On the other hand, a large variety of classical methods and
software exists to address the water location problem, trying to
tackle the intrinsic complexity of the task when dealing with
complex systems [35,38,72]. To define a quantum advantage,
also the performances of such methods need to be assessed
and compared to a quantum alternative. Many of those rely on
indirect approaches, to avoid explicit, direct atomistic, physics
based dynamics simulations, to reduce the computational cost
of sampling large phase spaces. At the best of our knowledge,
available reviews are mostly comparative literature analysis,
but no coherent studies on the performances of all or a subset
of water location methods exist, so that a cross-comparison
between each method could be possible, to fairly evaluate
their accuracy and computational cost. More details can be
found, by the interested reader, in the Appendix. We note
here that a detailed benchmark of these methods could be
the object of a further development of this project. Such a
benchmark could be preliminary to a further investigation
on the scaling of our quantum approach with respect to
problem size.

X. CONCLUSION AND PERSPECTIVES

In this work we presented two quantum algorithms able
to sample equilibrium solvent configurations within proteins.
We proposed a first fully local quantum adiabatic evolution
version to be used on next generation devices, whereas a sec-
ond version, belonging to the variational quantum algorithm
family of algorithms, has also been introduced as a viable
short-term alternative. This class of algorithms correspond
to quantum versions of the 3D Reference Interaction Site
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Model (Quantum-3D-RISM or Q-3D-RISM) since they use
continuous solvent distributions as initial input. As a proof of
concept, both algorithms have been shown to successfully be
able to locate density maxima in nontrivial densities. In the
case of the second VQA algorithm, a classical optimization
is performed to find the best set of laser pulses, capable
of producing the expected distribution of maxima. A test to
confirm that solutions of the QAE emulations can be found
in a real experiment with a suitable paramterization of the
control fields was implemented on a neutral atom QPU, which
represents to the best of our knowledge the first application of
an analog quantum algorithm to the protein solvation prob-
lem. Presently, we limited ourselves to a qubit count of 14.
This number was constrained by the present machine layout
[see Figs. 1(a) and 5], by the state vector emulation capabil-
ities (roughly 16 qubits can be emulated easily with Pulser)
and the need of coupling Pulser and the actual QPU for the
quantum adiabatic evolution model implementation. In that
connection, concerning the local algorithm, future availability
of time-dependent pulses and local addressing will totally
remove the need of the Pulser emulation to prepare QPU data.
In the same line, only time-dependent pulses are required for
the VQA version of Quantum-3D-RISM: It should enable us
to perform larger simulations at short term. Moreover, since
the quantum versions of 3D-RISM comes with the native
advantage of preventing water molecules from being placed
on top of each other, it will be interesting to compare the
performances of the classical and quantum versions of 3D-
RISM since the next QPU implementation will provide us
with the possibility to test at large scale the accuracy of such
techniques. To do so, a careful study of the machine noise
will be necessary but one key advantage of analog computing
is to exhibit relatively constant noise levels with increasing
system size making us optimistic about the prospect of QPU
simulations encompassing a high number of qubits.

In conclusion, it will be possible, with further techno-
logical advancing, to prepare any molecular system with
such algorithms in order to couple them to state-of-the-art
molecular dynamics engines [73,74] for further properties
evaluations. Overall, this Quantum-3D-RISM (Q-3D-RISM)
family of algorithms demonstrates promises in predicting the
solvation structure within biomolecular systems of interest for
drug discovery applications, providing concrete use cases for
the application of analog quantum computing in life sciences.

ACKNOWLEDGMENTS

This work was made possible thanks to the Pack Quan-
tique grant from région Ile de France and GENCI, project
ACQMED (Convention No. 20012758). Funding from the Eu-
ropean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program, project
EMC2 (Grant No. 810367), is also acknowledged (J.-P.P) as
funding from PEPR Epiq (ANR-22-PETQ-0007) and HQI
programs. The authors thank the Fresnel team (Pasqal) for
their support: J. Armougom, D. Benvenutti, L. Beguin, L.
Bourachot, J. Briand, C. Briosne Frejaville, N. Carrez, T.
Cartry, A. Charpentier, D. Claveau, L. Colin, G. Cournez,
L. Couturier, J. De Hond, S. Desire, A. Dumas, S. Dutartre,
P. Favier, G. Firenze, D. Kaczor, C. Hamot, G. Herce, J.

Heurtebize, V. Hully, B. Labarre, L. Lassabliere, H. Le Bars,
L. Leclerc, A. Lindberg, G. Meriaux, F. Nambi, T. Pansiot, G.
Pariente, J. Pellegrino, L. Ponsot, S. Roche, H. Silverio, G.
Villaret, and J.-M. Wipff.

M.D. and D.L. performed simulations and contributed
code; M.D., D.L., N.G., P.M., S.A., J.S., J.F., L.-P.H, and
J.-P.P contributed methodology (theory); the Fresnel team and
L. H. designed and performed the experiments; M.D., D.L.,
the Fresnel team, N.G., L.-P.H., L.H., and J.-P.P. analyzed
data; M.D., D.L., part of the Fresnel team, L.-P.H., L.H., and
J.-P.P. wrote the paper with the input of all authors; and L.H.
and J.-P.P. designed the research.

APPENDIX A: QUANTUM COMPUTATIONAL
RESOURCES

For the quantum computing sequences, we make use of
Fresnel, an industrial neutral atom QPU made of single
87Rb atoms trapped in arrays of optical tweezers, con-
ceived and manufactured by PASQAL. We operate the
QPU in the ground-Rydberg qubit basis with global ana-
log control [9]. The qubits are encoded into the ground
state |0〉 = |5S1/2, F = 2, mF = 2〉 and a Rydberg state |1〉 =
|60S1/2, mJ = 1/2〉. This effective two-level system is ad-
dressed with a two-photon laser excitation through an
intermediate state |6P3/2, F = 3, mF = 3〉. The first (respec-
tively second) photon excitation is generated by a 420-nm
(1013-nm) laser beam. Details about the Pulser control soft-
ware used to program the experiment can be found in
Ref. [54].

APPENDIX B: CLASSICAL METHODS FOR HYDRATION
SITES PREDICTION

An extended literature exists on the development of meth-
ods to predict stable water locations around molecular solutes.
Here we report only few reviews on many available methods
and the related numerical implementations [35,38,72]. Such
methods have been described based on the different levels
of approximations introduced to treat the problem, which
is fundamentally related to predicting or evaluating molec-
ular interactions and statistical sampling of distributions of
interacting molecules. As an example, statistics or knowl-
edge based methods [35,72] deeply relies on crystallography
or biological data to apply a variety of machine learning,
or machine learning like, techniques to avoid direct physics
based simulations, which require potentially long simulations
to reach a reliable representation of the statistical distribu-
tion of a large number of water molecules around the target
solute. Some methods are able to assign a score to crystal
waters to evaluate their stability in the same crystal position,
or identify conserved crystal waters across related biological
structures, i.e., proteins of the same family or experiments
on closely related structures. Therefore such methods (see
Refs. [38] and [35] for some specific examples) often do not
find new stable hydration sites on a target structure. Even
when they do predict stable positions of water (e.g., WAT-
GEN [75]) they heavily rely on the database used to make
the prediction, and the quality of the water crystal location,
which is potentially questionable. Even if such approaches
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are in principle less computationally expensive than standard
sampling techniques, as Monte Carlo (MC) algorithms, and
represent an extremely valuable resource, they just partially
address the problem of water modeling and they just avoid
the fundamental sampling problem. In between empirical
and direct simulation methods as MD or MC, there exist
grid based methods [35,75]. This class of methods are cou-
pling molecular interactions simulation, like what is used in
MD or MC, with a statistical mechanics theory to account
for the statistical distribution of water molecules and their
thermodynamics effects. These methods usually only partially
retain the atomistic representation of the solvent. Grid-based
approaches are numerically more tractable, since the heavy
task of sampling the important molecular configurations at
the protein-solvent interface is addressed through a statistical

mechanics approach, or optimization technique on randomly
generated water guess distributions. Depending on the compu-
tational complexity of the method, different test dataset sizes
have been used and reported in the literature to evaluate the
method’s performance: from several thousands of biological
molecular structures (for empirical methods) to around 10
for MC sampling techniques. As a matter of fact, one can
expect knowledge based and grid based methods may require
from minutes to few hours on very limited computational
resources, while MD or MC simulations may require several
hours to few days on powerful machines. The accuracy is
often calculated based on the number of crystal waters that
each method is able to reproduce, eventually attributing to
such waters a quality, based on some score or thermodynamics
analysis.
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the ground-state energy of benzene under spatial deformations
with noisy quantum computing, Phys. Rev. A 107, 012416
(2023).

[9] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys,
G.-O. Reymond, and C. Jurczak, Quantum computing with
neutral atoms, Quantum 4, 327 (2020).

[10] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D.
Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C.
Lang, T. Lahaye, and A. B. Läuchli, Quantum simulation of

2D antiferromagnets with hundreds of Rydberg atoms, Nature
(London) 595, 233 (2021).

[11] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[12] R. Baron, P. Setny, and J. A. McCammon, Water in cavity-
ligand recognition, J. Am. Chem. Soc. 132, 12091 (2010).

[13] J. Michel, J. Tirado-Rives, and W. L. Jorgensen, Prediction of
the water content in protein binding sites, J. Phys. Chem. B 113,
13337 (2009).

[14] H.-J. Woo, A. R. Dinner, and B. Roux, Grand canonical Monte
Carlo simulations of water in protein environments, J. Chem.
Phys. 121, 6392 (2004).

[15] Y. Levy and J. N. Onuchic, Water mediation in protein fold-
ing and molecular recognition, Annu. Rev. Biophys. Biomol.
Struct. 35, 389 (2006).

[16] D. Chandler and H. C. Andersen, Optimized cluster expansions
for classical fluids. II. Theory of molecular liquids, J. Chem.
Phys. 57, 1930 (1972).

[17] D. Chandler, Derivation of an integral equation for pair corre-
lation functions in molecular fluids, J. Chem. Phys. 59, 2742
(1973).

[18] D. Chandler, Equilibrium structure and molecular motion in
liquids, Acc. Chem. Res. 7, 246 (1974).

[19] D. Beglov and B. Roux, An integral equation to describe the
solvation of polar molecules in liquid water, J. Phys. Chem. B
101, 7821 (1997).

[20] A. Kovalenko, Three-dimensional rism theory for molecular
liquids and solid-liquid interfaces, in Molecular Theory of Sol-
vation, Understanding Chemical Reactivity, edited by F. Hirata
(Springer Netherlands, Dordrecht, 2003), pp. 169–275.

[21] D. Roy and A. Kovalenko, Biomolecular simulations with the
three-dimensional reference interaction site model with the
Kovalenko-Hirata closure molecular solvation theory, Int. J.
Mol. Sci. 22, 5061 (2021).

[22] T. Kadowaki and H. Nishimori, Quantum annealing in the trans-
verse Ising model, Phys. Rev. E 58, 5355 (1998).

[23] J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Quantum
annealing of a disordered magnet, Science 284, 779 (1999).

[24] Y.-H. Deng, Y.-C. Gu, H.-L. Liu, S.-Q. Gong, H. Su, Z.-J.
Zhang, H.-Y. Tang, M.-H. Jia, J.-M. Xu, M.-C. Chen, J. Qin,

043020-16

https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1038/s42005-023-01312-y
https://arxiv.org/abs/2306.17159
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1038/s41467-023-37587-6
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1103/PhysRevA.107.012416
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1021/ja1050082
https://doi.org/10.1021/jp9047456
https://doi.org/10.1063/1.1784436
https://doi.org/10.1146/annurev.biophys.35.040405.102134
https://doi.org/10.1063/1.1678513
https://doi.org/10.1063/1.1680393
https://doi.org/10.1021/ar50080a002
https://doi.org/10.1021/jp971083h
https://doi.org/10.3390/ijms22105061
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.284.5415.779


LEVERAGING ANALOG QUANTUM COMPUTING WITH … PHYSICAL REVIEW RESEARCH 6, 043020 (2024)

L.-C. Peng, J. Yan, Y. Hu, J. Huang, H. Li, Y. Li, Y. Chen,
X. Jiang, L. Gan et al., Gaussian boson sampling with pseudo-
photon-number-resolving detectors and quantum computational
advantage, Phys. Rev. Lett. 131, 150601 (2023).

[25] S. Yu, Z.-P. Zhong, Y. Fang, R. B. Patel, Q.-P. Li, W. Liu, Z.
Li, L. Xu, S. Sagona-Stophel, E. Mer, S. E. Thomas, Y. Meng,
Z.-P. Li, Y.-Z. Yang, Z.-A. Wang, N.-J. Guo, W.-H. Zhang, G. K.
Tranmer, Y. Dong, Y.-T. Wang et al., A universal programmable
Gaussian boson sampler for drug discovery, Nat. Comput. Sci.
3, 839 (2023).

[26] J. Bao, Z. Fu, T. Pramanik, J. Mao, Y. Chi, Y. Cao, C. Zhai, Y.
Mao, T. Dai, X. Chen, X. Jia, L. Zhao, Y. Zheng, B. Tang, Z. Li,
J. Luo, W. Wang, Y. Yang, Y. Peng, D. Liu et al., Very-large-
scale integrated quantum graph photonics, Nat. Photon. 17, 573
(2023).

[27] H. Zhu, H. Chen, S. Li, T. Chen, Y. Li, X. Luo, F. Gao, Q. Li, L.
Zhou, M. F. Karim, X. Shang, F. Duan, H. Cai, L. K. Chin, L. C.
Kwek, X. Zhang, and A.-Q. Liu, A dynamically programmable
quantum photonic microprocessor for graph computation, Laser
Photon. Rev. 18, 2300304 (2024).

[28] X. Tan, H. Song, Y. Ji, H. Tang, Y.-Y. Fang, X.-Y. Xu, Y.-Y. Li,
X.-K. Li, K.-D. Zhu, and X.-M. Jin, Scalable and programmable
three-dimensional photonic processor, Phys. Rev. Appl. 20,
044041 (2023).

[29] Z. Bian, F. Chudak, R. Israel, B. Lackey, W. G. Macready,
and A. Roy, Discrete optimization using quantum annealing on
sparse Ising models, Front. Phys. 2, 56 (2014).

[30] M. Pandey, T. Zaborniak, H. Melo, A. Galda, and V. K.
Mulligan, Multibody molecular docking on a quantum annealer,
arXiv:2210.11401.

[31] E. Triuzzi, R. Mengoni, D. Bonanni, D. Ottaviani, A. Beccari,
and G. Palermo, Molecular docking via weighted subgraph
isomorphism on quantum annealers, arXiv:2405.06657.

[32] R. Harris, Y. Sato, A. J. Berkley, M. Reis, F. Altomare, M. H.
Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang,
E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky, T.
Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld et al., Phase
transitions in a programmable quantum spin glass simulator,
Science 361, 162 (2018).

[33] A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F.
Altomare, A. J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang,
E. Ladizinsky, A. J. R. MacDonald, G. Marsden, T. Oh, G.
Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J. D. Whittaker,
J. Yao et al., Coherent quantum annealing in a programmable
2,000 qubit Ising chain, Nat. Phys. 18, 1324 (2022).

[34] D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, Docking
and scoring in virtual screening for drug discovery: Methods
and applications, Nat. Rev. Drug Discov. 3, 935 (2004).

[35] M. L. Samways, R. D. Taylor, H. E. Bruce Macdonald,
and J. W. Essex, Water molecules at protein–drug interfaces:
Computational prediction and analysis methods, Chem. Soc.
Rev. 50, 9104 (2021).

[36] D. Bucher, P. Stouten, and N. Triballeau, Shedding light on
important waters for drug design: Simulations versus grid-based
methods, J. Chem. Inf. Model. 58, 692 (2018).

[37] A. Wlodawer, W. Minor, Z. Dauter, and M. Jaskolski, Protein
crystallography for non-crystallographers, or how to get the
best (but not more) from published macromolecular structures,
FEBS J. 275, 1 (2008).

[38] E. Nittinger, F. Flachsenberg, S. Bietz, G. Lange, R. Klein, and
M. Rarey, Placement of water molecules in protein structures:
From large-scale evaluations to single-case examples, J. Chem.
Inf. Model. 58, 1625 (2018).

[39] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.043020 for additional details on
3D-RISM, test of both versions of the algorithm on synthetic
density generated as Gaussian mixtures with known Gaussian
components, with details on the numerical tests performed, a
full derivation of the water placement problem in the form of a
QUBO.

[40] T. Imai, A. Kovalenko, and F. Hirata, Solvation thermodynam-
ics of protein studied by the 3d-rism theory, Chem. Phys. Lett.
395, 1 (2004).

[41] T. Imai, R. Hiraoka, A. Kovalenko, and F. Hirata, Lo-
cating missing water molecules in protein cavities by the
three-dimensional reference interaction site model theory of
molecular solvation, Proteins: Struct. Funct. Bioinf. 66, 804
(2007).

[42] D. J. Sindhikara and F. Hirata, Analysis of biomolecular solva-
tion sites by 3d-rism theory, J. Phys. Chem. B 117, 6718 (2013).

[43] M. C. Stumpe, N. Blinov, D. Wishart, A. Kovalenko, and V. S.
Pande, Calculation of local water densities in biological sys-
tems: A comparison of molecular dynamics simulations and
the 3d-rism-kh molecular theory of solvation, J. Phys. Chem.
B 115, 319 (2011).

[44] S. Dasgupta, Learning mixtures of Gaussians, in Proceedings
of the 40th Annual Symposium on Foundations of Computer
Science (IEEE, Los Alamitos, CA, 1999), pp. 634–644.

[45] A. T. Kalai, A. Moitra, and G. Valiant, Disentangling Gaussians,
Commun. ACM 55, 113 (2012).

[46] A. Moitra and G. Valiant, Settling the polynomial learnability of
mixtures of Gaussians, in Proceedings of the IEEE 51st Annual
Symposium on Foundations of Computer Science (IEEE, Los
Alamitos, CA, 2010), pp. 93–102.

[47] J. Anderson, M. Belkin, N. Goyal, L. Rademacher, and J. R.
Voss, The more, the merrier: The blessing of dimensional-
ity for learning large Gaussian mixtures, in Proceedings of
the 27th Conference on Learning Theory (COLT’14), edited
by M. Balcan, V. Feldman, and C. Szepesvári, JMLR Work-
shop and Conference Proceedings Vol. 35 (JMLR, 2014),
pp. 1135–1164.

[48] A. Bakshi, I. Diakonikolas, H. Jia, D. M. Kane, P. K. Kothari,
and S. S. Vempala, Robustly Learning Mixtures of k Arbitrary
Gaussians (ACM Press, New York, 2022) p. 1234–1247.

[49] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and
A. Stewart, Robust estimators in high-dimensions without
the computational intractability, SIAM J. Comput. 48, 742
(2019).

[50] N. Bourgeois, B. Escoffier, V. Paschos, and J. M. M. van Rooij,
Fast Algorithms for max independent set, Algorithmica 62, 382
(2013).

[51] S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D.
Bluvstein, G. Semeghini, A. Omran, J.-G. Liu, R. Samajdar,
X.-Z. Luo, B. Nash, X. Gao, B. Barak, E. Farhi, S. Sachdev,
N. Gemelke, L. Zhou, S. Choi, H. Pichler, S.-T. Wang, M.
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