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Abstract

Automated Market Markers emerged quite recently, and Uniswap is one of the most widely
used platforms (it covers 96% of the available pools as of today). This protocol is challeng-
ing from a quantitative point of view, as it allows participants to choose where they wish to to
concentrate liquidity. There has been an increasing number of research papers on Uniswap
v3 but often, these articles use heuristics or approximations that can be far from reality: for
instance, the liquidity in the pool is assumed to be constant over time, which strongly contra-
dicts the mechanism of the protocol. The objectives of this work are fourfold: first, to revisit
Uniswap v3’s mechanisms in detail (starting from the open source code) to build an unam-
biguous knowledge base. Second, to analyze the Impermanent Loss of a liquidity provider by
detailing its evolution, in full generality on the swap trades and the liquidity events than can
occur. Third, we introduce the notion of a liquidity curve. For each curve, we can deduce a
payoff at a given maturity, net of fees. Conversely, we show how any concave payoff can be
synthetized by an initial liquidity curve and some tokens outside the pool; this paves the way
for using Uniswap v3 to create options. Fourth, we analyze the behavior of collected fees with-
out any simplifying hypothesis (like a constant liquidity or zero Spot-Pool spread) under the
mild assumption that the pool price follows a general Ito price dynamic. The value of the col-
lected fees then coincides with an integral of call and put prices. Our derivations are supported
by graphical illustrations and experiments.

KEYWORDS: Automated Market Markers; modeling mechanisms; profit and loss analysis

1 Introduction

1.1 DeFi and Automated market makers

As DeFi increased in popularity, it quickly became necessary to find tools that could play the same
role as Limit Order Books in traditional finance, so that actors could easily exchange crypto assets.
This has led to the design of Automated Market Makers, or AMMs, which are protocols that permit
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1.2 The Uniswap protocols 1 INTRODUCTION

the automated execution of buy and sell orders in a blockchain. The principle of an AMM is simple:
any user can deposit their tokens in a so-called liquidity pool, where they can then be used by
other actors for their trading activities. These users are called Liquidity Providers, or LPs, and they
are rewarded for making their tokens available by the trading operations on the latter that require
the payment of a fee. More specifically, consider a liquidity pool consisting of two crypto assets,
X and Y . Although this setting can be generalized, it is quite standard and permits to explain the
way AMMs work in a simple manner. An LP deposits respective amounts x and y of these tokens,
which, for example, can be used by an actor swapping some tokens X for tokens Y . At any time,
the LP can redeem their position and recover amounts x ′ and y ′ of both tokens, corresponding to
the values initially deposited plus fees.
A key feature of any AMM is the way the value of one token in terms of the other is automatically
derived. This value controls the amount of tokens provided and received in a swap operation, as
well as the number of tokens an LP will recover when they redeem their position. A large number
of AMMs are called Constant Function Market Makers (CFMMs) and rely on the constant function
paradigm to determine this value [Angeris and Chitra, 2020]. Formally, a CFMM is described by
the respective reserves RX and RY of tokens X and Y that are available in the liquidity pool, and an
invariant function I that determines the swap operations on the pool that are permitted. Given
incremental positions (∆x,∆y) ∈R+×R+ in tokens X and Y respectively and a direction d ∈ {−1,1},
a swap consists in trading ∆x tokens X for ∆y tokens Y when d = −1 (resp. ∆y tokens Y for ∆x
tokens X when d = 1). Such a swap is permitted exactly when

I (RX −d ·∆x, RY +d ·∆y) ≥ I (RX ,RY ).

Note that rational traders will target the best number of tokens, i.e. an equality in the above.
CFMMs can be classified depending on the form of their invariant function. A common invariant
function involves the product of the reserves: I (RX ,RY ) = RX ·RY . AMMs with such an invariant
function are called Constant Product Market Makers (CPMMs), and Uniswap is one of those.

1.2 The Uniswap protocols

Uniswap has released two popular AMM protocols, Uniswap v2 [Adams et al., 2020] and Uniswap
v3 [Adams et al., 2021]. Both are CPMMs, with the main difference that the reserves used in the
invariant function are real reserves in Uniswap v2 and virtual reserves in Uniswap v3. In order to
stick with more common notations, from now on we will denote the reserves of tokens X and Y by
x and y respectively, instead of RX and RY . The constant product invariance rule writes as

I (x, y)
def= x · y = L2,

where L is called the liquidity. It is also standard to work with the marginal price of one token X
in units of Y (as for usual FX markets) and its square root. We denote these quantities by p and π
respectively, they are defined by

p = y
x and π =

√
y
x .

The constant product rule is represented in Figure 1. The black hyperbola represents the possible
quantities of tokens X and Y that can be available in the pool for a given amount of liquidity.
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Figure 1: Representation of how prices and quantities evolve in a Uniswap protocol

Traders swapping these tokens are constrained to make quantities move along this hyperbola. The
corresponding price for some given quantities (x, y) is the slope of the line linking (0,0) to (x, y).
The main feature that distinguishes the Uniswap v3 protocol from Uniswap v2 is that LPs can spec-
ify a price range on which they provide liquidity. In other words, contrary to Uniswap v2 where
the liquidity provided by an LP can be used for any swap in the price range (0,∞), an LP providing
liquidity to a Uniswap v3 pool can specify a lower-bound price pℓ and an upper-bound price pu

(where pℓ < pu) such that their liquidity can only be used on swaps within the price range [pℓ, pu)
(or, equivalently, on the square root price range [πℓ,πu)). Thus, an analysis of Impermanent Loss
or swap fees in Uniswap v3 is more involved.

1.3 Our contributions

Our main contributions are the following.

• In Theorem 3.4, we prove that if a LP provides the liquidity ∆L on a unitary square root price
range R = [πℓ,πu), then the Y -value VP (t ) of their position in the pool (net of swap fees) at a
future date t is

VP (t ) =∆L ·
((

1

πR
t

− 1

πu

)
·π2

t + (πR
t −πℓ)

)
,

given as a function of the square root price πt . The definition of unitary range is given in
Section 2. The notation π 7→πR consists of projecting the square root price π onto the square
root price range:

πR =


πu if πu <π,

πℓ if π<πℓ,

π otherwise.

(1)
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• The result can be extended to the case where the LP adds a liquidity curve (∆Lπ)π to the pool
(Theorem 3.5). In this case, the Y -value VP (t ) of its position (net of swap fees) at a future
date t is

VP (t ) = pt ·
∫ +∞

πt

∆Lπ
π2 dπ+

∫ πt

0
∆Lπdπ.

This allows to easily analyze the Greeks of the position (Corollary 3.6).

• Conversely, any concave payoff (as a function ofπt ) can be replicated by a providing liquidity
with an explicit liquidity curve (∆Lπ)π. The accuracy of replication depends on the regularity
of the payoff and the size of unitary ranges. See Theorem 3.7.

• In Theorem 4.1 we prove that the amount of fees in tokens X and Y collected over the pe-
riod [0,T ] by an LP that provided a liquidity curve (∆Lπ)π at time 0 is approximated by the
following formulas:

FeesX
0→T ≈ φ

(1−φ) · (βp −1)
·
∫ +∞

0
∆L

b
1
2

Ab
T (p)

4 ·b5/2
db,

FeesY
0→T ≈ φ

(1−φ) · (βp −1)
·
∫ +∞

0
∆L

b
1
2

Ab
T (p)

4 ·b3/2
db,

in the limit of a tick base βp ↓ 1. Here φ is the swap fee rate; Ab
T (p) is the local time at time T

and level b of the price process p (which we assume to be a general Itô semimartingale) and
measures the amount of time spent around the level b by p. The resulting formula is quite
intuitive: the larger the liquidity provided on a range and the longer time of the price in that
range, the larger the collected fees.

• As a consequence (Corollary 4.1), we connect the values of fees to option prices: namely, we
establish a relation between the risk-neutral value of the total collected fees and an integral
of call/put option prices across different strikes. Investigations around these relations on
real data are left to future research.

Some of our results rely on the hypothesis H0 that the price p within and outside the pool coincide:
this is an idealistic hypothesis, which assumes instantaneous arbitrage between Centralized and
Decentralized Exchanges. We also discuss where and how this hypothesis can be relaxed in some
cases.

1.4 Comparison with the literature

The authors of [Jaimungal et al., 2023] study optimal execution in pools and numerically solve a
stochastic control problem using deep neural networks. In [Álvaro Cartea et al., 2023], the issue of
optimal liquidity provision is investigated and the authors assume some CIR dynamics for the pool
fee rate. The authors also model the dynamics of Impermanent Loss under some specific price as-
sumptions, whereas we obtain this Impermanent Loss in its full generality. Other lines of research
on liquidity provision in Uniswap pools and in other protocols are considered in [Fan et al., 2023]
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and [Cartea et al., 2023] respectively. In particular, the authors of [Fan et al., 2022] give an expres-
sion of a liquidity provider’s profit and loss in Uniswap v2 and v3 protocols, depending on the
sequence of price changes. Their expression is not easily tractable since it depends on the path of
the price. As a main difference, our analysis give rises to closed-form formulas that are simpler to
handle.
The authors in [Loesch et al., 2021] provide an empirical investigation of how Uniswap v3 pools
behave. The probabilistic dynamics of Impermanent Loss is briefly studied in [Boueri, 2022] under
some simplified assumptions (the liquidity is assumed to be constant for instance).
The work in [Cartea et al., 2022] gives rise to a new class of trading problems about how to opti-
mally trade a large position and execute statistical arbitrages based on market signals. They design
some strategies using stochastic optimal tools in the context of Uniswap v2; data from Uniswap
v3 are also used. The work closest in its goals to ours is [Bichuch and Feinstein, 2023], where the
authors announce an asymptotic analysis of Uniswap v2 and v3 fees, assuming the price follows a
geometric random walk with exponential time stepping. In the current work, we derive an asymp-
totic formula for an arbitrary price process and the theoretical result is confirmed by numerical
experiments. At the time of writing this article, the work from [Bichuch and Feinstein, 2023] is not
available.
To summarize, the results presented in this paper are quite novel compared to existing approaches,
both on the considered issues and on the level of generality at which they are obtained.

1.5 Organisation of the paper

The outline of the paper is as follows. In Section 2 we review the exact mechanisms of the Uniswap
v3 protocol, with an analysis based on the source code of Uniswap v31. By doing so, we try to fix
some approximative rules that can be found in the emerging litterature, so that both practitioners
and academic researchers can agree on the same set of rules when working on Uniswap v3. Section
3 is dedicated an analysis of Impermamnent Loss, which corresponds to the potential loss incurred
by an LP providing liquidity on a price range. We give rigorous derivation of several known formulas
and extend some of them. The most enlightening formula is that of Theorem 3.5, which gives the
value of the LP position (net of fees) as a function of the provided liquidity curve (∆Lπ)π, showing
that it is a concave payoff. Conversely, any concave payoff can be replicated by providing some
liquidity curve (∆Lπ)π. Then, in Section 4 we investigate the fees collected by an LP: we obtain
explicit formulas in terms of the time spent by the pool price in different ranges (through a local
times based formula) and make the connection with call/put pricing thanks to the occupation time
formula. Some of the proofs are postponed to the Appendix.

2 Core operations in a Uniswap v3 pool

2.1 Real and virtual token reserves

The main feature that distinguishes the Uniswap v3 protocol from Uniswap v2 is that LPs can spec-
ify a price range on which they provide liquidity. In other words, contrary to Uniswap v2 where

1The source code is available at https://github.com/Uniswap/v3-core/.
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Figure 2: Representation of a range of liquidity for prices between pℓ and pu

the liquidity provided by an LP can be used for any swap in the price range (0,∞), an LP provid-
ing liquidity to a Uniswap v3 pool can specify a lower-bound price pℓ and an upper-bound price
pu (where pℓ < pu) such that their liquidity can only be used on swaps within the price range
[pℓ, pu). After several LPs have provided liquidity to the pool, each time with a specific price range,
the liquidity distribution on the entire price space can have an arbitrary form (see Figure 3-III in
[Adams et al., 2021] for an illustration).
The principle of a Uniswap v3 pool is the following. An LP providing an amount of liquidity L on a
price range [pℓ, pu) deposits respective quantities xr and yr of tokens X and Y to the pool. These
tokens are used by swap operations as long as the price is in the range [pℓ, pu). When the price
reaches pℓ, all reserves of tokens Y will have been depleted, and when the price reaches pu , all
reserves of token X will have been depleted. On the price range [pℓ, pu), the constant product rule
x · y = L2 applies2, with the main difference that x and y denote virtual token reserves instead of
real reserves. The virtual quantities x and y can be decomposed as the sum of the real number of
tokens in the pool and other quantities that we call offsets:{

x = xr +xoffset,

y = yr + yoffset.

The graph in Figure 3 depicts a new coordinate system in blue which describes the two extreme
cases where the reserves of real tokens X and Y have been depleted (red points with respective
coordinates (xℓ, yℓ) and (xu , yu) in the Figure). At these points we have

xu = 0+xoffset = xoffset and yℓ = 0+ yoffset = yoffset.

2Note that it would be more accurate to write L(pℓ, pu ) instead of L to reflect the fact that liquidity depends on a price
range.
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Figure 3: Representation of the virtual numbers (x, y) and the offset numbers (xoffset, yoffset) of to-
kens.

Because the constant product rule applies at both points, we have xℓ · yℓ = xu · yu = L2, pℓ = yℓ
xℓ

and

pu = yu

xu
. This permits to deduce the values of xoffset and yoffset:

xoffset = Lp
pu

= L

πu
and yoffset = L

p
pℓ = L ·πℓ.

Thus, on the price range [pℓ, pu), the real reserves xr , yr of tokens X and Y and the liquidity L are
related by the equation (

xr + L

πu

)
· (yr +L ·πℓ) = L2. (2)

The price that is induced by the amounts xr and yr is given by

π2 = p = yr + yoffset

xr +xoffset
= yr +L ·πℓ

xr + L
πu

. (3)

We can derive expressions of the amounts of real tokens available as follows. We have

π2 ·
(

xr + L

πu

)
(3)= yr +L ·πℓ (2)= L2

xr + L
πu

(2)= π2 · L2

yr +L ·πℓ
,

so that π ·
(
xr + L

πu

)
= L and yr +L ·πℓ = L ·π. Therefore,

xr + L

πu
= L

π
and yr +L ·πℓ = L ·π. (4)

Note that since xr ≥ 0 and yr ≥ 0, necessarily, πℓ ≤ π ≤ πu . The maximum quantities of tokens X
and Y within a range for a fixed liquidity L are also entailed by these formulas, they are respectively

L ·
(

1
πℓ

− 1
πu

)
and L · (πu −πℓ).
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Note that, importantly, the above reasoning holds even for the initial price range (when pℓ = 0) or
the last one (when pu = +∞). The formulas above extend to this case by taking the limit pℓ → 0
or pu → +∞. For instance, in the case of a price range of the form [0, pu), Equations (2) and (3)
become

(xr + L

πu
) · yr = L2 and p = yr

xr + L
πu

, for p ∈ [0, pu).

Similarly, in the case of a price range of the form [pℓ,+∞), Equations (2) and (3) become

xr · (yr +L ·πℓ) = L2 and p = yr +L ·πℓ
xr

, for p ∈ [pℓ,+∞).

Prices and ranges in a Uniswap v3 pool. In Uniswap v3 pools, the set of prices is discretized into
ticks. A tick is an integer τ ∈ Z to which is associated the price p(τ) = 1.0001τ. In other words, a
tick can be viewed as the logarithm in base βp = 1.0001 of a price. Thus, a Liquidity Provider does
not actually specify a price range on which liquidity is to be added, but rather a tick range. Not all
tick ranges can actually be selected to add liquidity: the ranges are a multiple of a fixed number
of ticks δπ which is determined at the setting of the pool, depending on the swap fees φ. In the
default setting, we have δπ = 10,60,200, depending on the value of swap fees φ = 0.05%,0.3%,1%
(see the constructor and createPoolmethod in UNISWAPV3FACTORY.SOL), but it is possible to use
the smart contract to create pools with other tick spacings and swap fees. The lower and upper ticks
of a tick range have to be tick indices i ·δπ for i ∈ Z. When a range is defined by two consecutive
ticks i ·δπ and (i +1) ·δπ, we refer to it as a unitary range.
Figure 4 depicts a possible landscape of liquidity at some time in the pool, and its Constant Product
Market Making formula range by range (pieces of hyperbola). This is a generalization of Figure 1.
In what follows, for the sake of clarity, we disregard the tick spacings and values of ticks, and we
focus on ranges defined by square root prices. This choice will permit to simplify several mathe-
matical expressions.

2.2 Updating liquidity in the pool

Assume an LP wishes to add or remove liquidity to the pool on the square root price range [πℓ,πu)
at a time where the square root price in the pool is π0. We first assume that this liquidity event oc-
curs on a unitary range, which entails that the available liquidity on the range is constant. The
results will be generalized to arbitrary ranges afterwards. The existing liquidity and real token
quantities are denoted by L, xr , yr on the given square root price range; the updates in liquidity
and token quantities are denoted by ∆L,∆xr and ∆y r .

When there is no liquidity available on the price range. In this case we have L = 0 and xr = yr =
0. The only possible operation thus consists in adding liquidity to the pool, which is also referred to
as a mint operation. The principle of this mint operation is that it is supposed to keep the current
square root price unchanged. Depending on the current square root priceπ0, we have the following
cases:
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Figure 4: Different liquidity quantities deposited across several consecutive square root price
ranges (on the left). On the right, the representation of the CPMM formula for each range (with
its specific liquidity value). Top and bottom: pools with different liquidity distributions.

(1) If πu < π0, then there are no reserves of token X to be added (∆xr = 0), and Equation (2)
writes as ∆L2 = ∆L

πu
· (∆y r +∆L ·πℓ), from which we deduce that ∆y r =∆L · (πu −πℓ).

(2) Ifπ0 <πℓ then there are no reserves of token Y to be added (∆y r = 0), and Equation (2) writes

as ∆L2 =
(
∆xr + ∆L

πu

)
·∆L ·πℓ, from which we deduce that ∆xr =∆L ·

(
1
πℓ

− 1
πu

)
.

(3) In the remaining case, using Equation (4), we directly obtain ∆xr =∆L ·
(

1
π0

− 1
πu

)
and ∆y r =

∆L · (π0 −πℓ).

These equations can be summarized into a single equation as follows. Given a square root price
range R = [πℓ,πu) and a square root priceπ0, consider the square root priceπR

0 defined in Equation
(1). We have

∆xr = ∆L ·
(

1

πR
0

− 1

πu

)
and ∆y r = ∆L · (πR

0 −πℓ). (5)

Example 2.1 (Adding liquidity to an empty Uniswap v3 pool). Consider a newly initialized liquidity
pool on base asset X and quote asset Y , with a tick spacing set at δπ = 60, and an initial price set at
p0 = 3019. Assume a liquidity provider is about to deposit an amount ∆L1 = 150000 of liquidity
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on the tick range [80100,80160), which corresponds to the price range [3009.71 · · · ,3027.82 · · · ). The
number of tokens to deposit can be deduced from Equation (5): the LP will deposit ∆xr = 3.98 · · ·
tokens X and ∆y r = 12688.39 · · · tokens Y .

When there is already liquidity on the square root price range. Assume there is already an amount
of liquidity L > 0 that is available on a given square root price range [πℓ,πu), corresponding to the
(real) reserves xr and yr , and that a new liquidity amount ∆L is to be added/removed to the same
range, corresponding to (real) quantities ∆xr and ∆y r of tokens X and Y . It may be the case that
∆L < 0 but regardless, we have L+∆L ≥ 0. We can assume without loss of generality that the liquid-
ity L already available on the range is constant.
The quantities ∆xr and ∆y r are determined as follows.

(1) If πu < π0, then we have xr =∆xr = 0, and yr
(2)= L · (πu −πℓ). Again, Equation (2) entails that

(L+∆L)2 = L+∆L
πu

·(yr +∆y r + (L+∆L) ·πℓ
)
, from which we deduce that yr +∆y r +(L+∆L)·πℓ =

(L+∆L) ·πu . Thus, replacing yr by its value, we obtain

∆y r = (L+∆L) · (πu −πℓ)− yr

=∆L · (πu −πℓ).

(2) If π0 < πℓ, then we have yr = ∆y r = 0 and xr
(2)= L · ( 1

πℓ
− 1

πu
). Using Equation (2), we have

(L+∆L)2 =
(
xr +∆xr + L+∆L

πu

)
· (L+∆L) ·πℓ. After simplifying by L+∆L, we obtain

∆xr = (L+∆L) ·
(

1

πℓ
− 1

πu

)
−xr

=∆L ·
(

1

πℓ
− 1

πu

)
.

(3) Otherwise we have xr
(4)= L ·

(
1
π0

− 1
πu

)
and yr

(4)= L · (π0 −πℓ). Because the square root price is

meant to remain constant after the mint or burn operation, the same proportionality rela-
tions hold between xr +∆xr and L +∆L, and between yr +∆y r and L +∆L. This permits to
deduce that

∆xr =∆L ·
(

1

π0
− 1

πu

)
;

∆y r =∆L · (π0 −πℓ).

This shows that Equation (5) always holds, regardless of whether or not there is already liquidity
available on the considered square root price range.
When a liquidity provider deposits liquidity on several ranges, the total number of tokens required

is deduced by additivity. More specifically, if a liquidity provider deposits ∆Li on range Ri
def=

[πℓi ,πui ) for i = 1, . . . ,n, then total amounts of tokens X and Y that are required are given by

∆xr =
n∑

i=1
∆Li ·

(
1

π
Ri
0

− 1

πui

)
and ∆y r =

n∑
i=1

∆Li ·
(
π

Ri
0 −πℓi

)
. (6)
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In the particular case where the provided liquidity is the same on all ranges and the latter are con-
secutive, Equation (6) can be simplified further as follows:

Proposition 2.2. Consider a square root price range R = [πℓ,πu) that is of the form R1 ∪ . . .∪Rn for
n ≥ 1, where for i ≤ n, Ri = [πℓi ,πui ) contains an amount Li of liquidity, and for i < n, πui = πℓi+1 .
A liquidity provider who deposited a same amount of liquidity ∆L on each range Ri will deposit the
following amounts of tokens into the pool:

∆xr =∆L ·
(

1

πR
0

− 1

πu

)
and ∆y r =∆L · (πR

0 −πℓ
)

. (7)

When this is the case, we can therefore say that the liquidity provider deposited an amount of liquid-
ity ∆L on range R.

The proof of this result is postponed to Appendix A.1. This proposition provides the justification
why the Uniswap v3 contracts track so-called positions for each LP. When an LP with address α
deposits liquidity on a (not necessarily unitary) range R, the protocol creates a position 〈α,R〉 to
which is associated a state consisting of the liquidity that the LP owns on the range; a tracker of the
amount of tokens X owed to the LP due to fees and a tracker of the amount of tokens Y owed to the
LP due to fees (see the contract POSITION.SOL). The amounts of tokens to deposit or withdraw do
not depend on the liquidity that is available on each unitary range but only on the bounds of the
range and the price in the pool when the update is performed; this is translated in the code of the
_modifyPosition method in UNISWAPV3POOL.SOL.

Example 2.3 (Updating the liquidity in a pool). Following Example 2.1, assume another liquidity
provider is about to deposit the same amount of liquidity∆L2 = 75000 on the consecutive tick ranges
[80100,80160) and [80160,80220). The amount of tokens to deposit on each range is given by Equa-
tion (7): The liquidity provider will deposit

• 1.99 · · · tokens X and 6344.19 · · · tokens Y on the tick range [80100,80160), and

• 4.08 · · · tokens X and no token Y on the tick range [80160,80220).

Note that the total amount of tokens to deposit could also have been derived by applying Equation
(7) on the tick range [80100,80220).

2.3 Swapping tokens

The swapping process in a Uniswap v3 pool is best understood by considering the relationship
between the price evolution in the pool, the available liquidity and the amounts of tokens – real
or virtual – that are available in the pool. This process is more involved than that of a v2 pool
because the available liquidity depends on the considered price range and when swapping tokens,
the current price may cross from one price range to another one with a different amount of available
liquidity. The principle of the algorithm is based on the following observations.

11
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• Assume that the current square root price π is on a range with available liquidity L. Assume
further that a swap operation, trading quantities ∆x of tokens X and ∆y of tokens Y , is per-
formed with the guarantee that this operation does not make the current square root price
cross to a range with a different amount of liquidity. This operation causes the virtual re-
serves of token X (resp. token Y ) to become x ′ = x +∆x (resp. y ′ = y +∆y), and the square

root price to become π′ = y ′
x ′ . The following relationships can be derived using Equation (4):

∆x = x ′−x = L

π′ −
L

π
, (8)

∆y = y ′− y = L ·π′−L ·π. (9)

• Assume the current price is within the range [πℓ,πu). Then the maximum amounts of tokens
that can be traded before the price crosses into another range are given by the following:

(1) The maximum amount of tokens X that can be traded in the range is∆xm
(8)= L ·

(
1
πℓ

− 1
π

)
,

and afterwards the current square root price is πℓ.

(2) The maximum amount of tokens Y that can be traded in the range is∆ym
(9)= L ·(πu −π),

and afterwards the current square root price is πu .

We provide a high-level overview of the swap operation in Algorithm 1. Some of the features of
the actual algorithm are left out for the sake of simplicity. For example, the actual algorithm allows
users to specify whether the quantity provided as an input is an exact amount of tokens traded into
the pool, or an exact amount of tokens traded out of the pool; it also allows users to specify a limit
slippage price that, if reached, interrupts the transaction. The actual algorithm is optimized to it-
erate through so-called initialized square root prices that correspond to range bounds on which
liquidity has been deposited and thus potentially changes. We assume that these initialized square
root prices are all separated by the corresponding tick spacing δπ. This is without loss of generality
since depositing the same amount of liquidity on consecutive ranges is equivalent to depositing
this liquidity on the union of these ranges, and this assumption simplifies the algorithm descrip-
tion because it is guaranteed that liquidity is constant between consecutive initialized square root
prices. We denote this sequence of square root prices by π0 < π1 < ·· · < πm < ·· · and we denote
by Li the liquidity that is available between πi−1 and πi . We assume that there is enough liquidity
available in the entire pool for the swap to take place; otherwise, the transaction fails.
The swap operation can be represented by a function that takes as inputs a quantity of tokens to
swap and a direction d ∈ {−1,1}, denoting which token is traded in and which token is traded out
(token Y is traded in when d = 1, causing the price in the pool to increase, and token X is traded
in when d = −1). The function also transfers the required amounts of tokens in and out of the
pool. We define a function Liq that computes the available liquidity for a given square root price.
This function depends on a direction that is used when a liquidity change occurs at the considered
square root price. The function is defined as follows:

Liq(π,d) =


Li+1 if πi <π<πi+1,

Li+1 if π=πi and d = 1,

Li if π=πi and d =−1.

12
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Algorithm 1: A high-level overview of the swap algorithm in a Uniswap v3 pool.

input : q ≥ 0: an amount of tokens
d : the direction of the swap

1 qi ←− 0; qo ←− 0 // initialize the token amounts to receive and transfer

2 while q ̸= 0 do

3 π′ ←− min
{
π j | πd

j >πd
}

// get the next square root price in the sequence

4 L ←− Liq(π,d) // get the liquidity in the current range for the given direction

5 if L ̸= 0 then

6 ai ←− min
{

q · (1−φ), L ·
(
(π′)d −πd

)}
// compute the amount of input tokens to use

in the swap on the current range

7 πq ←− (
πd + ai

L

)d
// compute the price (using (4)) that is reached when ai input

tokens have been swapped

8 ao ←− L · (π−d − (πq )−d
)

// compute the corresponding amount of output tokens

obtained from the swap on the current range

9 q ←− q − ai
1−φ // update the amount of input tokens in the while loop

10 qo ←− qo +ao // update the total amounts of tokens to be traded out

11 π←−πq // update the current square root price

12 end
13 else
14 π←−π′ // move directly to the next square root price

15 end
16 end
17 receive q from trader and transfer qo

Fees bookkeeping

Contrarily to Uniswap v2 pools, fees are not considered as additional tokens in the reserves of a
Uniswap v3 pool and thus, they do not increase the liquidity in the pool. Given a range R, the fees
per unit of liquidity in the pool are tracked by two accumulators ΦX

R and ΦY
R that are updated at

every transaction. More precisely, let Φd
R = ΦY

R if d = 1 in a swap operation (meaning that tokens
Y are traded into the pool in exchange for tokens X ), and Φd

R = ΦX
R if d = −1. The value of Φd is

updated immediately after Line 9 in Algorithm 1 by the instruction

Φd
R ←−Φd

R + ai

1−φ · φ
L

. (10)

Recall that L represents the available liquidity on the considered range and ai
1−φ represents the

amount of input tokens on the considered range; hence ai ·φ
1−φ represents the fees that are accumu-

lated and ai
1−φ · φL is the amount of accumulated fees per unit of liquidity on the range.

The actual implementation of the Uniswap v3 contract does not store the accumulators ΦX
R and

ΦY
R for each range R on which liquidity was deposited. Instead, it stores global accumulators

13
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Table 1: First swap operation in Example 2.4: 4 tokens X are transferred into the pool.

Tick range [80100,80160) [80160,80220)

Tokens X swapped in 4 0

Tokens Y swapped out 12028.05 · · · 0

Fees per liq. (in X tokens) 5.33 · · ·10−8 0

Table 2: Second swap operation in Example 2.4: 40000 tokens Y are transferred into the pool.

Tick range [80100,80160) [80160,80220)

Tokens Y swapped in 30170.78 · · · 9829.21 · · ·
Tokens X swapped out 9.95 · · · 6.54 · · ·

Fees per liq. (in Y tokens) 4.02 · · ·10−4 3.93 · · ·10−4

ΦX (feeGrowthGlobal0X128 in the source code) and ΦY (feeGrowthGlobal1X128 in the source
code) for the entire pool; along with state variables for both tokens feeGrowthOutside0X128 and
feeGrowthOutside0X128 at each square root price π that is a range boundary. These state vari-
ables can be used to compute the quantities ϕX

a (π) and ϕY
a (π) (resp. ϕX

b (π) and ϕY
b (π)) that rep-

resent the amounts of fees per unit of liquidity earned in ranges above (resp. below) π since this
square root price was initialized as a range boundary. The accumulators described above for range
R = [πℓ,πu) corresponding to a position are recovered by the equations

ΦX
R =ΦX −ϕX

b (πℓ)−ϕX
a (πu) and ΦY

R =ΦY −ϕY
b (πℓ)−ϕY

a (πu),

which are implemented in the getFeeGrowthInside method of TICK.SOL and invoked when the
position is updated (such as in the _updatePosition method of UNISWAPV3POOL.SOL).

Example 2.4. Swap operations Consider the pool from Example 2.3, when the current price is 3019
(the current tick is 80130) and the liquidity on the current tick range [80100,80160) is 225000, and
assume a trader transfers 4 tokens X into the pool. This will cause the price in the pool to diminish,
and it is straightforward to verify that the tick after the swap remains in the same range, the other
range is thus unaffected by the swap operation. The main quantities involved in the swap operation
are summarized in Table 1, the current tick after the swap operation is 80111.
Assume a second trader now transfers 40000 tokens Y into the pool, causing the price in the pool to
increase. This swap operation will consume all tokens X in the current tick range and move on to the
following range [80160,80220) where the available liquidity is 75000. The amounts of tokens input
and output during the swap operation along with the fees per unit of liquidity that are accumulated
are summarized in Table 2, the current tick after the swap is 80207.
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2.4 Withdrawing tokens from the pool

An LP who deposited liquidity into the pool at time t0 on a range R is owed at time t certain
amounts of tokens X and Y . These amounts are accumulated every time a swap operation occurs
within the range between times t0 and t , as described above. The total amount of fees (per unit of
liquidity) accumulated between times t0 and t are respectively ΦX

R (t )−ΦX
R (t0) and ΦY

R (t )−ΦY
R (t0).

If the LP wishes to burn an amount ∆L of liquidity on the range R, then as discussed in Subsection
2.2, the amounts of tokens X and Y retrieved from the pool are given by Equation (7). The LP will
also withdraw tokens that were earned as fees during swap operations on range R; the amounts of
such tokens that are withdrawn are given by:

∆xfee =∆L · (ΦX
R (t )−ΦX

R (t0)
)

and ∆y fee =∆L · (ΦY
R (t )−ΦY

R (t0)
)

.

Example 2.5. Token withdrawal Following example 2.3 assume the liquidity provider who had de-
posited 75000 units of liquidity on ranges [80100,80160) and [80160,80220) wishes to burn 60000
units of liquidity from range [80100,80160) immediately after the swaps of Example 2.4. The respec-
tive amounts ∆xfee and ∆y fee of tokens X and Y that they recover are given by

∆xfee = 60000 ·5.33 · · ·10−8 = 3.2 ·10−2,

∆y fee = 60000 ·4.02 · · ·10−4 = 24.13 · · · .

Afterward the liquidity provider still owns 15000 units of liquidity on range [80100,80160) and
75000 units of liquidity on range [80160,80220).

3 Impermanent loss revisited

3.1 Impermanent Loss

Recall that liquidity providers are actors on DEXes who transfer tokens into liquidity pools and are
rewarded by the fees paid by traders who use the pool to swap tokens. Clearly, this trading activity
causes the price in the pool to evolve. As we will see, if a liquidity provider withdraws their tokens
at a time where the price is significantly different from the one at deposit time, the value of their
retrieved tokens net of fees will be lower than the value of their original tokens if they had not been
deposited into the pool. This loss is only materialized when the LPs withdraw their tokens from the
pool, it is called the Impermanent Loss, or Divergence Loss (see [Pintail, 2020] for comments) and
in what follows, we may use IL as a shorthand for this loss. The Impermanent Loss is formalized by
comparing the value of two strategies: the first one consists in depositing a given number of tokens
into a pool (the Liquidity providing strategy), and the second one consists in simply keeping the
tokens (historically known as the HODL strategy). The Impermanent Loss is defined by comparing
the value in Y tokens of both strategies (token Y thus plays the role of reference numéraire). More
precisely, we denote by

• VP the value in token Y of the portfolio in the case where tokens are transferred to a liquidity
pool (Liquidity providing strategy),
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• VH the value in token Y of the portfolio in the case where all tokens are withheld (HODL
strategy)

and we define the absolute Impermanent Loss, or simply Impermanent Loss, as the quantity

VP −VH . (11)

Remark 3.1. It is common in the literature to find the following definition of an Impermanent
Loss: IL = VP−VH

VH
. Some articles also define an Impermanent Loss using the equation VP−VH

V 0
H

, where

V 0
H is the value of the initial investment (which is the same for both strategies). Let us also men-

tion the work in [Milionis et al., 2022] where the authors introduce a variant of Impermanent Loss
called "loss-versus-rebalancing" (LVR), associated with a rebalancing strategy that replicates the
pool trades at market prices. This strategy is studied in the context of Uniswap v2. Throughout this
paper, we will stick with the definition in Equation (11), which is more convenient from a mathe-
matical point of view.

The results we derive on the Impermanent Loss rely on the following hypothesis:

H0 The prices within and outside the pool coincide at any time.

This is a standard hypothesis in the literature, that could have a significant impact in some studies.
In our case, its impact is quite minor (see Remark 3.3), it allows to compare values for VP and VH

with the same exchange rate.

3.2 Focus on a unitary price range

We consider a liquidity provider who added an amount∆L of liquidity on a square root price range
R = [πℓ,πu), when the price in the pool3 was p0 (hence the square root price was π0), and assume
the current price is p1 (hence the current square root price isπ1). The relative positions of the initial
and current square root prices with respect to the range R are arbitrary. For the sake of simplicity,
we assume that R is unitary, the extension to an arbitrary range is given in Subsection 3.3.
In the statement below, we make an intensive use of the notation πR , which denotes the projection
of the square root price π onto the range R, see Equation (1) for a precise definition.

Theorem 3.2. Assume H0. Consider a unitary square root price range R = [πℓ,πu) and consider the
following two strategies, constructed using the same number of tokens at initial time t = 0 (when the
price is p0).

• Liquidity providing strategy. An amount of liquidity ∆L is added to the range R at time 0. We
denote by VP the Y -value of these tokens invested in the pool at time t1 > t0, when p1 = π2

1
denotes the price at t1.

3In the whitepaper [Adams et al., 2021], the initial price p0 is named the current price and denoted by pc . Since
several dates occur in our analysis of Impermanent Loss, we believe the notations p0,π0 are clearer.
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Figure 5: Several illustrations of VP −VH with δπ = 200 and ∆L = 1. The function π2 7→ − ∣∣πR −πR
0

∣∣ ·∣∣∣1− π2

πR
0 ·πR

∣∣∣ is depicted for several price ranges R. On the left-hand side, R is the unitary square root

price range that contains π0; in the middle R is the unitary range just below π0 and on the right-
hand side, R is the unitary range just above π0.

• HODL strategy. The same number of tokens are held by the LP outside the pool, we denote VH

the value of the related strategy at t1: we have

VH =∆L ·
((

1

πR
0

− 1

πu

)
·π2

1 +
(
πR

0 −πℓ
))

. (12)

At time t1, the Impermanent Loss is given by

VP −VH =−∆L ·
∣∣∣∣∣(πR

0 −πR
1

) ·(1− π2
1

πR
0 ·πR

1

)∣∣∣∣∣ . (13)

The proof is postponed to Appendix A.2. As can be observed in Figure 5, the Impermanent Loss
VP −VH is always non-positive, and it is zero when the current price p1 coincides with p0. Except
on the (small) range where the liquidity was added, the IL behaves as the opposite (up to a constant
factor) of a call or put payoff, depending on whether π0 > πu or π0 < πℓ, respectively, with a strike
equal to πℓ ·πu (i.e. equal to the geometric mean of pl and pu). To the best of our knowledge, the
shapes of these relations were first depicted on Guillaume Lambert’s blog [Lambert, 2021].
Combining Equations (12) and (13), we obviously obtain a formula for VP as a function of the added
liquidity∆L on the unitary square root price range R. Although quantities for VH and VP −VH are a
bit complicate in Theorem 3.2, the sum can be simplified. We emphasize that the formula below is
valid regardless of whether or not there have been swap trades or liquidity events the time at which
the LP deposited liquidity and the time at which their position value is computed.

Remark 3.3 (About assumption H0). In the case where H0 is not satisfied, it is necessary to adjust
the valuations of both strategies. One simple way to cope with this issue is to swap all X tokens for
Y tokens in the pool for both strategies. Doing so would require taking the swap fees into account
in the strategy valuations, which would have a very limited impact on the modified valuations and
on the scope of the results.

17



3.3 Formula for a full liquidity curve 3 IMPERMANENT LOSS REVISITED

0.00060 0.00062 0.00064 0.00066 0.00068

0.000235

0.000240

0.000245

0.000250

0.000255

0.000260

VP V3 wrt Price for
 different price ranges (different colors)

VP

VP(t = 0)
VP

VP(t = 0)
VP

VP(t = 0)
p0

Figure 6: Value of the LP strategy for 3 different price ranges (orange, blue, green). The dashed
vertical lines in each color represent the considered unitary ranges in the variable price p. The
dashed horizontal lines represent the initial value of the LP strategy for the price p0 depicted in
red.

Theorem 3.4. Assume H0. We consider a unitary square root price range R = [πℓ,πu) and suppose
that an LP deposits an amount of liquidity∆L on this range at initial time t = 0. The Y -value at time
t = 1 of their position in the pool is

VP =∆L ·
((

1

πR
1

− 1

πu

)
·π2

1 +
(
πR

1 −πℓ
))

, (14)

given as a function of the square root price π1.

Remark 3.3 also applies to this result. Observe that this value does not depend on the initial price
(although the number of tokens added do, see (7)), it essentially depends on the initial deposited
liquidity ∆L.
The value from Formula (14), written as a function of p1 = π2

1, is depicted in Figure 6. It has the
shape of covered call, with a smoothing around the strike, as was observed by Guillaume Lambert
on his blog [Lambert, 2021]. In Figure 7, we plot each of the components VP , VH and VP −VH .

3.3 A concise formula for the Uniswap v3 strategy with a full liquidity curve

The valuations from Theorem 3.4 can be extended to a full liquidity curve (∆Li )i spread over the
possible unitary ranges [πℓi ,πui ), by a straightforward summation of the above formulas. This is
summarized in the following statement, where we adopt the following notation:

• π andπdenote the square root pricesπℓ andπu defined by the unique unitary range [πℓ,πu) ∋
π,
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Figure 7: Values of VP ,VH (top) and VP −VH (bottom) for 3 different price ranges. The dashed
vertical lines in olive color represent the considered unitary ranges. At the initial price p0, the
values VP and VH coincide.

• ∆Lπ denotes the liquidity added on the unitary range [π,π): note thatπ 7→∆Lπ is a piecewise-
constant4 function.

An example of liquidity curve (Lπ)π is represented in Figure 4.

Theorem 3.5. Assume H0. Consider a liquidity provider adding a liquidity curve (∆Lπ)π to the pool
while keeping x0 tokens X and y0 tokens Y in their wallet. At time t = 0, when the price in the pool
is p0, their tokens admit the following Y -value:

VP (t = 0) = x0 ·p0 + y0 +p0 ·
∫ +∞

π0

∆Lπ
π2 dπ+

∫ π0

0
∆Lπdπ.

At time t = 1, when the price in the pool is p1 , their Y -value net of swap fees is

VP (t = 1) = x0 ·p1 + y0 +p1 ·
∫ +∞

π1

∆Lπ
π2 dπ+

∫ π1

0
∆Lπdπ. (15)

Proof. We denote by (Ri )i≥0, where Ri = [πℓi ,πui ), the sequence of unitary square root price ranges
in the pool. The exact Y -value of the tokens at any time t , at which the square root price is πt , is
given by Equation (14):

VP (t ) = x0 ·pt + y0 +
∑
i≥0

∆Li ·
(

pt ·
(

1

π
Ri
t

− 1

πui

)
+

(
π

Ri
t −πℓi

))
. (16)

4It is also rcll (right-continuous with left limit), which is suitable for an integration wrt π.
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Consider the first term in the generalized summation, which is is defined by

S⋆1 = pt ·
∑
i≥0

∆Li ·
(

1

π
Ri
t

− 1

πui

)
.

Note that for ranges Ri such that πui ≤ πt , we have πRi
t = πui and the corresponding terms in the

sum are all equal to 0. For ranges Ri such that πℓi ≥ πt , we have 1

π
Ri
t

− 1
πui

= 1
πℓi

− 1
πui

, and when

πt ∈ Ri , we have 1

π
Ri
t

− 1
πui

= 1
πt

− 1
πui

. Writing the sum as an integral and using the convention on

∆Lπ, we get

S⋆1 =−pt ·
∫ +∞

πt

∆Lπd

(
1

π

)
= pt ·

∫ +∞

πt

∆Lπ
π2 dπ. (17)

The second term in the summation is handled similarly:

S⋆2
def= ∑

i≥0
∆Li ·

(
π

Ri
t −πli

)
=

∫ πt

0
∆Lπdπ. (18)

Plugging Equations (17) and (18) into (16) yields the stated result, both when t = 0 and when t =
1.

The following result gives the first (Delta) and second (Gamma) order sensitivity of the global posi-
tion with respect to the X −Y exchange rate.

Corollary 3.6. The Delta and Gamma of the Y -value of the position at t = 0 as defined in Theorem
3.5 (net of swap fees) is given by

∆P (t = 0) = ∂VP (t = 0)

∂p0
= x0 +

∫ +∞

π0

∆Lπ
π2 dπ,

ΓP (t = 0) = ∂2VP (t = 0)

∂p2
0

= −∆Lπ0

2π3
0

.

In particular, such a position is always concave in the spot rate (negative Gamma).

These formulas follow from a direct differentiation of (15), details are left to the reader.

3.4 Synthetizing a concave option with an ad hoc liquidity curve

We have seen that depositing a liquidity curve implies a payoff (net of fees) which is concave as
a function of the price. We now show the converse, i.e. that any smooth concave payoff can be
generated by an LP strategy for some liquidity curve. This is based on the Carr-Madan result that
calls and puts form a generating system of any convex payoffs (see Appendix A.5): the connection
with Uniswap v3 is then possible since the Impermanent Loss has the same shape as the opposite
of the payoff for a put (for ranges below p0) or a call (for ranges above p0).
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Figure 8: Illustration of Theorem 3.7 when h corresponds to a short strangle (minus a put with
strike K = p0/1.3 and minus a call with strike K = 1.3 · p0. Both options are considered with a
maturity τ= 0.1 and a Black-Scholes volatility equal to 50%). Top left: the liquidity curve ∆LR from
Equation (19). Top right: the CPMM representation. Bottom left: the payoff and its replication
using Theorem 3.7. Bottom right: the reconstruction error. In view of the ranges of y-axis, this
error is small.

Theorem 3.7. Assume H0. Consider a concave payoff h : R+ 7→ R which we assume to be C 3 and
linear for small and large values. Then, consider a strategy depositing the liquidity curve

∆LR := (−h′′ (πℓ ·πu)
) · (πu +πℓ) ·πℓ ·πu (19)

at time 0 on each range R = [πℓ,πu). In addition, add to the position quantities x0 of tokens X and
y0 of tokens Y outside the pool, with

x0 = h′(p0)− ∑
R=[πℓ,πu )

∆LR ·
(

1

πR
0

− 1

πu

)
,

y0 = h(p0)−h′(p0) ·p0 +
∑

R=[πℓ,πu )
∆LR · (πR

0 −πℓ
)

.

Then the total value VP (T ) of the tokens in the pool (net of swap fees) and of the tokens outside the
pool is such that, for any T > 0,∣∣h(pT )− (VP (T )+x0 ·pT + y0)

∣∣≤C ·δπ · (βp −1), a.s.,

for a constant C that depends only on the payoff function h and its derivatives.
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Figure 8 provides an illustration of the above theorem. The following points are important to note:

• First, the concavity assumption ensures that the liquidity to deposit in Equation (19) is in-
deed non-negative.

• Second, the assumption that p 7→ h(p) is linear for large and small values of p (hence h′′(p) =
0 for these values) implies that the number of ranges affected by the liquidity deposit is finite.

• Third, as in the case of the Carr-Madan formula, smoothness can be partly relaxed but con-
cavity plays a crucial role. In other words, the assumptions on the smoothness of h and its
asymptotic behavior could be relaxed, but they were made here for the sake of having a sim-
plified proof avoiding technicalities that could obfuscate the main messages.

• As far as a practical implementation is concerned, it may happen that this strategy leads to
considering negative quantities of tokens X or Y : this is possible by using lending/borrowing
protocols, up to paying some extra fees (that we neglect here). The above result states that the
value of the payoff h(pT ) is equal, up to a small range width δπ · (βp −1), to the value of pool
(with the above liquidity curve), minus the Y -value of swap fees in the pool (see Theorem 4.1
for an estimation), plus x0 ·p0 + y0 for the value of tokens outside the pool.

Proof of Theorem 3.7. We start from the Carr-Madan formula (Appendix A.5) which gives

h(pT ) = h(p0)+h′(p0) · (pT −p0)+
∫ +∞

p0

h′′(K )(pT −K )+dK +
∫ p0

0
h′′(K )(K −pT )+dK .

The assumption on h ensures that the integral is restricted to a compact set of (0,∞), which we
denote [ε,1/ε] for some ε > 0. We can then replace the integral by a sum on a finite number of
ranges R = [πℓ,πu) and evaluate the function at the geometric mean πℓ ·πu . Note that the width of
a price range satisfies pu−pℓ

pℓ
=O

(
δπ · (βp −1)

)
. Therefore, it is easy to verify that

h(pT ) = h(p0)+h′(p0) · (pT −p0)+ ∑
R=[πℓ,πu )⊂[π0,∞)

h′′ (πℓ ·πu) · (π2
T −πℓ ·πu

)
+ · (π2

u −π2
ℓ

)
+ ∑

R=[πℓ,πu )⊂[0,π0)
h′′ (πℓ ·πu) · (πℓ ·πu −π2

T

)
+ · (π2

u −π2
ℓ

)
+O

(
δπ · (βp −1)

)
where the O

(
δπ · (βp −1)

)
is uniform in pT , p0 and T . Note that in the sum above, the range con-

taining π0 (in the case where π0 is not the boundary of one such range) was discarded. This does
not significantly modify the magnitude of the error term and it is a slight simplification for the
subsequent analysis that could be adjusted in case it is necessary to account for this contribution
too.
Since the Impermanent Loss VP −VH has the same profile as a call for pT > p0 and a put for pT < p0

(Theorem 3.2), we get the approximation:

h(pT ) = h(p0)+h′(p0) · (pT −p0)+ ∑
R=[πℓ,πu )

h′′ (πℓ ·πu) ·
(π2

u −π2
ℓ

)(
1
πℓ

− 1
πu

) · ∣∣∣∣∣ 1

πR
T

− 1

πR
0

∣∣∣∣∣ · ∣∣π2
T −πR

T ·πR
0

∣∣
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+O
(
δπ · (βp −1)

)
= h(p0)+h′(p0) · (pT −p0)+ ∑

R=[πℓ,πu )

(−h′′ (πℓ ·πu)
) · (πu +πℓ) ·πℓ ·πu · (V R

P (πT )−V R
H (πT )

)
+O

(
δπ · (βp −1)

)
,

where V R
P (πT )−V R

H (πT ) (given in (13)) denotes the Impermanent Loss incurred by adding an amount
∆L = 1 of liquidity to range R at time t = 0. Assuming that h is concave, the entire sum reads as the
global Loss VP −VH with a liquidity curve∆LR := (−h′′ (πℓ ·πu)

)·(πu+πℓ)·πℓ ·πu , which is Equation
(19).
Putting aside the term

∑
R=[πℓ,πu )∆LR ·V R

P (πT ), and considering the value VH from Equation (12),
we can re-interpret the remaining term h(p0)+h′(p0) ·(pT −p0)−∑

R=[πℓ,πu )∆LR ·V R
H (πT ) using the

quantities x0 and y0 of tokens X and Y outside the pool: this corresponds to

x0 = h′(p0)− ∑
R=[πℓ,πu )

∆LR ·
(

1

πR
0

− 1

πu

)
,

y0 = h(p0)−h′(p0) ·p0 +
∑

R=[πℓ,πu )
∆LR · (πR

0 −πℓ
)

,

which completes the proof.
As a side remark, we observe that the summations in the expressions of the quantities x0 and y0

can be simplified using integrals:

x0 = h′(p0)+
∫ p0

0
h′′(p) ·2

p
p ·p ·d

(
− 1p

p

)
+O

(
δπ · (βp −1)

)
= h′(p0)+

∫ p0

0
h′′(p)dp = 2 ·h′(p0)−h′(0)+O

(
δπ · (βp −1)

)
,

y0 = h(p0)−h′(p0) ·p0 +
∫ +∞

p0

(−h′′(p)) ·2
p

p ·p ·d
(p

p
)+O

(
δπ · (βp −1)

)
= h(p0)−h′(p0) ·p0 +

∫ +∞

p0

(−h′′(p)) ·p ·dp +O
(
δπ · (βp −1)

)
= h(p0)−h′(p0) ·p0 +

[
(−h′(p)) ·p

]p=1/ε

p=p0

−
∫ +1/ε

p0

(−h′(p)) ·dp +O
(
δπ · (βp −1)

)
=−h′(1/ε) ·1/ε+h(1/ε)+O

(
δπ · (βp −1)

)
.

Example 3.8. Consider the log payoff h(p) = log(p/p0). This payoff can be approximated by deposit-
ing the following liquidity profile into the pool

∆LR = πu +πℓ
πℓ ·πu

for all unitary ranges R = [πℓ,πu).

This payoff plays an important role for designing volatility index [Carr and Wu, 2006]: we leave these
investigations for further research. Note that however, the payoff h does not satisfy the regularity and
asymptotic properties required by Theorem 3.7 and it may cause difficulties in applying arguments
in the previous proof. A safe alternative is to linearize h for small and large values of p.
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4 Estimation of swap fees

4.1 A general approximation formula

Our final goal is to analyze the distributions of swap fees, for an arbitrary liquidity curve (∆Lπ)π.
Intuitively, the more the rate X −Y oscillates, the more swap fees are collected: we represent them
by the local time of the pool price process p, in a general Itô dynamics. For a proper probabilistic
analysis, the price process is defined on a filtered probability space (Ω,F , (Ft )0≤t≤T ,P) that sup-
ports a Brownian motion W , and with a filtration that satisfies the “usual conditions”.
We recall ([Revuz and Yor, 1999, Corollary 1.9 p.227]) that the local time of the price process p (as
in Equation (20) below) at level a is a measure of how much time p spends around a over some
period of time :

Aa
T (p) = lim

ε↓0

1

ε

∫ T

0
1pt∈[a,a+ε)d〈p〉t = lim

ε↓0

1

ε

∫ T

0
1pt∈[a,a+ε)a2σ2

t dt .

To avoid any confusion with liquidity, the local time is denoted by A (and not by L as it is usually
done). In the subsequent analysis, we assume that there exists a risk-neutral measure P⋆ used for
the pricing, under which the price process p is a martingale (here the interest rate is set to zero).

Theorem 4.1. Consider a liquidity provider depositing a liquidity curve (∆Lπ)π at time 0, and as-
sume (∆Lπ)π has a finite support (it is equal to 0 outside a bounded set of square root prices). We
analyze the amount of fees in X and Y that were accumulated over the period [0,T ] for a given
T > 0. We assume that the swap trades cause the price process (pt )t to move from one tick to another.
In other words, we assume that large swaps can be split into smaller ones for which the price moves
from one tick to the consecutive one, and that smaller swaps that do not cause the price to move to
another tick can be aggregated until a large enough swap is obtained. We also assume that pool price
process (pt )t follows an Itô dynamics of the form

dpt

pt
=µt dt +σt dWt , (20)

with a stochastic drift (µt )t and a stochastic volatility (σt )t : bothµ andσ are bounded and uniformly
Hölder continuous in time, the volatility σ is positive and bounded away from 0.
Then the amount of fees in X and Y accumulated over the period [0,T ] is defined as

FeesX
0→T = ∑

R=[πℓ,πu )
∆Lπ ·

(
ΦX

R (T )−ΦX
R (0)

)
, FeesY

0→T = ∑
R=[πℓ,πu )

∆Lπ ·
(
ΦY

R (T )−ΦY
R (0)

)
,

and approximated as follows:

lim
βp↓1

(βp −1) ·FeesX
0→T

P= φ

1−φ ·
∫ +∞

0
∆L

b
1
2

Ab
T (p)

4 ·b5/2
db, (21)

lim
βp↓1

(βp −1) ·FeesY
0→T

P= φ

1−φ ·
∫ +∞

0
∆L

b
1
2

Ab
T (p)

4 ·b3/2
db, (22)

where the limits hold in probability.
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Consider the function

F
(
(∆Lπ)π, (σt )t

) def= 1

(βp −1)
E⋆

[
lim
βp↓1

(βp −1) ·FeesX
0→T ·pT + lim

βp↓1
(βp −1) ·FeesY

0→T

]
,

which represents the Y -value of the approximated collected swap fees as a function of the liquidity
distribution and the local time of the exchange rate process, assuming a discounting factor equal to
1. We have

F
(
(∆Lπ)π, (σt )t

)= φ

(1−φ) · (βp −1)
·
∫ +∞

0
∆L

b
1
2

E⋆
[

Ab
T (p)

]
2 ·b3/2

db. (23)

Note that since (∆Lπ)π has a finite support, there are no integrability issues in the above integral
representations.
Note also that we refer to approximated collected swap fees for two reasons: first, because we con-
sider the limits in (21)-(22); second because to effectively recover the fees, they have to be with-
drawn from the pool, which induces a valuation price that may be different from the pool price,
and possibly cost additional transaction fees.

Proof. By Equation (10), the amount of fees in tokens X and Y accumulated over the period per
unit of liquidity on the range R = [πℓ,πu) is

∆ΦX
R =ΦX

R (T )−ΦX
R (0) =∑

i

aX
i

1−φ · φ
Li

, ∆ΦY
R =ΦY

R (T )−ΦY
R (0) =∑

j

aY
j

1−φ · φ
L j

,

where Li is the liquidity available on the considered range at a time 0 ≤ ti ≤ T at which aX
i (resp. aY

i )
tokens were deposited into the pool on range R to retrieve tokens Y (resp. X ). We have assumed
that the above amounts of tokens aX

i and aY
i exactly match the quantities that shift the price from

one tick to the next one. Thus, using Equations (8) and (9), the sums above can be rewritten as

∆ΦX
R = ∑

swap X for Y at time ti ∈ [0,T ]
1πti ∈R ·

(
1

πti ·β−1/2
p

− 1

πti

)
· φ

1−φ ,

∆ΦY
R = ∑

swap Y for X at time t j ∈ [0,T ]
1πt j ∈R ·

(
πt j ·β1/2

p −πt j

)
· φ

1−φ .

Here the times ti are the successive hitting times of the tick grid by the price process p, as it de-
creases when tokens X are swapped in for tokens Y , or increases in the other case. Using a result
from [Gobet and Landon, 2014, Proof of Theorem 2.3] in the context of our general Itô model (20),
we know that the total number of hitting times is of order (βp − 1)−2 in probability and that the
timestep supi |ti+1 − ti | is of order (βp−1)−(2−η) in probability (for any η> 0). In addition, standard
stochastic calculus algebra shows that

P

(
pti+1

pti

=β±1
p

∣∣∣Fti

)
= 1

2
+O(βp −1) (24)
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4.1 A general approximation formula 4 ESTIMATION OF SWAP FEES

with a remainder uniform in ω; in other words, local price changes are almost symmetric and the
bias can be neglected. Combining Equation (24) with a standard convergence result of triangular
arrays of random variables (see [Genon-Catalot and Jacod, 1993, Lemma 9]) allows to get

∆ΦX
R =

(β1/2
p −1) ·φ
(1−φ)

· ∑
swap at time ti ∈ [0,T ]

1decreasing price just after at ti · 1πti ∈R · 1

πti

=
(β1/2

p −1) ·φ
2 · (1−φ)

· ∑
swap at time ti ∈ [0,T ]

1πti ∈R · 1

πti

+OP(1),

∆ΦY
R =

(β1/2
p −1) ·φ

2 · (1−φ)
· ∑

swap at time ti ∈ [0,T ]
1πti ∈R ·πti +OP(1).

Write (log(βp))2 = (log(pti+1 /pti ))2 = ∫ ti+1
ti

σ2
t dt+residual: using martingale convergence results (like

[Gobet and Landon, 2014, Proposition 1.5 and Proposition A.1]) we derive

∆ΦX
R =

(β1/2
p −1) ·φ

2 · (1−φ)
· ∑

swap at time ti ∈ [0,T ]
1πti ∈R · 1

πti

·
∫ ti+1

ti
σ2

t dt

(log(βp))2 +oP((βp −1)−1),

∆ΦY
R =

(β1/2
p −1) ·φ

2 · (1−φ)
· ∑

swap at time ti ∈ [0,T ]
1πti ∈R ·πti ·

∫ ti+1
ti

σ2
t dt

(log(βp))2 +oP((βp −1)−1).

We now replace the summation of terms computed at times ti by an integral: this can be done
using the regularity of the coefficients µ and σ. More specifically, the indicator function at discrete
times can also be replaced by its continuous version, taking advantage of the fact that the process
π does not spend too much time close to the boundaries of R (the singular points for the indicator
function). The computations involve standard routines (like in [Gobet and Menozzi, 2010]), details

are left to the reader. Globally, using
β1/2

p −1

(log(βp))2 ≈ 1
2·(βp−1) as βp → 1, we obtain

(βp −1) ·∆ΦX
R = φ

4 · (1−φ)
·
∫ T

0
1πt∈R

1

πt
·σ2

t dt+oP(1),

(βp −1)·∆ΦY
R = φ

4 · (1−φ)
·
∫ T

0
1πt∈Rπt ·σ2

t dt+oP(1).

(25)

We now use the occupation time formula, see [Revuz and Yor, 1999, Corollary 1.6, p.224]: for any
Itô process X and any non-negative measurable functionΨ, we have∫ T

0
Ψ(X t )d〈X 〉t =

∫
R
Ψ(a)Aa

T (X )da. (26)

Since dπt
πt

= σt
2 dWt +

(
µt

2 − σ2
t

8

)
dt , the bracket of π is d〈π〉t = 1

4 ·π2
t ·σ2

t dt , therefore the occupation

formula withΨX (π)
def= 1π∈R ·π−3 andΨY (π)

def= 1π∈R ·π−1 yields

(βp −1)·∆ΦX
R = φ

(1−φ)
·
∫

R

Aa
T (π)

a3 da+oP(1), (βp −1)·∆ΦY
R = φ

(1−φ)
·
∫

R

Aa
T (π)

a
da+oP(1).
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The actual fees retrieved by the liquidity provider are obtained by multiplying the computed quan-
tities by the liquidity added to each range and summing the results, yielding FeesX

0→T = ∑
R ∆Lπ ·

∆ΦX
R and FeesY

0→T =∑
R ∆Lπ ·∆ΦY

R . We have

(βp −1)·FeesX
0→T =

φ

(1−φ)
·
∫ +∞

0
∆La

Aa
T (π)

a3 da+oP(1),

(βp −1)·FeesY
0→T =

φ

(1−φ)
·
∫ +∞

0
∆La

Aa
T (π)

a
da+oP(1).

Now, using the change of variables for local time [Revuz and Yor, 1999, Exercice 1.23 p.234]:

2a · Aa
T (π) = Aa2

T (p), ∀a > 0,

plugging this expression into the above integrals and making use of the new variable b
def= a2 yields

Equations (21) and (22).
We now prove that Equation (23) holds. More specifically, using Equation (25), we compute

E⋆

[∑
R
∆Lπ ·

(
lim
βp↓1

(βp −1)·∆ΦX
R ·pT + lim

βp↓1
(βp −1)·∆ΦY

R

)]

=∑
R
∆Lπ · φ

4 · (1−φ)
·E⋆

[∫ T

0
1πt∈R

pT

πt
·σ2

t dt +
∫ T

0
1πt∈Rπt ·σ2

t dt

]
.

Under the risk-neutral valuation rule, we have E⋆
[

pT

πt

∣∣∣Ft

]
= πt , meaning that in total value, this

expression is equal to twice the Y -fees. Thus, the end of the computation is the same as Equation
(22), with an extra factor 2 and with the risk-neutral expectation.

Corollary 4.2 (Expected fees using CEX call/put prices). Assume H0. In the setting of Theorem
4.1 and supposing the risk-neutral pricing rule Putt=0(T,b) = E⋆

[
(b −pT )+

]
and Callt=0(T,b) =

E⋆
[
(pT −b)+

]
holds for the call/put options traded outside the pool5, we have

E⋆
[

lim
βp↓1

(βp −1)·FeesX
0→T ·pT + lim

βp↓1
(βp −1)·FeesY

0→T

]
= φ

(1−φ)
·
(∫ p0

0
∆L

b
1
2
· Putt=0(T,b)

b3/2
db +

∫ +∞

p0

∆L
b

1
2
· Callt=0(T,b)

b3/2
db

)
.

This formula shows that in a situation where the price within the pool coincides with the one out-
side the pool, the value of fees (for a general liquidity curve) should be aligned with the values of
calls/puts written on the same rate X −Y . This formula has a similar shape to the Carr-Madan
formula (recalled in Appendix A.5), and it is interesting to notice that, similarly to a volatility index
[Carr and Wu, 2006], it can be evaluated from call/put market prices.
We mention that in many pools, the coincidence of prices within and outside the pool does not
hold perfectly: see [Jaimungal et al., 2023] for a recent study of the Spot-Pool spread. Hence, in
these situations, the validity of Corollary 4.2 is debatable.

5Typically on CEXes
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Proof of Corollary 4.2. The Tanaka formula [Revuz and Yor, 1999, Theorem 2.1, p. 222] gives

(pT −K )+ = (p0 −K )++
∫ T

0
1pt>K dpt + 1

2
AK

T (p),

(K −pT )+ = (K −p0)+−
∫ T

0
1pt≤K dpt + 1

2
AK

T (p).

Therefore, for OTM options (p0 < K for a Call and p0 > K for a Put), we have

Callt=0(T,K ) = 1

2
E⋆

[
AK

T (p)
]

, Putt=0(T,K ) = 1

2
E⋆

[
AK

T (p)
]

.

Plugging these values into Equation (23) and splitting the integral depending on whether K > p0 or
K < p0 yields the stated result.

4.2 Estimation of expected swap fees in Black-Scholes model

Our goal is to derive an analytical formula of

E⋆
[

lim
βp↓1

(βp −1)·FeesX
0→T ·pT + lim

βp↓1
(βp −1)·FeesY

0→T

]
in the case where liquidity is concentrated on the range R = [πℓ,πu) and when the price evolves
like a Geometric Brownian motion.

Theorem 4.3. Assume the conditions and notations of Theorem 4.1 with constant volatility σt =σ,
and with ∆Lπ = 1 for π = πℓ and 0 otherwise. Then the risk-neutral Y -value of the renormalized
approximated collected swap fees (as defined in (23)) is given by

E⋆
[

lim
βp↓1

(βp −1)·FeesX
0→T ·pT + lim

βp↓1
(βp −1)·FeesY

0→T

]
= φ ·σ2

2 · (1−φ)
·
∫ T

0
π0e−

σ2

8 t ·
(
N

(
1

σ
p

t
· ln

(
p0

pl

)
− 1

2
·σpt

)
−N

(
1

σ
p

t
· ln

(
p0

pu

)
− 1

2
·σpt

))
dt . (27)

The proof is postponed to Subsection A.4.

4.3 Numerical experiments

This subsection is devoted to the illustration of previous results about fees. The experimentation
is performed on synthetic data, using a Geometric Brownian motion for p with constant volatility
σ = 40% and drift µ = 5%, over the period [0,T ] with T = 1/52 (1 week). Given a path of p, we
compute the fees depending on different assumptions on the tick spacing δπ. We recall that tick
spacings and swap fees are related: δπ = 10,60,200 corresponds toφ= 0.05%,0.3%,1%. For our test
we add the values δπ = 2,φ= 0.01%.
The path sampling of p has required to draw the hitting times by p of the ticks grid withβp = 1.0001.
Fortunately, the distributions of hitting times and positions are explicit (see [Borodin and Salminen, 2002,
Section II.2]) and thus can be sampled on a computer. Figure 9 represents the sample path that was
obtained for this test.
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Figure 9: Sample path of p, with p0 = 1, σ= 40% and drift µ= 5%

4.3.1 Illustrations of Theorem 4.1

In Figure 10 we report the exact fees collected in tokens X and Y , depending on different price
ranges, and report on a second axis the occupation density of p. We observe that fees and occupa-
tion density are strongly linked, which is coherent with (25) and Theorem 4.1.
In Figure 11, we verify the validity of the approximation in Equation (25). For this purpose, we
depict the scatter plots of the exact fees versus their limits, for various values of δπ. We observe
that points are located on the diagonal showing an excellent accuracy of the formulas.

4.3.2 Illustrations of Theorem 4.3

Thanks to the analytical formula (27), it is straightforward to compute the expected fees across
different ranges. We proceed by direct numerical integration of the time integral in (27). The fees
values obviously increase as the time horizon gets larger; the fees values also increase as the volatil-
ity gets larger, which is coherent with our assumption which considers that swap trades occur as
frequently as prices change from one tick to another.
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Figure 10: Left axis: the exact fees collected in tokens X and Y . Right axis: occupation density of p.
Top: when δπ = 10. Bottom: when δπ = 60.

30



4.3 Numerical experiments 4 ESTIMATION OF SWAP FEES

Figure 11: True collected fees versus their approximations. From top to bottom: δπ = 2,10,60,200.
Each point corresponds to the amount of swap fee on a range; smaller values of δπ have more
ranges hence more points.
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Figure 12: In the Black-Scholes model, representation of the expected fees (Equation (27)) as a
function of square root price ranges, for different volatilities (σ =50%, 80%, 150%) and different
time horizons (T = 0.25,0/5,1).
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A TECHNICAL RESULTS

5 Conclusion

In this work, we have revisited in detail the core mechanisms of Uniswap v3, anchoring our analysis
on the source code of the protocol. We exhibit some new simplified formulas of the Impermanent
Loss for general liquidity curves. This gives the opportunity to replicate any concave payoff (under
mild regularity and growth assumptions). The analysis is undertaken in the full generality on the
occurrence of swap trades and burn/mint liquidity events. We establish a new convergence result
for the renormalized collected fees in each token, in the limit of a small tick spacing. This highlights
the importance of the time spent by the process in each range, which translates into an integral
with respect to the local time of the price process. This enables us to easily compute the expected
fees as an integral of call/puts, with a quite general exchange rate process.
This work opens interesting perspectives: 1) comparing the fees predicted by our formula with
those actually observed in the pool; 2) performing a quantitative study of arbitrage opportuni-
ties between Calls and Uniswap v3 pools. This would allow for completing the analyses done in
[Capponi and Jia, 2021] who argue that arbitrageurs extract profits from liquidity providers. All
these topics are left to future research.

A Technical results

A.1 Proof of Proposition 2.2

We prove the result when the initial price π0 ∈ R, the cases where π0 <πℓ or π0 >πu are proved in a
similar way. Note that by construction we have πℓ =πℓ1 and πu =πun . For i = 1, . . . ,n, the amounts
of tokens deposited on range Ri are given by Equation (5):

∆xri =∆L ·
(

1

π
Ri
0

− 1

πui

)
and ∆y ri

=∆L ·
(
π

Ri
0 −πℓi

)
.

Let j denote the index such that π0 ∈ R j . By definition if i < j then π
Ri
0 = πui , and if i > j then

π
Ri
0 =πℓi . The total amount of tokens X deposited by the liquidity provider is

∆xr =
n∑

i=1
∆L ·

(
1

π
Ri
0

− 1

πui

)

= ∑
i< j

∆L ·
(

1

π
Ri
0

− 1

πui

)
+

(
1

π0
− 1

πu j

)
+ ∑

j<i≤n
∆L ·

(
1

π
Ri
0

− 1

πui

)

=
(

1

π0
− 1

πu j

)
+ ∑

j<i≤n
∆L ·

(
1

πℓi

− 1

πui

)

=
(

1

π0
− 1

πu j

)
+ ∑

j<i≤n
∆L ·

(
1

πui−1

− 1

πui

)
= 1

π0
− 1

πu
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= 1

πR
0

− 1

πu
.

In a similar way we can prove that ∆y r =∆L · (πR
0 −πℓ

)
, hence the result.

A.2 Proof of Theorem 3.2

Equation (12) is a direct consequence of the fact that VH =∆xr ·p1 +∆y r . Combining this with the
values of ∆xr and ∆y r given by Equation (7) yields the result. To prove that Equation (13) holds, in

what follows, we let πα
def= min{π0,π1} and πβ

def= max{π0,π1}. We consider the following cases.

When πℓ ≤πα ≤πu ≤πβ.

• If πα = π0 ≤ π1 (the price has increased), then there are no tokens X anymore within
the range [πℓ,πu), which contains (L+∆L) ·(πu −πℓ) tokens Y , see Equation (4). The LP
owns the proportion ∆L

L+∆L of these tokens, thus their position is worth

VP =∆L · (πu −πℓ),

expressed in the numeraire Y .

By Equation (4), the number of tokens initially added to the pool by the LP in the range
[πℓ,πu) is∆xr =∆L · (1/π0−1/πu) for token X and∆y r =∆L · (π0−πℓ) for token Y Thus,
the value in the Y -numeraire of the HODL strategy is

VH =∆L ·
((

1

π0
− 1

πu

)
·π2

1 + (π0 −πℓ)

)
.

It follows that

VP −VH =∆L ·
(
πu −π0 −

(
1

π0
− 1

πu

)
·π2

1

)
=∆L · (πu −πα) ·

(
1− π2

1

πα ·πu

)
≤ 0,

which completes the proof of Equation (13).

• If πα =π1 ≤π0 (the price has decreased), then there are (L+∆L)·(1/π1−1/πu) tokens X
and (L+∆L) ·(π1−πℓ) tokens Y in the range [πℓ,πu) by Equation (4). Since the LP owns
the proportion ∆L

L+∆L of these tokens, the current value of the LP position is

VP =∆L ·
((

1

π1
− 1

πu

)
·π2

1 + (π1 −πℓ)

)
.

The number of tokens initially added to the pool by the LP in the range [πℓ,πu) is∆xr =0
tokens X and ∆y r =∆L · (πu −πℓ) tokens Y (since π0 > πu). Therefore the value of the
HODL strategy is

VH =∆L · (πu −πℓ).

We deduce that

VP −VH =∆L ·
((

1

π1
− 1

πu

)
·π2

1 + (π1 −πu)

)
=∆L · (πα−πu) ·

(
1− π2

1

πα ·πu

)
≤ 0,

hence Equation (13) holds.
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When πα ≤πℓ ≤πβ ≤πu . We apply the same arguments and leave details to the reader.

• If πα =π0 ≤π1 =πβ, then

∆xr=∆L ·
(

1

πℓ
− 1

πu

)
and ∆y r = 0,

VP =∆L ·
((

1

π1
− 1

πu

)
·π2

1 + (π1 −πℓ)

)
,

VH =∆L ·π2
1 ·

(
1

πℓ
− 1

πu

)
,

VP −VH =∆L ·
((

1

π1
− 1

πℓ

)
·π2

1 + (π1 −πℓ)

)
=∆L · (πβ−πℓ) ·

(
1− π2

1

πβ ·πℓ

)
≤ 0.

• If π1 ≤π0 =πβ, then

∆xr=∆L ·
(

1

π0
− 1

πu

)
and ∆y r =∆L · (π0 −πℓ),

VP =∆L ·π2
1 ·

(
1

πℓ
− 1

πu

)
,

VH =∆L ·
(
π2

1 ·
(

1

π0
− 1

πu

)
+ (π0 −πℓ)

)
,

VP −VH =∆L ·
(
(πℓ−π0)+π2

1 ·
(

1

πℓ
− 1

π0

))
=∆L · (πℓ−πβ) ·

(
1− π2

1

πβ ·πℓ

)
≤ 0.

When πα ≤πℓ ≤πu ≤πβ. The same reasoning as above permits to show that in this case, we have

VP −VH =−∆L ·
∣∣∣∣∣(πu −πℓ) ·

(
1− π2

1

πu ·πℓ

)∣∣∣∣∣ ,

with the amounts of tokens X and Y given by Equation (7).

When πℓ ≤πα ≤πβ ≤πu . In a similar way, we have

VP =∆L ·
(
π2

1 ·
(

1

π1
− 1

πu

)
+π1 −πℓ

)
,

VH =∆L ·
(
π2

1 ·
(

1

π0
− 1

πu

)
+π0 −πℓ

)
,

regardless of whether π0 =πα or π0 =πβ, where ∆xr =∆L ·
(

1
π0

− 1
πu

)
and ∆y r =∆L · (π0−πℓ).

Thus,

VP −VH =−∆L

π0
· (π1 −π0)2.

When πα ≤πβ ≤πℓ ≤πu or πℓ ≤πu ≤πα ≤πβ. We have respectively

VP =VH =∆L ·π2
1 ·

(
1

πℓ
− 1

πu

)
,
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VP =VH =∆L · (πu −πℓ) ,

with ∆xr = ∆L ·
(

1
πℓ

− 1
πu

)
and ∆y r = 0, or ∆xr = 0 and ∆y r = ∆L · (πu −πℓ) respectively. In

both cases,
VP −VH = 0.

This completes the proof of Theorem 3.2.

A.3 Proof of Theorem 3.4

By combining Equations (12) and (13), we have

VP =−∆L ·
∣∣∣∣∣(πR

0 −πR
1

) ·(1− π2
1

πR
0 ·πR

1

)∣∣∣∣∣+∆L ·
((

1

πR
0

− 1

πu

)
·π2

1 +
(
πR

0 −πℓ
))

.

We show that this formula simplifies into Equation (14); without loss of generality we assume
∆L = 1. We consider nine cases, depending on the positions of π0 and π1 below/within/above the
range R = [πℓ,πu):

Value of VP (t = 1) π0 < R :πR
0 =πℓ π0 ∈ R :πR

0 =π0 π0 ≥ R :πR
0 =πu

π1 < R :πR
1 =πℓ ( 1

πℓ
− 1

πu
) ·π2

1 −(π0 −πℓ) ·
(
1− π2

1
π0·πℓ

)
+ ( 1

π0
− 1

πu
) ·π2

1
+π0 −πℓ
= ( 1

πℓ
− 1

πu
) ·π2

1

−(πu −πℓ) ·
(
1− π2

1
πu ·πℓ

)
+πu −πℓ
= ( 1

πℓ
− 1

πu
) ·π2

1

π1 ∈ R :πR
1 =π1 −(π1 −πℓ) ·

(
π2

1
πℓ·π1

−1
)

+ ( 1
πℓ

− 1
πu

) ·π2
1

=
(

1
π1

− 1
πu

)
·π2

1
+ (π1 −πℓ)

−(π0 −π1) ·
(
1− π2

1
π0·π1

)
+ ( 1

π0
− 1

πu
) ·π2

1
+ (π0 −πℓ)

=
(

1
π1

− 1
πu

)
·π2

1
+ (π1 −πℓ)

−(πu −π1) ·
(
1− π2

1
πu ·π1

)
+ (πu −πℓ)

=
(

1
π1

− 1
πu

)
·π2

1
+ (π1 −πℓ)

π1 ≥ R :πR
1 =πu −(πu −πℓ) ·

(
π2

1
πℓ·πu

−1
)

+ ( 1
πℓ

− 1
πu

) ·π2
1

= (πu −πℓ)

−(π0 −πu) ·
(
1− π2

1
π0·πu

)
+ ( 1

π0
− 1

πu
) ·π2

1
+ (π0 −πℓ)
= (πu −πℓ)

πu −πℓ

It is then straightforward to check that the above values coincide with the general formula in Equa-
tion (14).

A.4 Proof of Theorem 4.3

Starting from Equation (23) and using the occupation time formula (26) with p, we have:

F
(
(∆Lπ)π, (σt )t

)= φ

(1−φ) · (βp −1)
·E⋆

[∫ pu

pl

Ab
T (p)

2 ·b3/2
db

]
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= σ2 ·φ
2 · (1−φ) · (βp −1)

·E⋆
[∫ T

0
1πt∈[πℓ,πu ) ·πt dt

]
.

In the Black-Scholes model with σt =σ, we have

πt =π0e
σ
2 Wt− σ2

4 t =π0e
σ
2 Wt− 1

2

(
σ
2

)2
t− σ2

8 t ,

i.eπt can be seen as a risk-neutral Geometric Brownian Motion with interest rate −σ2

8 and volatility
σ
2 . Therefore, the computations leading to the Black-Scholes formula give

E
[
1πt≥b ·πt

]=π0e−
σ2

8 t ·N
 2

σ
p

t
ln

π0 ·e−
σ2

8 t

b

− 1

4
σ
p

t

=π0e−
σ2

8 t ·N
(

1

σ
p

t
ln

( p0

b2

)
− 1

2
σ
p

t

)
.

Computing the difference between the above values with b
def= πℓ and b

def= πu leads to the result.

A.5 Carr-Madan formula

Theorem A.1 ([Carr and Madan, 2001, Appendix 1]). The system of Call and Put payoffs with matu-
rity T :

(
(pT −K )+, (K −pT )+

)
K≥0 allows to statically replicate any vanilla payoff h(pT ), where h can

be any regular function or difference of convex functions: for any pT and any p0 ≥ 0,

h(pT ) = h(p0)+h′(p0) · (pT −p0)+
∫ +∞

p0

h′′(K )(pT −K )+dK +
∫ p0

0
h′′(K )(K −pT )+dK .
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