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In order to study the global decline of biodiversity, accurate models of wildlife population dynamics are required. In this paper, we propose new population dynamics models to evaluate the climate impacts on wildlife populations. The considered population is modelled by a parameter-varying partial differential equation. The parameter-varying formulation allows us to introduce in models prior information such as temperatures and precipitations to model the climate impacts. The parameter estimation is performed with specific tools: an iterative identification procedure based on a Levenberg-Marquardt algorithm, a Galerkin method and a proper orthogonal decomposition. The goal of the present paper is to test these tools on simulated dataset. The perspectives are to model specific community of birds in order to evaluate the effect of climate and agricultural changes in population dynamics and distributions.

Introduction

The global decline of biodiversity is an undeniable fact today (Hallmann et al., 2017;IPBES, 2018a;WWF, 2018). As mentioned in the assessment reports of (IPBES, 2018b), such a biodiversity loss is a consequence of agricultural intensification, irrigation and urban development combined with climate change. To study these different impacts, it is essential to have accurate models of wildlife population dynamics in order to analyse the biodiversity decline as well as to predict future trends and influence public policies.

There are two main classes of population dynamics models: the phenomenological models class and the mechanistic models class [START_REF] Merow | Developing dynamic mechanistic species distribution models: Predicting bird-mediated spread of invasive plants across northeastern north america[END_REF], i.e. black-box models class and grey-box models class, respectively. The phenomenological models, such as the ecological niche models [START_REF] Melo-Merino | Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence[END_REF], are statistical models that link the responses of species variables to explicative variables representing, for instance, landscape or climate changes. Easy to handle, they give the spatial and temporal distribution of the considered species. Unfortunately, their longterm predictive ability is limited. The mechanistic models are based on ordinary differential equations (ODEs) which characterize the temporal dynamics with better long-term predictive ability. To represent the spatial distribution, the geographical area must be divided into patches with a model per patch [START_REF] Mouysset | Selection of dynamic models for bird populations in farmlands[END_REF] or into a metapopulation [START_REF] Levin | Population dynamic models in heterogeneous environments[END_REF]. Fisher (1937) has proposed a mechanistic model based on partial differential equations (PDEs) capable of simultane-ously characterizing temporal and spatial dynamics. But, in practice, this kind of models have never used. In [START_REF] Ouvrard | Dynamic models for bird population -A parameter-varying partial differential equation identification approach[END_REF], we proposed a tool for the parametric estimation of new population dynamic models based on PDEs. To take into account, for example, the land use to analyse agricultural changes to wildlife populations or the temperature and the precipitation to study effects of global warming, we introduced varying parameters in the PDEs with a scheduling variable. A Proper orthogonal decomposition/Galerkin method gives an approximated solution of the considered PDE [START_REF] Polis | On parameter identification for distributed systems using Galerkin's criterion[END_REF]Newman, 1996a,b) and an iterative Levenberg-Marquardt algorithm leads to the estimates of the parameters.

Based on these new population dynamic models and different agricultural scenarios, different agricultural policies can be evaluated [START_REF] Mouysset | Bio economic modeling for a sustainable management of biodiversity in agricultural lands[END_REF][START_REF] Mouysset | Different policy scenarios to promote various targets of biodiversity[END_REF].

In the present paper, the goal is to validate models and tools in the context of the study of climate and agricultural impacts on wildlife populations. More specifically, our perspective is to model the population dynamics and the distribution changes for a passerine called Yellowhammer Emberiza citrinella. Indeed, the national French Breeding Bird Survey described in [START_REF] Jiguet | French citizens monitoring ordinary birds provide tools for conservation and ecological sciences[END_REF] shows that the Yellowhammers have population contraction from the southwest to the northeast of France over past 20 years due to changes climatic and agricultural.

We propose to test our parametric estimation tools of the parameter-varying PDE models with simulation dataset similar to the known evolutions for the French population of Yellowhammers.

The PDE models with varying parameter are presented in Section 2 and the simulation data in Section 3. The identification results are given in Section 4. Section 5 concludes this paper.

PDE models with varying parameter

Models

The parameter-varying PDE model is defined by ∂u(x, y, t) ∂t

= ∂ ∂x D x (H) ∂u(x, y, t) ∂x + ∂ ∂y D y (H) ∂u(x, y, t) ∂y -w x (H) ∂u(x, y, t) ∂x -w y (H) ∂u(x, y, t) ∂y +β 1 (H)u(x, y, t) -β 2 (H)u 2 (x, y, t) ,
(1) where u(x, y, t) is a population or a density of individuals at spatial coordinates (x, y) and time t. The varying parameters D x (H), D y (H), w x (H), w y (H), β 1 (H) and β 2 (H) are parametric functions depending on the scheduling variable H(x, y, t) which is chosen to adapt to the phenomena to be modelled.

Such PDE models make it possible to represent both temporal and spatial dynamics. Depending on the considered PDE structure, three different effects can be modelled: the diffusion, the advection (or convection) and the reaction (Holmes et al., 1994). The varying parameters with the scheduling variable H(x, y, t) take into account the environmental heterogeneity or the climate changes.

The diffusion effect

The diffusion effect in PDE models characterizes the Brownian random motion of an individual. For instance, consider an initial population u(x, y, 0) which is zero everywhere except in a square in the centre of the study area where the population is one as shown in the plot at the top left of Figure 1. The simulation of the following PDE ∂u(x, y, t) ∂t

= D 0 ∂ 2 u(x, y, t) ∂x 2 + ∂ 2 u(x, y, t) ∂y 2 (2)
with a diffusion coefficient D 0 = 1, presents an evolution of the population for the first time samples as drawn in Figure 1.

The convection effect

The convection effect reflects the movement of the population linked, for instance, to a deterioration of habitat or a change in climatic conditions. To illustrate it, consider the simulation of the following PDE ∂u(x, y, t) ∂t = w x ∂u(x, y, t) ∂x + w y ∂u(x, y, t) ∂y

with an initial population u(x, y, 0) given by a gaussian centred on the middle of the study area. Figure 2 shows the simulation for three different cases of drift velocities w x and w y .

2.1.3

The reaction In the PDE model (1), the reaction is a logistic growth reaction. However, other reactions can be used. • the exponential growth reaction (Malthus model) du(x 0 , y 0 , t) dt = ru(x 0 , y 0 , t),

• the logistic growth reaction (Verhulst model)

du(x 0 , y 0 , t) dt = ru(x 0 , y 0 , t) 1 - u(x 0 , y 0 , t) K , (5) 
• the Allee effect du(x 0 , y 0 , t) dt = ru(x 0 , y 0 , t)

1 - u(x 0 , y 0 , t) K u(x 0 , y 0 , t) -A K , (6) 
where r is the rate of increase of the population u, K, the carrying capacity and A, the critical density. 

Climate and agricultural evolutions embedded to the scheduling variable

In our perspective to model the population dynamics of Yellowhammers, the scheduling variable H(x, y, t) is built with:

• the 19 bioclimatic variables from the database presented in (Fick and Hijmans, 2017) to represent climate changes, • the 44 items of the CORINE Land Cover database to characterize the land use.

In the present paper, the simulation is performed with H(x, y, t) deduced from these databases and the study about the Yellowhammer.

Parameter estimation

The parameters contained in the functions D x (H), D y (H), w x (H), w y (H), β 1 (H) and β 2 (H) are estimated with the procedure described in [START_REF] Ouvrard | Dynamic models for bird population -A parameter-varying partial differential equation identification approach[END_REF] from a measured population {u(i dx, j dy, k dt)} i=0,...,Nx; j=0,...,Ny; k=0,...,Nt with corresponding sampling distances dx, dy and dt. This procedure repeats iteratively the following two steps from an initial parameter vector θ θ θ 0 and until convergence

• approximate a solution û(x, y, t) of the PDE (1) by using a Galerkin method based on a Proper orthogonal decomposition [START_REF] Polis | On parameter identification for distributed systems using Galerkin's criterion[END_REF]Newman, 1996a,b), • compute a new parameter vector θ θ θ iter+1 with a Levenberg-Marquardt algorithm which minimizes the quadratic criterion given by:

J(θ θ θ iter ) = Nt k=0 Ny j=0 Nx i=0 (u(i, j, k) -û(i, j, k)) 2 . (7)
3 Simulation data

In this part, we will simulate the PDE (1) using the finite difference method (LeVeque, 2007) on the domain Ω which is a square between -500 and 1500 and the time interval [0, 16 years ]. The parameters are presented by: 

D x (H) = D y (H) = D 0 + D 1 H(x, y, t), (8) 
ω x (H) = (1 -H(x, y, t))ω x0 , (9) 
ω y (H) = (1 -H(x, y, t))ω y0 , (10) 
β 1 (H) = β 10 , (11) 
β 2 (H) = β 20 + β 21 H(x, y, t). ( 12 
for calculate u(x, y, t * ).

Step 2 Simulation of the following ODE:

∂u(x, y, t) ∂t = β 1 (H(x, y, t))u -β 2 (H(x, y, t))u 2 , (14) to get u(x, y, t n+1 ).

For the first step, we apply the Crank-Nicolson (Goncalves, 2005) scheme to simulate Equation ( 13). This scheme is the average between explicit Euler and implicit Euler schemes. Then, for the same time step, we solve ( 14) by using the explicit Euler method to obtain simulated population u(x, y, t).

To start the simulation, we need to give a initial population at time t = 0, i.e. u(x, y, 0). For that, we choose the French population of Yellowhammers observed in 2002 in the real application. This initial population is presented in Figure 6. The initial scheduling variable H(x, y, 0) is presented in Figure 7. Figure 8 presents H(x, y, t) for t = 1, 4, 7, 10, 13 and 16. Yellow areas are favorable and blue areas are unfavorable for Yellowhammers. In this section, we present the results of simulation and identification. For that, firstly, we present the simulated u(x, y, t) for t = 1, 4, 7, 10, 13 and 16 years in Figure 9. This last one shows us that the birds move from the south west to the north east. We can see from Figure 10 that the bird population decreases over time. Regarding the identification of the parameters side, we initialize our parameters vector as follows: θ θ θ 0 = θ θ θ true × 0.9. After 101 iterations, θ θ θ iter converges to θ θ θ true with the following errors(%) e = [2.61 3.88 8.09 9.75 21.27 3.54 3.45]. We present in Figure 11 how our parameters converge to the true parameters. In order to assess climate and/or agricultural impacts on wildlife populations, we propose new population dynamics models based on parameter-varying partial differential equations. The tools for estimating the parameters of these models are specifically introduced for ecological applications and their specific datasets. In the present paper, these tools are validated on simulation data that replicates a real application about the French population of Yellowhammers and climate and agricultural changes.

Based on these validated tools, the future work will be dedicated to real data from the national French Breeding Survey [START_REF] Jiguet | French citizens monitoring ordinary birds provide tools for conservation and ecological sciences[END_REF] and the study of the population of Yellowhammers.
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  ) We take for the spatial steps dx = dy = 2 and for the time step dt = 0.01 and θ θ θ true = [D 0 , D 1 , ω x0 , ω y0 , β 10 , β 20 , β 21 ] = [200, -150, 18, 15, 0.01, 0.1, -0.089].
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 8 Fig. 8. H(x, y, t) for t = 1, 4, 7, 10, 13 and 16 years
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